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Abstract—Virtual Human Simulation has been widely used for
different purposes, such as comfort or accessibility analysis. In
this paper, we investigate the possibility of using this type of
technique to extend the training datasets of pedestrians to be
used with machine learning techniques. Our main goal is to
verify if Computer Graphics (CG) images of virtual humans
with a simplistic rendering can be efficient in order to augment
datasets used for training machine learning methods. In fact,
from a machine learning point of view, there is a need to collect
and label large datasets for ground truth, which sometimes
demands manual annotation. In addition, find out images and
videos with real people and also provide ground truth of people
detection and counting is not trivial. If CG images, which
can have a ground truth automatically generated, can also be
used as training in machine learning techniques for pedestrian
detection and counting, it can certainly facilitate and optimize
the whole process of event detection. In particular, we propose
to parametrize virtual humans using a data-driven approach.
Results demonstrated that using the extended datasets with CG
images outperforms the results when compared to only real
images sequences.

I. INTRODUCTION

In the last years, there is a growing interest in understanding
the behavior of pedestrian and crowds in video sequences. It is
important in many applications, but certainly one of the most
relevant is the safety of pedestrians in complex buildings or in
mass events. Many methodologies to detect groups and crowd
events have been proposed in the literature and achieved results
showing that groups, social behaviors and navigation aspects
can be successfully detected in video sequences. For exam-
ple, counting people in crowds [1], [2], abnormal behavior
detection [3], [4], study of social groups in crowds [5], [6],
understanding of group behaviors [7] and characterization of
crowd features [8]. Most of these approaches are based on
individual pedestrian tracking or optical flow algorithms, and
in general consider features like speed, directions, and distance
over time.

On the other hand, many of these applications have been
also addressed with another perspective, i.e. by using huge
datasets for training and testing machine learning techniques,
as described in Section II, in order to reach accurate results.
One of the main drawbacks of this area is the needed work
to build the datasets and respective ground truth, that mainly
for pedestrians and crowds is not a trivial task. Sometimes

this ground truth is manually prepared, which is very time-
consuming. Thus, computer graphics simulations started to be
used to generate greater labeled datasets to apply as ground
truth. LCrowdV [9] is a recent example of computer graphics
technology to generate crowds datasets from a set of provided
parameters.

In this paper, we intend to investigate the efficiency of CG
images generated with our framework to simulate crowds and
render Virtual Humans (VH) in a simplistic way. In particular,
we are interested about semi-automatically generating CG
images based on a labeled dataset, i.e. using data-driven
techniques. The idea behind is to use a parameterized crowd
simulator, where information from trajectories labeled in the
dataset generates parameters for crowds. We used two crowd
simulators to simulate virtual humans and generate automati-
cally the ground truth. In addition, images were rendered using
the Unity Engine. We also implemented the Multi-column
Convolutional Neural Network (MCNN) proposed in [10] to
test the CG dataset and compare the efficiency with known
and used dataset UCSD [11]. The main contribution of this
paper is the discussion and investigation of VH simulation
used to extend crowds and pedestrian datasets in a data-driven
way. Results indicate that this idea is indeed promising since it
reduces the work of generating ground truth datasets manually
labeled.

This paper is organized as follows: Section II describes
the literature review on the topic of crowd counting and
VH simulation focused on dataset generation. The proposed
model is presented in Section III, while experimental results
are discussed in Section IV. Finally, Section V draws some
conclusions and future work.

II. RELATED WORK

In the last years, several works have been developed for
crowd counting [1], [2], [12]–[15] with different purposes, as
crowd control, urban planning and video surveillance [16].
This problem consists in the definition of the number of
people in a crowd [17], and has been addressed over the years
using several approaches [11]–[13], [18], [19], such as Support
Vector Machine (SVM) classifier [20] and object detection
using a boosted cascade of features [21].
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Recently, trying to improve the results accuracy, different
methods of Convolutional Neural Networks (CNN) have been
widely used [10], [22]–[27]. Sourtzinos et al. [27] presented
a method for people counting using CNN, and tested with
the available Mall crowd counting dataset [28]. This dataset
was annotated manually through the labeling process of head
position for each pedestrian in all frames.

Zhang et al. [10], e.g., proposed a Multi-column Convolu-
tional Neural Network (MCNN) that allows input images of
arbitrary resolution. However, besides using existing datasets,
they also had to collect and annotate a huge dataset to perform
the experiments in order to verify the effectiveness of their
method. Another large-scale dataset with annotated pedestrians
for crowd counting algorithms was provided by Zhao et
al. [26]. Gao et al. [24] combined the Adaboost algorithm and
the CNN for head detection and used a classroom surveillance
dataset also manually annotated to evaluate the proposed
method.

Due to the need for this large amount of training data,
Boominathan et al. [22] performed an augmentation of their
training dataset cropping patches from the multi-scale pyrami-
dal representation of each training image. Cheung et al. [9],
on the other hand, claim that the task to manually label the
datasets is time-consuming and error-prone, besides needing
several human operators. Therefore, they proposed a proce-
dural framework called LCrowdV, to generate labeled crowd
videos.

Thus, it is possible to see that although CNN methods
present excellent results, there is a need to collect and label
large datasets for ground truth, which sometimes demands
manual annotation. Because of this, recent research has been
addressed to help the problem of generating labeled videos,
as the LCrowdV developed by Cheung et al. [9]. Synthetic
data has already been used to improve image recognition
[29]–[31], however, this approach was not yet explored in
crowd/pedestrian counting solutions.

One advantage of crowd simulation applications is the pos-
sibility to easily generate a huge dataset together with a ground
truth, which fully eliminates the need for an annotated ground
truth, and this fact is an important and relevant advantage. This
advantage is further enhanced with the possibility to generate
automatically labeled crowd videos similar to the real ones,
in order to easily extend existent datasets to be used to train
machine learning techniques.

III. PROPOSED MODEL

Since the focus of this paper is to discuss the automatic
process of augmenting labeled datasets, we chose to use one
state-of-the-art architecture [10] to conduct our research. We
implemented the Multi-column Convolutional Neural Network
(MCNN) [10] due to the contribution presented by the au-
thors: their method can manage features at different scales
all together in order to accurately estimate crowd counts for
different images. However, first of all, we used our simulators
in order to simulate virtual humans and generate Virtual

Human datasets. Section III-A describes details about this
process.

The overview of our method is presented in Figure 1. It is
possible to see the illustration of four used datasets. Firstly, on
the top-left appears the UCSD [11] images that were used for
training and testing. Such dataset contains low dense crowds
and ground truth data. The dataset called ”Students” was
filmed in our University and presents from 0 to 30 students
in a top-view camera, in an environment of 9sqm. The goal
is to provide a dataset with a different camera perspective
as well as different crowd density if compared to UCSD. This
dataset was also used to train and test our method. We tracked
the people in Students dataset using a method proposed by
Bins et al. [32]. We visually analyzed all tracking data and
manually corrected any possible problem, in order to generate
a semi-automatic accurate ground truth for Students too. The
other two datasets, ”CG-CrowdSim” and ”CG-BioCrowds”,
were generated through simulation in order to augment the
training data used, as explained below.

Fig. 1. Outline of the proposed methodology. The UCSD and Students
datasets are used to train and test, already the CG dataset was used for only
training.

In addition, we used the CG images as a dataset for only
the training phase in the machine learning method. Trajectories
and behaviors have been generated using two simulators (i.e.
CrowdSim and BioCrowds) and rendered at Unity. These two
simulators are controlled in a different way. While CrowdSim
has a graphical interface that can be used to define the simu-
lation someone is interested in, BioCrowds is a parametrized
simulator, that can be data-driven. We firstly used CrowdSim
because it is more comparable with LCrowdV method [9], i.e.
the crowd designer should manually define initial positions,
goals, speeds and etc. So, in CrowdSim case (as developed
using LCrowdV) people design a crowd they are interested to
simulate. In the case of this work, it is clear that we want to
”imitate” the dataset, providing the augmentation. However,
this imitation process is user-based since the UCSD data is
not used as parameters for CrowdSim. More details about



CrowdSim is presented in Section III-A1. In order to test
BioCrowds we read the information stored into the dataset
Students and provide an automatic parametrization of the
simulator, as discussed in Section III-A2.

In both cases, we used a very simplistic method at Unity
(e.g. virtual humans do not generate shadow on the floor).
In order to generate the ground truth for machine learning
method (agents positions in image coordinates at a function of
time), we used the clear advantages that in both simulators all
virtual humans positions are known in world coordinates. So,
we assumed a classical pinhole camera model u = Px, where
u is the pixel in the image (homogeneous coordinates), P is
the projection matrix 3 × 4 (known in CG world) , e x is the
3D position in the world (also inhomogeneous coordinate).
In the next sections, we discuss some details about crowd
simulators, and then some information about how density maps
were generated to be used in the MCNN.

A. Crowd Simulators

This section details the two used crowd simulators.
1) CrowdSim: CrowdSim is a rule-based crowd simulation

software developed to simulate coherent motion and behaviors
of virtual humans in a geometric environment. In particular,
CrowdSim has been used to simulate evacuation scenar-
ios [33]. CrowdSim simulates VH, while keeping behaviors
as seek-to-goal and collision avoidance, and also generates
outputs to be used in post-processing phases, such as the
position of each agent at each time that can be used to visualize
the characters in other platforms. In addition, CrowdSim
generates statistical data that are used to estimate human
comfort and safety in a specific environment, e.g. densities,
velocities and etc.

Two key components are considered in CrowdSim, or-
ganized in distinct modules: Configuration and Simulation,
which are respectively responsible for configuring the envi-
ronment/population/routes information and for the simulation
and events. For further details, please refer to [33].

Figure 2 illustrates CrowdSim environment. We can see the
CrowdSim contexts (walkable regions) and connections among
them (white edges) that guide agents to the pre-defined exits.
S1, S2, S3, and S4 represent the exits in the simulated night
club [33], that was also simulated in real life. The advantages
of CrowdSim, if compared to other crowd simulators in
literature, is that it has been evaluated and validated according
to Galea [34] and also tested in a real scenario. The navigation
graph generated by CrowdSim (edges are routes and contexts
are nodes), together with the population distribution in the
entry contexts (entry rooms) and the expected distributions at
the decision points form the definition of our crowd motion
plans.

2) BioCrowds: One agent in the environment perceives a
set of markers (dots) on the ground (described through a
space subdivision method) within its observational radius and
move forward to its goals taking into account such markers
(unoccupied and closest to this agent than any other one).
This is the main aspect of BioCrowds simulator [35] which

Fig. 2. CrowdSim environment example. S1, S2, S3, and S4 represent the
exits in a simulated night club.

Fig. 3. BioCrowds: We show emergent phenomena being produced by our
simulator in a manner similar to other crowd frameworks; on the left: arc
formation and on the right: emergent lanes.

supports some of the important emergent behaviors expected
in crowd simulation (illustrated in images from Figure 3),
as also emergent in other crowd simulators [36], [37]. As
a consequence of BioCrowds main functions, obstacles are
very easy to represent as zones without any markers in space
discretization method.

In order to provide data-driven control, we read information
from the dataset, i.e. the number of individuals n and their
positions xfi in image coordinates, as a function of time f . For
the moment we only work with top of view cameras where
perspective and coordinates do not need to be transformed.
The only performed mapping to generate world coordinates is
to find out the correspondent positions in pixels xfi to meters
Xf

i , in order to compute BioCrowds parameters.
We generate following information for each person i: speed

sfi (meters/frame) computed based on Xi, initial Xif
i and final

Xff
i positions for each individual, in frames if and ff , that

represents respectively the first and last frame that individual i
appeared in the video sequence. Having this data we are able
to parametrize BioCrowds as follows:

• nB = n, where nB is the number of agents in
BioCrowds;

• For each agent j in [0;nB ];
• Xif

j = f(xifi ), where i is the index of individual in a
video sequence and j is the index in BioCrowds and f(w)



is a function that maps positions from image coordinates
to world coordinates;

• Similarly, Xff
j = f(xffi ) and sfj are computed.

Then, BioCrowds is able to simulate the nB agents hav-
ing their parameters defined w.r.t input dataset. As output,
BioCrowds generates the position of each agent at each frame
Xf

j . GT and Unity images with virtual humans are the specific
output.

It is important to highlight that we chose to simulate people
between initial and final frames because we want to be able
to simulate the same pattern of crowd existent in the dataset,
but allowing to increase or decrease the number of agents,
i.e. varying the generated data. For this, we just need to
replicate some positions coming from the dataset to serve as
input information to agents in BioCrowds. Even if two agents
have the same initial and goals positions, they adopt different
motion due to the collision avoidance present in BioCrowds
method.

B. Generation of Density maps for Computer Graphics
Datasets

As mentioned in [10], the estimated crowd density, com-
puted from an input image and used in the training step, is
very determinant in the CNN performance. In order to provide
CG dataset that can be comparable to the UCSD and [10]
results, we used the same method, howeve,r adapted to data
obtained from virtual human simulation.

Indeed, for CrowdSim dataset we simulated from 0 to 20
agents and their motion aimed to replicate the environment
present at UCSD dataset. For BioCrowds dataset we simulated
exactly 22 agents and positions from Students were used to
people simulation. For both synthetic datasets, the rendering
was processed in real time and 30 images were generated per
second. Associated to each image, a file was generated having
the position ~Xf

i of each agent i at each frame f in world
coordinates. This set of files was used to transform coordinates
from world to image, given the camera position used in CG
generation, then generating the position of each agent in image
coordinate ~ufi .

In order to generate the density maps for CG datasets,
we use distances among agents in the frame. We denote the
distances from agent i to its k nearest neighbors (in image
coordinates) as d1i , d

2
i , ..., d

k
i and the average distance is d̄i.

Therefore, to estimate the crowd density around the pixel ~ui,
we perform a convolution δ(~u − ~ui) with a Gaussian kernel
with variance γi proportional to d̄i. For more details please
refer to [10]. Figure 4 illustrates images from the four datasets
(on the left), the result of density maps generated for GT
(middle) and the result of MCNN (right).

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of CG images in the
training phase, we tested two sets of Real Dataset + CG
images. Next section (IV-A) aims to discuss the results of
UCSD augmented with crowd simulation manually defined.

(a) UCSD image. (b) UCSD GT. (c) UCSD output.

(d) CrowdSim image. (e) CrowdSim GT. (f) CrowdSim output.

(g) Students image. (h) Students GT. (i) Students output.

(j) BioCrowds image. (k) BioCrowds GT. (l) BioCrowds output.

Fig. 4. Some images from the UCSD, CrowdSim, Students and BioCrowds
datasets. (a), (b) and (c) illustrate the original image, the processed ground
truth, and MCNN output, respectively. (d), (e) and (f) are correspondent
images for a dataset using computer graphics (CrowdSim). (g), (h) and (i) are
correspondent images for Students dataset. (j), (k) and (l) are correspondent
images for a dataset using computer graphics (BioCrowds).

Section IV-B has the goal to show the results when a dataset
Students was augmented.

The total number of images are 4630, being 2000 from
UCSD, 1545 from CrowdSim (using UCSD as basis), 350
from Students (filmed in our University) and 735 from
BioCrowds datasets (using Students as basis). The experimen-
tal results aim to show that even these simplistic rendering
applied in CrowdSim and BioCrowds datasets can improve
the performance of machine learning method. As commonly
used, we adopted the MAE (Mean Absolute Error) and MSE
(Mean Squared Error) metrics.1

First, we evaluated individually the four datasets used in
this work for training and testing (see Table I). It is easy to
see that the MCNN performance works better in CrowdSim
and BioCrowds datasets, when compared to others. One dif-
ference among the datasets is that the CG images are more
homogeneous, given the synthetic background (see Figure 4
for illustration about the datasets).

Next sections describe the performed analysis in the aug-
mented datasets.

1Differently from [10], we used MSE and not RMSE.



Training Testing MAE MSE
UCSD(40%) UCSD(60%) 1.3745 9.4633
CrowdSim(40%) CrowdSim(60%) 0.7898 3,4966
Students(40%) Students(60%) 1.1087 5.5069
BioCrowds(40%) BioCrowds(60%) 1.0981 5.5776

TABLE I
MCNN APPLIED TO THE FOUR ANALYZED DATASETS.

A. UCSD and CrowdSim

We compared the evolution of MCNN performance in
two different situations: i) when training only with UCSD
(40%) and ii) extending the training dataset with CG images
from CrowdSim (from 0% to 100% of total 1545 images).
For UCSD we used the same setting than [10], i.e. we use
frames from 601 to 1400 as training data, and the remaining
1200 frames as test data. For CrowdSim dataset, we selected
randomly the images until complete the required percentage of
images in the dataset (from 0% to 100% of total 1545 images),
to be used as training information. The tested images were
always the same set of UCSD (60%) for both evaluations.
Figure 5 shows the evolution in terms of computed epochs.
It is easy to see that the extended dataset using CG images
improved the MCNN performance.

Fig. 5. MCNN performance when training with UCSD and when we extended
the dataset with CG images generated using CrowdSim.

Figures 6 and 7 illustrate the results. It is easy to see that the
augmentation in the training dataset with CG images provided
significantly better performance than without any extension.

Fig. 6. Comparing the MAE metric when training dataset UCSD was extended
with CG images generated using CrowdSim.

In addition, we computed the numerical improvement be-
tween the performance with and without augmentation in the
UCSD dataset (see Table II). Considering the total images

Fig. 7. Comparing the MSE metric when training dataset UCSD was extended
with CG images generated using CrowdSim.

of CrowdSim the improvement was approximately 11% in
comparison to the original non-augmented dataset UCSD.

Training Dataset MAE Values % improvement
UCSD 40% 1.3745 -
UCSD 40% + CG 20% 1.2649 7.9745
UCSD 40% + CG 40% 1.2468 9.2914
UCSD 40% + CG 60% 1.2467 9.2987
UCSD 40% + CG 80% 1.2438 9.5097
UCSD 40% + CG 100% 1.2279 10.6665

TABLE II
COMPARISON OF PERFORMANCE WHEN UCSD WAS EXTENDED WITH CG

IMAGES.

As expected, training the MCNN using only CrowdSim
dataset was not efficient for testing with any real dataset,
indicating that it is necessary to add some real images to
the training to obtain better results. The tests used 100% of
samples from all datasets (Table III).

Test dataset MAE MSE
UCSD 4.3384 43.2086
Students 1.4851 8.3711

TABLE III
TRAINING THE MCNN USING ONLY CROWDSIM DATASET AND TESTING

WITH REAL DATASETS.

B. Students and BioCrowds

As in the last section, we compared the evolution of MCNN
performance in two different situations: i) when training only
with Students (40%) and ii) extending the training dataset
with CG images from BioCrowds (from 0% to 100% of total
735 images). For both cases, we randomly selected the used
images. Figure 8 shows the evolution in terms of computed
epochs. It is easy to see again that the extended dataset using
CG images improved the MCNN performance.

Figures 9 and 10 illustrate the results. It is easy to see
that the augmentation in the training dataset with CG images
provided significantly better performance than without any
extension.

We also computed the numerical improvement between the
performance with and without augmentation in the Students
dataset (see Table IV).

Next section presents some final considerations about this
work.



Fig. 8. MCNN performance when training with Students and when we
extended the dataset with CG images generated using BioCrowds.

Fig. 9. Comparing the MAE metric when training dataset Students was
extended with CG images generated using BioCrowds.

V. FINAL CONSIDERATIONS

In this paper, we described the results of using images
of Virtual Human Simulation to extend datasets of pedes-
trians in order to train machine learning techniques for VH
counting and detection. In order to evaluate our proposal, we
implemented the Multi-column Convolutional Neural Network
(MCNN) presented by Zhang [10]. We used four datasets:
UCSD [11], also used in paper [10]; a new one called Student,
recorded in our University; a synthetic one created with
virtual human simulation similar to UCSD dataset and another
synthetic dataset based on Students generated in an automatic

Fig. 10. Comparing the MSE metric when training dataset Students was
extended with CG images generated using BioCrowds.

Training Dataset MAE Values % improvement
Students 40% 1.1087 -
Students 40% + CG 20% 1.0722 3.2921
Students 40% + CG 40% 1.0615 4.2572
Students 40% + CG 60% 1.0588 4.5007
Students 40% + CG 80% 1.0613 6.3768
Students 40% + CG 100% 1.0342 7.6305

TABLE IV
COMPARISON OF PERFORMANCE WHEN STUDENTS WAS EXTENDED WITH

CG IMAGES. THE LAST COLUMN PRESENTS THE IMPROVEMENT IN
COMPARISON TO NON-AUGMENTED DATA.

way using BioCrowds.
We trained the MCNN with different samples of the

datasets: UCSD only, UCSD+CG, Students only and Stu-
dents+CG. The results after training with our extended datasets
outperform the results of training using just the original
dataset, i.e., there was an increase in network performance
using the CG extended datasets. In particular, augmenting
UCSD with CG images we obtained approximately 10%
of improvement in MAE values, while the improvement in
Students was approximately 7%. These results were coherent
with LCrowdV information when the authors said that their
improvement is around 7%. Of course, this number depends
on the characteristics of the augmented dataset. The perfor-
mance improved for both tested datasets demonstrates the
good generalization of the proposed investigation. Moreover,
the possibility of automatically generating a ground truth
for labeling datasets facilitates and optimizes the process of
pedestrian detection and counting, decreasing the arduous task
of manually labeling the videos.

We also tested two crowd simulators which main difference
was the way to control the animations. While in CrowdSim
we manually designed experiments imitating UCSD dataset,
BioCrowds was automatically parametrized based on datasets.
Although tests are necessary, the two simulators do not
present differences, in the learning process, since rendering
and humans visualization are in the same platform. The only
difference is the required work associated with the task to
animate crowds, much more easier if using BioCrowds.

For future work, we intend to create, evaluate and let
available new datasets of CG images simulating several sizes
and densities of crowds. We also want to provide extended
datasets to other known datasets, such as the Mall crowd
counting dataset [28].
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