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ABSTRACT
In crowds, one important aspect that has been studied in literature
is the sociability of groups dealing with aspects based on personal-
ity and emotions. In this paper we contribute to the space design
area while considering the cultural, personality and thermal aspects
to provide spatial group distribution. Our method applies a thermal
comfort method together with cultural and personality model to
optimally distribute the groups in a virtual environment. Results in-
dicate that obtained groups distribution are coherent with expected
based on literature.
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1 INTRODUCTION
Although many methods for crowds have been proposed since the
pioneering work of crowd simulation proposed by Thalmann and
Musse [15], a significantly smaller number of techniques have been
proposed to deal with group behaviors. One of them was proposed
by Karamouzas et al. [12], where the authors present a model in
which the velocity space to plan the avoidance maneuvers of each
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group is used to maintain a configuration that facilitates the social
interactions between the group members.

In addition to work with small groups and their internal dis-
tributions as Moussaid et al. [14], in this paper we focus on the
spatial relationship among the groups, considering their cultural
aspects. More precisely, we use the Hofstede method [6] to generate
virtual groups with cultural characteristics observed in different
Countries. Groups that are more or less open to socializing as a
function of Hofstede collectivism is one example of used features.
We also considered the thermal aspects in the environment and the
group members personality as input to a method that tries to find
the optimal location and distribution for each group in a certain
environment.

This work is organized as follows: Section 2 describes some
related work on groups, crowds and its connection with environ-
ments. Section 3 presents our method while Section 4 discusses
obtained results.

2 RELATEDWORK
This section describes some methods regarding crowd and group
simulation as well as its connection and impact with the virtual
environment. Section 2.1 presents some traditional methods con-
cerning the simulation of groups and crowds, while Section 2.2
revises other methods that deal with both the simulation of the
crowd and its relationship with the environment.

2.1 Group and Crowd Simulation
Through the years, many methods for crowd simulation have been
proposed. One of the most traditional methods is the work of
Reynolds [17], where the author obtains a realistic animation using
only simple local rules. His main goal was to simulate the move-
ment of different entities, like flock of birds, school of fishes and
herd of animals. Another important work of the area was proposed
by Helbing et al. [8], where the authors presented a model based
on psycho-social forces to reproduce the pedestrian dynamic. One
of the state-of-the-art methods to simulate crowds was proposed
by Van den Berg et al. [19]. The so-called ORCA (Optimal Recip-
rocal Collision Avoidance) is a velocity-based method for collision
avoidance between multiple agents.

Regarding group behavior, Kamphuis and Overmars [11] intro-
duced a two-phase approach, where a path for a single agent is
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generated by anymotion planner. Then, a corridor is defined around
the path, where all agents stay inside. Park et al. [16] proposed to
use Common Ground (CG) Theory that inherits the social realism
provided by the CG model and is computationally tractable for a
large number of groups and individuals. The task of navigation in
a group requires effective coordination among group members.

2.2 Crowd and Design
Instead of adapting the agents of a given simulation according to
the environment, there are a few works that adapt the environment
itself to cope with the agents’ behavior. In the work of Feng et
al. [5], an approach is proposed to generate mid-scale layout designs,
which are optimized in relation with crowd properties. The work
of Tharindu et al. [13] also introduces a method able to generate
a procedural environment according to a desired crowd behavior.
Instead of altering the behavioral parameters of the crowd, the
authors automatically change the environment to yield a given
crowd behavior.

Cheng et al. [2] described a method where empirical thermal
comfort models are incorporated in a virtual agents simulator. The
authors proposed to use a simple heat transfer model to impact the
environment, agent, and interpersonal heat exchange.

Our technique proposes to use thermal comfort and knownmeth-
ods from the literature such as Hofstede cultural dimensions [6]
and OCEAN [10] (later explained) aiming to provide crowd design
of environments.

3 THE PROPOSED METHOD
The core of the proposed method is to find the distribution of
several groups in a spatial region that minimizes a joint discomfort
measure based on psycho-social and aspects. Given the locations
of the optimal group centers, we provide an approach for defining
the position of each agent within the groups. Next, we present in
details the discomfort measures individually, the joint measure and
the procedure for group internal agents distribution.

3.1 Psycho-Social Discomfort
In his most notable work, Hofstede [6] has developed the cultural
dimensions (HCD) theory. He described national cultures along
six dimensions: Power Distance, Collectivism vc. Individualism,
Uncertainty avoidance, Masculinity, Long Term Orientation, and
Indulgence vs. restraint. We used HCD in order to characterize
the social behaviors of groups, i.e. how much a group keeps close
to others. In the individual level, we use the Big-five personality
model (or OCEAN) [10] to describe the agents behaviors.

The input for our method is the number N of groups, the number
of agents ni and the radius ri of each group, for i = 1, ...,N . We
defined the radii ri as a function of the Masculinity dimension from
Hofstede (MAS), in a way that as greater is the value of MAS, the
greater is the radius, as follows:

ri = Hs −

(
(100 −MAS) × 3

100
×
(Hs − Hp )

3

)
, (1)

where Hs and Hp represent the radii of the social and the personal
spaces defined by Hall [7], respectively. The number 3 represents
the maximum cohesion value a group can achieve.

Furthermore, each group presents a “sociability” parameter si ∈
[0, 1] that defines how close it wishes to stay from other groups, such
that social groups are willing to stay closer to other groups, whereas
anti-social groups prefer to be isolated. We map IDVi ∈ [0, 100] to
si ∈ [0, 1] through:

si =
(100 − IDVi )

100
, (2)

noting that larger IDV values indicate more individualistic (i.e.
anti-social) groups.

For each pair of groups i and j (with i , j), we define an ideal
distance Di j between the two group centers xi = (xi ,yi ) and x j =
(x j ,yj ) given by

Di j = ri + r j + oi j , (3)
where

oi j = S(2 − si − sj ) (4)
is the desired “offset” between the groups, and S > 0 is a tunable
parameter that maps the collectivity parameter to actual distances.
When both groups are highly social (si ≈ sj ≈ 1) we have oi j ≈ 0
and the groups tend to be closer. The opposite is expected for anti-
social groups.

For each group i , its overall distance discomfort is given by

doi =
∑
j,i

wi j

(
1 − e−| ∥xi−x j ∥−Di j |

)
, (5)

which increase as the center distances ∥xi − x j ∥ gets farther from
the ideal distanceDi j . Parameterwi j is a weight that tries to enforce
the ideal distances for pairs of groups that present strong sociability,
given by

wi j =
e−βoi j∑
j e

−βoi j
, (6)

where β controls the sociability decay. If β is large,wi j will rapidly
decay to zero if either si or sj are small, so that the optimal distance
would only be enforced to pairs of highly social groups. In this
work we experimentally selected β = 1.

In Eq. (3), groups that present a small sociability si lead to smaller
weights wi j , meaning that enforcing the optimal distance is not
important. In fact, anti-social groups wish to stay farther away
from any other group, and to enforce this behavior we also define
a second penalization term

dmi = max
j,i

(1 −wi j )e
γ ( ∥xi−x j ∥−Di j ), (7)

so that pairs of groups with low sociability (i.e. smallwi j ) will tend
to be farther away than the pairwise optimal distance, not closer.

Finally, a third penalization term is created to strongly discourage
intersection of groups. If Ii j defines the Intersection over Union
(IOU) between the circles that represent groups i and j, we would
like to penalize any non-zero value for Ii j . Let us recall that the IoU
is the area of the intersection divided by the area of the union of
both sets, being restricted to the range [0, 1] The chosen penalty
term is given by

dii = M max
j,i

I2i j , (8)

whereM is a large positive constant to produce large penalty values
even for small IoU values (we defined M = 10, 000 in our experi-
ments), to avoid groups interpenetrations.
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The final psycho-social discomfort term for group i is given by

dsi = 100
(
δdii + (1 − δ )

(
doi
2
+
dmi
2

))
, (9)

where δ controls the importance of the interpenetration term (we
used δ = 0.1).

3.2 Thermal Discomfort
Thermal comfort/discomfort has been studied for years by envi-
ronmental engineers [3], and there are six primary factors that
impact thermal comfort. Two of them (metabolic rate and clothing
insulation) depend on the individual, and the remaining four (air
temperature, mean radiant temperature, air speed and humidity)
are environmental. There are several studies that try to relate these
parameters with the human perception of thermal comfort, and
the Predicted Mean Vote (PMV) model [3] maps the six key fac-
tors for thermal comfort onto a numerical thermal sensation scale
ranging from -3 (cold) to +3 (hot), 0 being the neutral (ideal) feeling.

Based on the PMV, Fanger [3] also tried to estimate the Pre-
dicted Percentage of Dissatisfied (PPD), which is the expected
percentage of people thermally dissatisfied in a given environment,
leading to the following relation:

PPD = 100 − 95e−0.03353PMV 4−0.2179PMV 2
. (10)

Although the PPD indicates the percentage of people dissatisfied in
a given environment, it can also be viewed as the probability of an
individual agent feeling uncomfortable in the same environment,
as recently explored in [2].

In this work, the thermal discomfort map f is any smooth func-
tion f : Ω → [0, 100] that maps the thermal discomfort of an
agent at any location of the spatial domain Ω under analysis. If heat
sources/sinks in the environment are known, a realistic thermal
map can be obtained by applying the heat diffusion equation and
computing the PMV/PPD, as done in [2].

Since our method deals with groups and not individuals, we must
define a thermal discomfort level for each group. This level can be
the average discomfort of the group, or the maximum discomfort
level within the region that represents the group. In this work, we
chose the latter approach, so that a group feels comfortable only if
all members in the group are comfortable.

Since finding the maximum discomfort of function f in a circular
region is not a trivial task (particularly if f is defined numerically),
we approximate the maximum value by sampling f in five cross-
shaped points within the circular region. If xi = (xi ,yi ) is the group
center and ri is its radius, the discomfort of group i is given by

dti = max{ f (xi ,yi ), f (xi + ri ,yi ), f (xi − ri ,yi ),

f (xi ,yi + ri ), f (xi ,yi − ri )}.
(11)

3.3 Joint Discomfort Term
The final configuration of the groups in the spatial region should
minimize a joint discomfort term that combines psycho-social (ds)
and thermal (dt ) aspects. A precise formulation of this term is a
challenging task, due to complex individual/cultural aspects. For
instance, members of a group might be more tolerant to uncomfort-
able temperatures, but are not fond of high-density crowds.

In this work, the final objective function used in the optimization
is the sum (for all groups) of a weighted linear combination of
psycho-social and thermal discomfort terms, given by

d =
N∑
i=1

αdti + (1 − α)dsi , (12)

where α ∈ [0, 1] controls the balance between the two terms. Note
that d is a function of the group centers x1, x2,..., xN , which need
to be optimized.

To solve the optimization problem, we explore an interior-point
approach [1] implemented by MATLAB’s fmincon function. To
cope with different results caused by different initializations, we
run each experiment 10 times and select the one with the smallest
value for the objective function d .

3.4 Group Internal Agents Distribution
Once we have the result of the optimization process generating
the center of each group, we are able to distribute the agents into
the group’s region. As mentioned before we use OCEAN model
also known as the Big Five [10], which main characteristics are:
Openness to experience (“the active seeking and appreciation of
new experiences”); Conscientiousness (“degree of organization,
persistence, control and motivation in goal-directed behavior”);
Extraversion (“quantity and intensity of energy directed outwards
in the social world”); Agreeableness (“the kinds of interaction an
individual prefers from compassion to tough-mindedness”); Neu-
roticism (“how much prone to psychological distress the individual
is”).

Based on the OCEAN descriptionwe decided to use the Openness
and Extraversion dimensions since they have more impact on the
social behaviors [4]. The Extraversion Ei of agent i was used as
an attraction factor to the center of the group. The Openness Oi
was simply used to describe how much agent i is open to integrate
the group conversation, so we mapped that to the agent direction
vector. The idea behind our choice is that when Oi is high, agent
i is open to talking to everybody in the group, so it looks to the
center. When an agent has a low value for O it states for an agent
focused on one of the group elements, so looking direct to him/her.
We included a little noise (−10%,+10%) in the O and E values to
avoid very discretized behaviors. Figure 1(a) shows an example of
the internal distribution of agents in a group when their O are low
and Figure 1(b) illustrates when their O values are high.

4 EXPERIMENTAL RESULTS
This section presents some experimental results. First, we defined
six base scenarios using five different Countries: Brazil, India, Ger-
many, Chile and Japan. Although we can interactively control the
value of parameters: MAS, IDV (from HCD) and O and E (from
OCEAN), we decided to use the available values of specific coun-
tries, as presented in the literature. Each one of first five scenarios
has the same number of groups (5), number of agents per group
(6,4,6,2,2) and are parametrized according to data from one of the
specified Countries, in order to produce scenarios that can be com-
parable. The last scenario also contains five groups, in this case
having the same number of agents (i.e. 4), but each group char-
acterized according to a different Country. For each Country we
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(a) Agents with LOW values for O and
E .

(b) Agents with HIGH values for O and
E .

Figure 1: Difference on the positioning and orientation of
the agents of a group, for both low values (a) and high values
of O and E.

(a) High values for E (b) Low values for E

Figure 2: Two images representing the impact of E in the
agents distribution into the groups.

considered the values of HCD andOCEAN, available on [9] and [18],
respectively, as defined in Table 1.

Table 1: Values for Hofstede (MAS and IDV) and OCEAN
(O, and E) for each chosen Country (Brazil, Chile, Japan,
India and Germany, respectively). Hofstede’s values were
extracted from the Hofstede Insights website [9], while
OCEAN’s values were extracted from [18].

BRL CHL JPN IND GER
MAS 49 28 95 56 66
IDV 44 31 88 51 83
O 49.1 54.7 41.5 48.5 47.8
E 45.9 47.5 46.7 47.4 50.3

As a result, we can observe two emergent effects that depend
on Psycho-social comfort. Firstly, groups can be impacted by the
psycho-social comfort, being close/far to other groups depending
on their cultural aspects, in particular, their IDV (individualism) [6].
Also, the radius of each group is impacted by the MAS from Hofst-
ede [6] too. Secondly, when groups are located in the environment,
agents distribution into the groups are dependent on their OCEAN
parameters [18], so agents can be more close to the center of the
group (depending on E value) and also agent direction vector can
be focused on one other agent or to the hole group (depending on
the O parameter).

Figure 3 shows the groups distribution in the environment depen-
dent on HCD and OCEAN from 5 Countries without considering

the thermal discomfort (i.e., using α = 0 in Eq. (12)). It is easy to
see that the country with the highest value for MAS is Japan, since
they are a less collective population, while Chile presents the op-
posite behavior according to the literature. We also computed the
average distance among the groups from same scenario to show
the differences in a quantitative way, as presented in Table 2, and
such data confirmed that Japan and Chile are extreme opposite in
the input data and also in our model.

Table 2: Average distances among group centers for each sce-
nario.

Scenario ID AVG distance
Brazil 7.817553
Chile 5.823312

Germany 10.33314
India 8.740937
Japan 10.99607
Mixed 9.092193

In addition, we simulated fictitious groups (not coming from
Countries parameters) to show more clearly the effect of the param-
eters, in particular si . More precisely, we simulated four scenarios
with the same number of groups and agents of the previous experi-
ments, and each group with the same radius. The only parameters
that have been changed in these examples were the IDV, which
impact si : in the first example, all groups have low IDV values; in
the second, only one group (group 2) presents high IDV value; in
the third, groups 2 and 5 present high IDV values; and in the last ex-
periment, all groups present high IDV values. The final positioning
of the groups, without thermal discomfort, is shown in Figure 4. As
it can be observed, groups with high collectivity (low individualism)
stay closer together, and groups with high IDV values stay more
isolated.

In a final experiment, we reproduced the setting using in Fig-
ure 4 but adding a heat source in the middle of the virtual scenario
(modeled as an isotropic 2D Gaussian thermal discomfort function
f centered at the origin), and used equal weights for both thermal
and psycho-social discomfort terms (i.e., α = 0.5 in Eq. (12)). The
results are shown in Figure 5, and the thermal discomfort is shown
in a jet colormap, so that high discomfort levels are shown in
red, and low values in dark blue. As can be observed, the groups
respected their distance to other groups based on the IDV level, and
at the same time avoided the thermally uncomfortable region in
the middle of the region. In particular, it is interesting to compare
the results with the thermal discomfort term and their counterparts
without this term, shown in Figure 4.

5 FINAL CONSIDERATIONS
This work presented a method to simulate crowds taking into ac-
count thermal comfort and psycho-social aspects of groups. This
information was used to determine the best position for groups of
agents, as well as the positioning and behavior of the individuals
within each group. The results achieved by our method were co-
herent with the expected theoretical result: individual groups (i.e.,
high IDVi and small si ) tend to keep isolated from the other groups.
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(a) Brazil (b) Chile

(c) Japan (d) India

(e) Germany (f) All countries

Figure 3: Distribution of groups and agents for all chosen countries (Brazil (a), Chile (b), Japan (c), India (d) and Germany (e)),
as well for the scenario with all countries together (f).

When the thermal discomfort term is used, all the groups tend to
keep their relative distances based on their IDV values, and at the
same time avoid thermally uncomfortable regions. We have also
used psycho-social data related to actual countries, and the group
distributions was coherent with what one would be expected in
real life, based on the literature.

There are several avenues left for future work. At the moment,
the weight α that combines thermal and psycho-social terms is the
same for all groups, but this parameter can be tuned individually
for each group by using one αi blend for each group i in Eq. (12).

Another possibility would be to consider individual thermal dis-
comfort maps for hot and cold scenarios, as provided by the PMV
introduced by Fanger [3]. Such choice can be motivated by the fact
that some cultures are more tolerant to cold (e.g., Nordic) than hot,
while others (such as Equatorial) present an opposite thermal bias.
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(a) All groups with low IDV values. (b) One group with high IDV value.

(c) Two groups with high IDV value. (d) All groups with high IDV value.

Figure 4: Distribution of groups in four fictitious experi-
ments containing the same value for radius, however vary-
ing the number of collective groups. No thermal discomfort
was used.

(a) All groups with low IDV value. (b) One group with high IDV value.

(c) Two groups with high IDV value. (d) All groups with high IDV value.

Figure 5: Distribution of groups in 4 fictitious experiments
containing same value for radius, however varying the num-
ber of collective groups. Thermal discomfort added with
weight α = 0.5, and thermal discomfort shown as a jet col-
ormap (higher values in red, smaller in dark blue).
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