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ABSTRACT
Software fault prediction is a significant part of software
quality assurance and it is commonly used to detect
faulty software modules based on software measurement
data. Several machine learning based approaches have been
proposed for generating predictive models from collected
data, although none has become standard given the
specificities of each software project. Hence, we believe
that recommending the best algorithm for each project
is much more important and useful than developing a
single algorithm for being used in any project. For
achieving that goal, we propose in this paper a novel
framework for recommending machine learning algorithms
that is capable of automatically identifying the most
suitable algorithm according to the software project that
is being considered. Our solution, namely SFP-MLF,
makes use of the meta-learning paradigm in order to
learn the best learner for a particular project. Results
show that the SFP-MLF framework provides both the best
single algorithm recommendation and also the best ranking
recommendation for the software fault prediction problem.

CCS Concepts
•Software and its engineering → Software defect
analysis;

Keywords
Algorithm Recommendation; Machine Learning;
Meta-Learning; Software Quality; Software Fault Prediction

1. INTRODUCTION
A fault is a structural imperfection in a software system
that may lead to the overall failure of the system. Within
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the software development process, fault prediction is a very
important activity in order to improve software quality and
reduce the maintenance effort prior to the deployment of the
software [15].

Several techniques for software fault prediction have been
proposed over the past 30 years. Machine learning
approaches, in particular, have been increasingly used
considered the results they provide with little or no extra
cost for the companies. Among the most commonly used
machine learning algorithms for software fault prediction
are the Artificial Neural Networks, Decision Trees, Bayesian
Classifiers, Ensemble Learners, and SVMs [15].

Even though there exist extensive experimental analyses
over several distinct machine learning algorithms, there is
no consensus in the literature regarding the superiority
of one method over another, since the results are not
consistent across different studies [14, 18, 19]. Indeed, the
well-known no-free-lunch theorem states that no machine
learning algorithm is best for all problems, and it seems to
be precisely the case of the existing software fault prediction
studies. Hence, none of the existing techniques seem to
be capable of handling all different existing project data,
which may vary according to the specificities of the software
development organizations and their processes.

Since no algorithm is best for all projects, we propose a
change of paradigm and instead of developing more robust
methods that may not generalize for every software project,
we introduce in this paper a novel framework that is capable
of recommending the most suitable algorithm according to
the project data at hand. Our novel framework, namely
SFP-MLF (Software Fault Prediction – A Meta-Learning
Framework), makes use of the meta-learning approach for
the recommendation of machine learning algorithms that
takes into account the characteristics of the particular
organizational data. Our proposed solution can be seen
as a context-aware algorithmic recommendation platform,
which may recommend a single algorithm to be used or a
list (ranking) of algorithms.

The remainder of the paper is organized as follows. Section 2
provides a background on the current studies that relate
machine learning and fault prediction. Section 3 describes
our proposed framework for algorithm recommendation in
software fault prediction. Section 4 presents the empirical
analysis that was conducted in order to evaluate the
performance of the proposed framework. We present our

1486



conclusions and future work directions in Section 5.

2. MACHINE LEARNING FOR
SOFTWARE FAULT PREDICTION

Studies that report the use of machine learning techniques
for improving software fault prediction usually focus
on classifying software components (modules/classes)
according to their level of defect-proneness. Typically, such
a problem is abstracted into a two-class learning task, which
identifies each module as defect-prone or not-defect-prone,
according to the current project’s metrics and also to fault
data from similar projects. The model that is built by a
machine learning algorithm can be subsequently applied to
classify novel software components in a real-time fashion.
The knowledge of possible weaker components will help
testers in focusing their available resources on fixing the
modules that are more prone to faults [15].

In this context, several machine learning algorithms have
been used to inductively find patterns within the data
to classify the software modules, including statistical
procedures [13], tree-based methods [12], analogy-based
strategies [6], and artificial neural networks [11], just to
name a few.

Due to the variety of machine learning algorithms that have
been applied to address the fault prediction problem, a novel
class of studies emerged proposing frameworks for properly
comparing the performance of these algorithms in order
to find the most suitable solution for the problem. Their
results are our main motivation, since they reported the
nonexistence of a global solution that is suitable for distinct
projects. Next, we present the most important studies that
addressed the problem of software fault prediction through
machine learning approaches.

2.1 Related Work
Menzies et al. [18] argued on the use of static code
attributes to be used as input to learning algorithms. The
authors proposed a baseline experiment using public-domain
datasets and they compared the performance of different
learning algorithms. Their experimental results showed that
the best features to be used for defect prediction vary from
dataset to dataset, and so does the algorithms’ performance.
Their main conclusion was that it is no longer correct to
assess defect-learning methods using only one dataset and
one learner, and that the choice of learning method is far
more important than which subset of the available data is
used for learning.

Lessmann et al. [14] presented a framework for performing
an extensive comparison among machine learning algorithms
for software defect prediction. They conducted a
large-scale analysis of 22 different classification models over
10 public-domain datasets. Their experimental results
indicated that no significant differences in performance could
be detected regarding their experiments with the 22 distinct
learning algorithms, since distinct algorithms were the best
choice for distinct datasets.

Finally, Song et al. [19] proposed a general framework
that combines distinct learning algorithms and evaluation

schemes. In the evaluation stage, different learning schemes
(a set that comprises a data preprocessor, a feature selection
procedure and a learning algorithm) were evaluated in a part
of the historical data to determine whether a certain learning
scheme performs sufficiently well for prediction purposes. In
the defect prediction stage, the best learning scheme was
used to build a predictive model over all historical data,
and the resulting model is then used to predict faults in
new data. The authors concluded that no learning scheme
dominates, and thus a solution would be to select different
schemes according with the dataset characteristics. This is
also commented by Malhotra [15] in her systematic review
that compares the performance of several machine learning
algorithms for 23 different datasets.

The fact that no algorithm outperforms all others for
every software fault dataset is easily explained due to
the no-free-lunch (NFL) theorem, according to which any
advantage presented by an algorithm on a specific class
of problems is mitigated when it is applied to another
class of problems. Hence, if all the problems are equally
probable, then the algorithms tend to present, on average,
the same predictive behavior, preventing the existence of
a universally optimal method [2]. Therefore, defining the
algorithm to be used to obtain the most satisfactory results
for a given application must be made in a context-aware
application-driven manner.

To address the above-mentioned challenge, we propose
a novel framework to predict faults within the software
development scenario, focusing on recommending the most
suitable machine learning algorithm for a given project. This
approach is based on the meta-learning paradigm, which
extracts a particular set of features for each given dataset
and uses this so-called meta-data to point to the most
suitable learning algorithm. We present our approach in
detail in the next section.

3. META-LEARNING FRAMEWORK FOR
SOFTWARE FAULT PREDICTION

Meta-learning is a relatively new area within machine
learning that studies how learning systems can increase in
efficiency through experience. Its main goal is to understand
how learning itself can become flexible according to the
domain or task under study. One can see meta-learning as
a tool that helps determining under what conditions a given
algorithm is more suitable to be applied instead of others,
naturally allowing for the development of an approach for
algorithm recommendation [7].

With that in mind, in this paper we propose Software Fault
Prediction – A Meta-Learning Framework (SFP-MLF), a
meta-learning based framework for recommending machine
learning algorithms for software fault prediction. Figure 1
presents the rationale of the framework, whose process is
based on the general meta-learning approach proposed by
Kalousis [10] and widely used in algorithm recommendation
approaches [7, 16]. In the following sections, each step of
Figure 1 is explained in greater detail.

3.1 Defining the Input Datasets
For a meta-learning system to be operational, we need a
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Figure 1: Overview of SFP-MLF.

representative set of datasets (Figure 1 - Item 1) from a
given domain or set of domains. For the particular case of
software fault prediction, several public datasets have been
used by researchers in the past few years [15], such as the
well-known NASA datasets.

A set of 71 datasets was used as input to SFP-MLF, all
of them from the PROMISE public software engineering
repository [17]. The PROMISE repository contains the
NASA datasets, which are by far the most employed data
in software fault prediction studies. Notwithstanding, there
are only 13 datasets from NASA, and for a meta-learning
system to be successful one needs to collect a much larger
amount of datasets (as a thumb rule, more than 50 datasets
are desired for a significant meta-learning analysis).

The set of input datasets is the original source of
meta-knowledge of a meta-learning system. By learning the
characteristics of these datasets, SFP-MLF will be capable of
recommending suitable learning algorithms for unseen data
(data from other projects).

3.2 Extracting Meta-Features
After collecting a representative set of datasets, we need
to define which meta-features will be extracted from these
data (Figure 1 - Item 2). The meta-features are abstractions
from the set of input datasets, indicating in a meta-level the
characteristics of each dataset and how hard it is to solve
the classification problem that each one represents.

We decided to use two sets of meta-features that are
well-known in the meta-learning area:

1) Meta-features from the STATLOG project: originally
proposed in the STATLOG project [3], this set consists of
8 meta-features that are based on simple statistics collected

from the datasets, such as the number of classes, number of
features, correlation among features, etc.

2) Meta-features based on data complexity measures:
originally proposed in [1, 9], these meta-features represent
the complexity of a classification problem considering
aspects such as the overlap in the feature values, the
separability of the classes, and geometric or topological
properties.

Table 1 presents a summary of all meta-features that are
collected by SFP-MLF.

Table 1: Meta-features used in SFP-MLF.
Type Name Meta-feature

[3] #Sam Number of samples (instances)
[3] #Clas Number of classes
[3] #Att Number of attributes (features)
[3] #BinAtt Number of binary attributes
[3] MeanSk Mean skewness of attributes
[3] MeanKur Mean kurtosis of attributes
[3] MeanCor Mean multiple attribute correlation
[3] SDRatio Standard deviation ratio
[1] F1 Max Fisher’s discriminant ratio
[1] F1v Max Fisher’s discriminant ratio (dir. vector)
[1] F2 Overlapping of the per-class bounding boxes
[1] F3 Maximum individual feature efficiency
[1] F4 Collective feature efficiency
[1] L1 Minimum sum of the error of a linear classifier
[1] L2 Training error of a linear classifier
[1] L3 Non-linearity of a linear classifier
[1] N1 Fraction of points lying on the class boundary
[1] N2 Average intra/inter class NN distances
[1] N3 Leave-one-out error rate of the 1-NN
[1] N4 Non-linearity of the 1-NN
[1] T1 Fraction of max. covering spheres on data
[1] T2 Collective feature efficiency

3.3 Defining the Input Algorithms
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After defining the input set of datasets, one should also
define a set of algorithms as input for the meta-learning
system (Figure 1 - Item 3). The recommendation will be
made regarding this set of algorithms previously defined
as input to the system. Afterwards, each algorithm is
executed over each dataset from the input set, and several
metrics regarding its performance are recorded, such as
predictive performance information (e.g., accuracy) and
time complexity measures (e.g., time spent for running the
algorithm over the given dataset).

For defining this input set of algorithms, we turned to the
most referenced machine learning algorithms in the software
fault prediction context. We based our choice on a recent
systematic review performed by Malhotra [15], so we ended
up selecting the 7 most prominent learning algorithms in
the area, namely: 1) Näıve Bayes (NB); 2) Random Forests
(RF); 3) C4.5; 4) k-Nearest Neighbors (k-NN); 5) Support
Vector Machines (SVMs); 6) Multi-layer Perceptron (MLP);
and 7) Ada Boost (ADB).

We executed each of the 7 algorithms over each of the
71 input datasets, resulting in a list of collected metrics
regarding the performance of each algorithm in each dataset.
We made use of the implementations available at the WEKA
machine learning toolkit [8] for these 7 algorithms. Each of
them has a large set of input parameters, so we decided
to use the parameters suggested by WEKA (the default
parameters).

3.4 Defining the Performance Measure
After executing the 7 algorithms over the 71 input datasets,
we need to define an evaluation measure of choice in order to
assess the performance of the algorithms in a straightforward
fashion (Figure 1 - Item 4).

There are several predictive performance measures for
classification, and a list of pros and cons of each measure
is out of the scope of this paper. For avoiding issues on
the selection of a proper evaluation measure, we decided to
employ the balance criterion, which was first presented by
Menzies et al. [18] and is commonly found in many software
fault prediction studies. Balance is the Euclidean distance
between the generated prediction and the ideal balance
between true positives rate (TPR) and false positives rate
(FPR). This distance is then normalized by the maximum
distance across the ROC square (

√
2), so its value falls

between [0, 1]. Balance also subtracts the normalized
distance by 1, indicating that higher balance values (closer
to 1) are preferred. Hence, for each of the 7 input algorithms
we collect its corresponding balance values for each of the
input datasets.

3.5 Building the Meta-Database
The next step of SFP-MLF is to build a meta-database
(Figure 1 - Item 5), which embodies the knowledge of
the relationship between meta-features and algorithmic
predictive performance. In this meta-database, each
instance (table row) corresponds to one of the 71
input datasets, and each predictive feature (attribute,
table column) corresponds to the computation of the

meta-features described in Section 3.2. Finally, there is
a final piece of information in this meta-database, which
indicates which algorithm obtained the best performance
(as measured by the balance criterion) in the corresponding
dataset. Another option is to include the complete ranking
of the performance achieved by the input algorithms as this
final piece of information in the meta-database. This choice
should be made according to the final goal of the system: if
one wants do predict which single algorithm is more suitable
for a given dataset, then we need to store only which was the
best algorithm for each input dataset; otherwise, if one wants
a list of algorithms ranked according to their performance,
then we need to store the ranking of the algorithms in the
meta-database.

3.6 Choosing a Meta-Learner to Build a
Recommendation Model

When we have data from a novel project where we would like
to apply a machine learning algorithm to predict fault-prone
modules, we need to extract the same meta-features that
we extracted from the input datasets. Afterwards, we
need to choose a meta-learner (machine learning algorithm)
that will be applied to the meta-database in order to
generate a predictive model that is capable of recommending
algorithms for the software fault prediction problem (Figure
1 - Item 6). Once the model is built, it is applied over the
meta-features that were extracted from the novel project’s
dataset (Figure 1 - Item 7), generating as output the most
suitable algorithm to be used for that particular dataset
(Figure 1 - Item 8).

The model generated by the meta-learner can be used with
two different purposes [10]: i) ranking the list of available
machine learning algorithms for the novel project’s dataset;
ii) recommending the best algorithm for the novel project’s
dataset. The meta-learner that SFP-MLF employs depends
on the purpose desired by the final user. For the task
of ranking algorithms, SFP-MLF makes use of the k-NN
(k-nearest neighbors) algorithm, which naturally allows the
prediction of a ranking list. For the task of recommending
the most suitable algorithm, SFP-MLF allows the use of
either the Random Forests (RF) algorithm [5] or of an
ensemble of the 7 input algorithms (EN-7). RF was
chosen considering it is said to be one of the most effective
algorithms for software fault prediction [15]. The second
option, namely EN-7, concerns the use of a majority vote
scheme of the predictions made by the 7 algorithms that
were chosen as input to SFP-MLF.

4. EXPERIMENTAL ANALYSIS
We employ a typical leave-one-out cross-validation
procedure (LOO-CV) to evaluate the quality of the
recommendation made by SFP-MLF. LOO-CV iteratively
separates one dataset to be used as a the test set (novel
project’s dataset whose data is a priori unknown to
SFP-MLF), and the remaining 70 to be used as the
training set (datasets to be used as input to build the
meta-database). This process is repeated until every
dataset has been used once as test set.

In Section 4.1, we describe how SFP-MLF was applied
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to predict the ranking of input algorithms for each novel
project’s dataset. In Section 4.2, we present the results
achieved by SFP-MLF when recommending a single most
suitable algorithm to be applied for each novel project’s
dataset that is being considered.

4.1 Ranking Recommendation
Ameta-learning system can be used to recommend a ranking
of algorithms, i.e., a list of algorithms whose order is dictated
according to their predicted performance for the dataset
of interest. For predicting rankings, we employ the k-NN
algorithm with k = 1, which means the ranking to be
predicted for a given project’s dataset will match with the
ideal ranking of its nearest neighbor (i.e., the ranking of the
dataset it is most similar to).

An ideal ranking should represent the exact ranking order
of the machine learning algorithms for the unseen data [4],
but this scenario is unlikely to happen in the real world.
Therefore, with the purpose of validating whether SFP-MLF
is capable of recommending a “good” ranking, we compare
real and predicted rankings according to the well-known
Spearman’s correlation coefficient.

For assessing the quality of SFP-MLF’s ranking prediction
(henceforth called SFP -MLF -R), we compare it to two
distinct baselines: i) random ranking; and ii) majority
ranking. In random ranking (RR), we generated 30
random rankings for each dataset: each input algorithm
was assigned a random number without replacement from
the integer interval [1, 7], since there is a total of 7 input
algorithms. We computed the Spearman’s coefficient for
the 30 random rankings per test dataset, and then averaged
them to produce a single Spearman’s coefficient value per
test dataset. In majority ranking (MAJ-R), we simply
select the most frequent ranking from the 70 datasets in the
training set. The most frequent ranking (majority ranking)
is used as the predicted ranking for all test datasets.

4.1.1 Ranking Results
Table 2 presents the results of the ranking evaluation
analysis. Results show the average Spearman’s coefficient
value for the 71 datasets (each computed within the
LOO-CV procedure). Note that the average value
of Spearman’s coefficient for SFP -MLF -R (0.327) is
considerably larger than those of the baseline strategies RR
(0.016) and MAJ-R (0.205). As expected, the random
ranking strategy generates an average result close to 0.
Results provided by MAJ-R, in turn, show that employing
always the same algorithm for every particular dataset does
not provide results as accurate as recommending different
algorithms for different datasets.

Table 2: Average µ and standard-deviation σ
values of the Spearman’s coefficient for SFP -MLF -R,
MAJ-R, and RR.

SFP -MLF -R MAJ-R RR

µ 0.327 0.205 0.016
σ 0.478 0.512 0.086

4.2 Single-Algorithm Recommendation
The other strategy employed by SFP-MLF is to recommend
a single algorithm as the most suitable choice for the
project’s data at hand. In this strategy, we employ either
RF or EN-7 as the meta-learner to generate a predictive
model from the meta-database. From here on, we refer to
these strategies as SFP -MLF -RF and SFP -MLF -EN -7.

In order to assess the performance of SFP -MLF -RF and
SFP -MLF -EN -7, we compare the predictive performance
of the algorithm recommended by them with the predictive
performance of each one of the 7 algorithms that are used
as input to SFP-MLF.

Table 3 shows the results obtained with SFP -MLF -RF .
The values presented in Table 3 refer to the average rank
achieved by each algorithm in the 71 datasets. For instance,
suppose that SFP -MLF -RF recommends the Näıve Bayes
algorithm to be used for the PC1 NASA dataset. Hence, we
verify the real performance of Näıve Bayes in PC1 in terms
of the balance criterion (recall that we have executed all
input algorithms over all input datasets), and next we check
how the corresponding balance value stands when compared
with the balance achieved by the 7 algorithms (including
Näıve Bayes itself). After that analysis is made, we rank the
performance of each one of the 8 algorithms (the algorithm
recommended by SFP -MLF -RF alongside the 7 input
algorithms). For each input dataset, there is a ranking of the
8 algorithms, and hence we compute the average rank of the
8 algorithms for the 71 datasets. The lower the value of the
average rank, the better the algorithm. The best balance
average rank that SFP-MLF could possibly achieve is 1.5,
which would mean that SFP-MLF always recommends the
best-performing algorithm for all 71 datasets.

Table 3: Average rank (µ) and standard-deviation
(σ) of the balance criterion for the 71 input datasets.
Here, SFP-MLF’s version is the one that selects the
best algorithm with Random Forests.

Algorithm µ σ

SFP -MLF -RF 2.472 1.501
NB 3.972 2.650
RF 3.993 1.902
C4.5 4.225 1.855
k-NN 4.775 1.989
SVM 7.028 1.680
MLP 4.134 1.561
ADB 5.331 2.054

We can see that SFP -MLF -RF outperforms all the
remaining algorithms in terms of balance values, with an
average rank of 2.472. These results clearly suggest that our
proposed approach for recommending algorithms achieves
best results than using the same algorithm for every software
fault prediction dataset.

Table 4 shows the results obtained with SFP -MLF -EN -7.
Note that changing the meta-learner in SFP-MLF has
little impact on the final result, since SFP -MLF -EN -7
also outperforms all remaining algorithms with a balance
average rank of 2.556. Whereas most papers in the
software fault prediction context suggest using either Näıve
Bayes or Random Forests for predicting software module
fault-proneness, we can see that a customized approach
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capable of recommending distinct algorithms according to
the dataset at hand indeed achieves enhanced performance,
proving our initial hypothesis that research in the area
should concentrate efforts on recommending algorithms
instead of developing more robust algorithms to use in all
datasets.

Table 4: Average rank (µ) and standard-deviation
(σ) of the balance criterion for the 71 input datasets.
Here, SFP-MLF’s version is the one that selects the
best algorithm with the ensemble of the 7 input
algorithms.

Algorithm µ σ

SFP -MLF -EN-7 2.556 1.519
NB 3.958 2.647
RF 3.944 1.920
C4.5 4.239 1.850
k-NN 4.775 2.007
SVM 7.021 1.704
MLP 4.127 1.574
ADB 5.310 2.068

5. CONCLUSIONS
In this paper, we proposed a framework called SFP-MLF
(Software Fault Prediction: A Meta-Learning Framework).
It analyzes the performance of machine learning algorithms
on a collection of datasets and develops a meta-database
that allows the recommendation of the most suited machine
learning algorithm for novel data. Experiments were
conducted taking into account 71 public software fault
prediction datasets from the PROMISE repository [17], and
results show that SFP-MLF is capable of recommending
the best algorithm for each dataset used as test set,
outperforming the selection of a single algorithm for all
datasets. Our findings seem to be an important landmark
in the area, since they suggest that research efforts should
be directed towards improving algorithm recommendation
instead of building more robust approaches, the latter being
the case of all studies so far.

As future work, we plan to enlarge the list of input
algorithms, performing recommendation with the list of 22
machine learning algorithms that were experimented in the
work of Lessmann et al. [14].
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