
Performance-Aware Energy-Efficient Processes
Grouping for Embedded Platforms

Paulo Silas Severo de Souza†, Wagner dos Santos Marques†, Marcelo da Silva Conterato†,
Tiago Coelho Ferreto†, and Fábio Diniz Rossi∗

∗Federal Institute of Education, Science, and Technology Farroupilha (IFFar) - Alegrete - Brazil
†Pontifical Catholic University of Rio Grande do Sul (PUCRS) - Porto Alegre - Brazil

Email: {paulo.silas, wagner.marques.001, marcelo.conterato}@acad.pucrs.br
tiago.ferreto@pucrs.br, fabio.rossi@iffarroupilha.edu.br

Abstract—Embedded systems are becoming more popular in
several sectors of society by performing a broad range of tasks.
In this context, there is a concern about improving the trade-off
between performance and energy savings since they are usually
battery-dependent. However, it is not a trivial task since some
embedded devices are developed with strict hardware constraints.
In this sense, we present an operating system level tool that groups
processes dynamically on resources. Our tool manages different
types of processes, and through isolation characteristics, provides
a better utilization of resources. The results show that our tool
can improve the trade-off between performance and power saving
of embedded systems in up to 15%.

Keywords—Energy-Delay Product, Embedded Systems, Work-
load Management.

I. INTRODUCTION

Embedded systems, which usually are computers designed
for specific purposes with hardware constraints, are becoming
more popular than ever by performing several tasks in the most
diverse contexts of society such as education, telecommuni-
cations, security, and health [1]. One of the most significant
challenges in such devices is how to improve the trade-off
between application performance and power savings. Several
works propose especially the use of dynamic voltage and
frequency scaling on processors [2]. To increase the appli-
cations performance, the processor’s frequency is maximized
[3]. However, this approach presents some architectural limi-
tations since keeping the processor always operating at high
frequencies generates heat and also consumes unnecessary
amounts of energy. On the contrary, reducing the processor
frequency decreases the power consumption, but also leads to
performance issues, since fewer instructions will be processed
per second. Besides, processes may have different resources’
demands depending on its behavior, so changing the processor
frequency based on the applications’ behavior result in energy
savings without sacrificing the performance of the device [4].
However, this mechanism is usually linked to a particular
application behavior, which leads most to static solutions.

In this context, this paper presents a dynamic resource
allocation tool that uses multiple Linux kernel features in
order to make the following main contributions: (i) The
proposed tool uses process-grouping mechanisms to separate
applications that involve the business logic processes (e.g.
applications that are directly linked with the main purpose of
the embedded system in the context it is inserted, for example,
a data pre-processing algorithm) from the general purpose ones
(e.g., system tasks), organizing them into different processor

cores to improve the resources usage and avoid performance
degrading events such as cache misses; (ii) It dynamically
enables or disables processor cores according to the system
needs in order to reduce the dynamic power consumption; (iii)
It increases the performance of embedded systems during the
execution of real-time and high demanding applications by
dedicating some processor cores to these tasks, so they do
not need to compete for resources with other processes. The
remaining of this article is organized as follows: in Section
II, we present theoretical concepts that pave the way to our
proposal, which is described in Section III. Then, in Section IV
we present and discuss the results of the experiments that were
conducted to evaluate the efficiency of the proposal, and based
on such findings, we compare our tool with related work in
Section V. Finally, Section VI is reserved to the final remarks.

II. MOTIVATION

Techniques that operate at the operating-system level
emerge as viable solutions to improve the trade-off between
performance and power saving even in embedded systems
with architectural limitations that can hamper the use of some
hardware-level features. One of the possibilities is manipulat-
ing the affinity of the processor with the running applications,
which can be achieved through scheduling algorithms that can
ensure that some processes or threads will only be handled
by specific processor cores. For example, in a scenario when
an embedded system with four processor cores is running a
single high-performance task, the system processes could be
grouped into specific cores to improve the CPU affinity and
increase the overall system performance. Moreover, the re-
maining cores could be dedicated only to processing the high-
performance application, avoiding unnecessary competition for
resources with the system jobs. However, applications with
several threads that work independently (e.g., clustering-based
analysis algorithms, where each thread can be responsible for
the analysis in a cluster) are not much benefited by running on
a particular processor since other threads would have already
using the Cache memory of such processor.

In addition to CPU affinity, load balancing also emerges
as an alternative to ensure the efficient use of the resources.
Load balancing is a technique that distributes the workload
across the available computing resources in order to minimize
the response time and avoid unnecessary overload of a single
computing resource. Load balancing can be implemented in
the context of a single device or a cluster: it can be used to
balance the workload between the multiple processor cores
of a single device, or it can be implemented to ensure the

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00940

cooperation of many embedded systems distributed across an
environment during the execution of a single task [5]. Such
technique can also be useful when the running processes do
not require the use of all the processor cores of the device or
in cases when is not possible to use parallelism due to high
data dependency. In such scenarios, the processor cores that
are not being used could be temporarily disabled in order to
decrease the dynamic power consumption of the device.

Load balancing mechanisms also allow the use of tech-
niques such as Cache prefetching. Such technique relies on the
memories hierarchy because it fetches data or instructions from
their storage (usually main memory) to faster memories (e.g.,
Cache memories) before the application needs it. The prefetch-
ing process is based on the applications’ behavior, and it can be
accomplished through software mechanisms that send special
instructions to the processor warning that some data will be
required at some point soon. In this sense, when the application
asks for that data, it loads faster since it already is in the Cache
memories [6]. Cache prefetching increases the performance
of applications by avoiding performance degrading events
such as Cache misses, which refers to attempts to find some
data which already was replaced from the Cache memory. In
such cases, the processor needs to read the missed data from
the main memory [7]. As this kind of Cache prefetching is
controlled at the software-level, it can be used by computers
with architectural constraints such as some embedded systems.
Nonetheless, usually operating systems do not provide load
balancing algorithms to ensure the Cache affinity for the
running applications, so developers need to implement their
own algorithms to this end. Moreover, implementing such kind
of technique in the context of embedded systems is not a
trivial task since if not controlled load balancing techniques
can generate unnecessary power consumption by distributing
tasks that could be executed on a single processor to multiple
processors [8]. In this context, load unbalancing strategies
emerge as an option to be combined with load balancing
policies to provide a most efficient use of the resources.

III. RESOURCE ALLOCATION TOOL

The increasing demand for computational power manage-
ment in the context of embedded systems is promoting the use
of techniques such as virtualization and frequency scaling to
find optimal points between performance and power saving.
In this context, techniques such as Cache prefetching [9] that
can be manipulated at the operating-system level emerge as
a viable solution. Nevertheless, there are few studies with
the focus on using such type of technique in the context
of embedded systems. In this sense, we introduce a process
grouping tool that performs workload balancing in embedded
systems to improve the trade-off between performance and
power saving.

Usually, applications that involve the business logic of
the environment in which the embedded device is included
have to compete for resources with the general purpose tasks
(e.g., system processes or other running applications). This
competition can be harmful to both types of tasks since it can
increase the number of Cache misses, which is a state where
some data or instruction requested by a process is not found in
the Cache memory. In such cases, a performance overhead is
produced since the system needs to fetch that data from other
Cache levels or even from the main memory. In this sense, we
present a tool that takes advantage of Linux kernel features

to balance the workload between the available computing
resources in the embedded device in order to improve the
resources usage efficiency and avoid problems such as Cache
misses.

In Linux operating systems, the processes are organized
into a tree in which all processes are treated as children of
the init process, which is initialized by the kernel during
the system’s initialization. Such hierarchical scheme makes
it possible to manipulate multiple processes simultaneously.
One of the options to achieve multiple processes manipulation
is through Control Groups (also known as cgroups, a feature
present in the Linux kernel since version 2.6.24) that joins
processes into groups. In addition to monitoring a particular
set of processes, cgroups provides a way to limit the use
of resources (CPU, memory and I/O) to each created group.
Moreover, the features offered by the Control Groups are
distributed into subsystems or controllers, making it possible
to choose which controllers will be initialized with the system
to improve the system’s performance.

This line of reasoning is followed by our proposal. As
shown in Figure The tool collects information from the running
processes and applies such knowledge along with operating
system features to make decisions based on the running appli-
cations’ behavior. The focus is on raising the resources usage
efficiency and by consequence improving the trade-off between
performance and power saving. In this context, our proposal
analyzes the demand for resources of the running applications
and organizes them into the processor cores to improve the
cache prefetching accuracy and consequently decrease the
response time of the device. Figure 1 presents three scenarios
in which a quad-core embedded system is running four HPC
applications to exemplify the use of the proposed tool. The first
scenario (Figure 1a), shows how operating systems usually
allocate applications among the processor cores (e.g., each
application is scheduled to a distinct processor core). Figure 1b
exemplifies a situation when our proposal analyzes the resource
demand of the running applications and organizes them into
only two processor cores, deactivating the other two unused
cores to achieve power saving. Figure 1c represents a situation
when, after organizing the processes into a scheme identical
to the previous scenario, the tool realizes that the “App 1” is
requiring more processing power. In such scenario, the tool
dedicates an entire processor core to this application in order
to avoid performance loss.

The proposed tool uses one of the Control Groups subsys-
tems which is called cpuset that is responsible for manipulating
the processor units and memory nodes in a cgroup. More
specifically, the proposed tool dynamically manipulates two
cpuset properties: “cpuset.cpus” and “cpuset.cpu_exclusive”.
The first property is used to balance the workload among
the processor units of the embedded device. The second is
employed to isolate certain processor units to specific groups.
Our proposal divides the processes into two groups. Group 1
gathers general purpose and system processes. Group 2 gathers
processes related to the environment business logic in which
the embedded device is included. In this way, our proposed
tool avoids unnecessary competition for resources between
the system processes and the business logic applications.
Moreover, as we can see in Figure 2, such approach also allows
disabling processor cores when they are not necessary, in order
to decrease power consumption.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00941

Fig. 1: Workload management scheme provided by the pro-
posed tool exemplified in three scenarios in a quad-core
embedded system running four HPC applications.

Fig. 2: Workload management provided by the proposed tool.

A. Workload Management with the Proposed Tool

The proposed tool works as follows. First, it automatically
adds the system processes into a group (Group 1) and attributes
a processor core to these tasks. Then, a second group (Group 2)
designated for the business logic applications is created. After
this phase, users need to inform the proposed tool which are the
business logic applications (if not specified as business logic
applications, all processes started after the groups’ creation
are automatically considered general purpose tasks). After the
configuration phase, which involves the processes organization,
the proposed tool starts a function that calculates the number of
processor cores that are required by the working applications.
The algorithm gets the overall CPU usage and analyzes how
many processor cores are needed to ensure the performance
of the running applications even if that usage rises in up to
5% (such extra percentage was added since the applications
resource usage can fluctuate). After analyzing the optimal
number of processor cores to run the working tasks, the
proposed tool sets this limit to the processes through the cpuset
properties presented above. The proposed tool calculates the
standard deviation of the resources usage history of the running

applications to set a time interval between the executions of the
cores limits management procedure. Both the decision on the
number of cores and the interval between runs always occurs
when a new application is started. In this sense, the proposed
tool will readjust the processor cores limits more frequently
as the resources usage oscillation increases. The operations
performed by the proposed tool are graphically presented in
the diagram presented in Figure 3.

Fig. 3: Sequence diagram with the activities’ flow generated
by the proposed tool.

IV. EVALUATION AND DISCUSSION

Experiments were conducted to evaluate the impact caused
by the tool in embedded systems during the execution of sev-
eral algorithms with different behaviors. We analyzed perfor-
mance, power consumption, and Energy-Delay Product (which
is a metric that takes into account both performance and power
consumption). The energy consumption was obtained through
the use of an ACS712 hall-effect current sensor. We conducted
the experiments using nine algorithms from the NAS Parallel
Benchmarks [10] (as business logic applications) version 3.3-
OMP, a popular suite that contains high-performance comput-
ing (HPC) algorithms derived from real-life applications. We
ran two instances of each algorithm in parallel to simulate
scenarios when embedded systems need to execute more than
one task at the same time. The experiments were performed
on a Raspberry PI 2 model B, a single-board computer with
a 900MHz quad-core ARM Cortex-7 processor and 1GB of
RAM running the operating system Ubuntu ARM 17.04. The
algorithms were compiled with GCC and GFortran both in
version 6.3.0. The results presented next are an average of ten
executions of each algorithm with a standard deviation less
than 1%.

A. Performance

Figure 4 shows the performance results during the execu-
tion of the chosen algorithms. As we can see, in all cases
our tool was capable of improving the performance in up to
7.54%. Such results show that dynamic processor grouping
can increase the performance by improving the CPU affinity
and avoiding unnecessary competition for resources with the
system tasks even in cases when more than one application is
being executed at the same time.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00942

Fig. 4: Performance comparison between the proposed tool and
the approach adopted by the default by the operating system.

The results show that applications that rely on shared-
memory access can take advantage of processes grouping to
improve the chances that the data used during its execution
will remain in the Cache memory. For example, the high-
est performance gain was achieved by FT (7.52%), which
uses Fast-Fourier Transform to solve three-dimensional partial
differential equations. During its execution, several discrete
multi-dimensional FFTs need to access a vast array multiple
times. SP (Scalar Penta-diagonal solver) and LU (Lower-
Upper Gauss-Seidel solver) achieved the second and third best
performance results that presented gains of 5.36% and 4.78%
respectively. These tests are applications containing structured-
mesh codes that execute a set of operations on multidimen-
sional arrays. As SP and LU require regular memory access
by using structured-mesh codes, they have taken advantage
of the processor cores isolation provided by the proposed
tool. It increases the CPU affinity and enables the use of
cache prefetching to boost performance by fetching data or
instructions to faster memories before they are needed, based
on mechanisms that recognize the next elements that will be
used by the algorithm.

The Multi-Grid (MG) algorithm, which is an iterative prob-
lem that involves both short and long-distance communication
of structured data, and therefore is also highly dependent
on shared-memory access speed also showed positive results,
presenting a performance increase of 3.86%. Moreover, the
proposed tool also produced a performance gain of 3.76%
in the Integer Sort kernel (IS), which also highly depends
on the memory-access speed since it executes integer sorting
operations that used particle method simulations. This result
shows that not only applications that rely on floating-point
arithmetic can take advantage of the features provided by the
proposed tool. The algorithm which was less benefited by the
use of the proposed tool was the Embarrassingly Parallel (EP)
with a gain of 2.68%. This kernel is responsible for estimating
the performance during floating-point operations. What makes
EP different from the other executed tests is the fact that it
performs very few memory accesses. In this sense, improving
the CPU affinity by processes grouping does not make a huge
difference in its performance. Nonetheless, the proposed tool
not only ensures the CPU affinity for the running applications
but also isolates them into specific processor cores to avoid

unnecessary competition for resources with the system tasks.
Hence, the EP kernel also presented a performance gain even
not being highly dependent on the memory access speed as
the other executed algorithms.

B. Power Consumption

The results regarding power consumption are presented in
Figure 5. The best case was a gain of 4.04% achieved during
the execution of LU. Such algorithm presents a very similar
behavior to BT and SP, which also presented power savings of
0.38% and 0.22% respectively. The positive results achieved
during the execution of these algorithms can be explained by
its symmetric behavior which increases the potential of CPU
affinity since they can continually reuse the data stored in the
cache memory.

Fig. 5: Power consumption comparison between the proposed
tool and the approach adopted by the default by the operating
system.

The Fast Fourier Transform (FT) algorithm presents bene-
fits from the use of the proposed tool, showing power saving of
1.23%. The positive result achieved during the execution of this
algorithm can be explained by its behavior in which a partial
differential equation is transformed by multidimensional FFTs
that access a vast array multiple times. As the proposed tool
dedicates processor cores to the applications, parts or even the
whole single array that must be accessed by the FT algorithm
can be kept in the cache memory. In addition to increasing
the performance, such approach can also reduce the dynamic
power of the device since it reduces the data transfer among
the memories (the data required by the application do not need
to be accessed from the main memory and then consequently
moved to the cache memory several times).

The worst power consumption results were achieved in
the Integer Sort (IS) and Conjugate Gradient (CG) kernels,
in which using the proposed tool generated overheads of
0.13% and 0.20% respectively. As IS performs integer sorting
operation, the CG kernel computes the smallest eigenvalue of
a large sparse matrix. Despite the different purposes of these
algorithms, they present some similarities: the instructions
executed by both require very irregular data access. In this
sense, as opposed to the algorithms that showed the higher
power savings, the irregular data access of IS and CG may
require access to data that is not in the cache memory despite
the high CPU affinity provided by the proposed tool.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00943

C. Energy-Delay Product

EDP (Energy Delay Product) metric [11] considers the
latency together with the energy consumption through EDP
= Energy (Joules) x Delay (Seconds). Such metric was used,
and it can clarify, summarize, and corroborate our findings
correlating performance with energy consumption. The results
are presented in Table I.

TABLE I: EPD gain of proposed tool versus power-agnostic
environment EDP.

NPB Algorithm EDP Gain
3D Fast Fourier Transform (FT) 15.49%
Lower-Upper Gauss-Seidel Solver (LU) 12.97%
Scalar Pentadiagonal Solver (SP) 10.62%
Multi-Grid (MG) 7.55%
Block Tri-diagonal solver (BT) 7.51%
Integer Sort (IS) 7.27%
Conjugate Gradient (CG) 7.12%
Unstructured Adaptive (UA) 6.65%
Embarrassingly Parallel (EP) 5.61%

The results showed that all executed algorithms take ad-
vantage of the isolation mechanism of the proposed tool
that avoids unnecessary competition for resources with the
system tasks. Looking more specifically at the results, we
notice that our proposal can highly benefit applications that
rely on shared-memory access speed. That is the reason why
the Embarrassingly Parallel (EP) kernel, which performs very
few memory accesses, presented the smallest EDP gain (only
5.61%): it just took advantage of not competing for resources
with the system processes at most. The best results were
achieved in the execution of the FT and LU algorithms that
presented gains of 15.49% and 12.97% respectively. Such
results are the product of a combination of two characteristics
of these algorithms. Firstly, they highly depend on the shared-
memory access speed. Secondly, they perform regular memory
accesses. During the execution of applications with irregular
memory access, the number of useless prefetches tends to
increase since its behavior cannot be easily predicted. In
this sense, applications with irregular memory access cannot
explore the maximum potential of cache prefetching tech-
niques. It explains the results presented by IS, CG, and UA
algorithms. They were dynamically changing memory accesses
and presented small EDP gains, only showing better results
when compared to EP which does not rely on shared-memory
access.

The executed algorithms are derived from Computational
Fluid Dynamics (CFD) applications. Nowadays, there are sev-
eral scenarios in which embedded systems are used to run such
kind of application. For example, embedded systems are used
to examine corrosion levels in oil pipelines and make decisions
through analysis performed by CFD applications. In the auto-
motive sector, embedded devices can be used to perform real-
time simulations involving aerodynamics and thermodynamics
in airplanes to avoid accidents and help in decision-making. In
such scenarios, performance is an important metric since the
embedded devices must be able to execute CFD applications
instantly to provide reliable feedbacks. On the other hand,
power saving is also important as in some cases they need to
operate for extended periods of time without recharging their
batteries. In these contexts, our tool emerges with the proposal

of improving the trade-off between performance and power
saving (measured by the EDP metric) of embedded systems
in up to 15.49% during the execution of several types of CFD
applications.

V. RELATED WORK

Some prior investigations focused on using load balancing
and load unbalancing techniques in order to increase the
resources usage efficiency during the execution of applica-
tions with different behaviors and, consequently, with different
demands for resources. Some of these studies are presented
below.

Liu and Gao [12] presented a dynamic load balancing
algorithm that focuses on managing the workload between the
computing resources of multicore embedded systems organized
in distributed environments. Firstly, their algorithm analyzes
the load state of each node of the cluster by getting information
such as average runtime of all running processes and overall
memory usage. After calculating the load state of a node,
the algorithm proposed by them select the load balancing
destination by implementing a sender-initiated policy. If the
algorithm finds a lightly loaded node that can handle the data
to be migrated then the load migration scheme is started.

Jahnich and Rettberg [13] presented a load balancing tool
with the focus on distributed embedded automotive systems.
Their proposal acts a middleware architecture that allows the
migration of tasks between the devices connected to the vehicle
system. For example, multiple mobile devices attached to a
vehicle system can share resources with other to perform
complex tasks such as data processing to provide faster and
more reliable feedbacks.

Jeon, Lee, and Chung [8] presented a workload manage-
ment mechanism that uses both load balancing and unbal-
ancing techniques to increase the device’s resources usage
efficiency during the execution of both periodic and aperiodic
tasks. To do that, the tool proposed by them focuses on manag-
ing the workload between the computing resources by classify-
ing applications by its behavior. For example, their scheduling
algorithm uses a concentration strategy during the execution of
periodic tasks to reduce the power consumption by deactivating
unused processor cores. On the other hand, their workload
management mechanism employs a load balancing technique
to allow that aperiodic tasks take advantage of the device’s
multiple processors since such kind of task usually focuses
on achieving smaller response times as contrary to periodic
tasks (in which the primary performance metric is a stipulated
deadline, so a long waiting time is not a significant problem
as long as the deadline is met).

Lim, Min, and Eom [14] proposed a scheduler algorithm
called operation zone based load-balancer which migrate tasks
aiming to achieve low latency in multicore embedded systems
by maintaining overall CPU utilization balanced among the
processor units. The goal of such load balancer is to perform
load balancing in cases when the utilization of each processor
of the device is not balanced. Moreover, the operation zone
based load-balancer have an operation zone mechanism that
analyzes the load-balancing frequency of each processor to
avoid unnecessary task migrations and reduce the device’s
power consumption.

Bellasi, Massari, and Fornaciari [15] proposed the Barbe-
queRTRM, a runtime resource management framework with

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00944

support for multiple platforms (including embedded sys-
tems). The BarbequeRTRM framework employs an event-
based scheduling algorithm where events can be variations on
the amount of available resources or changes on the applica-
tions’ resources usage so when an event happens the schedul-
ing algorithm is triggered to identify an optimal resource
partitioning for the running applications based on policies
established by the framework.

Cho et al. [16] proposed a deadline-aware scheduling
algorithm with the focus on decreasing the power consumption
and the deadline misses of real-time multicore systems. The
authors created a DVFS-based algorithm called ED3V FS that
determines the optimal instant to scale the device’s operating
frequency based on the tasks deadlines. Moreover, the tool pro-
posed by them uses a deadline-aware load dispatch algorithm
that employs multiple load-balance strategies to deal with real-
time and normal applications simultaneously.

As techniques such as load balancing can be manipulated
at the operating-system level, several investigations have been
undertaken to take advantage of such features to improve the
trade-off between performance and power saving. However,
there are still underused operating-system level functionalities
that could be employed to boost the resources usage efficiency
and consequently improve such trade-off. For the best of
our knowledge, our proposed tool is the first to focus on
using process grouping, load balancing and load unbalancing
strategies to manage the distribution of the running processes
among processor cores to improve the system’s performance
during the execution of HPC applications and reduce the
dynamic power consumption by deactivating unused processor
cores. To better the understanding of the differences between
our proposal and previous work, a checklist with characteristics
is presented in Table II.

TABLE II: Comparison among the previous work and the
proposed tool that takes into consideration five characteristics:
i) LB: it takes advantage of load balancing techniques; ii) SD: a
single embedded device can employ it; iii) HI: it is a hardware-
independent solution; iv) HPC-OP: it is optimized for HPC
applications; and v) UCD: it allows unused processor units
deactivation.

Proposals/Features LB SD HI HPC-OP UCD
Liu and Gao [12] Yes No Yes No No
Jahnich and Rettberg [13] Yes No Yes No No
Jeon, Lee, and Chung [8] Yes Yes Yes No Yes
Lim, Min, and Eom [14] Yes Yes Yes No No
Bellasi, Massari, and
Fornaciari [15] Yes Yes No No No

Cho et al. [16] Yes Yes No No No
Proposed Tool Yes Yes Yes Yes Yes

VI. CONCLUSION AND FUTURE WORK

Several studies have been undertaken with the focus on
improving the trade-off between performance and power sav-
ing in the context of embedded systems. However, most of
them present some limitation. This paper presents a tool that
employs Linux kernel features to group the running processes,
combining load balancing and load unbalancing strategies to
manage the workload between the processor cores with the
focus on both increasing the performance and reducing the
power consumption of embedded systems.

Experiments were conducted to evaluate the impact caused
by our proposal to an embedded platform during the execution
of several algorithms with different behaviors of a very known
tests suite. We analyzed performance, power consumption, and
Energy-Delay Product. Results showed that the proposed tool
could increase the trade-off between performance and power
saving of embedded systems in up to 15.49%. As future work,
we intend to extend our tool to include the manipulation of
other resources such as memory, disk reading and writing, and
network.

REFERENCES

[1] B. Guo, D. Zhang, and Z. Wang, “Living with internet of things:
The emergence of embedded intelligence,” in Internet of Things
(iThings/CPSCom), 2011 International Conference on and 4th Inter-
national Conference on Cyber, Physical and Social Computing. IEEE,
2011, pp. 297–304.

[2] T. Kolpe, A. Zhai, and S. S. Sapatnekar, “Enabling improved power
management in multicore processors through clustered DVFS,” in
Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[3] F. D. Rossi, M. Storch, I. de Oliveira, and C. A. F. D. Rose, “Modeling
power consumption for dvfs policies,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2015, pp. 1879–
1882.

[4] W. dos Santos Marques, P. S. S. de Souza, A. F. Lorenzon, A. C. S.
Beck, M. B. Rutzig, and F. D. Rossi, “Improving edp in multi-core
embedded systems through multidimensional frequency scaling,” IEEE
International Symposium on Circuits and Systems, 2017.

[5] A. Y. Zomaya and Y.-H. Teh, “Observations on using genetic algo-
rithms for dynamic load-balancing,” IEEE transactions on parallel and
distributed systems, vol. 12, no. 9, pp. 899–911, 2001.

[6] D. M. Tullsen and S. J. Eggers, “Limitations of cache prefetching on
a bus-based multiprocessor,” in ACM SIGARCH Computer Architecture
News, vol. 21, no. 2. ACM, 1993, pp. 278–288.

[7] C. B. Zilles and G. S. Sohi, Understanding the backward slices of
performance degrading instructions. ACM, 2000, vol. 28, no. 2.

[8] H. Jeon, W. H. Lee, and S. W. Chung, “Load unbalancing strategy
for multicore embedded processors,” IEEE Transactions on Computers,
vol. 59, no. 10, pp. 1434–1440, 2010.

[9] D. F. Zucker, R. B. Lee, and M. J. Flynn, “Hardware and software cache
prefetching techniques for mpeg benchmarks,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 10, no. 5, pp. 782–
796, 2000.

[10] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[11] E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: Revisiting
the RISC vs. CISC debate on contemporary arm and x86 architectures,”
in Proceedings of the IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA2013), Feb 2013, pp. 1–12.

[12] B. Liu and Y. Gao, “Dynamic load balancing in embedded systems
based on triplet-based hierarchical interconnection architecture,” in
Mechatronic and Embedded Systems and Applications, Proceedings of
the 2nd IEEE/ASME International Conference on. IEEE, 2006, pp.
1–6.

[13] I. Jahnich and A. Rettberg, “Towards dynamic load balancing for dis-
tributed embedded automotive systems,” in Embedded System Design:
Topics, Techniques and Trends. Springer, 2007, pp. 97–106.

[14] G. Lim, C. Min, and Y. Eom, “Load-balancing for improving user
responsiveness on multicore embedded systems,” in Proceedings of the
Linux Symposium, 2012, pp. 25–33.

[15] P. Bellasi, G. Massari, and W. Fornaciari, “A rtrm proposal for
multi/many-core platforms and reconfigurable applications,” in Recon-
figurable Communication-centric Systems-on-Chip (ReCoSoC), 2012
7th International Workshop on. IEEE, 2012, pp. 1–8.

[16] K.-M. Cho, C.-W. Tsai, Y.-S. Chiu, and C.-S. Yang, “A high per-
formance load balance strategy for real-time multicore systems,” The
Scientific World Journal, vol. 2014, 2014.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00945

