
SFC Path Tracer: A Troubleshooting Tool for
Service Function Chaining

Rafael Anton Eichelberger∗†, Tiago Ferreto∗, Sebastien Tandel† and Pedro Arthur P. R. Duarte†
∗ PPGCC/PUCRS, Porto Alegre, Brazil

tiago.ferreto@pucrs.br
† Hewlett Packard Enterprise, Porto Alegre, Brazil.

reichelberger@hpe.com, sebastien.tandel@hpe.com, pedro.duarte@hpe.com

Abstract—Service Function Chaining (SFC) is a prominent
research field in networking with several proposals from in-
dustry and academia. The lack of tools to check SFC path
correctness forces network operators to spend a significant effort
in guaranteeing that an SFC configuration meets their intent
behavior. This work presents the SFC Path Tracer, a tool for
troubleshooting SFC in NFV/SDN environments. The tool enables
the identification of problems in an SFC configuration through
the display of the whole path traversed by packets in a given
SFC path. SFC Path Tracer is agnostic to the SFC encapsulation
mechanism and incurs in low overhead on the SFC architecture.

Index Terms—SFC, troubleshooting, trace, NFV, SDN

I. INTRODUCTION

Common network topologies contain several middleboxes,
proportional to the number of switches and routers [1]. These
network devices perform a critical role in the deployment of
network services, such as: firewalls, IDS (Intrusion Detec-
tion Systems), DPI (Deep Packet Inspection), Proxies, NAT
(Network Address Translation), etc. Managing these devices
is complex and require specialized technical support to reach
the best performance among all aggregated functionalities.

The features delivered by Software-Defined Networking
(SDN) and Network Function Virtualization (NFV) have
leveraged the on-the-fly configuration of network functions
interconnections known as Service Function Chaining (SFC),
enabling then the addition or removal of those functions
according to network requirements. SFC can be achieved
following many proposals [2]–[4] from industry and academia.
It is possible to implement SFC using a variety of technologies
including SDN/NFV or even a new protocol stack.

Given the dynamic nature of SFC, its deployment may
involve multiple configuration steps as functions might reside
in different hosts or networks. Hence, configuration mistakes
lead the systems to several erroneous behaviors ranging from
wrong forwarding decisions to packet drop. Besides that, the
lack of troubleshooting tools makes operators spend great
efforts to ensure that the network meets its intent behavior
[5]. To overcome this problem, researchers and practitioners
proposed the SFC Operation, Administration and Maintenance
Framework (SFC-OAM) [6], a Internet draft that discusses and
proposes tools to aid SFC operation.

One of SFC-OAM discussions evolve around tracing tools.
In traditional networks, tracing tools assist the detection of

misbehavior such as packet drops and unwanted network hops.
However, current tracing tools are unable to give precise
information in SFC environments because these environments
employ ad-hoc forwarding mechanisms that partially breaks
their tracing techniques. Therefore, the main contribution of
this work is the design of SFC Path Tracer, a troubleshooting
tool for SFC environments that enables the visualization of the
trace of network packets in the SFC domain.

II. BACKGROUND

IETF (Internet Engineering Task Force) defines Service
Function Chaining (SFC) [7] as an abstract view of network
functions and the order in which they need to be applied.
SFC forms traffic chains among service functions regarding
a specific network service. SFC is instantiated from a set
of network functions or service functions (SFs), which are
placed in specific locations forming a forwarding graph,
known as Service Function Path (SFP). In the SFC-enabled
domain Service Function Forwarders (SFFs) are responsible
for forwarding packets throughout SFs in the chain.

SFC enables the creation of composite network services
that consist of an ordered set of SFs (e.g., SF1 ⇒ SF2 ⇒
SF3) that must be applied to packets selected as a result of
classification. Each SF is referenced using an identifier that
is unique within an SFC-enabled domain. SFC describes a
method for deploying SFs in a way that enables dynamic
ordering and topological independence of SFs, as well as the
exchange of metadata between its components [8].

A. SFC troubleshooting

SFC configuration involves multiple steps, such as: defining
a chain, translating the intent chain into network policies,
installing switch flows rules and even configuring service func-
tions. Any misconfiguration can lead the system to erroneous
behavior, with packets being forwarded to wrong SFs or even
dropped along its path.

Different SFC approaches present a variety of techniques
to implement dynamic function chaining which affects the
complexity to properly evaluate such implementations. It is
hard to evaluate or troubleshoot possible problems, regardless
of the SFC technique used. If a reachability problem is
detected in the chain path, it might be a massive work to
find where the packet is being lost.

978-3-901882-89-0 @2017 IFIP 568



OAM for SFC [6] provides a reference framework for
Operations, Administration and Maintenance (OAM) for SFC.
It indicates the aspects of SFC that should be monitored. The
monitoring element should have capabilities to monitor service
function performance, forwarders and the classifier. OAM for
SFC also discuss requirements for monitoring SFC path. It
highlights that SFC path can be monitored using connectivity
and trace functions. Packet trace function enables the detection
of above common problems. Packet traces can confirm that the
network traffic is traversing all configured service functions or
pinpoint the problematic location when traffic does not reach
its destination.

III. RELATED WORK

Some tools and frameworks that generate packet traces may
be leveraged by network operators to help identify recurrent
problems in the SFC environment. SFC Traceroute [9] makes
use of the metadata space from Network Service Header
(NSH) [2] to store chain hop information and then generating
a trace. NSH is a new protocol stack proposal to encapsulate
SFC information. Tracebox [10] proposes an extension to
the widely used traceroute tool, that is capable of detecting
middleboxes by sending IP packets containing TCP segments
with different TTL values. SDN Traceroute [11] installs high-
priority rules in every switch of the network in order to allow
these switches to trap probe packets and thus generate the
trace.

IV. SFC PATH TRACER

SFC Path Tracer provides a solution to generate packet
traces in an SFC environment. It is agnostic to SFC encapsula-
tion mechanism employed, enabling its utilization in different
SFC implementations. SFC Path Tracer provides a trace which
includes all network components in the SFC path.

A. Architecture

Figure 1 shows the architecture of SFC Path Tracer. SFC
Model represents the SFC configuration including all its el-
ements (SFF, SFs, SFP, etc). SFC Driver is responsible to
read the SFC Model configuration and to install rules in the
Network Elements. SFC Path Tracer watches all switch rules
installation and based on that, it adds new rules to mirror
network packets. The trace generation will be triggered by
probe packets. Therefore, probe packets that traverse a target
chain will be mirrored to the trace tool.

Probe packets will traverse a target chain as any other
network packet would traverse. However, whenever a probe
packet leaves a forwarder switch to its next hop, it is also
mirrored to the trace tool. Probe packets can be identified in
many ways, using optional header fields or encoding mean-
ingful information in the L2 header. The probe packet is used
to identify a single packet in the traffic and consequently get
its trace. The use of probe packets allows a filter mechanism
to restrict the steering of network packets to the SFC Path
Tracer. Detailed probe packet flow can be seen in Figure 2.

Fig. 1: SFC Path Tracer architecture

B. Implementation

SFC Path Tracer is implemented in the SDN controller
layer. OpenDayLight (ODL) is the chosen platform. SFC Path
Tracer is implemented as a plugin in the ODL controller under
the ODL SFC project. In ODL, the OpenFlow configuration
is handled by a plugin called OpenFlow Plugin. Therefore,
OpenFlow Plugin is also used to install rules for tracing
generation.

Since ODL and OpenFlow are used to evaluate SFC Path
Tracer design, the OpenFlow channel is used to send mirrored
packets to the controller where SFC Path Tracer is running.
ODL abstraction layer is used to watch switch rules installation
and read the SFC model configuration.

1) Probe Packet Generation: In this implementation, the
probe packet is flagged by an IP header field that is not used
for regular traffic and can also be used as a match field in
OpenFlow rules. The used field is the 2-bit Explicit Congestion
Notification (ECN). The ECN bits will trigger OpenFlow rules
to send packets to the controller.

In order to generate an SFC trace for a specific chain, probe
packets can be generated in many ways. The controller can
artificially inject probe packet in the chain input to generate
the trace. A client placed behind the Classifier, as chain input,
can send probe packets. It is assumed that SFs being traced
will not drop those probe packets.

2) Trace rules installation: The SFC implementations on
ODL defines a pipeline of switch tables that will process
network packets. SFC Path Tracer detects rules from egress
OpenFlow table and adds the trace rules. The new trace
rules are copies of the original egress rules, but with slightly
modified matches, actions and a higher priority.

In the OpenFlow match, the ECN field is added in order to
filter just probe packets. The OpenFlow action is changed to
decrement IP TTL (time to live) field, write the output forward
port into the OpenFlow metadata field, and add an action to
forwarding the packet to the next table, defined as trace table.
TTL is decremented to guarantee the trace ordering among
hops. The output port is encapsulated into OpenFlow metadata
in order to trace the next hop. On the trace table, the packet
is matched again by ECN bits and sent to the ODL controller.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper 569



3) Probe packet listener: SFC Path Tracer must listen to
packets coming into the ODL controller. From packet-in, it
is possible to get information such as the switch that sent the
packet to the controller. SFC Path Tracer uses this information
to discover which forwarder handled the packet. From the
output encapsulated in the metadata field, the next hop that the
packet will be forwarded is detected. SFC Path Tracer knows
the SFs and forwarders by looking the SFC data model and
finding the SFF name and the SF connected to the specific
switch port. Once the elements are found in the configured
SFC model, SFC Path Tracer updates the packet trace. The IP
identification field is used to disambiguate packets in order to
handle concurrent probe packets.

It is worth noting that more information can be used from
the income probe packet in the controller. For instance, if the
port is not present in the SFC model, the search might be done
looking for the MAC address from a specific SF.

C. Use case

Figure 2 shows a use case where a chain is configured to
reach an IDS and Firewall. The client sends probe packets
and, through trace rules installed by SFC Path Tracer, probe
packets are mirrored to the controller in every chain hop.

The continuous line, shown on Figure 2, means the probe
packet traversing the network elements, while the dotted
line represents the mirrored probe packet being sent to the
controller in order to generate the packet trace. Whenever
the probe packet leaves a switch, it is also mirrored to the
controller. The packet flow sequence is identified by numbers
in the figure.

Fig. 2: SFC Path Tracer use case

The resulted packet trace prints all SCF, SFs and SFFs
reached by the probe packet. The trace output for the example
in Figure 2 is SCF ⇒ SFF1 ⇒ IDS ⇒ SFF1 ⇒
SFF2 ⇒ Firewall ⇒ SFF2 ⇒ Router.

V. EVALUATION

A. Probe packet delay

The SFC encapsulation technique used in the experiment
is the SFCOFL2 plugin [12]. SFCOFL2 implements SFC
for OpenFlow switches which are connected via layer 2
connectivity with the SFs.

Figure 3a shows the largest topology used in the evaluation.
This topology is formed by a classifier and three forwarders,
connecting three SFs each. In order to adjust the number of
hops in the chain, SFs were removed for each measurement

(a) Experiment topology

(b) Probe packet delay

Fig. 3: Packet delay with a varying number of chain hops:
normal packets (np), probe packets (pp) and probe packet with
controller in the path (ppc)

until the smallest chain were formed just by SFF1 and SF1.
The numbers in Figure 3a represent the chain hops, which are
changed to run the experiments.

Probe packets were generated using hping3 1 tool. This
tool can create custom packets to ping devices via UDP, TCP
or ICMP. In the context of the experiments, hping3 is used
to create probe packets, i.e. IP headers with ECN bit set to
one. Besides that, the probe packet carries a UDP payload
that targets a closed port. According to RFC 792, if a source
cannot deliver a datagram to a protocol module or process port,
the destination may send an ICMP Port Unreachable back to
the source. The experiments use this message to calculate the
Round-Trip Time (RTT).

In order to measure the delay, a UDP packet is sent through
a unidirectional chain from H1 to H2. Figure 3b shows the
RTT for normal packets (np) that were sent over the chain with
ECN untouched and probe packets (pp) with ECN bits set. It
was also evaluated the approach used by SDN Traceroute [11]
(ppc). In this approach, probe packets are sent to the controller
and forwarded back to the switches. Therefore, the controller
is located in the direct path of probe packets, since they are not
mirrored. The amount of time for packets traverse the chain
is computed collecting RTT measurements from an average of
10 cycles of 100 pings.

The additional delay of pp, comparing with np, represents
the cost of copying those packets in the switches in order to
send it to the controller. Since this evaluation runs on virtual
switches, this copying is notable. On hardware switches, the
probe packet mirroring would have significant smaller cost.
1 http://www.hping.org/

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper570



Although there is a small extra delay for pp, this delay is
significant smaller comparing with SDN Traceroute approach
(ppc). While the average of additional delay for ppc is around
2.3 ms per hop, for pp is approximately 0.3 ms per hop.
This enables the possibility to flag normal network packets,
generating traces for real traffic.

B. Troubleshooting evaluation

SFC Path Tracer tool is useful to troubleshoot common SFC
problems such as misconfigured policies and SFs connectivity
issues. For instance, while setting-up the test environment,
SFC Path Tracer made explicit several errors such as bogus
SFs, wrong OpenFlow rule sets installation, and dataplane
misconfiguration (e.g., disabled ports). With the use of SFC
Path Tracer, such problems were easily identified observing
the SFC trace output.

VI. DISCUSSION

OAM for SFC [6] discusses tool gaps to perform OAM
function on an SFC. The gaps are related to verifying that the
connectivity exists between network elements and the conti-
nuity of elements, which is a model where OAM messages
are sent periodically to validate or verify the reachability to
a given SF or SFC. Performance and trace are other OAM
functions analyzed. Some of these gaps can be filled by SFC
Path Tracer. Table I shows this gap analyses and where SFC
Path Tracer (SFC PT) is fitted. Existing tools used for network
overlay does not work within the SFC environment.

TABLE I: OAM Tool gap Analysis [6].

Layer Connectivity Continuity Trace Performance
Network Overlay Ping BFD [13] Traceroute IPPM [14]
SF SFC PT SFC PT SFC PT None
SFC SFC PT SFC PT SFC PT None

A. SFC encapsulation methods

SFC Path Tracer was evaluated on ODL’s SFCOFL2, an
SFC implementation that stores chain identification in DSCP
field of IP headers. However, SFC Path Tracer design can
be applied to other SFC encapsulation methods. SFC Path
Tracer was also tested using NSH. In this case, SFC Path
Tracer extracts NSH field to get chain and hop information
to generate the trace. In cases where SFC is encapsulated in
L2 headers, MAC address fields could encode probe packets
flagging information. SFC technique that relies on traditional
switch routing protocols such as 802.1q (VLAN) and MPLS
may not be trivial to adapt the SFC Path Tracer.

B. Service Functions compatibility

SFC Path Tracer does not require any agent from SF
side. SFC Path Tracer technique allows the utilization of any
IP packet with probe flag (ECN) to be traced, which can
be used in most transport protocols. SFC Path Tracer just
relies on SFs not dropping those packets otherwise, the probe
packet flagging must be done using other fields such as MAC
addresses.

SFC Path Tracer may present compatibility issues with SFs
which does not keep the IP header by any reason or opens
new output connections such as TCP proxies. In this case, the
ECN flags from packets will be lost and the next SFF will not
recognize it as a probe packet.

VII. CONCLUSIONS

This paper presented the SFC Path Tracer, a troubleshooting
tool for SFC environments. SFC Path Tracer proved to be use-
ful for identifying problems in SFC paths configuration. Packet
trace information reduces the debug time by pinpointing the
origin of a possible problem. The strategy of decrementing
TTL field from IP packets ensures correct ordering of network
elements in the trace.

SFC Path Tracer can be extended to add new features to
collect other measurements and become a more generic SFC
monitoring tool. SFC Path Tracer can be leveraged to measure
chain performance. This can be achieved by collecting times-
tamps throughout a chain in order to detect congestion paths
or overloaded SFs.

REFERENCES

[1] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
middlebox manifesto: Enabling innovation in middlebox deployment.”
ACM, 2011.

[2] P. Garg, P. Quinn, R. Manur, J. Guichard, S. Kumar, A. Chauhan,
B. McConnell, M. Smith, C. Wright, U. Elzur, J. M. Halpern,
W. Henderickx, T. Nadeau, S. Majee, D. T. Melman, K. Glavin, and
P. Agarwal, “Network Service Header,” Internet Engineering Task Force,
Internet-Draft draft-quinn-sfc-nsh-07, Feb. 2015, work in Progress.
[Online]. Available: https://tools.ietf.org/html/draft-quinn-sfc-nsh-07

[3] P. Bottorff, don.fedyk@hpe.com, and H. Assarpour, “Ethernet MAC
Chaining,” Internet Engineering Task Force, Internet-Draft draft-fedyk-
sfc-mac-chain-01, Jan. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-fedyk-sfc-mac-chain-01

[4] D. Dolson, “Vlan service function chaining,” IETF (Internet Engineering
Task Force) Internet-Draft, draft-dolson-sfc-vlan-00, 2014.

[5] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “Buzz:
testing context-dependent policies in stateful networks,” in 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16), 2016.

[6] S. Aldrin, C. Pignataro, R. R. Krishnan, A. Ghanwani, and N. Akiya,
“Service Function Chaining Operation, Administration and Maintenance
Framework,” Internet Engineering Task Force, Internet-Draft draft-
aldrin-sfc-oam-framework-02, Jul. 2015, work in Progress. [Online].
Available: https://tools.ietf.org/html/draft-aldrin-sfc-oam-framework-02

[7] A. Farrel, “Service function chaining,” IETF, Tech. Rep., 2013.
[Online]. Available: http://datatracker.ietf.org/doc/charter-ietf-sfc/

[8] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” IETF, RFC, 2015.

[9] X. Yang, L. Zhu, and G. Karagiannis, “SFC Trace Issue Analysis and
Solutions,” Internet Engineering Task Force, Internet-Draft draft-yang-
sfc-trace-issue-analysis-01, Feb. 2016, work in Progress. [Online]. Avail-
able: https://tools.ietf.org/html/draft-yang-sfc-trace-issue-analysis-01

[10] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proceedings of
the 2013 conference on Internet measurement conference. ACM, 2013.

[11] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “Sdn traceroute: Tracing
sdn forwarding without changing network behavior,” in Proceedings of
the third workshop on Hot topics in software defined networking. ACM,
2014.

[12] “Service function chaining:lithium user facing features - opendaylight
project,” https://wiki.opendaylight.org/view/Service Function Chaining:
Lithium User Facing Features#SFCOFL2, (Accessed on 05/18/2016).

[13] D. Katz and D. Ward, “Bidirectional forwarding detection (bfd),” 2010.
[14] D. G. T. Almes, J. Mahdavi, M. Mathis, and D. V. Paxson, “Framework

for IP Performance Metrics,” RFC 2330, Mar. 2013. [Online]. Available:
https://rfc-editor.org/rfc/rfc2330.txt

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper 571


