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Abstract—Electronic systems devoted to critical applications
that have to operate in harsh environments, such as the ion-
izing radiation and electromagnetic interference ones, are very
susceptible to soft errors, leading the system to an unwanted
state. The most adopted solution to deal with this problem
consists in the use of spatial redundancy as an alternative
to temporal redundancy. This paper describes an approach to
implement checkpoint recovery on FPGA with application-level
transparency. The proposed approach was implemented in the
LEON3 softcore processor in order to be validated. The case
study demonstrates that it is possible to keep data consistency
after error injection by performing a process of checkpoint and
recovery at runtime, during the execution of a set of applications.

Keywords—Fault Tolerance, FPGA Reliability, Checkpoint Re-
covery, Radiation.

I. INTRODUCTION

When considering the ever-shrinking dimensions of today’s
manufacturing technologies, electronic systems have become
susceptible to cosmic radiation even at the sea level [1]. These
effects can cause temporary or permanent failures leading the
system to an unwanted state. Therefore, soft-error is a major
concern for dependability of integrated circuits [2]. Strategies
to deal with these problems are well known and redundancy
is the most used one. Examples of redundancy indlude: spatial
redundancy, e.g. Triple Modular Redundancy (TMR) [3]; and
temporal redundancy, e.g. Checkpoint Recovery (CR) [4].

Opposed to the more common spatial redundancy, which
uses multiple processors to perform the same computations
with a voter logic, the temporal redundancy consists of using
only one processor to run twice the same computation, fol-
lowed by a comparison of the results. This approach allows
the detection of inconsistencies between the executions due to
unwanted bit-flips.

Space applications have used soft-processors embedded in
Field Programmable Gate Arrays (FPGAs) in several mis-
sions [5, 6, 7, 8], but always taking into account the fault
tolerance, due to the great influence of radiation and its effects
in integrated circuits [9, 10]. In these circumstances, finding a
trade-off between processing capacity and reliability level of
processors is an important research problem.

In some space programmes, one of the main motivation to
use a soft-processor on FPGA is the possibility to implement
fault-tolerant systems with Commercial Off-the-Shelf (COTS)
components. Depending on the country, the acquisition process
of radiation hardened (rad-hard) components is controlled
by government agencies. For that matter, the LEON3 [11]

processor is used in a few space missions. Moreover, given the
Brazil’s National Institute For Space Research (INPE) interest
in migrating from the ERC32 (a discontinued radiation-tolerant
SPARC V7 processor developed for space applications) [12]
and not having to redesign all the code, the soft-core LEON3
(SPARC V8 based) processor with fault tolerance is a good
choice for the rad-hard ERC32.

Additionally, space applications have become increasingly
more complex. Hence, some of the computation-intensive tasks
can be implemented as special blocks, while the more tradi-
tional tasks (e.g., network communication) can be implemented
in soft-processor. Nonetheless, the need for more processing
capacity is always of interest given the increasing complexity
of functions performed in space applications.

This work presents an approach to implement CR on a soft-
core processor for FPGA with application-level transparency
aimed at space applications. The scheme was implemented
in a LEON3 processor embedded in the target FPGA, at the
architecture level. The system was simulated using a set of four
programs, the results demonstrate that it is possible to keep
data consistent after performing checkpoints and recoveries
throughout the execution of an application.

The remaining of the paper is organised as follows.
Section II describes some of the existing CR techniques.
Section III presents an overview of the CR technique. In
Section IV the proposed technique using CR is presented.
Section V shows the test setup and simulation analysis for our
workload. Lastly, section VI concludes the paper and discusses
the future work.

II. RELATED WORK

The CR techniques are classified regarding the design
abstraction level of the implemented system. CR can be im-
plemented in pure hardware, pure software, or a combination
of the two as a hybrid solution. While software-only solutions
may be economic from the point of view of overall area cost,
the hardware-only approaches trade off area overhead for a
lower execution time.

In [13], a solution based on Dual Modular Redundancy
(DMR) and CR configuration is used in order to find the opti-
mal checkpoint selection. The authors proposed an algorithm
that minimises the checkpoint overhead for a given latency
constraint.

Some older techniques propose modifications to the cache
management algorithm (i.e., cache controller hardware), as in
[14, 15]. In this way, the implementation of the CR technique is
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transparent to the user, while the modified cache management
algorithm makes sure the data is consistent between the
multiple processors on the system.

ReVive [16] is a general-purpose rollback recovery mech-
anism for shared-memory multiprocessors. ReVive recovers
both transient and permanent faults. ReVive’s CR is im-
plemented by special hardware (by modifying the directory
controller of the memory) and software. Memory logging
(partial separation checkpointing) is implemented in special
hardware, while processor context (i.e., register file and other
status registers) checkpointing is implemented in software.

SafetyNet [17] is a lightweight checkpoint recovery mech-
anism considering long-latency fault detection schemes. In
comparison to ReVive, SafetyNet uses special checkpoint
buffers including checkpoint log buffer (CLB) for memory and
register buffer (for registers), instead of reusing the memory
as checkpoint buffer.

A hybrid approach is proposed in [18], where the authors
aim to optimize the overall system reliability while considering
performance/throughput using a three stage process. A design-
time application-specific task resiliency analysis is used at
first to generate a heterogeneous treatment for core customiza-
tion, where both spatial and temporal redundancies are used.
This heterogeneous error recovery scheme allows a runtime
adaptation between different recovery modes considering the
individual task constraint.

III. BACKGROUND AND OVERVIEW

In this paper, the assumed fault model is the Single Event
Effect (SEE), more precisely its subtype Single Event Upset
(SEU), since literature shows that SEU is the predominant
failure when considering processors [2, 19]. We also con-
sider the hardware as an flash-based FPGA, in our case the
Microsemi ProASIC3e FPGA [20]. In this type of FPGA,
the configuration memory is not affected by SEUs [21, 22].
Furthermore, this hardware can be migrated to an anti-fuse
FPGA, where the configuration memory, after written, cannot
be changed, resembling the FPGA to an Application Specific
Integrated Circuit (ASIC) [23].

The CR technique works by saving checkpoints considered
safe during the execution of a processor. Whenever an error is
detected, a rollback to the last known safe state is performed,
namely recovery. A design decision made is the granularity of
the checkpoints, once it introduces overhead in the processor
execution. One possible metric that can be used is to assume
that after every write operation to the main memory, the state
can be saved. Another approach used in [24] is to save a
checkpoint before the occurrence of a jump instruction in the
execution of the program.

Fig. 1 depicts a hypothetical scenario: after a checkpoint
(Ck) is performed at t = 2, instructions In+1, In+2 and In+3
are executed. At time t = 6 the error is detected, causing a
recovery to occur. After the recovery, the three instructions are
executed in the same fashion and the fault is overwritten with
the right result.

Since the fault is transient, the SEUs occurs when a
wrong value is stored in an element of the circuit, and, if the
element is overwritten with the correct value, after the SEUs

Fig. 1. Checkpoint Recovery Technique Scenario

is identified, the error can be corrected. Therefore, the CR
technique, which repeats the operation of a point considered
safe, is a reasonable solution.

In order to perform the rollback in the processor, the
CR hardware needs to be aware of the error, meaning an
error-detection must be implemented. There are several error-
detection techniques in the literature. This study does not
primarily aim at the detection of a SEU (i.e. error detection),
as it can be considered another field of study by itself. Instead,
we used fault tolerance techniques, which have fault-detection
as their starting point. Three techniques have been used: the
classical TMR [25]; a bus-based DMR approach [26]; and
a time-redundant execution. The Fig. 2 presents the three
architectures used in the experiment.

Fig. 2(a) uses a bus-based DMR to detect errors and inform
to the CR module to perform the rollback on both processors;
Fig. 2(b) is a classic TMR where it always detects single
errors and masks single-faults using a majority voter; Fig. 2(c)
employs the time redundant approach that executes twice every
slice of code. In this case, the CR module saves the address
and data that is going to be written on the main memory on
the first attempt. After, rollback is performed and the second
address and data generated are compared with the ones saved
in the first execution. When there is a match, the memory
write operation is performed and a new checkpoint is saved,
advancing the code execution to the next slice. If the values
do not match, the second execution address and data are also
stored by the CR hardware and another rollback is done to have
a third execution of the code. This way, the CR hardware can
use the result of three executions to perform a simple majority
vote (similarly to the TMR) and write to the main memory the
correct value. In the case of three different executions, a error
signal is raised, similar to the voter error on TMRs approach,
bringing the processor to a halt.

IV. PROPOSED CHECKPOINT AND RECOVERY TECHNIQUE

During its normal operation the processor creates check-
points, which represent consistent states that can be restored.
The checkpoints are a copy of the processor current state, more
specifically the content of the pipeline registers. Any changes
to the registers file since the last consistent checkpoint are
saved. The granularity of the checkpoints was designed, in such
way that one checkpoint is created every time the processor
executes an instruction that perform writes in the main mem-
ory. Since the main memory is the reference, instruction and
data caches were disabled on the processor configuration. Even
thought the absence of cache in the processor degrades overall
performance (in terms of execution time), it also introduces
another point of failure for SEUs once it is a type of storage
element.



Fig. 2. Different Architectures Used for Error Detection: (a) bus-based DMR, (b) bus-based TMR, and (c) single-processor time-redundant.

In order to implement the CR technique, the LEON3 hard-
ware was modified. The first step was to find all the registers on
the pipeline that hold the current state of the processor. In more
detail, the PROC3 unit have VHDL processes, comprising the
pipeline, that needed to be saved. Even though the instruction
and data caches were disabled, there are Finite State Machines
(FSMs) that controlled the communication between the Integer
Unit (IU) and the Advanced Microcontroller Bus Architecture
(AMBA) bus that needed to be checkpointed as well. A single
checkpoint signal was connected to all modules involved, when
the main memory write is detected, it performs the checkpoint
by copying all the data to redundant registers.

The register file, likewise, need to be taken into consider-
ation when recovering the processor state. In order to do so,
a fourth port was added to the register file to perform a read
on the register that is currently being written, this way the old
value can be saved in a memory stack. On the recover event,
the stack is dumped back into the register file, bringing it back
to its safe state (last checkpoint).

Storing redundant data of the processor pipeline and regis-
ter file (i.e. checkpoint data) make another weak spot for SEUs.
At the current stage, the system is being simulated without
injecting faults on this information.

The time redundancy is obtained by using the CR mecha-
nism, to run each interval between checkpoints twice (Fig. 2
- (c)). On the first run, the processor saves the information of
the memory write instruction, but does not allow it to proceed,
bypassing the memory write enable signal. Then, a rollback
is performed and the processor executes all instructions from
the last checkpoint. When the second run reaches the memory
write instruction, the CR mechanism compares address and
data to the ones stored from the first run, if they are equal, the
main memory is written and the process repeats, otherwise,
the fault is detected and a mismatch is signalised.

V. EXPERIMENTAL ANALYSIS

In this section we describe the adopted simulation method,
test setup and benchmarks used in our tests to obtain simulation
results. We use the fault definition according to Avizienis et
al. [27].

A. Simulation Method

In order to run our tests, the LEON3 processor was
simulated using the Modelsim tool. The fault injection was
performed according to the pseudo-algorithm in Fig. 3. The

fault injection script reads all LEON3’s IU registered signals
(memory elements). For each signal a new simulation is run
(line 2). In each simulation, a random time is picked (line 3)
and ran. After the run time, the current signal value is read
(line 4) and a SEU is simulated by inverting one bit inside
the signal value (line 5) and applying it to the current signal
using a force command (line 6). Note that this force command
modifies the signal until it gets overwritten, known as deposit
on the simulator tool. Finally, the simulation is ran until its
end. This means that the program comes to its final state, by
raising a stop signal, or an error signal (if detected by the
simulation script). In line 10 we make sure we have enough
samples to fulfil a confidence interval of 95% and a margin of
error less than 5% (since it is a large population: 0.98/

√
n, or

at least 400 runs).

Fig. 3. Simulation Steps Pseudo-algorithm

1 do{
2 foreach ( s i g n a l c u r r e n t in L3 . IU3 ){
3 run r and ( ) ;
4 v a l u e = read ( c u r r e n t ) ;
5 seu (& v a l u e ) ;
6 f o r c e ( c u r r e n t , v a l u e ) ;
7 run a l l ;
8 r u n s ++;
9 }

10 }whi le ( r u n s < CONFIDENCE ) ;

The simulation results were classified according to Fig. 4.
After fault injection, there are three possible results (out-
comes): Correct; Detected; or Failure. A correct result implies
in either no error detected, and/or a latent error detection. This
means that the fault in that signal, at a given time did not
affect the execution. A failure means that the fault causes a
failure in the processor without being possible to detect it.
Lastly, the detected fault is the result of an error, which can
be further classified in three possible situations according to
the fault-tolerant technique used: Recovered; Not-recovered;
and Recovered incorrectly. A recovered situation is when after
detect, the recovery process acts accordingly and the program
finishes its execution with the expected result. A not-recovered
error happens when the recovery process fails to finish the
program, either without the expected result or a time-out. The
last case is when the recovery process is performed and the
program reaches its final state with an incorrect result. This
can happen when the error occurs on the variable that controls
a loop, for example.



Fig. 4. Fault States

B. Experimental Setup

For each architecture of our tests a set of four programs
were used to stress the processor architecture as follows:

1) Basic: simple arithmetic operation that is executed 50
times and checked against the correct value.

2) Bubble sort: classic bubble sort algorithm on a 10 element
vector.

3) NMEA: calculate the checksum (bitwise XOR) of ASCII
codes on a message string.

4) Hamming: calculate an hamming encoded message using
a matrices.

It is important to note that we did not use a more classic
test program (such as dhry, stanford, or whetstone) since the
simulation time was prohibitive, e.g. over a day on a high-end
computer for a single execution.

C. Detection and Recovery Analysis

Fig. 5 presents the detection analysis for the three architec-
tures used in the experiment with the inclusion of the LEON3
original (unmodified) configuration. Note that for the original
configuration there is no detection available, therefore only the
Correct/Failure results are presented.

For the architectures of the TMR an the DMR the detection
rate were almost the same, in the order of 79%, with no
failures detected, which means that either the fault is latent,
or is detected. The failure rate of the original is slightly lower
than the detected figures in the TMR and DMR approaches,
this is due to a detected error not always becoming a failure.

Interestingly the time redundant approach shows the higher
percentage of corrected results (in the order of 95%). This is
due to the re-execution of the code slice, meaning that since
the injected fault can be overwritten it may not manifest itself
during the program execution.

Fig. 6 shows an analysis for the recovery process on the
detected errors for the time redundant and DMR approaches.
The TMR is not shown since it has 100% correction for single
faults.

D. Execution Overhead Analysis

Although the CR technique presents a competitive recovery
capability, it introduces time overhead on the program execu-
tion. Whenever a recovery is done, the execution needs to be
halted for at least one clock cycle, allowing the recovery of
the IU pipeline registers and an additional clock cycle for each
register in the register file used since the last safe checkpoint.

Fig. 5. Detection analysis

Fig. 6. Recovery analysis

TABLE I. EXECUTION TIME OVERHEAD AGAINST BASELINE

LEON3
Flow Control

LEON3
Time Redundant

Correct Recovered Correct Recovered
basic 0% 2.05% 52.70% 53.04%
bsort 0% 0.23% 94.09% 94.18%
nmea 0% 0.85% 81.86% 82.03%
hamming 0% 0.85% 84.61% 84.83%
Average 0% 0.99% 78.31% 78.52%

Each implementation of the LEON3 have different time
overhead on the execution. The LEON3 Flow Control does
not add time to perform the checkpoints (since the checkpoint
procedure is done in parallel), therefore no overhead is noticed
when there are no errors detected on the execution. Once an
error is detected, the recovery procedure takes a few clock
cycles to occur, hence the average value of 0.99% of time
increase against the baseline execution.

The cost of executing twice each slice of code out-stands on
the LEON3 Time Redundant approach. On the average it adds
78.31% for a correct execution and 78.52% when the error is
detected. It is important to note that the time redundancy is
only enabled after the processor reaches the user program area,
this is due to the memory that stores the initialization code is
a ROM, hence no writes on the main memory are performed.

E. FPGA Area Overhead Analysis

Although we did not performed test on the FPGA hard-
ware, it would be interesting to compare how the different
architectures influence on the area occupied. In order to do
so, we ran the synthesis tool on a Xilinx FPGA (Spartan-
3 1500, model xc3s1500-4-fg456). The reason for the use
of a different FPGA from the aforementioned (Microsemi



TABLE II. AREA OVERHEAD COMPARISON FOR A XILINX SPARTAN-3 1500 FPGA

Resource
Type Available Baseline Time

Redundant
Increase

(%) DMR Increase
(%) TMR Increase

(%)
Slices 13312 6483 8208 26.61% 9873 52.29% 13702 111.35%
Slices FF 26624 3208 5807 81.02% 6145 91.55% 6512 102.99%
4-input LUT 26624 12017 12598 4.83% 18424 53.32% 25836 115.00%
BRAM 32 6 7 16.67% 10 66.67% 14 133.33%
MULT18x18 32 4 4 0% 8 100.00% 12 200.00%

ProASIC3e) is that the LEON3’s GRLIB does not provide
models for simulation of the main memory. Nonetheless, all
modifications were made inside the LEON3 core architecture,
hence no difference should be found when synthesized to the
Microsemi device.

Table II shows the total of device resources used for the
different architectures compared to the baseline (no modifica-
tions) and also the available resources on the FPGA. For all re-
sources presented, the lower overhead obtained can be noticed
on the Time-Redundant variant, indeed it was expected, since
no processor replication was made. Respectively, the DMR and
TMR have higher occupation rates when compared with the
Time-Redundant approach.

The Time-Redundant version have a significant increase
in Slices due to logic implementation, but it is the most
abundant resource on the FPGAs. Nonetheless, when coupled
with the results of time overhead, this technique presents a
competitive approach when compared to the DMR and TMR
versions. More over, the spare logic on the FPGA could be
used to implement other functions or improve even further the
technique by protecting more elements on the processor.

VI. CONCLUSION

This paper presented and approach to implement check-
point recovery on a soft-core processor, aiming application-
level transparency. The technique was implemented on differ-
ent architectures and a fault-injection campaign were run to
validate against more traditional fault-tolerant approaches.

The implemented approach of the CR technique shows that
it is possible to keep the processor execution consistent. The
fault tolerance was significantly improved on both architectures
using the CR.

As future work, this technique needs to be fully synthesized
and implemented on the target FPGA. With this implemen-
tation we aim to run heavy-ion experimentation in order to
evaluate the technique robustness against SEEs.
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