
Fine-grain Temperature Monitoring for Many-Core Systems
Alzemiro Lucas da Silva
PUCRS - Porto Alegre, Brazil
alzemiro.silva@acad.pucrs.br

André Luís del Mestre Martins
IFSUL - Charqueadas, Brazil

almmartins@charqueadas.ifsul.edu.
br

Fernando Gehm Moraes
PUCRS - Porto Alegre, Brazil
fernando.moraes@pucrs.br

ABSTRACT
The power density may limit the amount of energy a many-core
system can consume. A many-core at its maximum performance
may lead to safe temperature violations and, consequently, result in
reliability issues. Dynamic ThermalManagement (DTM) techniques
have been proposed to guarantee that many-core systems run at
good performance without compromising reliability. DTM tech-
niques rely on accurate temperature information and estimation,
which is a computationally complex problem. However, related
works usually abstract the temperature monitoring complexity,
assuming available temperature sensors. An issue related to tem-
perature sensors is their granularity, frequently measuring the
temperature of a large system area instead of a processing element
(PE) area. Therefore, the first goal of this work is to propose a fine-
grain (PE level) temperature monitoring for many-core systems.
The second one is to present a dedicated hardware accelerator to
estimate the system temperature. Results show that software per-
formance can be a limiting factor when applying an accurate model
to provide temperature estimation for system management. On the
other side, the hardware accelerator connected to the many-core
enables the fine-grain temperature estimation at runtime without
sacrificing system performance.

CCS CONCEPTS
• Computer systems organization → System on a chip;

KEYWORDS
Temperature, monitoring, many-core, peripheral, resource manage-
ment, dark silicon.

ACM Reference format:
Alzemiro Lucas da Silva, André Luís del MestreMartins, and Fernando Gehm
Moraes. 2019. Fine-grain Temperature Monitoring for Many-Core Systems.
In Proceedings of 32nd Symposium on Integrated Circuits and Systems Design,
Sao Paulo, Brazil, August 26–30, 2019 (SBCCI ’19), 6 pages.
https://doi.org/10.1145/3338852.3339841

1 INTRODUCTION
The steady transistor scaling and the increasing demand for perfor-
mance led to the development of NoC-based many-core systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6844-5/19/08. . . $15.00
https://doi.org/10.1145/3338852.3339841

A significant challenge related to the design of many-core archi-
tectures in recent technology nodes is the increased power density
which causes the effect called Dark Silicon [4], where parts of the
circuit need to be switched off or underclocked to keep the system
within the physical limits of power density and safe temperature.

Monitoring the system temperatures allow the implementation
of Dynamic Thermal Management (DTM) techniques to ensure the
operation within the specified limits, increasing reliability, reducing
energy consumption, and possibly increasing lifetime. Temperature
monitoring is usually done by inserting on-die thermal sensors,
which provide accurate measurements at a given point of the chip
[3]. The total area required for a basic analog sensor is not signif-
icant [8]. However, the temperature distribution within a single
processor is non-uniform and requires multiple sensors to provide
an accurate measure. Accordingly, the power consumed for thermal
sensor data can easily reach tens of watts [8].

Moving to many-core designs, with dozens of PEs, fine-grain
temperature estimation is required to guide DTM techniques [7,
12, 20]. DTM proposals adopt at design time estimation tools as
HotSopt [5] or MatEx [11] to provide data for simulated scenarios.
At runtime, the presence of thermal sensors is assumed. However,
even employing thermal sensors, it is very challenging to predict
the future state of the system after a change in power consumption
due to the lack of information on the thermal dissipation layers
[18], evidencing the importance of running an accurate and efficient
thermal model in a real system.

Two paths may be followed to estimate at runtime the tempera-
ture using tools as HotSpot or MatEx. The first one is to execute
the estimation in a given processor of the system, and the second
one is to use a hardware accelerator. Hardware accelerators are a
trend in commercial SoCs to execute specialized functions due to
their energy efficiency compared to software.

This paper has two goals. The first one is to present a fine-grain
temperature monitoring method for many-core systems, estimating
the temperature at the PE level. The second one is to propose a
dedicated hardware accelerator to estimate the system temperature.

The main original contributions of this work are as follows:
- Adaptation of the MatEx heuristic to reduce its computational
complexity and memory requirements without sacrificing accu-
racy (Section 5);

- A hardware accelerator - Thermal Estimation Accelerator (TEA)
to be used as a peripheral for many-core systems, which executes
the temperature estimation algorithm at runtime in a fast and
energy efficient way (Section 6);

- Comparison between software and hardware estimations, show-
ing that TEA may be used as a reference for DTM techniques
(Section 7).
This paper is organized as follows. Section 2 reviews related

works on thermal management and monitoring. Section 3 presents
the baseline many-core architecture. Sections 4, 5 and 6 details the

https://doi.org/10.1145/3338852.3339841
https://doi.org/10.1145/3338852.3339841

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil A. L. da Silva; A. Martins; F. Moraes

main contributions: the fine-grain monitoring, the temperature es-
timation model and the temperature estimation accelerator. Section
7 presents the results and section 8 concludes the paper.

2 RELATED WORK
According to Sha et al. [16], DTMs can control the temperature of
a many-core system by proactive or reactive approaches. Reactive
approaches take actions when a given processor reaches a threshold
temperature, while proactive strategies rely on a thermal model
and previous characterization of applications to ensure that a given
mapping decision is thermally safe. Previous works proposed online
DTM techniques based on temperature sensor information to cope
with dark silicon issues on multi-core processors [2, 14]. Recent
works propose proactive DTM techniques using MatEx or similar
thermal models to obtain transient and peak temperatures during
the system operation to enable application mapping heuristics for
large NoC based many-core systems [7, 20]. However, these works
do not address the feasibility of running the thermal model at
runtime in a real system to manage real-time mapping decisions.

More recent works tend to present higher core count, relying on
thermal models to enable thermal monitoring of the system, con-
sidering the challenges imposed by the use of thermal sensors to
provide fine-grain temperature monitoring for many-core systems
with higher core count. The high computational complexity, the
accuracy, and the data dependency of the thermal models make
proactive approaches the design choice for most many-core DTM
proposals (Table 1). Many proactive strategies available on the lit-
erature rely on analytical models (as integer linear programming
methods) to take task mapping decisions, estimating the temper-
ature based on a previously characterized applications’ set and a
known task-to-core mapping [6, 7]. Other proactive approaches fo-
cus on defining a schedule of high computing power and low energy
periods that keep the safe temperature before the release of tasks
[16, 17]. Besides, proactive DTM proposals require the computation
of a complex thermal model and power consumption information,
but details about how to compute the temperature and how to
transmit temperature and power information across the system
are missing. Accordingly, it is implicit the thermal samplings are
generated externally to the system since this computation would
negatively impact on the system performance.

Table 1: Related works classification.

Proposal Thermal Management Thermal monitoring
2000s [2, 14] reactive thermal sensors
Yang [20] proactive HotSpot/MatEx
Liu [7] proactive MatEx
Pagani [12, 13] proactive analytical/math
Sha [16, 17] proactive analytical/math
Li [6] proactive analytical/math
Castilhos [1] reactive simplified HotSpot
Yang [19] proactive/reactive MatEx
This work reactive software and accelerator

On the other hand, efforts to enable reactive DTM approaches on
many-core systems using thermal models are facing the computa-
tional complexity problem [1, 11]. With the increase in the number
of core, the run-time thermal estimation can be unfeasible due to
the computational complexity. Another issue is the communication
overhead due to the power sampling traversing the system to a

centralized point for temperature calculation. Yang’s proposal [19]
focus on achieving application performance requirements in the
most energy efficient configuration, but also considers a reactive
approach if a threshold temperature is reached. However, the mon-
itoring overhead was not analyzed. Despite the open challenges
for developing reactive DTM for many-core systems, only a reac-
tive approach can deal with dynamic workloads where unknown
applications can enter and leave the system anytime.

We claim that the unpredictability of dynamic workload makes
proactive approaches unfeasible for employing DTM. On the other
hand, if the DTM knows when applications start and end (i.e., pre-
characterized workload), proactive approaches relying on tempera-
ture prediction may work together with reactive DTMs as an option
for enabling runtime DTMs.

Finally, it is required to detail how to perform thermal monitor-
ing to enable DTM development. Thermal monitoring challenges
are related to avoid interferences with the running applications,
reduce the execution time of the thermal model, minimize the com-
munication overhead, and keep the thermal model accuracy. This
paper is the first work to focus on all these challenges related to
thermal monitoring for enabling reactive DTMs.

3 REFERENCE ARCHITECTURE
Figure 1(a) presents the main components of the many-core system.
The system contains two regions [15]: (i) a homogeneous set of
processing elements (PEs) - GPPC region; (ii) peripherals attached
to the GPPC borders. Peripherals may be dedicated hardware to
inject new applications into the GPPC (as the Application Injector
in the Figure), or hardware accelerators. Figure 1(b) presents the PE
internal modules: a processor (CPU), a network interface (DMNI),
local memory, and the NoC router (PS).

GM

S

S

S

S

S

S

S

S

S

S

S

S

S

S

CM

S

S

S

S

S

S

S

S

S

S

S

S

S

S

CM

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

CM

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S MP Manager PE - MP

S Slave PE - SP

General Purpose Processing Cores
(GPPC). A homogeneous PE region
that employs cluster-based
management.

(a) (b)

Application
Injector

S S

Peripheral 4Peripheral 2 Peripheral 3 Sc
ra

tc
h

p
ad

 L
o

ca
l M

e
m

o
ry CPU

DMNI

PS

Processing Element - PE

Sc
ra

tc
h

p
ad

 L
o

ca
l M

e
m

o
ry CPU

DMNI

PS

Processing Element - PE

Figure 1: NoC-based many-core system with peripherals
[15].

The system management adopts a hierarchical organization,
by partitioning the GPCC region in clusters, where each cluster
has its manager PE. All PEs have the same hardware, being the
differentiationmade in software. Each PEmay assume the following
roles:
- Slave PE – SP : execute applications’ tasks.
- Manager PE – MP : manage the SPs of a given cluster, executing
functions such as application admission, mapping, remapping,
DVFS control. Manager PEs only execute management functions.

Fine-grain Temperature Monitoring for Many-Core Systems SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil

Manager PEs may be local to a given cluster (CM) or execute
global actions besides the cluster management (GM).
As shown in Figure 1(a), peripherals are connected to the bound-

aries of the GPPC. Standard mesh topologies do not enable to
send/receive packets to/from the NoC borders. Thus, to allow com-
munication between PEs and peripherals, it is necessary to add
hardware and software support. At the software level, a dedicated
communication API creates packets with a flag in the header flit
notifying the NoC that the packet should go to a peripheral (IO
packet). The target of an IO packet is the router address, not the
peripheral itself. At the hardware level, when the IO packet reaches
the target router, it goes to the border port and not to the local port.

4 FINE-GRAIN MONITORING
The thermal information estimation for each PE requires a central-
ized computation due to the data dependency inherent of neighbor-
hood temperature influence on the thermal models. Therefore, the
power monitoring samplings from all PEs must be ready together
before the temperature estimation. To avoid a penalty in the ap-
plications’ traffic, the design of the power monitoring method is
hierarchical [9] to induce little traffic in the NoC according to the
architecture model previously presented.

Figure 2 overviews the hierarchical monitoring scheme, orga-
nized in three levels.
- SPs implement the lowest level of the monitoring scheme. Each
SP monitors its power consumption by observing the CPU activ-
ity (power per instructions [9]), the number of memory accesses,
and the number of flits transmitted by the router [10]. Periodi-
cally, SPs send the observed data, power samples, to its manager
processor – MP (GM or CM).

- At the cluster level, MPs receive the power samples of its corre-
sponding SPs and updates look-up tables. This procedure reduces
the NoC traffic, by distributing the monitoring packets, and the
processing load in the MPs, due to the smaller number of packets
to treat. The MP creates a packet with the power information
related to the cluster after receiving the monitored data from
all SPs of its cluster and transmits this packet to the hardware
accelerator - TEA.

- TEA receives the power consumed by all PEs through the packets
sent by the MPs and executes the temperature estimation pro-
cedure. After computing the estimated temperature for each SP,
TEA sends a packet with the temperatures of all SPs to the GM.
The GM receives this "temperature message", storing the current
temperature data, and transmits to the CMs the temperature of
the SPs belonging to each cluster.
It is important to highlight that the temperature estimation must

consider the power consumption in all PEs due to the thermal in-
fluence between PEs, since the power consumed by a given PE
may affect the temperature of all other PEs due to the thermal
conductance effect. For this reason, this work adopts a centralized
approach to compute the temperature using a dedicated IP – TEA.
If each cluster manager estimates the temperature of its SPs locally,
it should exchange messages with other MPs to obtain the tem-
perature and power consumption of the SPs in all other clusters,
increasing the NoC traffic and making the process more complex.

The software implementation used to compare the performance
with TEA (section 7), uses a similar monitoring method to the

Temperature system

SP ... SP

CM

(0,0) (x’,y’)

x’ = x-size-cluster
y’ = y-size-cluster

SP ... SP

CM

(0,0) (x’,y’)

SP ... SP

GM

(0,0) (x’,y’)

TEA

...

...

(0,0) (1,0)

Power PE Power cluster

Temperature cluster

(x’’/x’, y’’/y’)

x’’ = x-size-system
y’’ = y-size-system

P
E

le
ve

l
C

lu
st

er

le
ve

l
P

e
ri

p
h

e
ra

l

Figure 2: Hierarchical monitoring scheme.

process previously presented. The difference is that the temperature
estimation is executed in the GM. Instead of developing a hardware
IP, software is in charge to estimate the temperature from the power
samples.

5 TEMPERATURE ESTIMATION MODEL
MatEx [11] is the reference algorithm used by this work to build an
accelerator that enables temperature estimation at runtime. MatEx
uses a thermal model based on RC thermal networks, similar to
HotSpot, relating temperatures in different areas of the chip with
their power consumption. MatEx differentiates itself from HotSpot
in the method used to solve first-order differential equations from
RC networks. While HotSpot uses conventional numerical methods,
MatEx solves the differential equations by using matrix exponen-
tials and linear algebra. This method results in a polynomial time
algorithm based on matrix multiplications that, similarly to graph-
ics rendering, is executed faster and more efficiently with dedicated
structures.

The system characterization process involves two main steps
executed at design time: floorplanning and power consumption
evaluation. The floorplanning of the system, described in Section 3,
is a function of the technology node used to synthesize the PEs. The
complete PE was synthesized using a 65nm technology, resulting
in a 1 mm2 area. The power consumption evaluation method [9]
considers the CPU, memory and router consumption, main modules
of the PE.

5.1 Model Adaptation
The open-source tool provided by MatEx authors’ can estimate
transient and peak temperatures after a power state change of
the system, and the duration of power states can be variable. In
this work, we compute transient temperatures at run-time, in a
fixed interval of time, named monitoring window. To evaluate the
adaptation of the MatEx algorithm to be executed by a hardware
accelerator to estimate all transient temperatures of the system at
run-time, we first present how the algorithm works for a generic
floorplan and power state changes.

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil A. L. da Silva; A. Martins; F. Moraes

The RC model used to estimate the thermal behavior of the
system contains N thermal nodes interconnected through thermal
conductances. Each thermal node also has a thermal capacitance
to consider the behavior of transient temperatures of each node.
The ambient temperature (Tamb) is considered to be constant, and
the power consumption of the active nodes are considered as heat
sources. Equation 1 defines the thermal behavior of the system.

AT ′ + BT = P +TambG (1)
where:

- A = [ai, j]N×N , thermal capacitances between nodes i and j ,
- B = [bi, j]N×N , thermal conductances between nodes i and j ,
- T = [Ti (t)]N×1 vector with the temperature on every thermal node,
- T ′ = [T ′

i (t)]N×1 vector with the first order derivative of the temperature
at time t ,

- P = [pi]N×1 vector with the power consumption on every thermal node,
- G = [дi]N×1 vector with the thermal conductance between every ther-
mal node and the ambient temperature.

The thermal model used in HotSpot and replicated in MatEx is
that the number of thermal nodes (N) is greater than the number of
processing elements of the system, as the heat dissipation structure
is also modeled. Each PE results in 4 thermal nodes: the first is
the circuit itself that considers its power consumption as a heat
source, the second is the silicon substrate and interface material,
the third is the heat sink, and the fourth is the heat spreader[5]. The
model also considers that the ambient temperature interacts with
the three top layers of the system in their four sides, adding 12 more
thermal nodes to the model. Therefore, a system modeled with 16
PEs results in a model with 76 thermal nodes, a system with 36
PEs generates 156 thermal nodes and so on, increasing significantly
the amount of memory required to hold the matrices used by the
algorithm.

The first step executed by the model is the computation of steady-
state temperatures for a given power vector of the active thermal
nodes. The steady state temperatures depend only on the thermal
conductances, once the capacitances are used to model the transient
behavior of temperatures.

Once the steady-state temperatures (Tsteady) are found, it is pos-
sible to calculate the transient temperatures using Equation 1. With
a known initial temperature (Tinit) and a steady state temperature
previously estimated, the temperature estimation after t seconds
can be found using the following equation:

T = Tsteady + e
Ct (Tinit −Tsteady) (2)

where: eCt is the exponential of matrixC at time interval t , and the
matrix C = −A−1B is a derived from equation (1).

MatEx tool solves matrix exponentials using eigenvalues and
eigenvectors and applying linear algebra. This procedure has high
complexity (O(n3)) but only needs to be executed once for a given
chip. The matrix exponential eCt is constant for a fixed interval of
t , and matrix C is the relationship between the capacitances and
conductances of the system. In our implementation, the temperature
monitoring is done at a fixed time interval, so the same matrix
eCt can be used to compute all transient temperatures for each
predefined time interval.

The resultant equations for temperature estimation in our ap-
proach are the following:

Tsteadyk =
N∑
j=1

b−1k, j · pj +Tamb (3)

Tk (t) = Tsteadyk +
N∑
j=1

cexpk, j · (Tinitj −Tsteadyj) (4)

To apply this model it is necessary to extract the matrices B−1 =
[b−1i, j]N×P and eCt = [cexpi, j]N×N with a fixed monitoring period
t from MatEx.

5.2 Integer Implementation
MatEx and HotSpot use double precision floating point variables to
represent matrix values, power vectors, and temperatures. While
double precision variables provide accuracy, they consume more
memory and require more processing cycles or more complex hard-
ware to execute.

A dedicated IP to estimate the temperature should have the fol-
lowing characteristics: fast memory access, small area footprint,
and low power consumption. Memory is required to store B−1 and
eCt matrices and should be local to the IP to enable fast memory
accesses. The second and third characteristics come from the use
of simple arithmetic functions. Thus, the IP implementation adopts
integer variables instead of floating point representation. The execu-
tion time with integers had better performance in our experiments.
On average, the execution time reduced by 46.6%.

Table 2 presents the temperature for the two representations
in a 3x3 system, and the resulting error, for a monitoring period
(epoch) equal to 1 ms, after 25 and 100 epochs. The power values
applied to each PE are constant and do not vary along the time. As
observed in Table 2, the maximum error introduced by the integer
computation is 0.12 (0.24%) and 0.31 (0.58%) degrees for 25 and 100
epochs respectively.

Table 2: Temperature comparison using floating-point and
integer representations.

25 Epochs 100 Epochs
PE# double integer error% double integer error%
1 55.2401 5534 0.18 56.8183 5703 0.37
2 52.0189 5212 0.19 53.9088 5416 0.47
3 59.5845 5970 0.19 61.6697 6194 0.44
4 51.5776 5169 0.22 53.6994 5396 0.49
5 56.3297 5644 0.20 58.3198 5857 0.43
6 49.8902 4998 0.18 51.5945 5181 0.42
7 48.3237 4843 0.22 50.1743 5042 0.49
8 58.6833 5880 0.20 60.9040 6119 0.47
9 51.1853 5131 0.24 53.6407 5395 0.58

These results show that an implementation using integers has
a good cost-benefit ratio, considering the performance increase
and the low error introduced. An important observation is that
the relative error reduces after many epochs. The reason is that
the power consumption in PEs changes along the time (variable
workload), and the effect of the thermal capacitance is computed
based on the steady temperature, which varies when the power
consumption of a PE changes.

Fine-grain Temperature Monitoring for Many-Core Systems SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil

6 TEA - TEMPERATURE ESTIMATION
ACCELERATOR

The TEA IP executes the following actions: (i) receives the power
samples from the manager PEs (GM/CMs) periodically; (ii) at the
end of an epoch, the IP computes equations 3 and 4 to obtain the
current temperature of each PE; (iii) after updating the PEs’ tem-
perature, the IP sends a packet with the temperature values in the
payload. Figure 3 presents a block diagram of TEA.

M

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

TEA – Temperature
Estimation Accelerator Many-core

M
at

ri
ce

s
M

em
o

ry MAC

NI

Te
m

p

Power

Figure 3: TEA architecture overview.

The IP has six main modules:
- Network interface (NI): handles the packet reception, identifying
the sender and saving the power data in the correct location
for the algorithm execution. The NI assembles a packet with
temperature results, sending it to the GM;

- Temperature registers (Temp): store the steady and current tem-
perature of the N thermal nodes;

- Power registers (Power): store the received power samples from
the P PEs;

- Multiply-Accumulate (MAC): arithmetic module responsible for
computing equations 3 and 4;

- Matrices Memory: stores matrices B−1 and eCt ;
- Two finite state machines (FSMs) to interact with the NI and
MAC (not presented in the Figure).
The TEA area is a function of the number of PEs in the system.

As the number of PEs increases, the size of the registers and the
matrices memory increases. Table 3 presents the memory require-
ments according to the system size. The MAC and FSMs area are
constant.

Table 3: TEAmemory and register sizes.

System size 3x3 6x6 9x9 12x12
Number of PEs (P) 9 36 81 144
Thermal Elements (N) 48 156 336 588
Power registers (P) 9 36 81 144
Temperature registers (2N) 96 312 672 1,176
Total registers (32 bits) 105 348 753 1,320
Registers’ size (bytes) 420 1,392 3,012 5,280
Matrices values (N 2 + NP) 2,736 29,952 140,112 430,416
Mem. size 32-bit words (KB) 10.69 117.00 547.31 1,681.31
Mem. size 7-bit words (KB) 2.00 25.59 119.72 367.79

The number of power registers is equal to the number of PEs
since only active thermal nodes consume power. The number of
temperature registers is a function of the number of thermal nodes
since the temperature conduction in all layers of packaging and
cooling needs to be calculated to provide an accurate model. The

number of registers increases linearly with the system size (R# =
36 ∗ P + 96) .

However, the memory size increases quadratically due to the B−1
and eCt matrices. It is possible to adopt simple techniques to reduce
memory size. For example, let’s consider the discretization of the
matrices’ values into 128 ranges, resulting in a 512-byte vector (1
KB for both matrices). The last line of the Table presents the mem-
ory requirements for the matrices, considering the discretization
methods. For a large system, e.g., 9x9, the memory requirement is
smaller than the local memory of a PE (typically 128 KB).

As described in section 5, the temperature estimation algorithm
respects a predefined monitoring window.TEA uses the same mon-
itoring window, starting the temperature computation at the end
of this period, being not necessary to wait for the reception of all
power samples. As these packets are assembled in software, they
can present different delays and arrive out of order due to conges-
tion in the NoC. This procedure generates packets to the GM with
a fixed periodicity.

Although the monitoring approach gives precise power data,
TEA operation is independent of the measurement method. Other
power estimations methods may be used, not discarding the pres-
ence of physical sensors.

7 RESULTS
The first set of results compare the performance of TEA against a
software implementation on the same platform. This evaluation
is important to justify the use of a dedicated IP for temperature
estimation rather than a software implementation. For this purpose,
we implemented two software versions of the algorithm: (i) central-
ized version, which runs on a processor of the platform (MP); (ii)
distributed version, where each processor runs a service to compute
its temperature. Table 4 shows the performance results, considering
three system sizes.

Results show thatTEA consumes 0.422 ms for a 10x10 system to
estimate the temperatures, using a single MAC. As the monitoring
window is set to 1 ms, this dedicated IP has enough performance
to complete its task. As the algorithm is based on matrix-vector
products, its complexity is quadratic. Thus, for larger systems,TEA
may employ parallelism to execute the estimation to respect the
monitoring window.

Table 4: Software and hardware performance comparison.

System size 3x3 6x6 10x10
Number of PEs 9 36 100
Thermal Elements 48 156 412
TEA (clock cycles) 2784 30108 211356
Time (µs@500MHz) 5.568 60.216 422.712
Centralized (clock cycles) 53681 661829 4805736
Time (µs@500MHz) 107.362 1323.66 9611.47
Distributed (clock cycles) 6867 19648 50368
Time (µs@500MHz) 13.734 39.296 100.736

The computation time for the centralized software implemen-
tation, in a 6x6 system size, requires 1.32 ms. As the monitoring
window is 1 ms, it is not possible to use the centralized software
implementation even for small system sizes. As the algorithm can
be easily parallelized, each processor can compute its temperature,
and the results show that the time required for this computation

SBCCI ’19, August 26–30, 2019, Sao Paulo, Brazil A. L. da Silva; A. Martins; F. Moraes

is enough considering the monitoring window of 1 millisecond.
However, to distribute the temperature computation, the commu-
nication overhead may be the limiting factor since each PE would
need the transmit its energy consumption to all other PEs. Another
issue related to the distributed implementation is that all processors
of the system would spend some time running the algorithm, im-
pacting on the performance of the applications running in the PEs.
Considering a 10x10 system, each processor would spend about 10%
of the execution time running the temperature estimation algorithm
and an unpredictable amount of time to receive the power samples
from all other PEs. For those reasons, we argue that the dedicated IP
is the best choice to perform a runtime temperature estimation.

The second set of results was performed to analyze the TEA
precision against the HotSpot model in the temperature estima-
tion computation. Figure 4 shows the simulation results for a 6x6
system, where each square represents one temperature. The simu-
lation consists of a typical utilization scenario, with tasks having a
long execution time mixed with tasks that start and end in several
moments. Five temperature snapshots were taken during the simu-
lation, represented in the z axis in the figure. The power vectors
of the simulation have been extracted and used as inputs for the
HotSpot tool to produce figure 4(a). Figure 4(b) presents the results
calculated by TEA.

 0 1 2 3 4 5 0 1 2 3 4 5 10

 20

 30

 40

 50

 60

 70

 80

 90

time
(ms)

(a) HotSpot

time
(ms)

45

50

55

60

65

70

 0 1 2 3 4 5 0 1 2 3 4 5 10

 20

 30

 40

 50

 60

 70

 80

 90

time
(ms)

(b) Peripheral (MatEx)

time
(ms)

45

50

55

60

65

70

Figure 4: Typical scenario temperature results for (a)
HotSpot and (b) proposed peripheral.

Analyzing the results graphically it is not possible to observe
the error introduced by the proposed method. In fact, the average
error is about 0.02 degrees and the maximum error observed in this
simulation was 0.2 degrees.

8 CONCLUSIONS
This work addressed the four challenges related to temperature
estimation addressed at the end of the related works Section. The
first challenge regards thermal monitoring to enable DTM develop-
ment. MatEx was adapted to reduce its computational complexity
considering a fixed monitoring window and integer representation.
The second challenge is related to intrusiveness, i.e., avoid inter-
ferences with the running applications. The solution to this issue
was to move the complexity of the thermal estimation computation
to a dedicated hardware accelerator. The third challenge, reduce
the execution time of the thermal model is linked to the previous
ones, simplification of the thermal model without sacrificing accu-
racy and the proposal of a hardware accelerator. Finally, the last

challenge regards the minimizing of the communication overhead.
This challenge was addressed by a hierarchical monitoring scheme,
which reduces the monitoring traffic transmitted through the NoC.

Thus, the proposal of a hardware accelerator for temperature
estimation, linked to a hierarchical power monitoring, is an impor-
tant step towards reactive DTMs in large NoC-based many-core
systems.

ACKNOWLEDGMENTS
Alzemiro Lucas da Silva is supported by CAPES (88887.184847/2018-
00). Fernando Gehm Moraes is supported by FAPERGS (17/2551-
0001196-1) and CNPq (302531/2016-5).

REFERENCES
[1] G. Castilhos, F. G. Moraes, and L. Ost. 2016. A Lightweight Software-based

Runtime Temperature Monitoring Model for Multiprocessor Embedded Systems.
In SBCCI. IEEE, 1–6.

[2] Ayse Kivilcim Coskun, T. T. Rosing, Keith Whisnant, and Kenny C. Gross. 2008.
Static and Dynamic Temperature-aware Scheduling for Multiprocessor SoCs.
IEEE Transactions on Very Large Scale Integrated Systems 16, 9 (2008), 1127–1140.

[3] Mohamad El Ahmad, Mohamad Najem, Pascal Benoit, Gilles Sassatelli, and Lionel
Torres. 2018. PoETE: AMethod to Design Temperature-Aware Integrated Systems.
Journal of Low Power Electronics 14, 1 (2018), 1–7.

[4] H. Esmaeilzadeh, E. Blem, E. St Amant, K. Sankaralingam, and D. Burger. 2011.
Dark Silicon and the End of Multicore Scaling. In ISCA. IEEE, 365–376.

[5] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankaranarayanan,
Kevin Skadron, and Mircea R Stan. 2006. Hotspot: A Compact Thermal Modeling
Methodology for Early-stage VLSI Design. IEEE Transactions on Very Large Scale
Integration Systems 14, 5 (2006), 501–513.

[6] Mengquan Li, Weichen Liu, Lei Yang, Peng Chen, and Chao Chen. 2018. Chip
Temperature Optimization for Dark SiliconMany-core Systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 37, 5 (2018), 941–953.

[7] Weichen Liu, Lei Yang, Weiwen Jiang, Liang Feng, Nan Guan, Wei Zhang, and
Nikil D Dutt. 2018. Thermal-aware TaskMapping on Dynamically Reconfigurable
Network-on-Chip based Multiprocessor System-on-Chip. IEEE Trans. Comput.
67, 12 (2018), 1818–1834.

[8] Jieyi Long, Seda Ogrenci Memik, Gokhan Memik, and Rajarshi Mukherjee. 2008.
Thermal Monitoring Mechanisms for Chip Multiprocessors. ACM Transactions
on Architecture and Code Optimization 5, 2 (2008), 9:1–9:33.

[9] André LM Martins, Marcelo Ruaro, and Fernando G Moraes. 2015. Hierarchical
Energy Monitoring for Many-core Systems. In ICECS. IEEE, 657–660.

[10] Luciano Ost, Guilherme M. Guindani, Fernando Gehm Moraes, Leandro S. Indru-
siak, and Sanna Määttä. 2011. Exploring NoC-Based MPSoC Design Space with
Power Estimation Models. IEEE Design & Test of Computers 28, 2 (2011), 16–29.

[11] Santiago Pagani, Jian-Jia Chen, Muhammad Shafique, and Jørg Henkel. 2015.
MatEx: Efficient Transient and Peak Temperature Computation for Compact
Thermal Models. In DATE. 1515–1520.

[12] Santiago Pagani, Jian-Jia Chen, Muhammad Shafique, and Jørg Henkel. 2015.
Thermal-aware power budgeting for dark silicon chips. In IGSC. 1–6.

[13] S. Pagani, H. Khdr, W. Munawar, J. Chen, M. Shafique, M. Li, and J. Henkel. 2014.
TSP: Thermal Safe Power - Efficient Power Budgeting for Many-core Systems in
Dark Silicon. In CODES+ISSS. 1–10.

[14] R. Rao and S. Vrudhula. 2008. Efficient Online Computation of Core Speeds to
Maximize the Throughput of Thermally Constrained Multi-core Processors. In
ICCAD. 537–542.

[15] M. Ruaro, L. L. Caimi, V. Fochi, and F. G. Moraes. 2019. A Framework for
Heterogeneous Many-core SoCs Generation. In LASCAS. IEEE, 89–92.

[16] Shi Sha, Wujie Wen, Ming Fan, Shaolei Ren, and Gang Quan. 2016. Performance
Maximization Via Frequency Oscillation on Temperature Constrained Multi-core
Processors. In ICPP. 526–535.

[17] Shi Sha, Wujie Wen, Shaolei Ren, and Gang Quan. 2018. M-Oscillating: Perfor-
mance Maximization on Temperature-Constrained Multi-Core Processors. IEEE
Transactions on Parallel and Distributed Systems 29, 11 (2018), 2528–2539.

[18] Shervin Sharifi, Dilip Krishnaswamy, and Tajana Simunic Rosing. 2013.
PROMETHEUS: a Proactive Method for Thermal Management of Heterogeneous
MPSoCs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 32, 7 (2013), 1110–1123.

[19] Lei Yang,Weichen Liu, Nan Guan, Mengquan Li, Peng Chen, and HM Edwin. 2017.
Dark Silicon-aware Hardware-software Collaborated Design for Heterogeneous
Many-core Systems. In ASP-DAC. IEEE, 494–499.

[20] Lei Yang, Weichen Liu, Weiwen Jiang, Mengquan Li, Peng Chen, and Edwin
Hsing-Mean Sha. 2017. Fotonoc: A Folded Torus-like Network-on-chip Based
Many-core Systems-on-chip In The Dark Silicon Era. IEEE Transactions on Parallel
and Distributed Systems 28, 7 (2017), 1905–1918.

	Abstract
	1 Introduction
	2 Related Work
	3 Reference Architecture
	4 Fine-grain monitoring
	5 Temperature estimation model
	5.1 Model Adaptation
	5.2 Integer Implementation

	6 TEA - Temperature Estimation Accelerator
	7 Results
	8 Conclusions
	Acknowledgments
	References

