WEB PLANNER: A Tool to Develop Classical Planning Domains
and Visualize Heuristic State-Space Search

Mauricio C. Magnaguagno, Ramon Fraga Pereira, Martin D. Mére and Felipe Meneguzzi
School of Computer Science (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre - RS, Brazil
{mauricio .magnaguagno, ramon.pereira, martin. more}@acad .pucrs.br
felipe.meneguzzi@pucrs.br

Abstract

Automated planning tools are complex pieces of software that
take declarative domain descriptions and generate plans for
complex domains. New users often find it challenging to un-
derstand the plan generation process, while experienced users
often find it difficult to track semantic errors and efficiency
issues. To simplify this process, in this paper, we develop a
cloud-based planning tool with code editing and state-space
visualization capabilities. The code editor focuses on visual-
izing the domain, problem, and resulting sample plan, helping
the user to see how such descriptions are connected without
changing context. The visualization tool explores two alter-
native visualizations aimed at illustrating the operation of the
planning process and how the domain dynamics evolve dur-
ing plan execution.

1 Introduction

Classical planning algorithms typically require a declara-
tive domain specification (often in PDDL (McDermott et al.
1998; Gerevini and Long 2005)) describing action schemata,
which, in turn, define the dynamics of the underlying do-
main. Given the declarative nature of the formalism, plan-
ning algorithm implementations are often opaque regarding
the intermediate steps between reading the formalism and
generating a plan. Thus, writing such specifications may be
a challenging task for new users even for simple domains,
while detecting semantic mistakes in complex domains is
always non-trivial. Practical applications of classical plan-
ners require not only a formalization of the domain in PDDL
that is correct, but also takes advantage of the search mecha-
nisms employed by the underlying planners to find solutions
efficiently.

Most modern classical planning solvers (Hoffmann and
Nebel 2001; Helmert 2006; Richter and Westphal 2010;
Hoffmann 2011) use heuristic functions to estimate which
states are likely to be closer to the goal state and save time
and memory during the planning process. Different planning
domains may require different heuristic functions to focus
the search on promising branches and be solved within a
reasonable time with little memory footprint. Thus, key to
understanding the efficiency of a domain formalization is its
impact on the heuristic function used by the underlying plan-
ner.

Even when the user successfully compiles and executes
a planning instance with the chosen heuristic function the
planner may fail to find a correct plan for the intended do-
main. In these cases, virtually no planning algorithm offers
extra information, and the user only knows that the domain
or problem are described in a way that makes it impossible to
find a valid plan. Finally, since most planners are academic
projects made to execute under very specific environments
they lack a clear documentation to guide new users in the
compilation process, while a web-based planner offers plan-
ning algorithms with no setup time.

This paper describes a tool to address the challenges of
helping a domain expert to tune a formalization to any plan-
ning heuristics and spotting semantic errors in planning do-
mains. Our tool, which we describe in Section 3, includes a
PDDL code editor with syntax highlight and auto-complete
aimed at helping users to efficiently develop PDDL domains
in a similar workflow to many popular integrated develop-
ment environments (IDEs). Importantly we integrate the ed-
itor to two visualization tools, described in Section 2, devel-
oped to help users cope with the declarative nature of PDDL
and explore the effects of changes to the domain in solv-
ing concrete problems. First, we use a visual metaphor from
the literature to see how a plan execution achieves (or does
not) a goal state from an initial state (Magnaguagno, Pereira,
and Meneguzzi 2016). Second, we develop a new state-space
search visualization that uses tree drawing (in both cartesian
and radial layouts) in conjunction with heatmaps to repre-
sent how the distance (e.g., how colder or warmer) to the
goal state changes during search. We use a case study in
Section 4 to illustrate how our approach works and validate
our approach from user tests, which we describe in Section 5
showing the results we obtained from employing the tool in
a planning course. In Section 6, we survey related work on
planning tools and data visualization, and conclude the pa-
per in Section 7 discussing our conclusions and future work.

2 Background
2.1 Planning

Planning is the problem of finding a sequence of actions
(i.e., plan) that achieves a particular goal from an initial
state (Ghallab, Nau, and Traverso 2004). A state is a finite
set of facts that represent logical values according to some

interpretation. Facts are divided into two types: positive and
negated facts. Predicates are denoted by an n-ary predicate
symbol applied to a sequence of zero or more terms. An op-
erator is represented by: a name that represents the descrip-
tion or signature of an action; a set of preconditions, i.e., a
set of facts or predicates that must be true in the current state
to be executed; a set of effects, which has an add-list of pos-
itive facts or predicates, and a delete-list of negative facts
or predicates. An action is an instantiated operator over free
variables. A planning instance is represented by: a domain
definition, which consists of a finite set of facts and a finite
set of actions; and a problem definition, which consists of
an initial state and a goal state. The solution of a planning
problem is a plan, which is a sequence of actions that modi-
fies the initial state into one in which the goal state holds by
the successive execution of actions in a plan. To formalize
planning instances, we use the STRIPS (Fikes and Nilsson
1971) fragment of PDDL (McDermott et al. 1998), which
contains domain and problem definition in different files.

Heuristic functions are used to estimate the cost of achiev-
ing a particular goal (Ghallab, Nau, and Traverso 2004). In
classical planning, this estimate is often the number of ac-
tions to achieve the goal state from a particular state by ex-
ploring only promising states. Estimating the number of ac-
tions is a NP-hard problem (Bylander 1994). In automated
planning, heuristics can be domain-dependent or domain-
independent, and a well-tuned heuristic can result in a sub-
stantial reduction in search time by pruning a vast part of the
state-space.

2.2 Data Visualization

Visualization techniques aim to convey some kind of infor-
mation using graphical representation (Ward, Grinstein, and
Keim 2015). The use of data visualization techniques is of-
ten associated to a set of data with the aim of communicating
a particular information clearly and efficiently via graphical
representation.

Data visualization techniques are concerned with what is
the best way to display a dataset, for instance, how to display
relation information. Relation information can be displayed
efficiently by using hierarchies that convey relation infor-
mation. Edges in a hierarchical tree represent a relation be-
tween nodes. A Cartesian tree visualization is a way to dis-
play hierarchical trees as a coordinate system. A radial tree
visualization is a way to display a hierarchical tree struc-
ture in which such tree expands outwards and radially. In
Subsection 3.2 we explore such tree visualizations. Besides
hierarchical visualization, we highlight other visualization
methods that are closely related to the ones we develop in
this work, such as Gantt charts (Wilson 2003), which are
used to show how tasks are correlated and how much time
is expected to complete them, Waveforms (Ha 2010, Chap-
ter 1 — page 2) are used to express the behavior of analog or
digital data through time, and Heatmap visualization (Ward,
Grinstein, and Keim 2015), which uses a color scheme to il-
lustrate values in a graphic in which each color in the scheme
represents one limit value and the many values in the interval
are represented by the mix of such colors.

3 WEB PLANNER Architecture

We designed our tool envisioning a development process
centered around two tasks by the domain developer. In the
first task, the user aims to describe both domain and problem
correctly. In the second task, the user tries to identify details
of the description (in terms of predicate use) that impact per-
formance and how these predicates appear during the plan-
ning process. The domain designer is free to move between
these tasks and repeat until satisfied with the results. Once a
planning instance is described it is possible to visualize the
explored state-space, even when the planning process fails.
When the planning process returns a plan the user is able
to visualize how predicates were added or deleted by each
action in the plan. Such interface could also help planning
system developers to explore how planners in development
behave.

To avoid the considerable setup time of some planner
implementations and maintain a consistent interface across
platforms, we use a web interface. The planner is executed
in the server, while the editor, output and visualizations are
displayed and executed in the browser. The communication
between the two sides uses JSON'. Figure 1 shows the ar-
chitecture of the WEB PLANNER.

/ Browser \ / Server \

PDDL editor > Planner
v
Output < Plan
+ Y
Visualizations |« State-space and
plan data

- AN /

Figure 1: Overview of the WEB PLANNER Architecture.

3.1 Domain Development Interface

To better describe planning domains and problems, we iden-
tified some requirements to improve the process of editing
such descriptions, as follows:

e PDDL syntax highlight and auto-complete to alleviate
user learning curve. For example, to define a new action,
our PDDL editor provides an action-template (an auto-
complete function of our editor, pressing CTRL+Space
after typing the word action) that shows how an action
is defined in PDDL, as shown in Figure 2. Our editor also
provides templates for domain and problem description,
just pressing CTRL+Space after typing the word domain
or problem, respectively;

e See and edit both domain and problem simultaneously,
avoid going back and forth between descriptions gives a

!JSON (JavaScript Object Notation) is an open-standard format
for structuring data.

lanner Planning Visualization

define (domain

4 define (problem po3
irequirements s (idomain nanoi
8
7

12- (:predicates 12+ (:init
clear 23) 13
) 14

(c
14 (on
(smaller) 15

) action 23

(-action ${1:action_name}
parameters (?foo)
precondition (and

- seffect (and (ar) 30

(baz)

1
) 2
(on) :effect (and e
x) 34
) 35 (on
36 Cor
7 ¢
8
£l

snippet)
1ocal |}

8 iobjects pegl peg2 peg3 dl d2 d3
E]

Mon Nov 21 2016 18:37:37
Result: SUCCESS
Domain: hanoi
Problem: pb3
Plan:
(move dl d2 peg3)
(move d2 d3 peg2)
(move d1 peg3 d2)
(move d3 pegl pegs3)
(move di d2 pegl)
3) (move d2 peg2 d3)
(move d1 pegl d2)
Execution time: 0.0020s

Figure 2: WEB PLANNER editor interface with domain editor (left), problem editor (center) and plan output (right). Action

template is provided by autocomplete.

better idea of them being used together while minimizing
the user effort; and

e Execute the current planning instance without a context
change;

To meet such requirements, we split the editor interface
horizontally in 3 parts: domain, problem, and planner out-
put. The ability to see input alongside output is very impor-
tant for both advanced users, that are modifying or extending
legacy PDDL, and new users, such as students, that are not
used with the domain and problem distinction. Instead of
starting with a blank planning instance we opted for a sim-
ple but complete Towers of Hanoi example to be loaded by
default.

The solve button sends the planning instance to the server
to obtain an output based on the domain and problem de-
scriptions contained in the editor. Our editor uses brace, a
variant of the ace editor, and it is able to highlight most
PDDL elements, some of which are currently not supported
by the back-end planner. The output provided by the planner
contains the plan and execution time when successful, error
messages when the parser fails, or a failure message when
no plan is found. Due to screen space limitations and de-
mand, the visualizations were left to a secondary interface,
as users can only visualize after the initial description step.

3.2 Visualization Interface

We currently support two visualizations, one focusing on the
explored state-space and the other on the execution of the
first plan found.The impact of heuristics in the state-space
is often introduced in Al lectures using images, such as the
ones from Figure 3, to show how the contour of the explored
states grows in all directions on blind search and towards
the goal state in informed search (using heuristics) (Russell
and Norvig 2009, Chapter 3 — page 97). Such images target

an audience new to the concept of using a computed auxil-
iary function to speed-up search. More interesting examples
are possible with animations on a grid, showing the step-by-
step process of search. Since not all domains can be mapped
to a grid, the visualization process is often limited to path-
finding domains. To generate such contours we opted for a

tree-based visualization.

Figure 3: Search contours are defined by search mechanism
and heuristic function, either equally exploring in all direc-
tions (left) or giving priority towards the goal state (right).

Heuristic Visualization: The heuristic visualization we
developed takes advantage of interactive elements to avoid
information overload while providing alternative layouts,
cartesian and radial tree visualizations. The radial layout
matches the abstraction used by heuristic examples while the
cartesian layout generates a visualization more compact. In
practice, we use the Reingold-Tilford algorithm? to display
both tree layouts. Using tree visualizations we aim to show
how planning heuristics explore the state-space to achieve a
particular goal.

To compare and explore the state-space of a planning in-
stance, we implemented two planning methods. The first
method is based on breadth-first search, and thus uses no

Reingold-Tilford is an algorithm for an efficient tidy arrange-
ment of layered nodes. We use an implementation based on a D3
example available at: http://bl.ocks.org/mbostock/4063550.

heuristic, exploring the state space in the order of distance
from the initial state. The second method implements greedy
best-first search using Hamming distance (Hamming 1950)
as a heuristic. Our visualization tool supports other search
mechanisms and heuristic functions as long as such mecha-
nisms search through the state-space, the selected ones are
used only as examples.

state 1

state 1
clear peg3
clear d1

on d3 pegi
on d2 d3
on di peg2
clear d2

Figure 4: Tooltip that displays the set of instantiated predi-
cates in a state. This figure illustrates state 1 and its predi-
cates for a planning instance of the Hanoi domain.

state 1

move(di d2 peg2)
initial state = state 1

initial state

Figure 5: Tooltip that displays the instantiated action ap-
plied between two states. This figure illustrates state 1 and
its predicates for a planning instance of the Hanoi domain.

With the explored state-space and heuristic information
about each state we use an hierarchical tree to represent the
data obtained from the planning process. In this tree, each
node represents a state (i.e., a set of instantiated predicates),
and an edge represents a state-transition (i.e., the execution
of an action). The root node represents the initial state. Our
visualization displays the state-space of a planning heuris-
tic by coloring the estimated distance between states using
a heatmap. Information such as the content of the state or
the applied action is hidden until the user hovers that posi-
tion with the cursor to display such data in a tooltip, as show
in Figures 4 and 5. Nodes and edges are colored accord-
ing to the estimated distance to the goal state. Red nodes
represent states closer to the goal state, i.e., warmer, while
distant nodes are represent by blue, i.e. colder. The heuristic
gradient is defined in Figure 6. It is important to highlight
that the estimated distance can be different according to the
used heuristic. Therefore, the state-space search can reach
different states in a different order according to the heuris-
tic used, for example, Figures 10 and 11. As more states are
explored the more visible the contours are, as seen in Fig-

ure 7. If planning is successful the edges from initial to goal
node are emphasized. The trees are also generated to failed
planning instances, which can be used for debug purposes.

(colder) Heuristic Estimated Distance Goal State

(warmer)

Figure 6: Color scheme that our visualization tool uses to
represent the estimated distance.

Figure 7: Contours become visible as more states are ex-
plored. This planning instance obtain all goal predicates
at the same time, which makes the heatmap mostly blue
(colder), while the goal state is located at the bottom in red
(warmer).

Dovetail Metaphor Visualization: The second visualiza-
tion we implemented is a visual metaphor called Dove-
tail (Magnaguagno, Pereira, and Meneguzzi 2016), which
is useful to see how predicates change along the plan exe-
cution. Each ground predicate that appear in an action effect
is represented as one line while both initial state, goal state
and actions are represented as columns. Our interface allows
a user to move and zoom to parts of this visualization (illus-
trated in Figure 8), with tooltips providing extra information
as shown in Figure 9 for the domain of the case study of
Section 4. The use of this visual abstraction (Dovetail) aims

to improve the learning curve for defining and debugging
planning domains and problems.

Initial 1 2

$TRELTET
| o] :

g | o

(clear peg3)

(on d3 peg1)
(on d2 d3)

(on d3 peg3)

(clear peg1)

(on d1 peg2)

(clear d2)

(on d2 peg1)

(on d2 peg3)
(on d3 peg2)

Figure 8: Dovetail plan visualization of Hanoi domain with
3 discs and a plan of size 7.

Initial 1

(clear peg3) h- *

Figure 9: Tooltip that displays the instantiated action in a
plan on Dovetail.

4 Case Study

To validate our tool, we developed a case study of a plan-
ning instance using different planning heuristics displaying
the state-space.We selected the Hanoi towers domain to il-
lustrate what can be expected from the visualizations. The
Hanoi domain describes the towers of Hanoi problem, where
one must move a stack of discs from one peg to another with-
out stacking a larger disc onto a smaller one, three pegs are
available in total. Problem instances of this domain show
that the goal cannot be accomplished in an incremental way,
requiring the plan to build and destroy partial towers several
times to obtain the complete tower in the final peg. Domains
that present such behavior are not pruned as much as others
by the Hamming distance as a heuristic function and have a
visible color fluctuation between the gradient limits instead
of a clear movement towards red, as seen in the Cartesian
tree of Figure 10. The Cartesian tree is better to represent
and compare such smaller graphs, while the radial tree high-
lights the side to which the heuristic gave priority during
search, as seen in Figure 11, where the top-left branch was
not explored. Other domains may suddenly reach a goal state
from a mostly blue colored graph, in which all states are far
away from the goal, as seen in Figure 7, or incrementally
reaching the goal clearly going from one extreme of the gra-
dient to the other, as in the Logistics domain.

To better understand how the predicates are affected by
the plan we use the Dovetail metaphor. This particular Hanoi

(2) Best First Search with Hamming distance

Figure 10: Cartesian tree visualizations of the state-space of
Hanoi with 3 discs.

(2) Best First Search
with Hamming distance -

(1) Breadth First Search -
Figure 11: Radial tree visualizations of the state-space of
Hanoi with 3 discs.

planning instance is solved by a 7-step plan, represented by
the pieces labeled with numbers at the top, Figure 8. Each
piece has preconditions represented on the left side and ef-
fects represented on the right side. In this case we can see
the first action, move(dl d2 peg3), moving a clear disc d/
that starts on disc d2 to a clear peg peg3, leaving d2 clear
and peg3 not clear. We can see the predicate clear dI be-
ing tested by each odd-index action, revealing the pattern of
movements related with the disc d/.

S5 Survey Results

To evaluate WEB PLANNER, a group of four users from our
automated planning course® were asked to fill a survey after
using the tool to describe the RPG domain from the Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling #. The survey contained the following ques-
tions and answers:

o How familiar are you with automated planning languages
and algorithms?

— Only 2 users have used PDDL before.

e Did Web-planner visualizations help you to find any
bugs/errors/interesting points during the course of your
task?

— One user found missing preconditions.

e Mark other planners/tools you used in your experiments:

3http: //github.com/pucrs—automated-planning/syllabus
4http: //ickeps2016.wordpress.com

— Fast-Downard (1), JavaFF (1), JavaGP (3), Plan-
ning.domains (3), STRIPS-Fiddle (1)

e Which features you missed the most?

— Support more requirements (2), Auto-complete (1),
Option to clear console (1), Find (common) errors in
PDDL (1).

Results of system reaction show evidence of the utility of
our tool, albeit with many suggested improvements, in Fig-
ure 12 with minimum, maximum and average represented.
The current planning output must be improved in order to
provide more meaningful messages about errors while tak-
ing advantage of the integrated editor to draw attention to
specific lines where parsing errors were detected. Other im-
provements are more related to the editor itself, making it
more flexible to attend different user needs, such as theme,
font size and the ability to re-size each part of the editor.
Users also asked for more planners/requirements to be sup-
ported.

i—l—_i_iii

Crverall System System
reaction usability efficiency

Interface
intuitiveness

Wisualization

Figure 12: Survey results, users were asked to evaluate the
system between frustrating (0) and satisfying (5).

6 Related work

We now discuss related work and tools that are used to
formalize planning domains, visualize changes on a large
amount of hierarchical data, and visualize state-space search
algorithms.

Planning.Domains” is a collection of web tools for
automated planning. These web tools provide a web PDDL
editor, an API that contains a wide collection of PDDL
benchmark domain and problem files (most of them used on
the International Planning Competition), and a planner in the
cloud that allows using not only a planning solver, but also
VAL (Howey, Long, and Fox 2004), a plan validation tool.
Similar to our approach, Planning.Domains provides
a PDDL editor, however, our approach provides not only a
web editor with syntax highlighting, but also a set of tools
to develop and visualize planning domains using metaphors
and alternative data visualization methods.

To edit PDDL domains and problems, we highlight two
approaches, myPDDL and PDDL Studio. myPDDL® (Stro-
bel and Kirsch 2014) is an editor extension for Sublime
Text, which provides PDDL syntax highlighting, snippets,

5

51'1ttp ://planning.domains
6http ://github.com/P0old87/myPDDL

and domain visualization (e.g., diagram types). PDDL Stu-
dio (PIch et al. 2012) is an IDE to edit PDDL domains and
problems. This IDE provides syntax highlighting, code com-
pletion, and context hints specifically designed for PDDL.

Graphical Interface for Planning with Objects
(GIPO) (Simpson, Kitchin, and McCluskey 2007) is a
tool for planning domain knowledge engineering that allows
the specification of domains in PDDL and Hierarchical Task
Network (HTN). Besides domain knowledge engineering,
GIPO provides an animator tool to graphically inspect the
plans produced by the internal planner, given a domain and
problem specification. Unlike our approach, GIPO checks a
set of plans to validate a domain and problem specification,
indicating whether the domain and problem specification
do support the given plans. Similar to Dovetail metaphor
we implemented in WEB PLANNER, GIPO also provides an
animator tool to visualize how a sequence of actions (i.e.,
a plan) connects to form a plan that achieves a goal state
from an initial state. VisPlan (Glinsky and Bartdk 2011) is
an interactive tool to visualize and verify plans’ correctness.
This tool is closely related to Dovetail metaphor in the
sense of helping planning users to better understand how
a sequence of actions achieve a goal from an initial state.
VisPlan identifies possible flaws (i.e., incorrect actions)
in a plan, allowing users to manually modify this plan by
repairing these identified flawed actions.

PDVer (Raimondi, Pecheur, and Brat 2009) is a methodol-
ogy and tool that verifies if a PDDL domain satisfies a set of
requirements (i.e., planning goals). This tool allows an auto-
matic generation of these requirements from a Linear Tem-
poral Logic (LTL) specification into a PDDL description.
This tool is concerned with how the corresponding PDDL
action constraints are translated from an LTL specification.
Whereas PDVer provides a summary of test cases (positive
and negative) indicating why a PDDL domain specification
does not satisfy a set of requirements to achieve a goal.

itSimple (Vaquero et al. 2012) is concerned with do-
main modeling, using steps to guide the user from informal
requirements (UML) to an objective representation (Petri
Nets). The itSimple features provide a visualization and sim-
ulation tool to help understanding planning domains through
diagrams. itSimple uses UML diagrams to model planning
instances and Petri Nets for validating planning instances.

Magnaguagno et al. (2016) developed a visual metaphor
to visualize and learn how the planning process works. We
have applied this visual metaphor in our web tool by using
colors for different instantiated predicates in a state along
a plan execution. Dovetail results suggest that this visual
metaphor can be useful to define and debug the planning
process.

We found two approaches to data visualization suitable
for heuristics. In (Kuwata and Cohen 1993), Kuwata and
Cohen develop visualization methods to understand and ana-
lyze the search-space and behavior of heuristic functions, by
exploring the usefulness of these methods on shaping state-
space search. The heuristic functions they explore are A*
and IDA*. Tu and Shen (2007) propose a set of strategies
to visualize and compare changes in hierarchical data using
treemaps.

7 Conclusions

In this paper, we report on a cloud-based planning tool we
developed, which consists of a PDDL editor to formalize
planning domains and problems, and visualizations to help
understand the effect of planning heuristics in the domains.
This work aims to simplify the setup process required to ex-
ecute planners while providing visualizations to better un-
derstand how domain differences and heuristics can impact
the performance of the planner. A small-scale survey indi-
cates promising results while asking for improvements that
are already in development.

As future work, we intend to support user-defined heuris-
tics in our planner along with alternative options to the user,
such as selectable color schemes for the visualization and
a side-by-side state-space view for comparison. We believe
that such tool can help new heuristics to be developed and
tested, giving the user a better grasp of the impact of heuris-
tics to the state-space exploration, which is usually an invis-
ible entity. Instead of outputting only a plan and the time to
compute it in the editor interface, we expect to add not only
better parsing error messages but also detection of bad con-
structions, such as unnecessary requirements or effects that
are equal to preconditions. Our WEB PLANNER tool is avail-
able at http://web—-planner.herokuapp.com.

Acknowledgments

We acknowledge the support given by CAPES/Pro-Alertas
(88887.115590/2015-01) and CNPQ within process number
305969/2016-1 under the PQ fellowship.

References

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Journal of Artificial Intel-
ligence Research (JAIR) 69:165-204.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Journal of Artificial Intelligence Research (JAIR)
2(3):189-208.

Gerevini, A., and Long, D. 2005. Plan Constraints and
Preferences in PDDL3. The Language of the Fifth Interna-
tional Planning Competition. Technical Report, Department
of Electronics for Automation, University of Brescia, Italy.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning - Theory and Practice. Elsevier.

Glinsky, R., and Bartdk, R. 2011. Visplan—interactive visu-
alisation and verification of plans. Proceedings of the Work-
shop on Knowledge Engineering for Planning and Schedul-
ing (KEPS) 134-138.

Ha, T. T. 2010. Theory and design of digital communication
systems. Cambridge University Press.

Hamming, R. W. 1950. Error detecting and error correcting
codes. Bell System Technical Journal 29(2):147-160.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191-246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research (JAIR) 14(1):253-302.

Hoffmann, J. 2011. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables.
Computing Research Repository (CoRR) abs/1106.5271.

Howey, R.; Long, D.; and Fox, M. 2004. VAL: automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2004), 15-17
November 2004, Boca Raton, FL, USA, 294-301.

Kuwata, Y., and Cohen, P. R. 1993. Visualization Tools for
Real-Time Search Algorithms. Computer Science Technical
Report.

Magnaguagno, M. C.; Pereira, R. F.; and Meneguzzi, F.
2016. DOVETAIL - An Abstraction for Classical Planning
Using a Visual Metaphor. In Proceedings of FLAIRS, 2016.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL
— The Planning Domain Definition Language. Technical
Report — Yale Center for Computational Vision and Control.

Plch, T.; Chomut, M.; Brom, C.; and Bartak, R. 2012. In-
spect, edit and debug PDDL documents: Simply and effi-
ciently with PDDL Studio. In Proceedings of ICAPS’ 09,
15-18.

Raimondi, F.; Pecheur, C.; and Brat, G. 2009. PDVer, a
Tool to Verify PDDL Planning Domains. In Proceedings of
ICAPS’09 Workshop on Verification and Validation of Plan-
ning and Scheduling Systems, Thessaloniki, Greece.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39(1):127-
177.

Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ, USA: Prentice
Hall Press, 3rd edition.

Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. Knowledge Eng.
Review 22(2):117-134.

Strobel, V., and Kirsch, A. 2014. Planning in the Wild:
Modeling Tools for PDDL. In Joint German/Austrian Con-
ference on Artificial Intelligence, 273-284. Springer.

Tu, Y., and Shen, H. W. 2007. Visualizing Changes of Hier-
archical Data using Treemaps. [EEE Transactions on Visu-
alization and Computer Graphics 13(6):1286-1293.

Vaquero, T.; Tonaco, R.; Costa, G.; Tonidandel, F.; Silva,
J. R.; and Beck, J. C. 2012. itSIMPLE 4.0: Enhancing the
modeling experience of planning problems. In Proceedings
of ICAPS’12, 11-14.

Ward, M. O.; Grinstein, G.; and Keim, D. 2015. Interactive
Data Visualization: Foundations, Techniques, and Applica-
tions, Second Edition - 360 Degree Business. Natick, MA,
USA: A. K. Peters, Ltd., 2nd edition.

Wilson, J. M. 2003. Gantt charts: A centenary apprecia-
tion. European Journal of Operational Research 149(2):430
—437.

