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Abstract—Virtualization as a platform for resource-intensive
applications, such as MapReduce (MR), has been the subject of
many studies in the last years, as it has brought benefits such as
better manageability, overall resource utilization, security and
scalability. Nevertheless, because of the performance overheads,
virtualization has traditionally been avoided in computing
environments where performance is a critical factor. In this
context, container-based virtualization can be considered a
lightweight alternative to the traditional hypervisor-based vir-
tualization systems. In fact, there is a trend towards using
containers in MR clusters in order to provide resource sharing
and performance isolation (e.g., Mesos and YARN). However,
there are still no studies evaluating the performance overhead
of the current container-based systems and their ability to
provide performance isolation when running MR applications.
In this work, we conducted experiments to effectively com-
pare and contrast the current container-based systems (Linux
VServer, OpenVZ and Linux Containers (LXC)) in terms of
performance and manageability when running on MR clusters.
Our results showed that although all container-based systems
reach a near-native performance for MapReduce workloads,
LXC is the one that offers the best relationship between
performance and management capabilities (specially regarding
to performance isolation).

Keywords-Container-based virtualization; High performance
computing; MapReduce

I. INTRODUCTION

MapReduce (MR) has become a very popular program-
ming model for large-scale data analysis. Such popularity is
associated with the growing volume of data we face today
and the ability of MR to process such a large data set
efficiently. The more amount of data, the more the need
for computational resources. In such a way, data processing
systems, such as Hadoop [1], have been proposed to simplify
the concepts involved in large-scale distributed computing
and offer ease of programming, scalability and fault toler-
ance. By implementing MR, Hadoop has overcome barriers,
solving heavy problems containing large volume of data
and achieving results in units of times earlier impossible.
Hadoop is currently the most popular and widely deployed
of the open-source MR implementations. It was primarily
supported by Yahoo! and later also used by many Internet
companies, including Twitter, Facebook [2] and Amazon [3].

Such growing of data can be clearly observed in the con-
text of cloud computing. Users are increasingly using cloud

services to store large amounts of data and take advantage
of benefits such as scalability, cost efficiency, manageability,
fault tolerance and greater computing feasibility. To ful-
fil these issues, Hadoop on cloud computing has allowed
providers to provide on-demand computing capacity, which
were limited just on the instance on-demand model. For
example, Amazon has recently launched the EMR [3] in-
stance, which allows businesses, researchers and developers
to easily and cost-effectively process a vast amount of data
through a framework hosted in a web-scale infrastructure
[3]. Since cloud computing platforms are in most cases
supported by hypervisor-based virtualization systems, such
as KVM [4] and Xen [5], Hadoop applications on such
systems are normally unable to reach the same performance
obtained from traditional non-virtualized platforms because
of their inherent performance overhead [6][7]. That is why,
for example, hypervisor-based virtualization has traditionally
been avoided in traditional High Performance Computing
(HPC) clusters [7].

On the other hand, container-based virtualization systems
(e.g., Linux-VServer [8], OpenVZ [9] and Linux Containers
(LXC) [10]) prove to be an alternative to hypervisors-based
systems, providing better manageability with a near-native
performance. In fact, there is a trend toward using this
type of virtualization in MR cluster, since it has brought
new opportunities for sharing environments in which users’
requirements differ between one another. For example, users
have developed a diverse array of computing frameworks,
such as MPI [11] and Hadoop, in order to simplify pro-
gramming and to better fit parallel applications. To prevent
the mismatch between such clusters and existing frame-
works, a fine-grained manager system is needed [12]. In
this context, Mesos [13] has emerged as a platform for
sharing commodity clusters between multiple diverse cluster
computing frameworks while incurring low overheads due of
the container-based virtualization system adopted. Moreover,
the use of container-based virtualization to share a cluster
among different applications will become a built-in feature
in the next generation of Hadoop [14], called MapReduce
2.0 (MRv2) or YARN (Yet Another Resource Negotiator).
However, there are still no studies evaluating the perfor-
mance overhead of such container-based systems and their
ability to provide performance isolation for shared resources
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when running MapReduce applications.
On our previous work [7], we have demonstrated through

a variety of experiments that container-based systems in
HPC clusters offer several benefits while with a low perfor-
mance overhead in MPI and OpenMP applications. Herein
we conducted experiments using different MR benchmarks
to stress Hadoop clusters over distinct situations on the re-
cent container-based virtualization systems: Linux-VServer,
OpenVZ and LXC. We also examined the performance
isolation of LXC, which is the most recent container-based
system and is currently used by Mesos and YARN.

This paper is organized as follows: Section II provides
an overview of the MR model and its implementations;
Section III presents a summary of the recent container-based
virtualization systems; Section IV describes the experiments
and discusses the results. Section VII discusses the related
work. The conclusion and future work are presented in
Section VIII.

II. MAPREDUCE

MapReduce is a programming model and a framework
that supports this model. It simplifies the concepts involved
in large-scale distributed computing and offers ease of
programming, scalability and fault tolerance. MR implemen-
tations are typically coupled with a distributed file system
(DFS), such as GFS [15] or HDFS [16]. The DFS is respon-
sible for the data distribution in a MR cluster, which consists
of initially dividing the input data into blocks and storing
multiple replicas of each block on the cluster nodes’ local
disks. Although there are currently several implementations
of MapReduce (e.g., Hadoop [1], Twister [17], Spark [18]),
this work will focus on Hadoop because it is one of
the most popular open-source MapReduce implementations.
Moreover, there are a variety of software that run on top of
the Hadoop stack, which create an entire ecosystem of big
data processing tools. The Hadoop software can be roughly
divided into two main components: Hadoop MapReduce and
Hadoop Distributed File System (HDFS).

A. Hadoop MapReduce

Hadoop MapReduce is a distributed programming frame-
work and an execution environment for MapReduce pro-
grams. The execution environment also includes a job
scheduling system that coordinates the execution of multiple
MapReduce programs, which are submitted as batch jobs. A
MR job consists of multiple map and reduce tasks that are
scheduled to run in the Hadoop cluster’s nodes. Multiple
jobs can run simultaneously in the same cluster. There are
two types of nodes that control the job execution process:
a JobTracker and a number of TaskTrackers [19]. Users
submit MR jobs to the JobTracker, which is responsible for
coordinating the execution of all the jobs in the system. The
JobTracker schedules tasks to run on TaskTrackers, which
have a fixed number of slots to run the map and reduce tasks.
TaskTrackers run tasks and report the execution progress
back to the JobTracker, which keeps a record of the overall

progress of each job. The JobTracker always tries to assign
tasks to the TaskTrackers that are the closest to the input
data.

B. Hadoop Distributed File System

Hadoop Distributed File System (HDFS) [16] is a dis-
tributed file system designed to store very large files and to
provide high-throughput for streaming data access patterns.
All application data in Hadoop is stored as HDFS files,
which are composed of data blocks of a fixed size (64 MB
each, by default) distributed across multiple nodes. There
are two types of nodes in a HDFS cluster: a NameNode
and a number of DataNodes. The NameNode maintains
the file system metadata, which includes information about
the files and directories tree as well as where each data
block is physically stored. DataNodes store the data blocks
themselves. Every time a client needs to read a file from
HDFS, it first contacts the NameNode to determine the
DataNodes where all the blocks for that file are located.
Then, the client starts reading the data blocks directly from
the DataNodes.

Each data block is independently replicated (typically 3
replicas per block) and stored within multiple DataNodes.
The replicas’ placement follows a well-defined rack-aware
algorithm that uses the information of where each DataNode
is located in the network topology to decide where data
replicas should be placed in the cluster. Basically, for every
block of data, the default placement strategy is to place
two replicas on two different nodes on a same rack and
the last on a node on a different rack. Replication is used
not only for providing fault tolerance, but also to increase
the opportunity for scheduling tasks to where the data is, by
spreading replicas out on the cluster.

III. CONTAINER-BASED VIRTUALIZATION

Container-based Virtualization is a virtualization archi-
tecture which promise to be a lightweight alternative to
hypervisor-based architecture. While hypervisors work at the
hardware abstraction level, container-based virtualization is
characterized as multiple isolated user-spaces running at the
operational system level, providing abstractions directly to
the guest processes. For this reason, it is also commonly
knows as Operating System Level virtualization. Nowadays,
the most representative implementations of container-based
virtualizations are: Linux-Vserver, OpenVZ and LXC. All of
them are Linux implementations and have some similarity
when aspects such as security, isolation and performance are
taken into account. The main difference between them lies
in the way resources are managed, such as the manner of
how the resources are limited between multiple containers
on a single machine and how the resource isolation is
accomplished.

Because container-based virtualization works at the op-
erating system level, all instances (containers) share the
same operational system kernel. That is why container-based
virtualization is supposed to have a weaker isolation when
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compared to hypervisor-based virtualization. From the user’
point of view, the containers execute exactly like a stand-
alone OS [9].

In order to guarantee the resource isolation between the
host system and the containers running on, such a system
implements kernel namespaces, which has been incorporated
as features in the Linux mainline kernel by steps since
2.6.19 [20]. Namespace allows different processes to have a
different view of the system. Once containers should not be
able to interact with things outside, many global resources
are wrapped in a layer of namespace that provides the
illusion to the user that container is its own subsystem [20].
As examples of the most notables namespaces supported
by the recent Linux kernel versions, consider: Filesystem
namespace, Process IDs (PID) namespace, Inter-process
communication (IPC) namespace and Network namespace.

In container-based systems, it is also possible to restrict
the resource usage by each container, which provides a fair
distribution of the overall available resources from a single
machine. This resource management is normally accom-
plished by Control Groups (cgroup) [21], which restricts
the resource usage per group of processes. For example,
using cgroups it is possible to limit/prioritize CPU, memory
and I/O usage for different containers. In some cases, some
container-based systems use their own implementations to
perform resource management due to its incompatibility with
cgroups.

The remainder of the paper presents at in more details
the systems explored in this work: Linux-VServer, OpenVZ
and LXC. The substantial aspects regarding the resource
management and techniques for limiting resources were
taken into consideration.

A. Linux-VServer

Instead of using namespaces, Linux-VServer implements
(through a patch) its own mechanisms in Linux kernel to
provide process, network and CPU isolation. This is because
Linux-VServer is the oldest implementation of container-
based system for Linux and the namespace support into
the kernel came up more recently. The system limits the
scope of the file system from different processes through
the traditional chroot system call and prohibits unwanted
communications between them by using a technique called
global PID space. The main benefits of this technique is its
scalability for a large number of containers. However, the
drawback is that the system is unable to implement usual
virtualization techniques, such as live migration, checkpoint
and resume, due to the impossibility to re-instantiate pro-
cesses with the same PID [8].

Linux-VServer does not virtualize network subsystems.
Rather all network subsystems (such as routing tables and
IP tables) are shared among the containers and also with the
host system. The drawback is that the containers are unable
to bind sockets to a subset of host IP and to change their
own route table and firewall rules, it needs to be made by
the host administrator [8].

B. OpenVZ

Unlike Linux-VServer, OpenVZ is built on top of kernel
namespaces, making sure that every container has its own
isolated subset of resources. The system uses PID and
IPC namespaces in order to accomplish isolation between
processes from different contexts. OpenVZ also implements
the network namespace. Moreover, it also provides different
network operation modes, such as Route-based, Bridge-
based and Physical-based. The main distinction between
them lies at operation layer. While Route-based works in
Layer 3 (network layer), Bridge-based works in Layer 2
(data link layer) and Physical-based in Layer 1 (physical
layer). In the Physical-based mode, it is possible to assign a
real network device (such as eth1) into a container, providing
a better network performance [9].

C. LXC

LXC is the most recent Linux implementation. In the
same way as OpenVZ, LXC uses kernel namespaces to
guarantee isolation among containers. LXC implements PID,
IPC, File System and Network namespaces. Furthermore, it
also offers different types of network configurations which
are: Route-based and Bridge-based. Resource management
is only performed via cgroups [21]. With cgroups it is
possible defining network configurations, limiting the CPU
usage and accomplishing isolation among processes from
different containers contexts. LXC adopts the CFQ scheduler
by default to control the I/O operations. In most recent
kernel versions is it possible to control the I/O bandwidth
per container via the blkio controller.

IV. EXPERIMENTS

Our experiments were conducted with the contemporary
Linux implementations of container-based virtualization:
Linux-VServer, OpenVZ and LXC. Such experiments were
performed upon two well-known evaluation perspectives:
micro- and macro-benchmarks. By micro-benchmarks it
is possible to measure the performance of basic Hadoop
components before evaluating the system as a whole. Having
the micro-benchmarks results, the macro-benchmarks are ex-
ecuted by stressing the MR model and the whole system. In
this sense, the results obtained from micro-benchmarks have
a direct impact on macro-benchmarks, making them very
useful for identifying bottlenecks and mainly the reasons for
performance overheads throughout the system with a more
in-depth analysis

Our testbed environment comprises of four identical nodes
with two 2.27GHz processors (with 8 cores each), 8M of
L3 cache per core, 16GB of RAM, one 146GB disk and
one gigabit network adapter. Once each system have kernel
requirements that differ between each other, we have taken
care in compiling different kernels for each system and
also in using the same release version. This ensures that
the results are not influenced by increases and losses of
performance introduced from distinct kernel releases. The
kernel 2.6.32-28 was chose, as it has support to all systems’
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patches and configurations. For OpenVZ, an additional patch
(2.6.32-feoktistov) is needed to allow us to use namespaces
and containers. Likewise, to put up the Linux-VServer, the
patch (2.3.0.36.29.4) developed by the Linux-VServer team
was installed into the kernel. Otherwise OpenVZ and Linux-
VServer, LXC already comes available with the kernel
mainline (since 2.6.24) and any modification was needed. In
such a way, we just installed the tool kit (lxc-tool) required
to manage the containers and ensure that all requirements
extracted from lxc-checkconfig utility are met.

Finally, to analyze the behavior in using the MR model on
the systems, we set up a Hadoop cluster, including the HDFS
and the MR scheduler. The HDFS was configured by using
2 Namenodes and 4 Datanodes distributed across the cluster.
The replication factor was set to 3 and the Java heap size was
configured to be 1024MB. The number of Map and Reduce
tasks per node was set to 6 and 2 respectively, in an attempt
to balance the overall utilization across the 8 available cores.
Finally, 30 minutes of task timeout was configured. All
results were analyzed considering a confidence interval of
95%. The next sections presents the obtained results.

V. MICRO-BENCHMARKS

A. Performance Evaluation of HDFS

To identify the best results of performance for HDFS, we
chose the TestDFSIO benchmark which comes bundled with
the Hadoop distribution and give us the writing/reading per-
formance corresponding with the throughput. TestDFSIO has
been traditionally adopted by Hadoop users for identifying
performance bottlenecks in networks, operating system and
HDFS configurations, giving an insight of how efficient the
cluster in terms of I/O is. The metric Throughput is measured
in Mbps. For a job using N map tasks, the throughput is
defined considering an index that goes from 1 to N where
N denotes the number of tasks. It is represented as follows:

Throughput(N) =
∑N

i=0 filesizei
∑N

i=0 timei

As the metric is based on the elapsed time for writ-
ing/reading files by individual tasks, it is easily observed
that the size of such a file infers on the results. In that
way, to obtain more accurate results we ran tests writing
10 files per MR cycle, varying the file size from 100 MB
to 3000 MB. In an attempt to produce significant results
when configuring replication factor for 2 and 3, we prefer
to perform experiments with only write operations, since
their results have a confidence interval close to 0, while
we observed a confidence interval at an average of 50 for
read operations. This decision allows a more fair evaluation
between the systems.

The behavior of all the systems depict in Figures 1 and 2
tend to be linear when the size of the files goes beyond 2GB.
It is due of the copies transferred across the DataNodes in
order to meet the replication factor policy. Considering a
replication factor of 3, for a write operation of 10 files of
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Figure 1. Performance evaluation of HDFS with a replication factor of 2
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Figure 2. Performance evaluation of HDFS with a replication factor of 3

2GB, at least 60GB of data are transferred over the network.
In such a way, we assume that the network throughput has
influenced the results, since the capacity of the network does
not reach its maximum until the data transferred reaches
60GB.

The result obtained from Linux-VServer in Figure 2 was
similar to the results revealed in [7] when the network
subsystem was stressed with the NetPipe benchmark [22].
Such behavior can be explained due to the different network
implementation of each system. While OpenVZ and LXC
were configured to take advantages of using the Bridge-
based network in order to increase scalability, as described
in Section III. Linux-VServer uses a Physical-based network
which by its very nature reveals a latency very close to
the native. However, with low scalability. That is why no
significant difference was observed in the Linux-VServer
while less data was transferred in the network, as shown
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in Figure 1.
On the other hand, OpenVZ achieves a throughput at an

average of 6.7Mbps for files of 3GB in size, which represents
a loss of 3Mbps. It is due the default I/O scheduler adopted
by the system. While LXC and Linux-VServer utilize a
deadline scheduler for I/O operations that aggressively re-
orders requests to ensure improvement in I/O performance,
Openvz uses CFQ scheduler in order to classify instructions
by priorities, making the shared resources better distributed.
Albeit there are benefits in using the CFQ scheduler in
shared systems, the inherent overhead needs to be taken
into consideration in container-based virtualization systems.
Furthermore, considering we are using a single disk per
node, the performance could be even better if the number
of disks were increased.

B. NameNode Evaluation

We chose the NNBench benchmark in order to evaluate
the NameNode component while observing its behavior
when dealing with a large number of HDFS-related requests.
NNBench comes packaged with Hadoop distribution. It was
meant as a load test for simulating creating, reading, renam-
ing and deleting files on HDFS. We performed two types of
simulations for creating/writing and opening/reading. The
first means that the files are first created and then written,
while the second means that the files are first opened and
then read.

The most remarkable metric which deserve a close in-
spection is the average latency, measured in milliseconds.
NNBench was set up to generate operations on 1000 files
on HDFS. At the end of each simulation it was possible
realizing a number of 8000 operations carried out.

Table I
PERFORMANCE EVALUATION USING NNBENCH

(TIMES ARE REPORTED IN MS)

Native LXC OpenVZ VServer

Open/Read 0.51 0.52 0.51 0.49

Create/Write 54.65 56.89 51.96 48.90

The ability of the NameNode in dealing with both types
of simulations was similar as indicated in Table I. However,
the results become slightly significant when we analyze
the differences between the systems. By observing the re-
sults revealed for creating/writing operations, Linux-VServer
reaches a latency at a average of 48ms, while LXC obtained
the worst result at an average of 56ms. The differences are
not so significant if the numbers are considered. However,
the strengths are that no exception was observed during the
high HDFS management stress, and that all systems were
able to respond effectively as the native.

C. MapReduce benchmark

The job turnaround time on high throughput MR clusters
is tightly influenced by the ability of the job scheduler

to handle requests as efficient as possible. MRBench is a
benchmark that puts stress on the MR layer for the sole
purpose of identifying its efficiency while dealing with
several job requests. As such it comes with the Hadoop
distribution and runs a job multiple times, taking an average
of all runs.

Before beginning, MRBench just creates a text file con-
taining a given number of lines of generated data. The num-
ber of lines we defined was in the order of 1 million. It is also
possible defining the number of Map and Reduce tasks as
configuration option. Due to our MR cluster characteristics,
we defined 24 and 8 of Map and Reduce tasks respectively.

MRBench starts by taking text lines as input format, runs
some processing on it and writes out data as text again. On
the next step, the reduce function ignores the key and writes
the values to the output again. It is worth noting that the
benchmark does not put any stress test on HDFS, since no
write operation is performed on the file system.

Table II
PERFORMANCE EVALUATION USING MRBENCH

(TIMES ARE REPORTED IN MS)

Native LXC OpenVZ VServer

Execution time 14251 13577 14304 13614

There is a certain similarity when the results are compared
between the systems, as shown in Table II. No timeout
was observed and all systems were able to respond during
a sequence of 50 job requests. The results obtained from
MRBench are useful and show that MR layer suffers no
substantial effect while running on the different container-
based virtualization systems.

VI. MACRO-BENCHMARKS

Macro-benchmarks are considered benchmarks that stress
out many components of a system and can normally give
more significant results, as it implicitly includes the com-
ponents before evaluated by micro-benchmarks. The macro-
benchmarks selected include: Wordcount [23], Terasort [24]
and IBS [25].

A. Analyzing performance with Wordcount
WordCount is a simple application that counts the number

of occurrences of each word in a given input dataset. It
also comes with the Hadoop bundle and it is widely used
as a way for comparing the performance among different
Hadoop clusters. This experiment does not make any stress
test, instead it only demonstrates a performance comparison
when a real-world application is running on. The input file
was created by looping a sample text file until it reach 30GB
of size. We believe that such a dataset is large enough to
find out the best results of performance, taking into account
the characteristics of the cluster.

As can be observed in Figure 3, all container-based
system achieved a near-native performance. We suppose
that the peak of performance degradation from OpenVZ is
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Figure 3. Performance evaluation using Wordcount

explained by the experiment early analyzed in Section V-A,
while the I/O scheduler introduced some impact on HDFS
performance.

B. Terasort benchmark
Terasort is the well-known benchmark to identify how

fast a Hadoop cluster is. It also comes with the Hadoop
distribution and has been adopted in many cases in the
industry to put records in large-scale clusters.

Terasort is a standard map/reduce sort. The goal of the
benchmark is to sort an amount of data as fast as possible.
To do so, a execution of Terasort consists of at least 2
steps: generating the input data and running on such input
data. There is a thirty step that validates the sorted output.
Although we consider the latter, we decided not to put in
the paper due to lack of space.

TeraGen was used to generate 30GB of random data to be
conveniently used as input data for the subsequent Terasort.
We consider a HDFS block size of 64MB to ensure that the
time to start/stop map tasks are not larger than the time to
perform the tasks, due of the characteristics of the cluster.

The behaviors of the systems depicted in Figure 4 were
similar to the Wordcount and the reason we suppose to be
the same—the HDFS overheads identified in Section V-A.

C. Performance Isolation
During the past few years, container-based virtualization

was characterized as a virtualization architecture that does
not promise a good performance isolation, as also revealed in
our previews work [7]. Nowadays, with the advent of novel
container-based technologies such as LXC, and with the
improvements in cgroup feature to better control the limits
of the system resources, the results of isolation are uncertain
and deserve to be further studied. To do so we chose LXC
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Figure 4. Performance evaluation using TeraSort benchmark

as the representative of the container-based virtualization to
be evaluated, as it is the most recent implementation and
also because there has been a trend toward using it in MR
clusters. Mesos, for instance, uses LXC with the purpose
of separating the resources by isolating them from different
frameworks like MPI and Hadoop. Likewise, YARN has also
incorporated LXC and cgroups with the aim of isolate the
resources such as memory per application.

The experiments were conducted by using the IBS bench-
mark on a modified Hadoop cluster to run two containers
per node. We divide the overall available resources per
node by half, including CPU, memory and disk I/O. In
LXC, the cgroup feature is used to do so. The subsystem
cpuset.cpus was used to restrict the number of CPU usage
per container. The amount of available memory per con-
tainer was configured to be 4GB by using the subsystem
memory.limit in bytes. Finally, the maximum I/O bandwidth
per container was limited by putting weights on the I/O
blocks. The subsystem blkio.weight implements the block
I/O controller. It was incorporated into the LXC since the
2.6.34 kernel release.

The evaluation of the performance isolation consists of
two steps: (1) the execution time of a given baseline ap-
plication running on one container is collected—we chose
the Terasort; and (2) such application is rerun side-by-side
with a stress test (CPU, memory, I/O, forkbomb) on another
container. The metric is obtained by comparing the execution
time from steps (1) and (2). At the end, it is possible
observing how much the performance of the Terasort is
impacted by different stress tests running side-by-side.

The results we obtained are shown in Table III. The
numbers represent the performance degradation for each
resource evaluated. It was possible realizing that the limits
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Table III
PERFORMANCE ISOLATION OF DIFFERENT RESOURCE USING IBS

BENCHMARK SUITE.

CPU Memory I/O Fork Bomb

LXC 0% 8.3% 5.5% 0%

of the CPU usage per container is working well and no
significant impact was noted. However, during the memory
and I/O stress tests, a little performance degradation needs
to be taken into account. The result could be worse, since
the I/O bandwidth was set to be distributed fairly among the
containers.

Finally, the fork bomb stress test reveals that the LXC has
a security subsystem that ensure feasibility, as the operating
system process scheduling was not affected.

VII. RELATED WORK

The use of virtualization systems in resource-intensive en-
vironments has been the subject of several studies in the past
few years due of its potential to improve the manageability
and because of the performance overheads reduction with
the improvement of hardware-assisted technologies, such as
Intel-VT and AMD-V. Nevertheless, the results obtained so
far have proved that virtualization systems are still unable to
achieve the same native performance. Once hypervisors have
the function of translating instructions from upper layers
(virtual machines) to the lower layer (hardware), in most
cases this is the major cause for the performance overheads.

One the other hand, there has been very few works
exploring MR on virtualization systems. Such works have
analyzed how virtualization systems can benefit MR clusters
by improving reliability through fault tolerance techniques
and what is the impact of virtualization on such clusters.
Ibrahim et al. [6], for instance, measured and analyzed the
performance of HDFS on both physical and virtual cluster—
to do so, was used the hypervisor-based system Xen—when
transferring data from and to HDFS. The results reveal that
MR on virtual machines is unable to reach the same native
performance. It is already expected due to the very nature
of hypervisor-based systems. Moreover, the work also lacks
a performance comparison between virtual and physical
clusters using further virtualization systems involving others
architectures.

CLOUDLET [26] is a implementation of MR on virtual
machines that despite of the well-know I/O overheads, tries
to overcome it by benefiting of the management features,
increasing system reliability, achieving high throughput and
execution accurateness. The use of container-based systems
could help CLOUDLET by decreasing the performance
overheads while keeping manageability.

VMWare has recently announced the Big Data extension
to vSphere platform through the Serengeti project [27],
which take advantages of virtualization capabilities to sup-
port Hadoop workloads. Results obtained from experiments
reveal that the impact of virtualization was about 13% of

performance overhead for Terasort [27]. The best Terasort
result we obtained when comparing the container-based
systems was an overhead at average of 2% for the LXC.
YARN [14] is the next generation of Hadoop, which will
use container-based virtualization to share a cluster among
different applications. Mesos [13] is a platform that lever-
ages containers to isolate resources among frameworks (such
as Hadoop and MPI) that share partitions of a cluster. It is
not clear why the authors chose LXC as the virtualization
platform to do so. However, the results we obtained on
this work demonstrate that there are substantial differences
among the container-based systems.

Although some works are already taking advantages of
container-based systems on MR clusters, there are still no
work studying the impact of this type of virtualization in
the performance of MapReduce applications. For the best
of our knowledge, this is the first work to (1) evaluate
the performance overhead of container-based systems on
MR application, (2) compare all of recent container-based
implementations in terms of performance and manageability
for running MR clusters and (3) evaluate the performance
isolation of LXC for MR applications.

VIII. CONCLUSION AND FUTURE WORK

This paper presented a performance comparison be-
tween the current container-based virtualization systems for
MapReduce clusters. Furthermore, we also examined the
performance isolation of the most recent container-based
system, as it is in constantly evolving and because new
capabilities have recently emerged.

We have pointed out usage cases where virtualization have
been adopted in MapReduce clusters. In cloud computing
environments, virtualization had an important contribution,
by allowing server consolidation, more security and better
resource utilization. The ability of cloud computing envi-
ronments in supporting MapReduce workloads have grown
in the last years due of the increase volume of data we
face today and the high cost for computing such a large
dataset in traditional clusters. On the other hand, traditional
MapReduce clusters are typically shared among many users
or institutes which may have different software requirements
that differ between on another. As presented, Mesos and
YARN are systems that benefits from using a container-
based system to provide better resource sharing between
programming frameworks, such as Hadoop and MPI.

In spite of these cases where virtualization is very useful
for MapReduce clusters, their use is only feasible if the
fundamental performance overhead is reduced. We found in
this work that all container-based systems reach a near-native
performance for MapReduce workloads while contributing
with many management capabilities, such as performance
isolation, checkpoint and live migration.

The results of performance isolation reveled that the LXC
has improved its capabilities of restrict resources among
containers. On our previews work [7], we found a poor
security and performance isolation for LXC. Nowadays,
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with the advent of new capabilities into LXC, such as the
blkio controller, the resources could be better isolated when
evaluated with a I/O intensive workload. This makes its use
very attractive in MapReduce environments.

As future work, we plan to study the performance isola-
tion at the network-level. We also plan to study the aspects
regarding the green computing, such as the trade-off between
performance and energy consumption while using container-
based systems and hypervisor-based systems.
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