
On the Requirements and Design Decisions of an
In-House Component-Based SPL Automated

Environment

Elder Rodrigues∗, Leonardo Passos†, Leopoldo Teixeira‡, Flávio Oliveira∗, Avelino Zorzo∗, Rodrigo da Silva Saad§
∗Pontifical Catholic University of Rio Grande do Sul

Porto Alegre, RS, Brazil
{elder.rodrigues, flavio.oliveira, avelino.zorzo}@pucrs.br

†University of Waterloo Waterloo
Canada

lpassos@gsd.uwaterloo.ca

‡Universidade Federal de Pernambuco
Recife, PE, Brazil
lmt@cin.ufpe.br

§Dell Computers of Brazil Ltd.
Porto Alegre, RS, Brazil, RS, Brazil

rodrigo saad@dell.com

Abstract—Software product line adoption has many challenges
in industrial settings. A particular challenge regards the use of off-
the-shelf tools to support this process, since these tools usually do
not fully address some company’s specific needs. To elicit concrete
requirements and provide tool vendors and implementers with
direct feedback, we avail from our experience in developing a
software product line to derive testing tools for a laboratory of a
global IT company (currently set as a pilot study). In this paper,
we present such requirements and argue that existing tools fail to
address all of them. In addition, we present our design decisions
in creating an in-house solution meeting the specific needs of the
partner company. We also highlight that these decisions help in
building a body of knowledge that can be reused in different
settings sharing similar requirements.

I. INTRODUCTION

Software Product Line (SPL) has emerged as a promising
technique to achieve systematic reuse and, at the same time,
decrease development costs and time to market [13]. Although
the use of SPL practices has significantly increased in recent
years, with an extensive list of successful cases,1 there are
still many challenges when implementing SPLs in industrial
settings [9].

One particular concern relates to the use of off-the-shelf
tools (e.g., pure::variants [2] and Gears [8]) supporting the SPL
development life-cycle, since frequently these tools do not meet
specific requirements of the companies aiming to adopt them.
To overcome this, many companies set to develop in-house
solutions to support their specific needs.

The SPL community, however, currently lacks evidence
on the driving factors around custom-based solutions, which
hinders tool vendors and implementers from having feedback
from industrial clients outside their clientele. To mitigate
this, we report our experience in implementing a SPL to
derive testing tools for a laboratory of a global IT company.
In particular, we describe the specific requirements of that
company and argue that existing tools fail to support them.
We also present the design decisions in creating a customized

1http://www.sei.cmu.edu/productlines/casestudies/

solution supporting the target SPL. Our contribution are twofold:
(i) we identify a set of requirements that, although specific to our
research context, already point needs currently not addressed
by existing tools, either commercial or open-source. Thus, we
elicit practical scenarios that tool vendors and/or implementers
may consider supporting; (ii) we report our design decisions in
fulfilling these requirements for an in-house solution developed
for our partner company. These decisions, in turn, may be
reused or adapted to improve existing tools or when devising
solutions targeting similar needs.

This paper is organized as follows. Section II presents
some context relative to the company in place, from which
Section III builds on. The latest one then enumerates the elicited
requirements, which we address with specific design decisions,
discussed in Section IV. Section V briefly presents our custom-
made tool and its usage workflow. Section VI revisits related
work, while Section VII concludes the paper and points out
final remarks.

II. CONTEXT

Our research group on Software Testing2 works in coopera-
tion with the Technology Development Lab (hereafter referred
as TDL) of a global IT company, whose development and
testing teams are located in different regions worldwide.

In the partner IT company, development is performed over
different programming languages and IDEs (Integrated Devel-
opment Environments), including Visual Studio (for Microsoft-
based solutions), Eclipse (for Java-based implementations),
Flash Builder, PHP and packaged applications (e.g., Siebel and
Oracle).

Testing teams use commercial and open source frameworks
and tools to partially automate their testing activities. Frequently,
however, due to the complexity of the testing in place, these
teams create custom components to enable testing non-trivial
applications. For example, testers may need to create web-
service-based scripts to test back-end components that provide

2www.cepes.pucrs.br

402



interfaces to the front-end of a given application, or components
that simulate asynchronous messages for offline business
processes. Currently, due to the distributed nature of the testing
teams, custom components are rarely shared, thus leading
to redundancy, little reuse, coding inconsistencies, higher
development costs, etc.

To eliminate the effort of repeatedly creating custom
infrastructure, we started a pilot study on SPL adoption with
the TDL of our partner company. Upon success, we aim to
replicate or apply it in different testing teams, if not all of them.
In particular, we used a SPL called PLeTs [4] that aims to
support the derivation of a particular testing infrastructure from
a set of shared components (product configuration), which are
then glued together (product derivation). In this SPL, derived
products are testing tools that take behavioural models as input;
these models denote specific test cases, thus leveraging testing
teams to follow a model-based approach [18], a process that
we describe elsewhere [4].

Prior to creating any tool to support product configuration
and derivation in the target SPL, the TDL first considered the
use of off-the-shelf solutions, provided that specific require-
ments were met. We describe this requirements list in Section
III.

III. REQUIREMENTS

This section enumerates the requirements (RQs) we col-
lected from the TDL concerning the configuration (component
selection) and derivation of products (gluing selected compo-
nents), in addition to the evolution of the target SPL.

RQ1) The adopted tool must not be bound to any IDE. Although
the TDL relies mostly on Microsoft-based solutions, they also
use solutions from different distributors and vendors (e.g.,
Eclipse for Java). In that case, the adopted tool must not impose
the use of any IDE, as that would require a specific platform
expertise that could limit TDL’s way of working, and also lead
to training costs unrelated to product line adoption.

RQ2) The adopted tool must support a graphical-based notation
for designing feature models. This requirement follows from
the fact that features are an effective communication medium
across different stakeholders and feature models (FMs) are a
widespread mechanism to capture variability. Thus, the TDL
requires the use of FMs, with the particular need of a graphical-
based notation. According to the TDL, the use of a graphical-
based FM notation is likely to facilitate communication with
different stakeholders outside testing teams, including non-
technical staff (e.g., project managers). Moreover, graphical
FMs provide testers with a quick visualization of the existing
features in the current snapshot of the testing infrastructure, and
how each feature relates to others. The TDL explicitly states
that relying on textual-based notations is not an option. They
argue that textual languages impose linearity, as one element
is only known when another one ends, hindering an immediate
grasp of the underlying structure.

RQ3) The adopted tool must support a graphical-based notation
for designing structural architectural models. Since testing
teams can be geographically distributed, changes to the under-
lying test infrastructure must be documented at all times to
facilitate communication and future maintenance. In this case,

in addition to keeping FMs, assets of shared components in
the test infrastructure should also be documented in terms of
structural architectural models (currently set to be component
diagrams) that closely resemble their coding artifacts. These
models capture fine-grained details that FMs alone would
otherwise miss (e.g., a component port). The preference towards
graphical notations is in tune with RQ2.

RQ4) Structural architectural models must be kept in syn-
chronization with the FM and code base (and vice-versa).
This requirement imposes a full round-trip between FMs and
architectural models. As before, models should be presented
and edited graphically.

RQ5) The tool must be extensible to support different structural
architectural models and FM notations. The TDL states that
structural architectural modeling should be centered around
UML diagrams (see RQ3), but they point out the benefit of
supporting other notations in the future (e.g., Domain Specific
Languages). Likewise, one should also account for different
FM notations, with extensions added as needed.

RQ6) FMs should be derivable from structural architectural
models. In the TDL, most testers are familiar with standard
UML models, but less so with FMs. To prevent initial mistakes
and minimize the effort in extending the testing infrastructure,
the tool must be able to derive a FM from the defined structural
architecture, which in turn can be tuned accordingly.

RQ7) Structural architectural models should be derivable from
FMs. As time progresses and FMs become more common
among stakeholders, testers can start extending the testing
infrastructure by first changing the FM, and then deriving the
corresponding structural architectural model, which can be
tuned accordingly (round-trip is already requested by RQ4).

RQ8) For each product of the testing infrastructure, it should
be possible to derive its corresponding structural architectural
model. Testing tools (products) are the result of selecting and
combining components. For each product, it should be possible
to generate its structural architectural model, which results from
selecting specific elements from the architectural model of the
whole SPL.

RQ9) Traceability links among models and implementation as-
sets/elements should require minimal human intervention/effort.
Traceability is an important concern for the TDL, as FMs
and structural architectural models need to be mapped to
implementation assets, and vice-versa. To prevent a high burden
on manually keeping such links, any adopted solution must
automate traceability as fully as possible.

RQ10) When extending the existing infrastructure with new
features (components), their implementation must adhere to
specific interfaces. To decrease coding effort and avoid human
mistakes while enforcing coding styles, an initial skeleton
implementation should be automatically derived from specific
code templates. Currently, when testers evolve the testing
infrastructure (e.g., when implementing the interface of a core
capability of the testing infrastructure) they often copy and
adapt an existing implementation or write a new one from
scratch.

403



RQ11) The adopted tool must allow the creation of new glue
code generators, that should be pluggable into the system
without intrusiveness changes. The adopted tool must allow
hooking code generators to produce glue code for specific
target languages. This is aligned with the need to integrate with
non-Microsoft solutions.

Summary: by evaluating existing tools for SPL adoption, we
found that no existing off-the-shelf tool (either commercial or
open-source) meets all of the presented requirements. Therefore,
we and the TDL set to create an in-house component-based
tool to support the target SPL. In Section IV, we describe our
design decisions in building such a tool.

IV. DESIGN DECISIONS

In this section, we report our design decisions (DDs) in
creating an in-house tool supporting the requirements previously
discussed. For each design decision, we refer to the associated
requirements.

DD1) Build a plugin-based tool that is extensible (RQ5, RQ11).
To allow extensibility, we employ a modular solution with a
plugin-based architecture. The tool is currently implemented in
C#, as the partner company relies mostly on Microsoft-based
technologies. The use of C# facilitates integration and long term
maintenance, as different employers can potentially enhance
the tool in the future, either by developing new plugins, or
improving its core.

DD2) No support for code editing (RQ1). This makes the tool
IDE-independent, and as such, individual developers or entire
testing teams can continue to use their preferred coding editors
and/or development environments.

DD3) Provide an extensible environment for using different
feature models notations, with the use of FODA-based nota-
tion [7] as the default one (RQ2, RQ5). Currently, the tool
ships with a feature model editor plugin, that in addition to
FODA’s syntax, also supports definition of abstract features
[17].

DD4) Support an extensible environment for using different
structural models. In particular, we currently support UML
component diagrams as the default structural architectural
model (RQ3, RQ5). In the partner company, component
diagrams are the most common artifact for documenting the
structure of any given software architecture (at least in the
TDL). Due to its widespread use within the company and from
the fact that UML is taught in universities in the country where
the TDL is located, its use dispenses extensive training, and
thus reduces both costs and time. It is worth noting that the
component diagram plugin targets a particular UML profile–
SMarty [12], due to its support for variability encoding in UML
diagrams.

DD5) Every concrete feature is mapped to exactly one compo-
nent. In case of feature interactions, we rely on #ifdef-based
annotations (RQ4, RQ9). Such a simple design dispenses the
maintenance of explicit traceability links, thus eliminating
the associated burden. In our pilot study, we observed that
most features (components) are coarse-grained, making an 1:1
mapping a suitable solution. Since, #ifdef annotations are rare,

the TDL is unlikely to face situations where maintenance is
hindered by #ifdef complexity (known as #ifdef hell [15]).

Binding between components and features is performed by
exact name matching, and the same occurs for #ifdef macros
(one component matches exactly one macro name that cannot
be redefined).

DD6) We synchronize the feature and structural models to
maintain consistency after performing changes in each of them
(RQ4, RQ6, RQ7, RQ9). Consistency, in this case, is eased
by relying on a 1:1 mapping between feature and components,
which makes transformation between models a straightforward
task.

DD7) Derivation of a FM from a component diagram (and vice-
versa) follows from a direct mapping between FM elements and
UML elements in the SMarty profile (RQ8). The Smarty UML
profile maps to FODA’s syntax by a 1:1 correspondence. When
deriving a FM from the corresponding component diagram (the
inverse derivation), no abstract features will ever be created,
as they do not have a corresponding element in a component
diagram. Abstract features (see Section V) can still be preserved
in the derived FM if one translates an existing FM into a
component diagram, changes the latter, and derives the FM
back. If the original FM contained abstract features, they will
continue to exist, as long as they still root an element that
maps to an element in the component diagram. This respect
the full round-trip given by DD6.

DD8) After the generation of each project, one can generate a
corresponding component diagram matching its architecture.
By following the mapping between features and components,
and with the component selection of a derived product, we take
the product line component diagram (if non-existent, we derive
it from the FM – see DD7), and resolve its variability according
to the feature/component selection. That results in a component
diagram documenting the architecture of the corresponding
product.

DD9) Every component corresponds to a single compilation
unit. Again, the binding is performed by matching names.
Moreover, based on the product configuration and on the 1:1
mapping between features and components, the tool creates,
a single Visual Studio project for each selected component,
allowing developers to have all the information required to
build, maintain, test and evolve selected components (RQ10).
As most of the partner company relies on Microsoft-based
technologies, our solution include a single plugin supporting
Visual Studio-based projects. Other plugins can be developed
for other IDEs, including Eclipse, Netbeans, among others.

DD10) We define an extensible environment for using different
target languages (RQ11). Through a modular architecture, our
tool support plugins that can work with different programming
languages. As this is a pilot study, initial support has been
developed for C# only.

V. THE IN-HOUSE TOOL

This section presents the in-house tool (PlugSPL) developed
to meet the requirements set by the TDL. PlugSPL is a plugin-
based tool written in C#, from which users design an SPL
and develop its components. From that, valid combinations of

404



components are selected and their matching products generated
(testing tools). Figure 1 shows the tool’s workflow, comprised of
four main activities, namely, SPL Design, Component Manage-
ment, Product Configuration and Product Generation. In this
process, different stakeholders are involved and may overlap
roles. Existing roles include testers, managers, developers, etc.
For simplicity, we refer to them either as domain engineers (if
related to the first two activities in PlugSPL), or as application
engineers (if related to the last two activities).

Fig. 1. PlugSPL activities

A. SPL Design Activity

The SPL Design Activity is the starting point in PlugSPL
and aims to support the design of the SPL by means of a
graphical FM notation or an UML component diagram.

Although PlugSPL supports FMs, the tool ultimately oper-
ates on the level of components, and requires the understanding
of concepts such as components, interfaces and realization,
as these drive later activities. For domain engineers with a
strong background on FMs, but less so in component diagrams,
the tool alleviates the modeling activity by supporting the
automatic generation of a component diagram from the designed
FM. In such case, engineers still manipulate components in
other activities, but do not perform any modeling activity in
terms of UML component diagrams. Similarly, for those with
a strong background in UML component diagrams, but less so
in FMs, the tool also supports the automatic generation of a
FM from an existing component diagram. In both cases, edits
in generated models are automatically synchronized with the
models from which they are created, and vice-versa, along with
their constraints (full round-tripping). By supporting both FMs
and component diagrams and automatic conversion between
them, PlugSPL allows an effective communication among
different stakeholders in the TDL, with different modeling
expertise.

To design an SPL using FMs, domain engineers rely on the
FM graphical editor plugin (see Fig. 2). Besides supporting
FODA elements (except or-groups), the editor allows marking
features as abstract [17] (features are set to be concrete by
default). Abstract features exist only to improve the organization
of the FM, and are not mapped to any implementation element
(class, interface, macro, etc.). Concrete features, on the other
hand, follow a 1:1 mapping to a corresponding implementation
component, and ultimately to a whole compilation unit. This
mapping allows PlugSPL to trace a feature throughout its
lifecycle.

Fig. 2. PlugSPL feature model editor

Fig. 3. PlugSPL component diagram editor

For the cases where domain engineers choose to model the
SPL using component diagrams, they first select that diagram
type (the UML component diagram editor is shown in Fig.
3). In this modeling approach, features are represented as
components, which connect to other components by realizing
their required interfaces. Since more than one component
can realize a given interface, a required interface defines a
variation point, and connecting components denote specific
variants. These variation points can be further detailed by means
of tags (UML comments, shown in Fig. 3) and stereotypes
(e.g., <<Mutex>> group, and <<Requires>> dependencies),
allowing a fine-grain control over the variability in place.
Tags allow engineers to control the cardinality of instances
of each connecting component (captured as minSelection and
maxSelection) and specify the set of possible variants. The
value of minSelection/maxSelection is either zero or one, with
the exception that minSelection and maxSelection are never
both zero, and that minSelection is always less than or equal
to maxSelection. Hence, this captures mandatory (minSelection
= maxSelection = 1) and optional features (minSelection = 0,
maxSelection = 1), but prevents the existence of or-groups.
The absence of or-groups is currently a limitation, as PlugSPL
cannot resolve which variant instance to use when integrating
it with a given component. PlugSPL relies on the SMarty
variability UML profile [12] as an annotation scheme.

Following a plugin-based architecture, the design activity
in PlugSPL can be extended with other plugins supporting
different FM modeling notations (e.g., cardinality-based FM
[5]) or UML diagrams (e.g., class diagram). It can also be

405



extended to support different file formats (e.g., SPLOT [11]).

B. Component Management Activity

In PlugSPL, the component management activity assists
domain engineers in the implementation of the SPL components.
Given the set of previously defined interfaces, domain engineers
define their method signatures (operations) by importing
external files (see Fig. 4). Not favoring any specific editor,
even a built-in one, allows testing teams to continue using
their preferred IDE or editor. Once the interfaces are defined,
given the set of declared components, their interfaces, and their
connections, PlugSPL generates an initial set of classes that
conforms to them; still, these classes are not runnable, but
rather skeletons whose associated methods are empty.

In the current C# plugin supporting this activity, each
component results in a Visual Studio project, and each inter-
face/class matches exactly one component. These projects are
then distributed among different developers and/or testing teams,
which then complete their implementation. In this process,
developers instantiate interfaces through fake statements that
are later replaced during Product Generation. This is due to
the fact that developers cannot (and should not) predict which
component can provide the contract of any given interface.
Figure 6 illustrates this: instantiation of an IParser is done
by instantiating the DummyIParser interface, a statement that
is semantically incorrect, as interfaces cannot be directly instan-
tiated (they only state a contract, and thus lack any behaviour
on their own). This resembles the dependency injection pattern
[14], while avoiding the burden of keeping XML configuration
files, as required by many existing frameworks (e.g., Spring
[19]). The penalty, in this, case, is that variability is resolved
at an early stage (during Product Generation), and not during
runtime. Once the implementation of components is completed
(they are now in the form of complete Visual Studio projects),
they are fed back to PlugSPL, which in turn saves them in the
component repository, provided no integration problem occurs.

Fig. 4. PlugSPL Component management

C. Product Configuration Activity

In this activity, application engineers select the components
that should comprise a target product (see Fig. 5). To allow
such configuration, PlugSPL relies on the feature or component
models previously designed, along with the components stored
in the project workspace.

PlugSPL generates a tree view of the project’s components
and their interfaces, along with the set of components that

Fig. 5. PlugSPL Product configuration

can connect to each such interface. For instance, following the
UML component diagram in Fig. 3, two components implement
IParser, and serve as its variants: UML and Text. In that
case, UML and Text appear as child nodes of IParser in
the tree view in Fig. 5.

During configuration, application engineers select at most
one component for each provided interface. In accordance
with the constraints defined during the SPL design, PlugSPL
automatically manages dependencies for selected components.
The only exception occurs when configuration conflicts arise,
which are then reported and must be manually fixed. Once a
product is configured, the configuration is saved in the project
workspace, and application engineers proceed to generate target
products.

D. Product Generation Activity

In the product generation activity, from an existing product
configuration and its chosen components, PlugSPL selects
the corresponding Visual Studio projects generated during
Component Management. PlugSPL then copies the source
code of the selected components from the project workspace
to a specified output folder, where components are then
glued together. Gluing is performed by replacing extension
points that instantiate interfaces (fake statements as previously
discussed) by the instantiation of the concrete components
in the configuration that support such interfaces. Figure 7
illustrates this: on line 5, the instantiation of DummyIParser
(previously shown in Fig. 6) is replaced by the instantiation of
the UML concrete class. Gluing also sets dependencies among
different Visual Studio projects, i.e., among related components.
From the compilation of all components results a final product
(executable testing infrastructure). As in other activities, the
plugin supporting this activity is specific to C#-based projects.

VI. RELATED WORK

The SPL community lacks studies that explicit state the
requirements surrounding tool adoption and the corresponding
design decisions in the case of custom-made solutions. The
few studies attempting to tackle the first part (requirements)
are based on collected interviews and surveys [1], [3], and aim
to undercover particular challenges that could be the starting
point for better tools and methodologies. Our study, although
restricted to a single company and its specific requirements,

406



Fig. 6. Code before the replacement Fig. 7. Code after the replacement

provides an in-depth discussion over its requirements and
context at place. Such requirements have not been fully
exploited in the SPL literature, nor have they been fully
addressed by existing tools (most notably, full traceability and
round-trip over different models). Some teams report some
of their design decisions when creating SPL-related tools,
e.g., Feature IDE [16]. However, decisions are not explicitly
backed up by any industry-set requirements, but rather, from
the creators own experience [16].

Other researchers investigate differences among existing
tools [6], [10], but do not collect feedback based on industrial
cases where these tools are used, or to which extent they
succeed or fail when supporting SPL adoption.

On the tool development side, different solutions have been
proposed, including both commercial and open-source. The two
most popular commercial products today are pure::variants [2],
from pure::systems, and Gears [8], from Big Lever Software
Inc. Although they represent the most complete toolset for
product line adoption, the specificity of the TDL’s requirements
make them unsuitable. The open-source arena is no different,
although a plethora of solutions exist, ranging from web-based
solutions [11], to Eclipse plugins [16]. A comprehensive list of
existing tools, either commercial or open-source, is presented
in [10].

VII. CONCLUSION AND FUTURE WORK

This paper presented a set of requirements elicited in the
context of an industrial partner and its Technology Development
Lab. Through a pilot study, we collected specific needs targeting
tool adoption for implementing a SPL-based solution for test
products, and argue that existing tools, either commercial or
open-source, do not meet the specificity of the requirements at
hand. We then presented our design decisions when creating
an in-house tool to fulfill our partner needs, along with a brief
discussion of its supported workflow. We claim the reported
requirements and design decisions as the two contributions of
this work, as currently, few studies bring such discussion. Our
work adds to that in the sense that the elicited requirements
show practical scenarios that tool vendors and/or implementers
may consider supporting; the design decisions, in turn, may
be reused or adapted to improve existing tools or devise new
ones targeting similar requirements.

As future work, we aim to keep track of our partner company
needs and elicit new requirements as the SPL goes beyond the
current pilot study, ideally being adopted by all testing teams.

VIII. ACKNOWLEDGEMENTS

Elder Rodrigues is a researcher at the Center of Competence
in Performance Testing, a partnership between Dell and PUCRS.

REFERENCES

[1] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and
A. Wkasowski. A survey of variability modeling in industrial practice.
In Proceedings of the Seventh International Workshop on Variability
Modelling of Software-intensive Systems, 2013.

[2] D. Beuche. Modeling and building software product lines with
pure::variants. In Proceedings of the 16th International Software Product
Line Conference - Volume 2, 2012.

[3] L. Chen and M. Babar. Variability management in software product lines:
An investigation of contemporary industrial challenges. In Software
Product Lines: Going Beyond, Lecture Notes in Computer Science.
Springer, 2010.

[4] L. Costa, E. Rodrigues, R. Czekster, F. Oliveira, M. Silveira, and
A. Zorzo. Generating performance test scripts and scenarios based on
abstract intermediate models. In Proceedings of the 24th International
Conference on Software Engineering and Knowledge Engineering, 2012.

[5] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process:
Improvement and Practice, 2005.

[6] M. Dammagh and O. Troyer. Feature modeling tools: Evaluation
and lessons learned. In Advances in Conceptual Modeling. Recent
Developments and New Directions, Lecture Notes in Computer Science.
Springer, 2011.

[7] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature–
oriented domain analysis (FODA) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering Institute, 1990.

[8] C. Krueger and P. Clements. Systems and software product line
engineering with BigLever software Gears. In Proceedings of the 16th
International Software Product Line Conference, 2012.

[9] C. W. Krueger. New methods in software product line practice.
Communications of the ACM, 2006.

[10] L. B. Lisboa, V. C. Garcia, D. Lucrédio, E. S. de Almeida, S. R.
de Lemos Meira, and R. P. de Mattos Fortes. A systematic review of
domain analysis tools. Information and Software Technology, 52(1):1 –
13, 2010.

[11] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.: software product
lines online tools. In OOPSLA Companion, 2009.

[12] E. Oliveira, I. M. Gimenes, and J. Maldonado. Systematic management
of variability in UML-based software product lines. Journal of Universal
Computer Science, 2010.

[13] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[14] D. R. Prasanna. Dependency Injection. Manning Publications Co., 1st
edition, 2009.

[15] H. Spencer and G. Collyer. #ifdef Considered harmful, or portability
experience with C news. In USENIX, 1992.

[16] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich.
FeatureIDE: An extensible framework for feature-oriented software
development. Science of Computer Programming, 2012.

[17] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund. Abstract features
in feature modeling. In Proceedings of the 15th International Software
Product Line Conference, 2011.

[18] M. Utting and B. Legeard. Practical model-based testing: a tools
approach. Morgan Kaufmann, 2006.

[19] C. Walls and R. Breidenbach. Spring in action. Manning Publications
Co., 2007.

407




