
Evaluating Capture and Replay and Model-based

Performance Testing Tools: An Empirical Comparison

Elder M. Rodrigues
PUCRS

Porto Alegre, RS, Brasil
eldermr@gmail.com

Flavio M. Oliveira
PUCRS

Porto Alegre, RS, Brasil
flavio.oliveira@pucrs.br

Maicon Bernardino
PUCRS

Porto Alegre, RS, Brasil
bernardino@acm.org

Rodrigo S. Saad
Dell Computer of Brazil Ltd

Porto Alegre, RS, Brasil
rodrigo_saad@dell.com

Leandro T. Costa
PUCRS

Porto Alegre, RS, Brasil
leandro.costa@gmail.com

Avelino F. Zorzo
PUCRS

Porto Alegre, RS, Brasil
avelino.zorzo@pucrs.br

ABSTRACT
[Context] A variety of testing tools have been developed
to support and automate software performance testing ac-
tivities. These tools may use di↵erent techniques, such as
Model-Based Testing (MBT) or Capture and Replay (CR).
[Goal] For software companies, it is important to evaluate
such tools w.r.t. the e↵ort required for creating test artifacts
using them; despite its importance, there are few empirical
studies comparing performance testing tools, specially tools
developed with di↵erent approaches. [Method]We are con-
ducting experimental studies to provide evidence about the
required e↵ort to use CR-based tools and MBT tools. In
this paper, we present our first results, evaluating the e↵ort
(time spent) when using LoadRunner and Visual Studio CR-
based tools, and the PLeTsPerf MBT tool to create perfor-
mance test scripts and scenarios to test Web applications,
in the context of a collaboration project between Software
Engineering Research Center at PUCRS and a technological
laboratory of a global IT company. [Results] Our results
indicate that, for simple testing tasks, the e↵ort of using a
CR-based tool was lower than using an MBT tool, but as
the testing complexity increases tasks, the advantage of us-
ing MBT grows significantly. [Conclusions] To conclude,
we discuss the lessons we learned from the design, operation,
and analysis of our empirical experiment.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Experimentation, Measurement, Performance

Keywords
Performance Testing, Testing Tools, Experiment

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEM’14, September 18–19, 2014, Torino, Italy.

Copyright 2014 ACM 978-1-4503-2774-9/14/09...$15.00

1. INTRODUCTION
Software testing is a costly and time-consuming activity
when compared to other phases of the software development
life-cycle, since it can represent up to 60% of the overall soft-
ware development e↵ort [15]. To mitigate the e↵ort and the
financial resources spent in this phase, testing teams have
been focusing their e↵orts on automation testing tasks. Per-
formance testing, due to its own nature, involves a high de-
gree of automation. Thus, there are a range of tools (also
called load generator) to support performance testing, such
as Apache JMeter [11], HP LoadRunner [10], IBM Ratio-
nal Performance Tester [4], Borland SilkPerformer [21], and
Microsoft Visual Studio [3].

Normally, these tools support manual script coding or - more
frequently - a Capture and Replay (CR) [7] approach: a
test engineer executes the tests manually once on the ap-
plication to be tested, using the load generator in “record”
mode, then defines scenario parameters (e.g., number of vir-
tual users and test duration) and runs the generator. In
recent years, some tools are applying a Model-Based Test-
ing (MBT) approach to support performance testing, such as
TestOptimal [22], MBPeT (Model-Based Performance Test-
ing Tool) [1], WALTy (Web Application Load-based Test-
ing) [19], and PLeTs (Product Line of Model-Based Testing
Tools) [18].

Although there are many tools available, test engineers face
some key issues when considering to move from manual cod-
ing scripts to a CR performance testing process or to replace
a testing tool, e.g., motivated by business decisions. For in-
stance, what is the learning curve when using the tool or
what is the required e↵ort to generate performance scripts
and scenarios when using a specific tool? Despite these
doubts, to the best of our knowledge there is little work
discussing the benefits and issues on the adoption of these
tools; a case study by Grechanik et al. [9] is one of the few,
concentrating on HP QTP. Furthermore, there are no dis-
cussions about the e↵ort required when using an MBT tool
to generate performance test scripts and scenarios.

Motivated by this lack of knowledge to support the decisions
on the replacement of a CR-based tool or the adoption of
an MBT tool to support the performance testing process,

Antonio Vetro'
http://dx.doi.org/10.1145/2652524.2652587

we are conducting experimental studies to provide evidence
about the required e↵ort to use CR-based and MBT tools.
In this paper, we present our first results, evaluating the
e↵ort (time spent) when using the LoadRunner [10] and Vi-
sual Studio [3] CR-based tools, and the PLeTsPerf MBT
tool [18] to create performance test scripts and scenarios
to test Web applications, in the context of a collaboration
project between Software Engineering Research Center at
PUCRS and a technological laboratory of a global IT com-
pany.

This paper is organized as follows. Section 2 presents some
context relative to the company in place, as well as details of
the study motivations. Section 3 introduces the experiment
instruments and the test documents. Section 4 presents the
experiment design and introduces our research questions.
Section 5 describes the execution of the experiment, while
Section 6 presents our analysis and interpretation of results.
Finally, we present the lessons learned on Section 7.

2. EXPERIMENT CONTEXT
Our research group at CePES (Software Engineering Re-
search Center) 1 works in cooperation with the Technology
Development Lab (hereafter referred as TDL) of a global IT
company.

In the partner company, performance testing teams use a
few frameworks together with commercial and open sources
tools to support the automation of their testing activities.
However, most of the performance testing teams rely on a
single CR-based tool, namely LoadRunner [10], to support
the automation of their tasks to test Web applications. The
adoption of a single testing tool present some benefits, such
as concentrating all the executable artifacts in a single tech-
nology or language and the easy exchange of testers.

Although LoadRunner is comprehensive and is widely used
by many companies, some strategic decisions led the team
leaders to start investing in tools or new approaches to re-
place it. During an initial investigation performed by the
company, several tools and their characteristics were anal-
ysed, such as license and training cost, usability, load gen-
eration, monitoring and reporting features, and automation
approach.

Based on the company’s preliminary analysis a set of tools
were identified that meet, at di↵erent levels, their require-
ments, from which two tools were selected: Visual Studio [3]
and PLeTsPerf [16]. Despite the suitability of these tools to
the testing teams, there is an additional question that could
not be addressed by the previous analysis: What is the re-
quired e↵ort to use these tools to support the automation of
the testing process?

Providing a properly answer to this question is fundamen-
tal to choosing the right tool, i.e, the chosen tool cannot
require more e↵ort than the current tool to generate sce-
narios and scripts. Furthermore, this question become more
relevant as one of the selected tools uses an approach to
generate the test artifacts which is di↵erent from the one
used by the current tool. Visual Studio, as is LoadRunner,

1www.cepes.pucrs.br

is a CR-based tool, but PLeTsPerf is an MBT tool. More-
over, in the software industry, engineers are skeptical about
the MBT benefits, mainly due to the learning and modeling
time and e↵ort and the lack of work describing its usage on
real projects. Actually, we initially addressed this issue in
a previous experiment [17], where we compared the e↵ort
to use a CR-based approach and an MBT approach. It is
important to note that we reused some experiment’s arti-
facts, such as guidelines, test documents, and some tools in
the current experiment. Moreover, the experiment subjects
come from the same university, college and partner industry.

To provide evidence about the e↵ort required by these tools
on support Web domain applications testing process, we
started to design and setup an empirical experiment in col-
laboration with the TDL of our partner company. Thus,
we apply the PLeTsPerf MBT tool and the Visual Stu-
dio CR-based tool for the purpose of evaluation with re-
spect to the e↵ort to generate scripts and scenarios from the
perspective of the performance testers and the performance
test engineers in the context of undergraduates, M.Sc. and
Ph.D. students, performance testers and performance test
engineers for the generation of performance test scripts and
scenarios.

3. EXPERIMENT INSTRUMENTS
In this section we briefly introduce the experiment instru-
ments: System Under Test (SUT), LoadRunner, Visual Stu-
dio, and PLeTsPerf tools.

• LoadRunner (LR) [10] is a performance testing tool based
on the CR technique that supports scripts generation and
execution to test Web-based applications. In LoadRunner,
a tester manually interacts with the Web application un-
der test performing predefined actions, in accordance with
a test case, while LR is running in “record”mode. from the
recorded result of the tester interactions with the SUT, LR
produces performance test scripts. After that, the scenario
configuration using the LR Scenario module must be de-
fined. Thus, the tester must provide scenario parameters,
such as the path to the recorded script, the probability of
executing each script, the number of virtual users and the
test duration. The test scenarios and scripts are then ready
to be executed by LR. It is important to mention that LR
is a tool with several others features and modules, such as
test monitoring and results analysis, but they are out of the
scope of this work.

• Visual Studio (VS) [3] is an Integrated Development En-
vironment (IDE) developed by Microsoft to support soft-
ware design, development and test. This IDE provides a
code editor to several .NET framework-based languages,
such as C#, VB, and C++. Moreover, it also provides
support for automated tests, such as performance testing.
Visual Studio, as well as LoadRunner, is based on a CR-
based approach to create performance test scenarios and
scripts.

• PLeTsPerf (PP) [16] is a model-based performance test-
ing tool developed at our project, in the context of our
collaboration with the TDL of the partner company. PP
receives as input UML use cases and activity diagrams an-
notated with stereotypes and tagged values. In our automa-
tion strategy, stereotypes provide the base to annotate the

test scenario information into an use case diagram and the
test case information into an activity diagram. Based on
this information the tool generates performance test sce-
narios and scripts and automatically loads them into an
external load generator tool [6] [20]. The main di↵erences
between PP and VS or LR is the way that test analyst
design test cases and generate performance test scenarios
and scripts. Moreover, the tool can generate performance
test scripts for di↵erent load generators, e.g., Apache JMe-
ter [11].

• In this work we defined two Web applications as SUT:
Workforce Planning - Skill Management Tool (SKILLS) [20]
and Transaction Performance Council - Web (TPC-W) [13].
SKILLS is an in-house Web application that manages com-
petences, certifications and experiences of employees at a
given organization. Employees access SKILLS to insert
their competences, certifications and professional experi-
ences, while team managers use SKILLS to find and allo-
cate employees with desirable competences to their teams or
projects. TPC-W is a transactional Web service benchmark
that provides an e-commerce application and a workload
generator to measure the performance of the infra-structure
in which the e-commerce application is running on. The e-
commerce application is a complete implementation of a
Web store, similar to Amazon [2].

4. EXPERIMENT DESIGN
In this section we describe our experimental design, as well
as introduce the research questions. Our Research Questions
(RQ) are stated below:

RQ1. What is the e↵ort to generate a single performance
test script and scenario using PP, LR, and VS?

Null hypothesis, H0: e↵ort is the same when using PP,
LR, and VS to generate a single performance test script and
scenario. Alternative hypothesis, H1: the e↵ort is less
when using PP to generate single performance test script
and scenario than when using LR or VS. Alternative hy-

pothesis, H2: the e↵ort is less when using LR to generate a
single performance test script and scenario than when using
VS or PP. Alternative hypothesis, H3: the e↵ort is less
when using VS to generate a single performance test script
and scenario than when using LR or PP.

RQ2. What is the e↵ort to re-generate performance test
scripts and scenarios when using PP, LR, and VS?

Null hypothesis, H0: e↵ort is the same to re-generate
performance test scripts and scenarios using PP, LR, and
VS. Alternative hypothesis, H1: the e↵ort is less to re-
generate performance test scripts and scenarios when using
PP than when using LR or VS. Alternative hypothesis,
H2: the e↵ort is less to re-generate performance test scripts
and scenarios when using LR than when using VS or PP. Al-

ternative hypothesis, H3: the e↵ort is less to re-generate
performance test scripts and scenarios when using VS than
when using LR or PP.

RQ3. What is the e↵ort to generate a set of performance
test scripts and scenarios using PP, LR, and VS?

Null hypothesis, H0: e↵ort is the same using PP, LR, and
VS to generate a set of performance test scripts and scenar-
ios. Alternative hypothesis, H1: the e↵ort is less when
using PP to generate a set of performance test scripts and
scenarios than when using LR or VS. Alternative hypoth-

esis, H2: the e↵ort is less when using LR to generate a set
of performance test scripts and scenarios than when using
VS or PP. Alternative hypothesis, H3: the e↵ort is less
when using VS to generate a set of performance test scripts
and scenarios than when using LR or PP.

4.1 Design
In our experiment we used an in-vitro approach, since it
refers to the experiment in the laboratory under controlled
conditions, addressing a real problem, i.e., the di↵erences
in individual e↵ort to create performance test scripts and
scenarios using LoadRunner, Visual Studio and PLeTsPerf.
The subject selection was defined by the availability of aca-
demic and professional performance testers/engineers. We
invited doctoral, master and undergraduate students to par-
ticipate in our experiment as subjects. The undergraduate
students were from Computer Science or Information Sys-
tems courses, ranging from second to fourth year. They
come from one university (PUCRS2) and from one college
(Senac3). Each subject had di↵erent experience knowledge,
such as: experience in the industry as a software analyst
or as a developer, or just experience developing software in
an IT undergraduate course. The professional subjects were
from only one IT company. The subjects were randomly al-
located to each testing tool. Moreover, as all subjects would
execute all treatments we always randomly defined their
execution sequence, since the selected subjects for this ex-
periment had di↵erent backgrounds in performance testing.
Thus, to minimize the e↵ect of those di↵erences, the subjects
were classified in two blocks according to their skills in soft-
ware testing (beginner and advanced groups). To define if a
subject is beginner or advanced, we applied a survey, prior
to the experiment, to quantify the subject’s background.
Furthermore, the subjects are randomly grouped into each
group (randomized block design), so that each approach is
performed by the same number of subjects (balancing).

4.2 Instrumentation
The main objects are the performance test scripts and sce-
narios generated for testing the TPC-W application. Other
documents were provided for the execution of the experi-
ment, such as: non-functional requirements, test specifica-
tion and test plan. We have provided a supporting tool,
called Argo UML [24], for modeling the use cases and ac-
tivity diagrams. The tools were presented to the subjects
through a printed manual, with an overview of the tools and
detailed instructions on how to apply them to create perfor-
mance test scripts and scenarios to test the SUT. Moreover,
we performed a training phase in a laboratory room for all
the experiment’s subjects. During the training, the subjects
could ask open questions about the approaches and tools,
the modeling process and the creation of scripts and scenar-
ios described in the manual. It is important to mention that
in the training phase, a di↵erent application is used to cre-
ate performance test scripts and scenarios. Questions and

2www.pucrs.br
3www.senacrs.com.br/faculdadesenacpoa

answers were shared among all the subjects in the training
room. During the experiment execution, a printed guide is
used by the subjects. It includes the test cases and scenar-
ios and the related information about the process for gen-
erating performance test scripts and scenarios using both
approaches, i.e., PLeTsPerf (a guideline to modeling per-
formance using Argo UML tool was also included), Visual
Studio, and LoadRunner. From the execution we collected
e↵ort metrics for each subject. All subjects performed the
tasks using the same computational resources.

4.3 Threats to Validity
An experimental process must clearly identify the concerns
on the di↵erent types of threats to the experiment valid-
ity [23], defining an experimental process and describing
each threat, and how we work to mitigate it. We adopted
the threat classification scheme published by [5], which is
divided in four types of threats:

• Conclusion validity: This type of threat a↵ect the abil-
ity to draw conclusions about relations between the treat-
ment and the outcome of an experiment. For instance, a
relevant threat to the conclusion validity is the small num-
ber of subjects. We are aware that this can impact the
“accuracy” of the experiment’s results, but the e↵ort in set-
ting up the experiment and the achieved results showed an
important feedback when introducing these tools in indus-
try. The threats to the experiment conclusion validity are
the following: Measures reliability : this perspective sug-
gests that objective measures are more reliable than sub-
jective measures, i.e., they do not depend on human judge-
ment. In our study, the measurements of e↵ort and error
rate do not involve human judgement; Treatment reliability
implementation: even though we use the same SUT ap-
plication to apply all treatments, there is a risk that the
treatment implementation is not similar between di↵erent
subjects. This risk cannot be completely avoided in our
study since we cannot interfere with the subjects when they
are generating performance test scripts and scenarios. To
mitigate this threat, the starting point for all treatments
are detailed test cases and scenarios documents instead of
System Requirement Specification (SRS) documents. We
are aware that a better experiment design should not re-
strict the subjects to perform a set of pre-defined scenarios
and test cases. However, the target sample (students) from
where we selected the experiment’s subjects did not have
an adequate experience level or knowledge on performance
testing or software requirements documentation. There-
fore, they could face some di�culties to correctly identify
the SUT performance requirements and also to correctly
design the test cases and scenarios. Random irrelevancies
in the experimental setting : the experiment was executed in
an isolated laboratory, to avoid external interaction, such
as the use of mobile phones, interruptions, etc.; Random
heterogeneity of subjects: the variation due to the choice
of heterogeneous participants with di↵erent know-how on
software testing, modeling and also academic degrees may
be a threat to the validation of the experiment results. To
mitigate this threat we defined academic degree and back-
ground on performance testing (Beginner or Advanced) as
blocking variables. We based our decision on assigning the
subjects to each treatment on the following questions from

the applied survey: What is your knowledge on software
testing? 31.4% had more than six months of professional
experience, 17.6% had less than six months of experience,
29.4% took an university course or used the tool by them-
selves, and 21.6% had no knowledge on software testing.
What is your knowledge about the LoadRunner tool? 29.4%
had more than six months of professional experience, 11.8%
had less than six months of experience, 11.8% took an uni-
versity course or used the tool by themselves, and 47.1%
did not know how to use the tool. What is your knowl-
edge about the Visual Studio tool? 5.9% had more than six
months of professional experience, 29.4% had less than six
months of experience, 29.4% took an university course or
used the tool by themselves, and 35.4% did not know how
to use the tool. What is your knowledge on UML modeling?
9.8% had more than six months of professional experience,
19.6% had less than six months of experience, 52.9% took
an university course or used the tool by themselves, and
17.6% had no knowledge on UML.

• Internal validity: focus on the threats to the inter-
nal validity of the experiment: History : the date to start
the experiment execution was defined to avoid periods in
which subjects may be exposed to external influences, e.g.,
avoid running the experiment during the exam period (stu-
dent subjects) and close to the start/end of an important
project (industry subjects); Maturation: each experiment
session was applied in the morning because the subjects
are more motivated and less tired by the day’s workload;
Selection: a survey was applied to assess the knowledge and
the experience of subjects and then used to select and group
(block) the subjects.

• External validity: Subjects: a threat to the experi-
ment’s external validity was to select a group of subjects
that may not be representative to the performance testing
community. Thus, to mitigate this threat, we selected stu-
dents with some skills, basic programming and UML mod-
eling knowledge, to work with performance testing and pro-
fessionals with di↵erent levels of expertise in performance
testing. To avoid the e↵ect of a learning curve influencing
the results, the subjects of each block were random divided
into three groups, where each group started with a di↵erent
treatment; Tasks: another threat to the experiment valid-
ity is that the tasks defined to generate performance test
scripts during the experiment execution may not reflect the
activities performed by a performance tester when testing
an application. To mitigate this threat we interviewed some
senior performance testers and performance engineers, from
di↵erent companies, to define how the scripts must be gen-
erated and what is a reasonable task size (defined by the
number of test cases). The performance consultants did not
participate and did not have any contact with the experi-
ment subjects;

• Construct validity: a possible threat, that may be
present in every experiment, is the fact that some subjects
can erroneously conclude that their personal performance is
measured to, for instance, ranking the experiment subjects.
To mitigate this threat, before each session we explained
that we were evaluating the approaches/tools, not the sub-
jects. Other possible threat is that the complexity and the
size of the generated scripts during the experiment may not
be representative to generalize the results. To minimize this

threat, we interviewed senior performance testers and per-
formance engineers to define the complexity and the size of
scripts.

5. OPERATION OF THE EXPERIMENTAL
STUDY

This section discusses the preparation and execution steps
performed during the experiment operation.

5.1 Preparation
In this section, we present how the experiment was con-
ducted, how the documentation was prepared and how the
experiment environment was configured. We also describe
how the experiment subjects were involved and motivated.

Our first personal contact with the experiment subjects was
made through a presentation session, where the experiment
was described. As mentioned previously, when defining the
schedule of sessions, we took special care to avoid running
the experiment during the exam period (an issue for student
subjects) and close to the start/end of a project (an issue
for industry subjects). The presentation session was divided
into two parts: an initial explanation about the general idea
of the experiment, and a space for the subjects to ques-
tion or to suggest changes on the experiment. Other issues
addressed during the presentation session were related to
certify that all the subjects understood the research objec-
tive and how and which results would be published, making
clear that any personal data would be kept confidential. At
the end of the session a subject profile form was provided to
all the subjects. The information extracted from the forms
was used to classify and distribute the subjects through the
blocks before running the experiment.

Another issue we discussed during the experiment prepa-
ration was related to how the experiment data should be
collected. To avoid human mistakes, we defined that the
data collection related to e↵ort (time spent to perform an
activity) should be automated. Thus, we used simple soft-
ware that measures how much time each subject spent to
generate each script using the tools.

5.2 Execution
The experiment execution took place from January to Novem-
ber of 2013 and was composed of two phases: training and
experiment execution. The training phase was divided into
three sessions: one was used to train subjects in model-
ing performance testing using UML and to use PLeTsPerf;
other two session were used for training on the use of Visual
Studio and LoadRunner to generate performance test scripts
and scenarios to test a Web-based application. Furthermore,
each session was divided in two parts: in the first part, we
presented and demonstrated how to use the tool; in the sec-
ond part, each subject used a tool to generate a performance
test script in accordance with the training guidelines and the
test case and scenarios documents. For the training phase,
the SUT was the SKILLS application (see Section 3).

Table 1 represents how the experiment subjects were dis-
tributed per blocks and treatments. It is important to high-
light that the subjects were randomly selected to start using
one of three treatments.

Table 1: Assigning subjects to the treatments for a

randomized design

Treatments Blocks Number of Subjects

PP - PLeTsPerf

Beginner 32

Advanced 19

LR - LoadRunner

Beginner 32

Advanced 19

VS - Visual Studio

Beginner 32

Advanced 19

The experiment execution phase was split into three ses-
sions, each composed of three tasks. These tasks were per-
formed using the PP (PLeTsPerf), LR (LoadRunner), and
VS (Visual Studio) approaches, one for each task, and all
tasks should generate an equivalent performance test script
as an output. For the experiment execution phase, the
SUT was TPC-W. Each session of the execution phase is
described next:

• Session 1: to generate a single performance test script
and scenario in accordance to the experiment guidelines
(this session is related to RQ1):

– Task 1 : this task consists of creating an UML model
from scratch, based on a test case and scenario documents,
and adding performance test information on the model.
Initially, the experiment subjects had to model the test
scenario using our modeling strategy. Therefore, they had
to model a use case diagram composed by an actor, a re-
lated use case element and annotate these elements with
performance stereotypes and tags. Secondly, the subjects
had to model an activity diagram4 to represent a test case.
Thus, this activity diagram had to be modeled to represent
user interactions with the SUT. Once these two diagrams
were modeled and annotated with performance informa-
tion, they had to be exported as a XMI file and then the
subjects had to use PLeTsPerf that loaded the XMI file in
order to generate the performance test script5.

– Task 2 : in this task the subjects had to use the Load-
Runner to generate a performance test script and scenario
in accordance with test case and scenario documents. In
order to generate these test artifacts the experiment sub-
jects had to use the LoadRunner modules, i.e., capture
and replay and test scenario. Using the CR module, the
subject had to record a script corresponding to the user
interactions with the SUT. In the LoadRunner test sce-
nario module, the subject had to set the performance test
scenario where the previous recorded script had to be in-
cluded. Finally, the tester started the test execution6;

– Task 3 : during the execution of this task the subjects
had to use the Visual Studio to generate a performance test

4A sample of the models and scripts designed when
performing the experiment’s tasks can be found in:
http://www.cepes.pucrs.br/experiment/esem
5The activities described in the last phrase had to be per-
formed by the experiment subjects when executing Task 1
in all sessions.
6The activity described in the last phrase had to be per-
formed by the experiment subjects when executing Task 2
in all sessions.

Table 2: Summarized data of the e↵ort in sessions

E↵ort (minutes)

Treatments Blocks
Block Average Time/Session Avg. Treatment Average Time/Session Avg.

Session 1 Session 2 Session 3 Blc. Session 1 Session 2 Session 3 Trt.

PP - PleTsPerf
Beginner 36.41 15.78 20.78 24.32

34.26 14.63 20.18 23.02
Advanced 32.11 13.47 19.58 21.72

LR - LoadRunner
Beginner 15.31 21.22 35.66 24.06

14.24 20.24 36.49 23.65
Advanced 13.16 19.26 37.32 23.25

VS - Visual Studio
Beginner 13.47 20.72 32.81 22.33

12.23 19.12 32.14 21.17
Advanced 11.00 17.53 31.47 20.00

script and scenario in accordance with the same test case
and scenario documents used in Tasks 1 and 2. The first
step to create the performance test scenarios and scripts,
the experiment subjects had to use the VS Web Test mod-
ule, which is similar to the LR capture and replay. The
subjects had to use the Web Test module to record a script
corresponding to those interactions described in the test
cases. After that, the subject must use the VS Load Test
module to set the performance scenario information, and
then start the test execution;

• Session 2: to edit a script/model in accordance with the
experiment guidelines (this session is related to RQ2):

– Task 1 : this task consists of editing the UML model
created in Task 1 of Session 1. Therefore, the use case
and the activity diagram were modified by the subjects
in order to meet some changes in the test specifications
described in the test case and scenario documents. Thus,
the subjects had to reflect these changes into the existing
activity diagram, by adding actions and decision elements.
These modifications were made to meet the changes into
the test case and scenario documents, that describe four
test cases. The use case diagram was also modified by the
subject, in which the number of virtual users was changed;

– Task 2 : when the subjects were performing this task,
they had to create some new scripts and edit the exist-
ing LoadRunner scenario (created in Task 2 of Session 1)
to meet the changes in the test system specification (the
same changes described in Task 1 of Session 2). Based on
these documents the subjects had to generate three new
scripts from scratch using the capture and replay module.
The scenario generated in Session 1 had to be changed to
include the three generated scripts and also set another
number of virtual users;

– Task 3 : in this task, the subjects have used the Visual
Studio to create new scripts and edit the existing scenario
(created in Task 2 of Session 1) to meet the changes in the
test system specification (the same changes described in
Tasks 1 and 2 of Session 2). Based on these documents the
subjects had to generate three new scripts from scratch us-
ing the VS Web Test module. Into the Load Test module,
the number of virtual users was changed.

• Session 3: to generate a set of performance test scripts
and scenarios in accordance with the experiment guidelines
(this session is related to RQ3):

– Task 1 : the subjects had to edit the UML model created
in the Task 1 of Session 2. Therefore, use case and activity

diagrams were modified in order to meet a change on the
test system specification, properly described in the test
cases and scenario documents. Based on these documents,
the subjects had to modify the activity diagram by adding
more action elements and more decision elements. These
changes were made to represent all the fourteen test cases.
The subjects had also to modify the use case diagram,
changing the number of virtual users;

– Task 2 : in this task the subjects had to create Load-
Runner scripts and edit the LoadRunner scenario created
in Session 2 to meet the same changes in the test specifica-
tions documents (the same changes described in the Task 1
of Session 3). Based on these documents, the subject had
to generate ten more scripts from scratch. The scenario
generated in Session 2 had to be changed as well, in which
the virtual user’s field was changed;

– Task 3 : here, the subjects had to create Visual Studio
scripts and also edit the scenario created in Task 3 of Ses-
sion 2 to meet the same changes in the test specifications
documents (already described in the Task 1 and 2 of Ses-
sion 3). Thus, the subject had to generate ten more scripts
from scratch and edit scenario generated in Session 2.

6. RESULTS
In this section, we present the e↵ort data collected from our
experiment. It is important to note that we will present
and discuss the results per session, which in turn address a
research question.

Table 2 shows the summarized e↵ort data (time spent) by
subjects to perform each tasks of the Sessions 1, 2 and 3,
which were presented in Section 5.2. In the table, columns
Session 1, Session 2, and Session 3 present the average ses-
sion time per block and per treatment. For instance, the
Beginner block that applied the PP - PLeTsPerf treatment
spent an average time of 36.41 min in Session 1, 15.78 min
in Session 2 and 20.78 min in Session 3. The Avg. Blc.
column presents the sessions average time per block and per
treatment, i.e., the subjects blocked as beginner spent an
average time of 24.32 min to perform a session ((Session 1
+ Session 2 + Session 3)/3) applying the PP - PLeTsPerf
treatment.

To better summarize the results, we also present the average
time spent per treatment to complete the sessions. Thus, the
second group of columns Session 1, Session 2, and Session 3
show the average time spent by beginner and advanced sub-
jects to apply each treatment (PP, LR, and VS) per session.
For instance, the subjects who applied the VS treatment

PP LR VS
0

20

40

60

Treatments

m
in

Figure 1: Boxplot Session 1

PP LR VS

10

20

30

Treatments

m
in

Figure 2: Boxplot Session 2

PP LR VS

20

40

60

80

Treatments

m
in

Figure 3: Boxplot Session 3

spent an average time of 12.23 min in Session 1, 19.12 in
Session 2 and 32.14 in Session 3. Moreover, beginner and
advanced subjects spent an average time of 21.17 min (Avg.
Trt.) per session ((Session 1 + Session 2 + Session 3)/3).
Based on the results summarized in the table the average
e↵ort using VS was less than with LR and PP in Session 1
(12.23 min vs 14.24 min vs 34.26 min). Otherwise, in Ses-
sions 2 and 3 the average e↵ort using PP was less than with
VS and LR: in Session 2 the e↵ort (min) were 14.63 vs 19.12
vs 20.24 and 20.18 vs 32.14 vs 36.49 in Session 3. These re-
sults indicate that VS requires less e↵ort when dealing with
simple test cases and scenarios (Session 1 tasks are based
on a single test case) than LR and PP. In another way, PP
requires less e↵ort to apply regression test or to generate a
bunch of test cases than VS and LR.

Figure 1 presents the box-plot graph of the Session 1 data
set. In this session, the median of execution time with VS
and LR were 13.0 minutes and with PP was 31.0 minutes.
Moreover, the PP standard deviation was 12.08, LR 4.29
and VS was 3.62. It is important to note that there are two
outlier in the data set for PP and one outlier for LR and
VS. In another way, Figure 2 presents the box-plot graph
of the Session 2, were the median time to execute the PP
treatment was 15.0 minutes, while VS and LR treatments
were, respectively, 19.0 and 20.0 minutes. Again, note that
there are outliers in the data set, in this case two outliers
for VS.

Finally, Figure 3 presents the box-plot graph of the Session 3
data set. Here, the median of execution time with PP was
20.0 minutes, inasmuch as VS was 30.0 and LR was 36.0
minutes. It is important to note that in this session, PP
standard deviation (5.65) is about almost 2 times lower than
the other treatments (LR 10.34 and VS 11.26).

Although we do not applied a statistical test on the exper-
iment data set, because of the sample size, based on the
results presented above we can informally identify the re-
search questions stated in Section 4: RQ1. What is the
e↵ort to generate a single performance test script and sce-
nario using PP, LR, and VS? The e↵ort when applying the
VS treatment was 12.23 min, the LR was 14.24 min and PP
was 34.26 min. Thus, the VS treatment requires less e↵ort,
then we reject H0 and accept H3. RQ2. What is the
e↵ort to re-generate performance test scripts and scenarios

when using PP, LR, and VS? The e↵ort (minutes) when us-
ing the PP, VS, and LR are respectively: 14.63, 19.12, and
20.24. Thus, the PP treatment requires less e↵ort, then we
reject H0 and accept H1. RQ3. What is the e↵ort to gen-
erate a set of performance test scripts and scenarios using
PP, LR and VS? The e↵ort when applying the PP, VS, and
LR treatments are: 20.18, 32.14, and 36.49 min. Thus, we
reject H0 and accept H1.

7. LESSONS LEARNED
Basically, the main lessons we learned from the design, op-
eration, and analysis of our empirical experiment are:

• Experiment replication. In the context of Software
Engineering, an experiment replication consists of repeat-
ing an original study to reuse its experiment design, instru-
ments, analysis procedures, among other [12]. An experi-
mental replication can be divided into internal and exter-
nal [14]: former is conducted by the same research group of
the original study; while the latter is applied in a di↵erent
context. Therefore, we design our experiment protocol with
the intention to replicate it in the future to collect more re-
sults for a relevant statistical analysis. Moreover, since we
select the experiment subject from a university, that usually
provide potential candidates to work in our partner com-
pany, and from our partner company employees the results
could present bias. It is important to highlight that in our
experimental context, our results are useful to support the
company’s decision.

• Validity of the experiment. From a statistical point
of view, these initial results are yet not strong enough to
support precise conclusions; For this reason, we did not
present the statistics analysis of results, since the sample
is not geographically relevant. Nevertheless, they provided
significant insights to our partner to take a business de-
cision. In the software industry, engineers are sceptical of
the benefits of MBT, mainly due to the needed learning and
modeling time and e↵ort. The experiment results provided
evidence of e↵ort gains that may support interest in the
model-based approach. In the future, we plan to perform
external replication of this study, together with studies at
real, not in-vitro, environments, to provide significant evi-
dences that could be generalized.

• Lack of a standard performance language/script.

One of the issues that motivated our research is the learn-
ing curve to replace or upgrade a load generator technology.
The experiment’s results point that reuse of this drawback
could be handled if the load generators use the same script
or technique. For instance, an alternative to avoid this
issue could be use a graphical notation, such as a Domain-
Specific Languages (DSL) [8], for modeling performance
testing and the load generators have a feature to trans-
form (model transformation) the notation into scripts and
scenarios, as well as its reverse-engineering.

8. ADDITIONAL AUTHORS
Additional authors: Priscila Guarienti (PUCRS, email:
guarienti.priscila@gmail.com)

9. REFERENCES
[1] F. Abbors, T. Ahmad, D. Truscan, and I. Porres.

MBPeT - a model-based performance testing tool. In
Proceedings of the 4th International Conference on
Advances in System Testing and Validation Lifecycle,
pages 1–8. IARIA, 2012.

[2] Amazon. Amazon.com: online shop. Avaliable in:
http://www.amazon.com/, 2014.

[3] X. Bai. Testing the performance of an ssas cube using
vsts. In Proceedings of the 2010 7th International
Conference on Information Technology: New
Generations, pages 986–991, Washington, USA, 2010.
IEEE Computer Society.

[4] D. Chadwick, C. Davis, M. Dunn, E. Jessee,
A. Kofaldt, K. Mooney, R. Nicolas, A. Patel,
J. Reinstrom, K. Siefkes, P. Silva, S. Ulrich, and
W. Yeung. Using Rational Performance Tester
Version 7. IBM Redbooks, 2008.

[5] T. D. Cook and D. T. Campbell.
Quasi-Experimentation: Design and Analysis Issues
for Field Settings. Houghton Mi✏in, 1979.

[6] L. T. Costa, R. Czekster, F. M. Oliveira, E. M.
Rodrigues, M. B. Silveira, and A. F. Zorzo.
Generating performance test scripts and scenarios
based on abstract intermediate models. In Proceedings
of the 24rd International Conference on Software
Engineering and Knowledge Engineering, pages
112–117, San Francisco, CA, USA, 2012. Knowledge
Systems Institute Graduate School.

[7] O. El Ariss, D. Xu, S. Dandey, B. Vender,
P. McClean, and B. Slator. A systematic capture and
replay strategy for testing complex gui based java
applications. In Proceedings of the 7th International
Conference on Information Technology: New
Generations, pages 1038–1043, apr. 2010.

[8] M. Fowler. Domain Specific Languages.
Addison-Wesley Professional, 1st edition, 2010.

[9] M. Grechanik, Q. Xie, and C. Fu. Experimental
assessment of manual versus tool-based maintenance
of gui-directed test scripts. In Proceedings of the IEEE
International Conference on Software Maintenance,
pages 9–18, Washington, DC, USA, 2009. IEEE
Computer Society.

[10] Hewlett Packard HP. Software HP LoadRunner.
Available in: http://goo.gl/JU2R5d, 2014.

[11] Y. Jing, Z. Lan, W. Hongyuan, S. Yuqiang, and
C. Guizhen. JMeter-based aging simulation of
computing system. In Proceedings of the International
Conference on Computer, Mechatronics, Control and
Electronic Engineering, pages 282–285, Washington,
DC, USA, 2010. IEEE Computer Society.

[12] N. Juristo and O. S. Gómez. Replication of software
engineering experiments. In B. Meyer and M. Nordio,
editors, Empirical Software Engineering and
Verification, volume 7007 of LNCS, pages 60–88.
Springer Berlin Heidelberg, 2012.

[13] D. Menasce. TPC-W: A benchmark for e-commerce.
IEEE Internet Computing, 36:83–87, 2002.

[14] M. Mendonca, J. Maldonado, M. de Oliveira,
J. Carver, S. Fabbri, F. Shull, G. H. Travassos,
E. Hohn, and V. Basili. A framework for software
engineering experimental replications. In 13th IEEE
International Conference on Engineering of Complex
Computer Systems, pages 203–212, March 2008.

[15] G. J. Myers and C. Sandler. The Art of Software
Testing. Wiley, New York, NY, USA, 2004.

[16] E. M. Rodrigues. PLeTs: A Product Line of
Model-based Testing Tools. PhD thesis, Pontifical
Catholic University of Rio Grande do Sul, Porto
Alegre, Brazil, 2013.

[17] E. M. Rodrigues, F. M. Oliveira, L. T. Costa,
M. Bernardino, S. Souza, R. Saad, and A. Zorzo.
Model-based testing applied to performance testing:
An empirical study (Under Review). Empirical
Software Engineering, 2014.

[18] E. M. Rodrigues, L. D. Viccari, A. F. Zorzo, and I. M.
Gimenes. PLeTs tool - test automation using software
product lines and model based testing. In Proceedings
of the 22th International Conference on Software
Engineering and Knowledge Engineering, pages
483–488, Redwood City, CA, USA, jul. 2010.

[19] G. Ru↵o, R. Schifanella, M. Sereno, and R. Politi.
WALTy: A user behavior tailored tool for evaluating
web application performance. In Proceedings of the
Network Computing and Applications, Third IEEE
International Symposium, pages 77–86, Washington,
DC, USA, 2004. IEEE Computer Society.

[20] M. B. Silveira, E. M. Rodrigues, A. F. Zorzo,
H. Vieira, and F. Oliveira. Model-based automatic
generation of performance test scripts. In Proceedings
of the 23rd International Conference on Software
Engineering and Knowledge Engineering, pages
258–263, Miami, FL, USA, 2011.

[21] B. Software. Performance benchmarking kit using
incident management with silkperformer. Technical
report, BMC Software, 2007.

[22] TestOptimal. Testoptimal model-based test
automation. Available in:
http://www.testoptimal.com/, 2014.

[23] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering: An Introduction. Kluwer
Academic Publishers, 2000.

[24] M. Zhang. Argouml. Journal of Computing Sciences
in Colleges, 21:6–7, 2006.

