
Performance Testing Modeling: an empirical evaluation of
DSL and UML-based approaches

Maicon Bernardino
PUCRS

Av. Ipiranga, 6681, Partenon
Porto Alegre, RS, Brazil

bernardino@acm.org

Elder M. Rodrigues
PUCRS

Av. Ipiranga, 6681, Partenon
Porto Alegre, RS, Brazil
eldermr@gmail.com

Avelino F. Zorzo
PUCRS

Av. Ipiranga, 6681, Partenon
Porto Alegre, RS, Brazil

avelino.zorzo@pucrs.br

ABSTRACT
Performance testing modeling is a relative new research field.
Researches investigating how to apply models to document
performance testing information essentially started to be
reported in the last decade. Motivated by the lack of a
standard to represent performance testing information, our
research group, in collaboration with an IT company, pro-
posed a UML approach and lately a Domain-Specific Lan-
guage (DSL) to support performance testing modeling. The
goal of this paper is to show how we support our partner
company on the decision process to replace UML by a DSL,
hence we designed and conducted an experimental study to
provide evidence about the benefits and drawbacks when us-
ing UML or DSL for modeling performance testing. In this
paper, we report an in vitro experiment, where the subjects
designed UML models and DSL models, for the purpose of
evaluation with respect to the effort and suitability, from
the perspective of the performance testers and the perfor-
mance engineers in the context of industry and academia
for modeling performance testing. Our results indicate that,
for performance modeling, effort using a DSL was lower than
using UML. Our statistical analysis showed that the results
were valid, i.e., that to design performance testing models
using our DSL is better than using UML.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Domain specific languages; •General and ref-
erence → Experimentation;

Keywords
Experiment; performance testing; domain-specific language

1. INTRODUCTION
Nowadays, software quality has become a very important

asset, even for medium/small software development compa-
nies. In most of these companies, software quality rely on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SAC 2016, April 04 - 08, 2016, Pisa, Italy
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851832

software testing [8], e.g. unit testing, functional testing and
performance testing. However, software testing is a time
consuming and highly specialized phase in a software devel-
opment process. For instance, for a company to apply per-
formance testing [6], it requires a team of performance engi-
neers and testers with deep knowledge about the application
to be tested, its usage profile, and the infrastructure where
it will operate. Moreover, it will also require a performance
engineer with great ability on identifying and tracing appli-
cations requirements to performance requirements. Another
issue faced by performance testing teams is that most com-
panies still write applications requirements in an ambiguous
textual format, which could lead to misinterpretation and
inconsistencies on the definition of the performance require-
ments. Moreover, the lack of an unambiguous standard to
write the performance test case is another issue to be tackled
in performance testing.

In order to mitigate these issues and to improve the com-
munication between development and testing teams, our re-
search group proposed a model-based approach, based on
a UML profile, to support the performance testing mod-
eling [11]. After an empirical investigation [13], a partner
1 company started the adoption of our approach, allowing
performance teams to get involved in designing test models
from early stages of the software development process and
supporting the automatic generation of the performance ar-
tifacts from the applications models. Despite all the ben-
efits, our daily experience on using UML models to design
performance testing revealed that it presents some limita-
tions [2]: (a) most of available UML design tools do not pro-
vide support to work with only those UML elements that are
needed for a specialized language. Thus, the presence of un-
used and not required elements may result in an error-prone
and complex activity; (b) UML diagrams are restricted to
the semantics that is defined by Object Management Group
(OMG) [9]. Therefore, in some cases, the available UML el-
ements and their semantics can restrict or even prevent the
modeling of some performance features for the Web domain.

To overcome these issues, we have proposed and imple-
mented a Domain-Specific Language (DSL) [5] to the per-
formance domain: Canopus [2]. Canopus provides a graph-
ical and textual DSL to support the design of performance
models. Our DSL, unlike the UML Testing profile, is de-
signed to support the performance testing modeling activity
and also to be used within MBT tools to generate perfor-
mance test scripts and scenarios for third-party tools/load

1Study developed in the context of PDTI 001/2015, financed
by Dell Computers with resources of Law 8.248/91.

1660

generators. It is important to notice that our DSL was de-
signed and developed based on our previous experience and
on our partner’s expertise on performance testing model-
ing and on applying model-based testing to generate per-
formance scripts and scenarios. Despite all our expertise on
performance testing modeling, there was a lack of knowledge
about the benefits and drawbacks of using DSL or UML to
design performance testing model. Motivated by this lack
of knowledge, we planned and conducted an experimental
study to provide evidence about the benefits and drawbacks
when using UML or DSL for modeling performance testing.
These evidences will support our partner company on the de-
cision process on the replacement of UML by Canopus. We
understand that some of the limitations, mentioned above,
are due to UML being a general propose language, but to
the best of our knowledge, there is no work that show that
UML performs better, in performance testing, than a DSL.

This paper is organized as follows. Section 2 presents some
context relative to the company in place, as well as motiva-
tions for the study. Section 3 introduces the experiment
instruments. Section 4 presents the experiment design and
introduces our research questions. Section 5 describes the
execution of the experiment, while Section 6 presents our
analysis and interpretation of results. Finally, we present
the conclusion and future work.

2. EXPERIMENT CONTEXT
In the past years our research group in performance test-

ing has been investigating, in cooperation with a Technology
Development Lab (TDL) of a global IT company, novel ap-
proaches and strategies to support performance testing. One
of our main research focus is the automation of performance
testing process, mainly through the application of Model-
based Testing (MBT) [15] approaches and its related lan-
guages and modeling notations. In this context, we have pro-
posed and empirically evaluated several approaches [12] [13],
notations [4] [14], languages [2] and tools [11].

Basically, all of our research topics are aligned with the
industrial needs of our partner company. For instance, our
research on performance testing automation wants to cover
all the phases of performance engineering to apply model-
based performance testing, from models and notations to
supporting tools, providing a complete MBT solution in
accordance with the company needs. To reach this goal,
we initially proposed the use of annotations on UML di-
agrams to model performance testing. After that, we de-
veloped a tool [11] that accepts these models as input and
then generates performance scripts and scenarios for third-
party tools/load generators. As time progressed and the
use/interest in our solutions increased, we received feedback
from the testing teams reporting some issues related to the
use of UML diagrams to model performance testing. Based
on that, we decided to implement a DSL, henceforth Cano-
pus, for the performance testing domain in order to replace
the UML models as our performance testing standard mod-
eling notation. The requirements and our design decision on
the implementation of Canopus are described elsewhere [2].

The decisions on the replacement of a technology, specially
in an enterprise context, must be based on strong evidence.
Therefore, to provide evidence about the benefits and draw-
back on the replacement of UML by Canopus, we designed
and setup an empirical experiment in collaboration with the
TDL of our partner company.

3. EXPERIMENT INSTRUMENTS
In this section we briefly present the UML approach for

modeling performance testing, the Canopus, and LimeSur-
vey and Moodle 2 used as Systems Under Test (SUT) during
the experiment training and execution: (a) UML pro-
file for performance testing [11]: allows the use of UML
Use Case and Activity diagrams annotated with stereotypes
and tagged values to model performance testing. Our ap-
proach to model performance information into UML mod-
els relies on stereotypes3 to annotate test scenario informa-
tion into Use Case diagrams and the test case information
into Activity diagrams; (b) Canopus: aims to allow per-
formance testing teams to model the activities performed
by the application’s users and the environment where the
applications is hosted. Canopus is composed of three meta-
models: performance monitoring, performance scenario and
performance scripting. The performance monitoring meta-
model supports the design of a model to represent the test-
ing environment infra-structure, such as application servers,
database servers, and the load generator servers. This meta-
model supports the definition of performance counters that
will be monitored during the test execution, for every server.
The performance scenario metamodel supports the model-
ing of the users workload profiles and the probabilities of
execution of test cases by each of these profiles. For every
modeled workload profile, it must be instantiated to a per-
formance workload metamodel.4. A performance scripting
metamodel is used to model the virtual users behavior, and
it must be bound to a user profile; (c) LimeSurvey: is
an open source Web application that allows non-technical
users to quickly create on-line question-and-answer surveys;
(d) Moodle: is an open source learning management plat-
form that provides a customized virtual environment for ed-
ucators and students.

4. EXPERIMENT DESIGN
The goal of this experiment is to get evidence about the

effort, intuitiveness and effectiveness of using UML or Cano-
pus to create performance testing models. Hence, we stated
the following research questions: RQ1. What is the effort
to design a performance testing model when using UML or
Canopus? Null hypothesis, H0: effort is the same when
using UML and Canopus to design a performance testing
model. Alternative hypothesis, H1: the effort is lower
when using UML to design a performance testing model
than when using Canopus. Alternative hypothesis, H2:
the effort is lower when using Canopus to design a perfor-
mance testing model than when using UML. RQ2. How
effective is to design performance testing model when using
UML or Canopus? RQ3. How intuitive/easy is to design
performance testing model when using UML or Canopus?

4.1 Selecting and Grouping Subjects
We chose an in-vitro approach, i.e. performed in labora-

tory under controlled conditions (see [16] for terms regarding
the experimental research method), to avoid external influ-
ences during the execution of the experiment. Therefore,
all activities executed by the experiment subjects were per-

2https://www.limesurvey.org | https://www.moodle.org/
3A detailed description can be found in [4].
4A detailed description about the objects that support this
metamodel can be found in [2]

1661

formed in a laboratory, under controlled conditions. After
the definition of the experiment design, we focused on the
selection of the subjects, which is one of the most impor-
tant activities in an experimental study. Thus, we spent a
considerable effort on inviting and selecting subjects from
industry and academia. Basically, we focused on the selec-
tion of subjects based on the information provided by the
partner company about the target subject profiles: junior
and senior performance analysts and testers. Therefore, we
invited experienced performance engineers and testers from
a local company and from a global IT company. We also
invited undergraduate students from an university, in order
to select subjects with non-industrial experience on perfor-
mance testing. After selecting the subjects we set the dates
to run the experiment sessions - a whole day for both train-
ing and execution sessions. Moreover, before the training
session we asked the subjects to answer a background sur-
vey. From the data extracted from that survey, we randomly
assigned the subjects into two groups (randomization). Fur-
thermore, we also kept each group with the same number
of subjects and with similar skills (balancing). During the
execution session, each group started modeling with a differ-
ent notation. While Group 1 started modeling with UML,
Group 2 designed the models using Canopus. In the next
phase, Group 1 started modeling with Canopus and Group
2 modeled using UML - all subjects executed both treat-
ments (a paired comparison design). After all the subjects
had executed the last experiment phase, they answered a
post-experiment survey. It is important to highlight that
we monitored the time spent by each subject to complete
each phase. Thus, the time spent data and the survey re-
sults from all the subjects were used to draw the experiment
conclusions.

4.2 Instrumentation
The main objects of the instrumentation for our experi-

ment are the performance testing models composed of per-
formance scripts, scenarios and workloads, designed in ac-
cordance with both approaches (UML and Canopus) for
testing the Moodle application. Furthermore, guidelines
were provided for supporting the subjects on the execution
session, such as performance requirements, technical specifi-
cation and use cases. Moreover, we used two tools to support
each one of the approaches: Astah Professional [1] version
6.9.0, for modeling the Use Case and Activity diagrams when
applying the UML approach, and; MetaEdit+ [7] version
5.1, for designing the graphs supported by the metamodels
developed by Canopus [2].

In the training session (using LimeSurvey), the UML ap-
proach was introduced to the subjects through an oral pre-
sentation using videos to demonstrate how the approach was
applied to a real case study. Additionally, we provided the
subjects with a manual about UML modeling for perfor-
mance testing and a detailed instruction on how to use Astah
to design performance models. Similarly, Canopus was in-
troduced to the subjects through an oral presentation, which
we demonstrated how Canopus could be applied for model-
ing performance testing. We provided the subjects with a
manual about Canopus and also a detailed instruction on
how to use MetaEdit+ to design Canopus models. After
that, the subjects had to design a user interaction with a
Web-based survey. Besides, the subjects could ask open
questions for each approach or clarify how to use the tools

to design the performance models.
In the execution session, the subjects interacted with an-

other Web application - Moodle. To execute the tasks that
compose the experiment, the subjects were introduced to
guidelines, describing the test specification. Figure 1 shows
one of the use cases used in the experiment. Based on those
documents, the subjects had to design the performance mod-
els, in accordance with the approach guidelines. Figure 2
presents the UML activity diagram designed in accordance
with the Moodle use case described in Figure 1. Figure 3
presents a Canopus Performance Scripting model designed
in accordance with the same specification. Due to the het-
erogeneity of subjects sources, we decided to execute the ex-
periment in loco, but in vitro, controlling the environment
against external interferences. We collected effort metrics
for each subject to answer our RQ1. To answer RQ2 and
RQ3 we collected data from the post-experiment survey.

Use Case: Add Activity
#Actors: Teacher.
#Finality: Allow teacher to assign activity to course.
#Pre-Condition: The teacher has logged in the Moodle.
1. Select Course

action: go to "http://www.cepes.pucrs.br/moodle/"
where id equal 22

2. Enable Editing
action: submit "Turn editing on" button

3. Click Add a Activity or Resource
action: click on "Add a Activity or Resource" link

4. Select Assignment Option
action: select on "Assignment" option and

submit "Add" button
5. Click

action: type "Name" text field and
type "Description" text area

5.A. Save and Display
action: submit "Save and Display" button

5.B. Save and Return to Course
action: submit "Save and Return to Course" button

#Pos-Condition: Activity assignment in the course.
Students able to upload their answers.

Figure 1: A Moodle use case specification

4.3 Threats to Validity
In this section, we describe the threats to the experiment

validity, and how we work to mitigate them. We adopted
the threat classification scheme published by [3], which is
divided in four types of threats: (a) Conclusion validity:
in this experiment context, the small number of subjects, in
special the small group of subjects from industry, is a sig-
nificant threat to the conclusion validity. Others threats to
our experiment conclusion validity are the following: Mea-
sures reliability : this type of threat is related to the re-
searcher bias when analysing the experiment results. To
mitigate this threat, the experiment results were indepen-
dently validated by two researchers involved in the exper-
iment. Moreover, the analysis of quantitative data do not
involve human judgment; Random irrelevancies in the ex-
perimental setting : this type of threat entangles our ability
to see a relationship between the treatments and the exper-
iment results. To mitigate this threat, all the experiment
activities involving the subjects were executed in a labora-
tory, isolated from external influences (noise, interruptions,
etc.). Moreover, the subjects were not allowed to use mobile

1662

Figure 2: UML activity diagram of the use case
specification from Figure 1

Figure 3: Canopus performance scripting of the use
case specification from Figure 1

phones or any other type of communication with the exter-
nal world; Random heterogeneity of subjects: we selected a
diverse group of subjects: seven from a large IT company, six
from a local company and thirteen undergraduate students.
The selection of some subjects with no industrial experience
on performance testing, and others with years of experience
in software testing and modeling may be a threat to the val-
idation of the experiment results. To mitigate this threat we
defined experience on performance testing as blocking vari-
ables: inexperienced (IN) and experienced (EX); (b) In-
ternal validity: we identified the following threat to the
internal validity of our experiment: Selection: a survey was
applied to assess the knowledge and the experience of sub-
jects and then used to select and group (block) the subjects;
(c) External validity: we identified the following threat
to the external validity of our experiment: Subjects: the
selection of the subjects that may not be representative to
the performance testing community is a threat to the ex-
ternal validity of our experiment. To mitigate this threat,
we invited software testing professionals with different lev-
els of expertise in performance testing from two companies.
Our decision on inviting undergraduate students was made
in order to provide data on the use of the languages for sub-
jects with no knowledge/expertise in performance testing;
(d) Construct validity: a threat to the construct validity
is that we use a single application as SUT, and the sub-
jects modeled a limited set of test cases of the application
(mono-operation bias).

5. OPERATION OF THE EXPERIMENT
This section discusses the preparation and execution steps

performed during the experiment operation.

5.1 Preparation
Our preparation to the experiment execution includes: to

identify what application requirements will be modeled dur-
ing the training and execution sessions; to prepare the ap-
proach guidelines, and; to identify and create practical ex-
amples to show during the training session5. Furthermore,
all laboratory computers were prepared with all the nec-
essary documents, as well as the proper tools (Astah and
MetaEdit+). Moreover, we also applied a pre-experiment
survey to obtain background information on the subjects.
Based on this information, we blocked the subjects and cat-
egorized them into two equivalent groups.

5Instruments are in http://tiny.cc/SVT16-Canopus

5.2 Execution
The experiment took place in June of 2015. During the

training session, both approaches were applied, and for each
approach two tasks are executed: performance scenario and
scripting modeling. The performance scenario specification
of LimeSurvey is composed of two user profiles: a student
and a professional respondent. The workload is composed
of one thousand virtual users for a testing duration of four
hours. This workload executes the “Answer The Survey”
script, which is composed of twelve activities that represent
each one of the questions from a survey.

During the training session, the subjects were distributed
between the treatments and their respective block variables.
Hence, twenty-six subjects were assigned to two groups (13
subjects per group). Each group started the execution of
one of the two treatments (UML or Canopus). The execu-
tion session followed the same systematic approach applied
in the training session. Thus, the subjects had to perform
two tasks for each treatment, in order to design performance
models in accordance to the experiment guidelines for per-
formance testing. One task was to design performance sce-
nario models and another was to design performance scripts
models: (a) Scenario Task - consists of designing a per-
formance scenario model from scratch, based on the perfor-
mance requirements. In the context of UML, this model
is represented by a Use Case diagram, in which it is com-
posed of two actors: students and teachers. These actors are
associated with three use cases, which will be detailed into
Activity diagrams. Inasmuch as using Canopus, the subjects
had to design the Canopus Performance Scenario. It is im-
portant to highlight that a Canopus Performance Scenario
has elements that may be decomposed into other elements,
e.g. Canopus Performance Workload, which is modeled to
represent features such as test duration, numbers of virtual
users, ramp up and ramp down; (b) Scripting Task - the
experiment subjects had to design the performance scripts
using the modeling strategy described in Section 3, aggregat-
ing performance test information to the model. Therefore,
using UML, they had to design three Activity diagrams to
represent a test case describing the interaction between a
virtual user and the SUT. Similarly, using Canopus the sub-
jects had to model the Canopus Performance Scripting to
represent the same interaction. Figure 3 shows the Cano-
pus Performance Scripting designed in accordance with the
Moodle use case specification described in Figure 1. Addi-
tionally, the entire task comprises two more diagrams that
represent the Sign In and View Activity use cases.

1663

6. RESULTS
In this section, we discuss the data collected during the

execution phase.
RQ1. What is the effort to design a performance testing

model when using UML or Canopus? Table 1 presents the
summarized effort data (time spent by subjects) to perform
each task using each approach, as mentioned in Section 5.2.
In the table, the columns Scenario and Scripting present the
average time per blocks and treatments, respectively. Based
on the results summarized in the table, the average effort
using Canopus was lower than with UML in all scenarios,
either to experienced or inexperienced subjects. The average
time spent to design the performance testing modeling using
Canopus was lower than with UML (51.08 min vs 63.69 min).

Table 1: Summarized data of the effort

Effort (minutes)

Tr. Bl.
Blocks Avg. Time Tr. Avg. Time

Scen. Scr. Total Scen. Scr. Total

UML
IN 15.69 52.62 68.31

13.62 50.08 63.69
EX 11.54 47.54 59.08

DSL
IN 10.54 39.31 49.85

10.23 40.85 51.08
EX 9.92 42.38 52.31

Legend - Tr.:Treatments; Avg.:Average; IN:Inexperienced;

EX:Experienced; Scen.:Scenario; Scr.:Scripting; Bl.:Blocks;

Figure 4 depicts the Box-Plot graph of the Scenario Task
data set, represented by UMLScen and DSLScen boxes. In
the Scenario Task, the median of execution time with UML
was 12.5 minutes and with Canopus it was 10 minutes. More-
over, the UML standard deviation (Std Dev) was 5.02 min-
utes, against 3.43 minutes for Canopus. It is important to
highlight that there is one outlier in the data set for Canopus
that took 17 minutes. From another point of view, Figure 4
also presents the Box-Plot graph of the Scripting Task. This
task is represented by UMLScr and DSLScr boxes, where the
median time to execute the UML treatment was 50.5 min-
utes, while for Canopus it was 39.5 minutes. Moreover, the
UML Std Dev was 11.84 minutes, greater than the 7.12 min-
utes for Canopus. Again, notice that there is one outlier in
the data set for Canopus that took 23 minutes. Figure 4
also shows the Box-Plot graph of the summarized data set,
i.e., the sum of Scenario and Scripting tasks, identified by
UMLTotal and DSLTotal boxes. Here, the median of execu-
tion time with UML was 62.5 minutes, inasmuch as Cano-
pus was 48.5. It is important to highlight that the Cano-
pus Std Dev (9.46 minutes) represents 66.8% of variation
of the UML treatment (14.16 minutes). Once again, notice
that there is one outlier in the data set for Canopus treat-
ment that took 28 minutes. Figure 5 presents the box-plot
graph grouped by blocks. The median of execution time
with UMLIN , UMLEX , DSLIN and DSLEX were, respec-
tively, 65, 62, 48 and 49 minutes. Moreover, the Std Dev for
each block was, respectively, 14.65, 12.53, 10.11 and 9.0.

As for hypothesis testing, we used the PortalAction sta-
tistical package [10] integrated with MS Excel to test our
hypothesis from the collected data sets. We performed the
Kolmogorov-Smirnov [10] test to verify the normality of data
distribution. In this context, we followed the best practice
in Statistics and chose a significance level of α = 0.05. Al-
though, almost all results had a normal distribution, there
was one exception, i.e., the Scenario data set, that showed
a p-value (0.355835174) greater than α. For this reason, we
assumed that the distribution was not normal. Therefore,

we applied a non-parametric test: Wilcoxon [10] signed rank
test. We applied a non-parametric test since it uses the me-
dian instead of average as used in parametric test, and this
solves the problem with outliers. For each data set (Sce-
nario, Scripting and Total), we applied the statistical test
to the paired samples, i.e. to compare the effort spent to
model performance using UML or Canopus (RQ1). As pre-
sented in Table 2, for all samples pairs, the results of the
Wilcoxon test reject the H0 hypothesis. Therefore, we can
conclude that there is, statistically, a noticeable difference
in effort to design a performance testing model when using
UML and Canopus. Thus, for all data sets we confirmed the
alternative hypothesis H2.

Table 2: Wilcoxon signed rank test results

Treatment Scenario Scripting Total

UML/Canopus 0.000603644 0.007055169 0.000124493

RQ2. How effective is to design performance testing model
when using UML or Canopus? RQ3. How intuitive/easy
is to design performance testing model when using UML or
Canopus? After designing the performance models using
both approaches, the subjects answered a survey composed
of: (a) statements to survey how much they concur with our
Canopus features; (b) open questions to extract their opin-
ions. The answers can be seen in the frequency diagram
shown in Figure 6. As can be seen in the figure, the state-
ment most accepted is that the Canopus DSL has Expres-
siveness6 (61.5% SA, 27% A and 11.5% NAD), followed
by that it has Representativeness7 (50% SA, 34.6% A,
15.4% NAD) and Easy to Design (30.8% SA, 65.4% A,
3.8% NAD). The statement that received the worst mark
was with respect to Intuitiveness (53.9% A, 26.9% NAD
and 19.2% D).

The main advantages on the use of the UML approach,
by the subjects point of view were: (a) It was easier be-
cause I already had some experience with UML; (b) I already
had used Astah tool to design UML, so it was easier to use;
(c) There are tons of documentation and discussion groups
on the Internet. The subjects also pointed some disadvan-
tages on the use of UML: (a) Lack of interaction/reuse of
models with parameters; (b) Higher probability of making
a syntax error when typing the tag values; (c) Some per-
formance testing information cannot be easy to design with
UML. Similarly, the subjects reported advantages on the
use of Canopus: (a) Promotes the code reuse in all model-
ing phases. Easy and fast understanding of the interface;
(b) It is intuitive to realize the relations that are being per-
formed. The scenario creation is intuitive and the probability
of making a syntax error is smaller ; (c) Allows to add many
performance testing information to the models. Adding pa-
rameters is much easier. They pointed out the following
disadvantages: (a) Learning curve - at the beginning it was
complex to use. It was difficult to understand which element
should be used ; (b) Lack of mechanism to duplicate an ele-
ment.

7. CONCLUSION
6Expressiveness: defines the quality of graphical elements
composed by color, size, brightness, shapes, and texture.
7Representativeness: whether the graphical elements repre-
sent or not the performance testing domain.

1664

UMLScen DSLScen UMLScr DSLScr UMLTotal DSLTotal

0

20

40

60

80

100

m
in

Figure 4: Boxplot - treatments per task

UMLIN DSLIN UMLEX DSLEX
0

20

40

60

80

100

Figure 5: Boxplot - treatments per block

0 20 40 60 80 100

Intuitiveness

Easy to Design

Representativeness

Expressiveness

30.8

50

61.5

53.9

65.4

34.6

27

26.9

3.8

15.4

11.5

19.2

Strongly Disagree (SD) Disagree (D)

Neither Agree nor Disagree (NAD) Agree (A)

Strongly Agree (SA)

Figure 6: Frequency diagram of the Canopus

In this paper, we have presented an in vitro experimental
study for evaluating our DSL, and for providing evidence
about the benefits and/or drawbacks when using UML or
DSL approaches for modeling performance testing. The ex-
perimental results indicate that the use of Canopus reduces
the effort required to create models when compared to UML.
Moreover, the experiment subjects pointed out that Cano-
pus has more expressiveness, representativeness, and is eas-
ier to design than UML. Therefore, these findings can pro-
vide support to our partner company on the decision pro-
cess to replace UML by Canopus for modeling performance
testing. We are aware that the sample size that was used
to base some of our conclusions is not geographically rele-
vant. Moreover, a group of subjects did not have an ade-
quate experience level or knowledge on performance testing.
Therefore, we designed our experiment protocol with the in-
tention to replicate it in the future to collect more results.
Moreover, based on the achieved findings, testimonials from
experiment subjects and our lessons learned to conduct this
experiment, we intend to improve our DSL, ensuring the evo-
lution of Canopus for a new version of graphical and textual
language, as well as new features.

8. REFERENCES
[1] Astah. Astah Professional. Available in:

http://astah.net/, 2015.

[2] M. Bernardino, A. F. Zorzo, E. Rodrigues, F. M.
de Oliveira, and R. Saad. A Domain-Specific
Language for Modeling Performance Testing:
Requirements Analysis and Design Decisions. In 9th

ICSEA, pages 609–614, 2014.

[3] T. D. Cook and D. T. Campbell.
Quasi-Experimentation: Design and Analysis Issues
for Field Settings. Houghton Mifflin, 1979.

[4] L. T. Costa, R. Czekster, F. M. Oliveira, E. M.
Rodrigues, M. B. Silveira, and A. F. Zorzo.
Generating performance test scripts and scenarios
based on abstract intermediate models. In 24th SEKE,
pages 112–117, 2012.

[5] M. Fowler. Domain Specific Languages.
Addison-Wesley Professional, 1st edition, 2010.

[6] J. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea.
Performance Testing Guidance for Web Applications:
Patterns & Practices. Microsoft Press, 2007.

[7] MetaCase. MetaEdit+. Available in:
http://www.metacase.com/mep/, 2015.

[8] G. J. Myers and C. Sandler. The Art of Software
Testing. Wiley, New York, NY, USA, 2004.

[9] OMG. Unified Modeling Language. Available in:
http://www.uml.org/, 2015.

[10] Portal Action. System action statistical package.
Available in: http://www.portalaction.com.br, 2014.

[11] E. Rodrigues, M. Bernardino, L. Costa, A. Zorzo, and
F. Oliveira. PLeTsPerf - A Model-Based Performance
Testing Tool. In IEEE 8th ICST, 2015.

[12] E. M. Rodrigues, F. M. de Oliveira, L. T. Costa,
M. Bernardino, A. F. Zorzo, S. d. R. S. Souza, and
R. Saad. An empirical comparison of model-based and
capture and replay approaches for performance
testing. EMSE, pages 1–30, 2014.

[13] E. M. Rodrigues, R. S. Saad, F. M. Oliveira, L. T.
Costa, M. Bernardino, and A. F. Zorzo. Evaluating
Capture and Replay and Model-based Performance
Testing Tools: An Empirical Comparison. In 8th

ACM/IEEE ESEM, pages 9:1–9:8, 2014.

[14] M. B. Silveira, E. M. Rodrigues, A. F. Zorzo,
H. Vieira, and F. Oliveira. Model-based automatic
generation of performance test scripts. In 23rd SEKE,
pages 258–263, 2011.

[15] M. Utting and B. Legeard. Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann, 2006.

[16] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and
B. Regnell. Experimentation in Software Engineering.
Springer, 2012.

1665

