
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

MAPPING APPLICATIONS
ONTO CLUSTER-BASED

MPSOCS

OLIVER BELLAVER LONGHI

Dissertation presented as partial requirement
for obtaining the degree of Master in
Computer Science at Pontifical Catholic
University of Rio Grande do Sul.

Advisor: Prof. Fabiano Passuelo Hessel

Porto Alegre
2014

Dados Internacionais de Catalogação na Publicação (CIP)

L854m Longhi, Oliver Bellaver
Mapping applications onto cluster-based MPSOCS / Oliver

Bellaver Longhi. – Porto Alegre, 2014.
73 p.

Diss. (Mestrado) – Fac. de Informática, PUCRS.
Orientador: Prof. Dr. Fabiano Passuelo Hessel.

1. Informática. 2. Arquitetura de Computador.
3. Mutiprocessadores. I. Hessel, Fabiano Passuelo. III. Título.

CDD 004.35

Ficha Catalográfica elaborada pelo
Setor de Tratamento da Informação da BC-PUCRS

To my family and friends.

“Ne frustra vixisse videar”
(Tycho Brahe)

ACKNOWLEDGMENTS

I am thankful for the help given by my coworkers Sérgio Johann, Felipe Magalhães and
Carlos Moratelli, by my official and non-official advisors, respectively, Fabiano Hessel and Gabriel
Marchesan de Almeida, and finally, by the enthusiastic professors César Marcon and Beatriz Franciosi.

MAPEAMENTO DE APLICAÇÕES EM MPSOCS CLUSTERIZADOS

RESUMO

Durante décadas, a indústria aumentava a frequência de operação dos processores para
responder às necessidades de desempenho. Após atingir uma limitação física em termos de gera-
ção de calor, o novo eixo escolhido para explorar desempenho foi escalar o número de elementos
de processamento. Para lidar com o crescente número de elementos de processamento, cada vez
mais são importantes as metodologias para auxiliar os projetistas no desenvolvimento de sistemas
multiprocessados. Abordagens baseadas em simulação e prototipação em FPGA são onerosas pois
demandam muitos recursos, tais como projetistas e tempo. Por isso, técnicas baseadas em modelos
analíticos ganham visibilidade como alternativas para essas abordagens onerosas. Porém, modelos
analíticos possuem desvantagens, como a dificuldade de modelar e caracterizar diferentes arquitetu-
ras. Além disso, topologias emergentes de sistemas multiprocessados carecem de modelos analíticos.
Levando esse cenário em conta, este trabalho propõe um modelo analítico que suporta atividades
comuns de projetistas tais como mapeamento de aplicações e geração de protótipos de sistemas
multiprocessados.

Palavras Chave: Mapeamento de Tarefas, Particionamento de Tarefas, Redes Intra-chip, clusters.

MAPPING APPLICATIONS ONTO CLUSTER-BASED MPSOCS

ABSTRACT

The industry for decades has increased the clock rate to answer the need of performance.
Reaching a physical limitations in terms of heat, the new chosen axis to increase performance is to
scale the number of processing elements. To deal with that scaling number of processing elements,
more and more important are the methodologies to support the design of MPSoCs. Approaches
like simulation and FPGA-based prototyping are too expensive and timing consuming. Therefore,
techniques like Analytical Models represent important alternatives to the previous consuming ap-
proaches. However, these architecture models are difficult to build and characterize. In addition,
emerging MPSoC topologies lack analytical models. Due to that, this work proposes an analytical
model to support designers in common tasks of the design process like application mapping and
prototypes generation.

Keywords: Task mapping, Task partition, NoC, cluster.

LIST OF FIGURES

2.1 Flow showing how to apply partitioning and mapping. Adapted and translated from
[Mar05]. 25

2.2 Point-to-point infrastructure with sixteen processing elements. See that not every
link direction is implemented. 28

2.3 Bus connecting 64 processing elements. 29
2.4 8x8 mesh-based NoC interconnecting 64 processing elements. 30
2.5 4x4x4 mesh-based NoC. 32
4.1 Flow to map applications to target architectures. 40
4.2 Different topologies composed by Routers, Processors and Channels. 42
4.3 Description of the cost function. 43
4.4 Random mapping algorithm. 44
4.5 Traditional implementation of the Simulated Annealing. 45
4.6 Second implementation of the Simulated Annealing. 46
4.7 Third implementation of the Simulated Annealing. 46
4.8 Bus specification. 49
4.9 Router specification. 50
4.10 CNoC Local Interface Structure. 51
4.11 Communication protocol header. 52
4.12 Target flit specification. 53
4.13 XYCSIM help command. 54
4.14 XYCMAP help command. 55
4.15 XYCADAPT help command. 56
4.16 XYCPRO help command. 57
5.1 Send task description. 60
5.2 Performance analysis of application 1. 64
5.3 Performance analysis of application 2. 65
5.4 Performance analysis of applications 1 and 2. 65
5.5 Mapping costs for the 4× 4 architecture. 67
5.6 Mapping costs for the 2× 2× 4 architecture. 67

LIST OF TABLES

3.1 Comparison of cluster-based works. 37
4.1 Hellfire communication primitives. 51
5.1 Bus (64) time costs. 60
5.2 NoC (8x8) time costs. 61
5.3 Clustered NoC (2x8x4) time costs. 62
5.4 Area comparison between NoC and clustered NoC. 62
5.5 Frequency comparison between NoC and clustered NoC on Virtex V. Adapted from

[Mag13]. 63

LIST OF ACRONYMS

GSE – Embedded Systems Group
ITIV – Institute for Information Processing Technologies
PUCRS – Pontifical Catholic University Of Rio Grande Do Sul
KIT – Karlsruhe Institue of Technology
PE – Processing Element
CPU – Central processing unit
ITRS – International Roadmap for Semiconductors
FPGA – Field-Programmable Gate Array
SOC – System-on-Chip
RM – Rate Monotonic
EDF – Earliest Deadline First
DSP – Digital Signal Processing
MPSOC – Multiprocessor System-on-Chip
NOC – Network-on-chip
CNOC – Cluster-based Network-on-Chip
OVP – Open Virtual Platforms
API – Application Programmable Interface
MCWG – Modified Communication-Weighted Graph
SA – Simulated Annealing
SAN – Nested Simulated Annealing
HDL – Hardware Description Language
HFOS – Hellfire Operating System
HC-MPSOC – Hellfire Cluster-based MPSoC

CONTENTS

1 INTRODUCTION . 23

1.1 ORGANIZATION . 24

2 RELATED CONCEPTS . 25

2.1 PARTITIONING AND MAPPING TASKS . 25
2.1.1 PARTITIONING . 25
2.1.2 MAPPING . 26
2.1.3 COMBINATION OF TECHNIQUES . 27
2.2 COMMUNICATION STRUCTURES . 27
2.2.1 POINT-TO-POINT . 27
2.2.2 BUS . 28
2.2.3 NETWORK-ON-CHIP . 30
2.2.4 CLUSTERED NOC . 32

3 RELATED WORKS . 35

3.1 MAPPING TECHNIQUES FOR NETWORK-ON-CHIP . 35
3.2 MAPPING TECHNIQUES FOR CLUSTER-BASED MPSOCS 36
3.3 DISTINCTION OF PROPOSED WORK . 37

4 PROPOSED WORK . 39

4.1 ADOPTED MODELS AND THE MAPPING STEP . 40
4.1.1 COMMUNICATION TASK GRAPHS . 40
4.1.2 ABSTRACT ARCHITECTURES . 41
4.1.3 FUNCTION COST . 42
4.1.4 MAPPING ALGORITHMS . 43
4.2 HELLFIRE SYSTEM . 47
4.2.1 IMPLEMENTED ARCHITECTURES . 48
4.2.2 COMMUNICATION DRIVER . 50
4.3 XYC TOOLCHAIN . 53
4.3.1 XYCSIM - XYC SIMULATOR . 53
4.3.2 XYCMAP - XYC MAPPER . 54
4.3.3 XYCADAPT - XYC ADAPTOR . 56
4.3.4 XYCPRO - XYC PROTOTYPE BUILDER . 56

5 EXPERIMENTS . 59

5.1 ARCHITECTURE ANALYSIS . 59
5.1.1 OTHER CONSTRAINTS . 62
5.2 SYSTEM SIMULATION . 63
5.3 MAPPING ALGORITHMS . 66

6 FINAL CONSIDERATIONS . 69

REFERENCES . 71

23

1. INTRODUCTION

The industry for decades has increased the clock rate to answer the need of performance.
Reaching a physical limitation in terms of heat dissipation, the new chosen axis to increase perfor-
mance is to scale the number of processing elements (PE). As a consequence, ITRS (International
Roadmap for Semiconductors) expects System-on-Chips (SoC) to contain thousands of processing
elements near to 2020 [ITR09]. Actually, now it is already possible to find SoCs that reach the
hundreds of PEs as expected [KJS+02] in 2002.

Such systems that contain multiple processing elements are known as MPSoCs (Multi-
processor System-on-Chip). Usually, the processing elements are interconnected to each other by
an on-chip interconnection infrastructure. To compose such interconnection, different approaches
might be used. Few approaches use dedicated bus, others use shared bus, and there are even others
that use a more complex communication media, such as Network-on-Chip (NoC), that involves the
use of routers.

In a more formal manner, NoCs can be defined as intra-chips communication infrastruc-
tures, usually composed by a set of routers interconnected by point to point communication channels,
implementing a chosen topology. Their main advantages are high scalability, reusability and relia-
bility [DT01]. These characteristics make NoCs good candidates for current and future MPSoCs
designs.

A novel approach that explores better domain-specific architectures has been studied re-
cently [BFFM12] [MBF+12] [FYX+10] [TMT12]. They are known as cluster-based MPSoCs, and
differently from NoCs that compose links to processing elements, they compose links to a second-
level communication infrastructure, usually a bus.

However, as more and more sophisticated software can be executed on MPSoCs, and as
the complexity of software to be developed is increasing, the developers can no longer wait for the
chip to be fabricated or prototyped for the integration of hard/software phase in order to meet the
time-to-market constraints [HYH+11]. To deal with that, a set of tools are required to keep different
specialists working in their respective fields. It means that developers and designers need to work
at the same project in different models using different approaches.

The two main approaches to develop and design MPsoCs are simulation-based and FPGA-
based. The first one uses high-level models of processing components to assume their expected
behaviour. The second can be used to prototype system and perform test and validation. Both of
them have their pros and cons. Simulation-based tools have intrinsic sequential nature and their
execution time grows linearly as the number of processing elements grows. FPGA-based can achieve
high execution times but are more complex and, again, this complexity grows according to the
number of processing elements. In addition, FPGA-based validation requires investment and they
use to be expensive.

24

As the cost and time to prototype and to simulate MPSoCs increase, more important are
the design-time methods to build efficient SoCs. These methods can help designers to estimate
several requisites of systems, like energy consumption, memory and performance. But, the most
important, they base designers’ decisions aiming to better exploit resource and design space. Meth-
ods like these are labelled as analytical models, and as FPGA-based and simulation-based methods,
it has its drawbacks. They are harder to model and are strongly coupled to specific models, what
requires a new effort to adapt new technology to the analytical model.

A special case where analytical models are employed are the tasks of mapping and parti-
tioning applications to physical network structure. These tasks are important because, depending
on the mapping of communicating tasks, the bandwidth might increase, and by allocating higher
bandwidth across the links of the NoC, less performance is obtained and more energy is dissipated.
Thus, it is important to balance the bandwidth needs across the different links [MDM04].

After glimpsing this whole scenario, it is possible to realize that debugging, validating and
verifying are ever growing and challenging issues in the embedded systems field. It means that,
taking into consideration that system are facing growth of complexity with respect to the number of
processing elements being used, the effort on the development of tools to deal with these issues is
very important. In addition, the existing tools are powerful to deal with specific levels of abstraction,
but the ones that work with different types of methods are more difficult to build and comprehend
much more complexity. At that point, a tool that uses simulations and analytical models could
explore others gaps of MPSoCs design. Therefore, this work presents and emphasizes the need
of tools and methods that ease the design space exploration with respect to models that use a
combination of methods (analytical models and simulation-based tools).

The objective of this work is to propose a new model to map applications to cluster-based
networks. To do that, the HC-MPSoC [Mag13], a cluster-based network similar to [BFFM12] and
[MBF+12] that has been designed in GSE (Embedded Systems Groups), is going to be the target
infrastructure of this work. The constraints explored by the work are the number of cores, area,
and the latency. The number of cores is an important constraint because as less PEs are in the
project less area is needed and, therefore, the overall frequency of the architecture can be increased,
improving the system performance [TMT12]. Thus, a mapping approach to search for the best form
factor to build MPSoCs is also presented as an achievement of the work.

1.1 Organization

In Chapter 2 several important concepts for the understanding of the work are presented.
Chapter 3 collects few works that employ studies about popular analytical models, mapping/parti-
tioning algorithms and cluster-based MPSoCs. After that, Chapter 4 presents the proposed work.
In Chapter 5 a set of experiments that support the work realized are presented. Finally, in Chapter
6 some considerations are made and future works are proposed.

25

2. RELATED CONCEPTS

2.1 Partitioning and Mapping Tasks

Partitioning and mapping tasks are important concepts to this work. Figure 2.1 demon-
strate in a graphical manner how both techniques are related. In the partitioning process, tasks are
arranged in blocks. These blocks are posteriorly placed in defined tiles of the available infrastructure.
Tiles are pairs of resources and its access points. We can consider resources as processors, periph-
erals and memories while access points can be network interfaces or channels that link processing
elements to the communication infrastructure.

Partition

Mapping

T1

T2

T3

T4

T5

T6

T7

T8

T3

T1

T2 T4 T6 T7

T5 T8
P1

P2 P3

P4

P1 P2

P3 P4

Figure 2.1: Flow showing how to apply partitioning and mapping. Adapted and translated from
[Mar05].

2.1.1 Partitioning

The partitioning step takes a set of tasks as input and gives a set of blocks that contain
the task set. Each resulting block has to respect one or more constraints. One common type of
constraint is scheduling policies. Basically, it ensures that the task set mapped to the block can
be scheduled by the operating system without overcharging the processing element. Scheduling

26

policies can be very simple as round-robin or FIFO, or be more complex like RM (Rate Monotonic)
and EDF (Earliest Deadline First). Additionally, there are other constraints, e.g., one task set should
be mandatorily mapped to predefined blocks or blocks should not exceed a given number of tasks.
Actually, these constraints may vary with design requisites and resources available.

Let Γ = {γ1, γ2, γ3, ... , γn} be the set of existing tasks of the system, β ⊆ Γ a subset
from Γ known as block and B = {β1, β2, β3, ... βm} a set of all blocks. Then, the partitioning is a
process that originates B, considering that β1 ∪ β2 ∪ β3 ∪ · · · ∪ βm = Γ, m = |Γ| and βk ∩ βi = ∅
given that ∀βk ,βik 6= i .

The biggest β possible is the one composed by all tasks in Γ. In this case, the existing
block is the system itself. On the other side, the smallest β of a partition B is the one that contains
a single γ. This case represents a partition whose n = m.

The complexity to perform the partitioning of tasks to blocks is proportional to the Bell
number O (Bell (n)), where n is the size of the task set. For instance, a set Γ of size n = 3 has the
following acceptable combination of blocks:

{{γ1}, {γ2}, {γ3}}

{{γ1}, {γ2, γ3}}

{{γ2}, {γ1, γ3}}

{{γ3}, {γ1, γ2}}

{{γ1, γ2, γ3}}

2.1.2 Mapping

The mapping step is more commonly used among the researches since it involves two
practical sets, for instance, software components and hardware components, or, more simply, tasks
and tiles. C. Marcon [Mar05] defines it as source set of objects A = {α1,α2,α3, ... αp} and
a destination set of resources Π = {π1, π2, π3, ... πq}. A mapping is a non-surjective function
f : A → Π that makes a one-to-one association between elements from set A and Π, given that
|A| ≤ |Π|.

The complexity to map objects to resources is bigger than the complexity to partition
tasks to blocks. It is like that because the complexity to map objects to resources is O (p!), given
that p is the number of objects. Consequently, when we combine both techniques, the complexity
O (Bell (n)× p!) is obtained. For instance, the resulting map of sets A and Π that has p = q = 3
could be one of the following:

{{α1}, {α2}, {α3}}

27

{{α1}, {α3}, {α2}}

{{α2}, {α1}, {α3}}

{{α2}, {α3}, {α1}}

{{α3}, {α1}, {α2}}

{{α3}, {α2}, {α1}}

2.1.3 Combination of Techniques

In the literature, the step of placing tasks onto processing elements is done by performing
partition and mapping steps in a row, or it can be done using exclusively the mapping step. In
Section 3 this distinction is presented.

When both techniques are merged, the output of partitioning step is simply applied as
input to the mapping step. This approach has a main advantage that it splits the problem into
smaller segments. But, essentially, if both approaches (partitioning and mapping or only mapping)
are performed exhaustively, the quality of the results is the same, in spite of the fact that they may
differ.

2.2 Communication Structures

There are many different topologies of communication structures. Many of them vary
slightly from each other. In this section some of the most important and popular architectures are
presented.

2.2.1 Point-to-Point

The point-to-point approach is being used as a general solution for SoC communication
since the 90s, when the SoC concept arose. It uses dedicated links to communicate between
processing elements.

With respect to performance, this topology is considered to be the most efficient since each
pair of communication nodes have a dedicated channel. Although it is a good characteristic in terms
of performance, it results in a growth of complexity and area. It is more complex because of the
fact that designers usually have to design manually the channels between communicating elements
and its area growths too much because of the number of data links between communicating nodes.
If two nodes have to transfer data in both directions, then the data links must be twice as big as
the data links needed by a single direction flow of communication.

28

Actually, dedicated wires are required for each communication flow, i.e., in some cases,
two communicating nodes require two set of linking wires between them, one for sending data from
the former node to the second node and another set for the opposite flow. For instance, the number
of bidirectional channels to connect all processing elements in an architecture with n processing
elements is n × n − 1.

Figure 2.2: Point-to-point infrastructure with sixteen processing elements. See that not every link
direction is implemented.

Figure 2.2 shows a point-to-point architecture with sixteen processing elements. Note that
not all channels are mandatory, actually, non-communicating processing elements do not need to
have channels to interconnect them and there are channels with a single direction.

2.2.2 Bus

A bus is a set of wires that are shared between devices to connect them so they can
transmit data to each other. Buses have important characteristics like the smaller complexity of
implementation compared to point-to-point and also the efficient use of wires, given that less wires
are needed to connect processing elements.

Devices of a bus can be classified as masters or slaves. A common example of master
and slave devices are a processor and a memory respectively. The master can control the bus by
performing requests to read or write into the bus. On the other hand, the slave can only respond
to requests. A traditional graphical representation of a bus is shown in Figure 2.3. Blue squares are
used to represent processing elements and the single orange rectangle represents the bus.

29

Figure 2.3: Bus connecting 64 processing elements.

A common concept involved in buses implementation is arbitration. Arbitration is respon-
sible for granting access to the bus following an access policy. Such policy is necessary to share the
bus and also to avoid data corruption and starvation1 between bus members.

The most used arbitration policies are round-robin arbitration and arbitration based on
priorities. The former treats requests with the same priority and grant access based on a fair
sequence. The second one respect a priority list to grant access to the bus. Still related to arbitration,
there are more specific techniques like burst mode data transmission [LRD01], where the master
negotiates with the arbiter to send multiple words of data over the bus without incurring the overhead
of handshaking for each word.

Considering that buses share wires between several processing elements it is not possible
to have multiples transmissions simultaneously. Actually, to reach such feature more elaborated
techniques like hierarchical buses are needed.

The fact that it is not possible to have multiples transmissions simultaneously results in a
very important drawback to buses. As more and more devices are attached to the bus, it becomes
a bottleneck of the system. It happens because of the existence of contention to receive access to
the media. Contention occurs when one or more elements are requesting access to the media but
another element is transmitting through the media.

The fact that contention occurs when a bigger number of processing elements are attached
to the media implies in low scalability. Scalability is the ability of systems to grow and handle the
growth of work in such a way that there is no degradation of the requisites of the system. Nowadays
this characteristics is becoming more important, that is why other network structures like Network-
on-Chips became so relevant.

1Starvation occurs when a device requests access to a resource but the access is never granted though there is no
failure or error in the system.

30

2.2.3 Network-on-Chip

According to [BM06], there are two widely used perceptions of NoC. The former says that
NoC is a subset of SoC, and second one that NoC is an extension of SoC. In the first perspective
NoCs is an alternative to the communication problem of intra-chip system and is basically referred
as an physical media. On the other hand, the second perspective is more broadly concept and also
encompass related issues that were noticed with the appearance of NoCs.

As said in Chapter 1, NoCs can be defined as intra-chip communication subsystem, usually
composed by a set of routers interconnected by point-to-point communication channels, implement-
ing a chosen topology. One common example of topology used is the Mesh due to its regularity.
Figure 2.4 shows a mesh-based network with 64 processing elements - 8 columns and 8 rows of
elements. Routers are represented by red squares, while processing elements are represented by blue
squares. Arrows indicates links between adjacent components.

Figure 2.4: 8x8 mesh-based NoC interconnecting 64 processing elements.

In addition to mesh, other well known topologies are torus, tree, ad-hoc organizations and
mixed topologies. For instance, torus and mesh are very resembling topologies but their distinctions
lies on the fact that nodes in opposite sides in the mesh would be linked in the torus. It means
that every router is connected to four adjacent neighbour routers, while in the mesh there are some
routers that have only two or three links between neighbour routers. Torus has the advantage of
decreasing the average hops needed to transmit data between nodes, but it has the drawbacks that
it uses longer wires and routing logic is more significant, thus, it increases hardware complexity.

31

The arbitration problem, common to buses, also exists in the NoC but it has several
differences. The arbiter, instead of arbitrate the access of elements to the shared wires, it is
responsible for orchestrate how and the order in that adjacent routers forwards data through links.
So, instead of a centralized point of arbitration, NoC distributes this problem between neighbour
routers.

There are also new issues that were known in the broad sense of communication but
were not previously seen in the field of intra-chip system. For example, concepts like circuit or
packet switching, routing algorithms and connection-oriented and connectionless also need to be
discussed by system designers. All these concepts were known issues in the broad research field
of communication but are now also requiring designers attention in the field of intra-chip systems.
Therefore, it is possible to say that in spite of the advantages of network-on-chips, this approach
introduces complexity to the design of such systems. More details about these concepts are discussed
in the following sections of volume.

Usually, network-on-chips are divided into three main components. Network interfaces, also
known as network adapters, that implement the interface by which processing elements are connected
to the rest of the network. Their function is to decouple computation from communication. Another
component are the routers. They are in charge of routing data across the network. Such components
can be implemented in many ways but they use to contain arbiters, buffers, crossbars and a hard-
wired algorithm called routing algorithm. And, at last, links composed by channels are in charge of
connecting routers to processing elements.

According to [GG00], NoCs have few advantages and disadvantages when compared to
buses. Few of the main pros are:

1. Only point-to-point one-way wires are used, for all network sizes. It happens because each
channel is composed by two links: one for input and another for output, thus, both of them
can be used to forward different packets without interfere each other.

2. The same router may be instantiated again, for all network sizes, what represents reusability
to designs using NoCs.

3. Aggregated bandwidth scales with the network size, in opposite to bus.

4. The routing decision can be distributed, what makes fault-tolerant solutions possible. For
instance, adaptive routing policies can handle spoiled tiles avoiding to forward packets through
them.

The four advantages covered above represent respectively four known concepts to SoC
design: a) parallelism; b) reusability; c) scalability; and d) reliability. These concepts add value to
systems but there are also several drawbacks.

An important drawback is mentioned by authors in [GG00]. They say that NoCs are
more complex structures and demand the development of complex high-level drivers. Additionally,
decisions about mapping also influence on the performance of systems that adopted NoC. See that

32

depending on where communicating tasks are placed, more or less hops are necessary to transmit
messages. It reflects on other systems constraint like energy, heat and communication throughput.
From the perspective of area, intra-chip networks are bigger because there are waiting FIFOs (buffer
registers) and logic control segments for arbitration, crossbar and flit forwarding. Such registers and
control segments would not exists or would at least be less complex in simpler architectures like
buses. Finally, the adoption of network-on-chips requires a re-education of designers and developers
in order to understand and better exploit the architecture’s potential.

2.2.4 Clustered NoC

A clustered NoC is a special type of network that, instead of linking routers to processing
elements, it links routers with a second topology. Some may say that clustered NoCs are multilevel
architectures.

Figure 2.5: 4x4x4 mesh-based NoC.

Obviously there is a huge amount of combinations of different components that can be
coupled to compose new architectures and still be labeled as clustered-NoCs, but in this work we
assume that cluster-based architectures are composed in a first level by routers and in a second
level by buses. In addition, every cluster has the same length of processing elements in spite of
the fact that some of these cluster positions may not be used. Two arguments that emphasizes
the use of such cluster-based architectures according to [TMT12], are their flexibility in terms of
form factor which defines the NoC topology and the number of processing elements per cluster and,
second, their intrinsic partitioning, that enables the exploration of domain specific application and
addressing.

33

Because of the fact that cluster-based architectures are hybrid solutions of bus and NoC, it
is clear to assert that it is a more complex structure than NoC and bus separately. This characteristic
obviously demands more attention and effort from designers. Besides, designers have to avoid
clusters with too many communicating nodes, since it may cause the same contention that exists in
bus-based topologies.

So, this architecture was designed in such a way that it takes benefits from both topologies,
the low-cost usage presented in buses coupled with the NoC’s greater communication capability and
flexibility. It gives to the designer a greater possibility range to map the system elements over the
architecture. Consequently, the new mapping possibilities open new design choices that enrich the
design space exploration.

An example of cluster-based is shown in Figure 2.5. This example shows a clustered NoC
whose routers are used in a first level and clusters are implemented in a second level by buses. In
this case, there are 64 processing elements divided by sixteen clusters implemented by buses and
interconnected by a mesh-based network-on-chip. The mesh-based NoC has 4 rows by 4 columns
and is connected to the buses by their local ports. Routers are represented by red squares, while
buses and processing elements are represented by orange rectangles and blue squares respectively.
Arrows indicate links between adjacent components.

34

35

3. RELATED WORKS

This section is divided in three fields. The first one collects well-known approaches to
mapping applications onto Network-on-Chips. Then, a more specific study is presented where only
works related to mapping application onto cluster-based MPSoCs are shown. And then, a comparison
of this work with the ones previously presented is made.

3.1 Mapping techniques for Network-on-Chip

There are many works that emphasize the importance and complexity of mapping and
partitioning application tasks in NoCs. They started as soon as NoCs have arisen as a prominent
alternative to design MPSoCs.

One of the most known works that explores the mapping of applications to NoCs ar-
chitecture was made by Marculescu [HM03]. It captures the number of bit transitions based on
an application characterization model, which is described by Marcon [Mar05] as communication-
weighted model (CWM). CWM uses the communication-weighted graph (CWG), a simple graph
that exposes average communication loads between tasks. In spite of being a simple model, it
has few disadvantages, like it cannot represent dependency and order between communications. In
addition, it demands efforts from designer to elaborate and label communication arrows with their
loads. If arrows are not properly labelled, result precision is decreased from the mapping result.

In [MDM04], the authors present a heuristic algorithm to solve the mapping problem. The
algorithm specifically explores bandwidth constraints of mesh NoCs. The objective is to minimize
the average delay and it is validated by cycle-accurate simulation of a DSP design modelled in
SystemC to which NoC components are added from the xpipes library. Their communication
model is similar to the model shown in [HM03] and the heuristic algorithm has a behaviour divided
into three steps: i) initial mapping generation, based on a maximum communication ordering of
modules, ii) shortest path computation using Djikstra’s algorithm and iii) iterative improvement, by
swapping pairs of modules and re-computing shortest paths. Another very simple explanation about
the approach, is that it labels links with its utilization/load and it explores mappings whose paths
between communicating nodes have smaller link loads. One interesting fact of that work, is that
one of the activities listed as future work, is to extend the model to map cores onto various NoC
topologies, enabling the NoC topology selection.

In [LK03] a two-step genetic algorithm to map applications onto heterogeneous architecture
is shown. In the first step a partitioning of applications is presented where each group of tasks were
chosen to execute in the same processor type. In the second step occurs the mapping phase. The
algorithm was divided to decrease the complexity of partitioning and mapping caused by the explosion
of combinations. The approach really decreases it but injecting possible errors, since the initial step
estimates processing delays without considering completely the communications delay.

36

In [MMCM08], the authors collect results of a set of mapping algorithms to map appli-
cations to NoCs. The types of algorithms explored comprehend approaches like exhaustive search,
stochastic search methods, heuristics, and combinations of stochastic and heuristic algorithms. As
input, a communication-weighted graph served as basis to produce a set of experiments representing
communication patterns for various applications. The objective of that work is to explore low energy
consumption mappings.

3.2 Mapping techniques for cluster-based MPSoCs

In this section, several works that emphasize the mapping of applications onto cluster-based
MPSoCs are presented. At the end, Table 3.1 shows in a tabular manner their differences.

The authors from [ANPV10] contributed with a system that provides a multi-bus execution
environment where each processor is connected to a bus and the bus-based subsystems communicate
via routers connected in a mesh-style configuration. They make a study to evaluate memory access
patterns and this study indicates that while a hybrid architecture is preferable, the optimal number
of processors on each bus subsystem varies based on the application. This number appears to vary
between 1 and 8 depending on the communication requirements of the application. Therefore, they
proposed having a reconfigurable interconnect, where the number of cores per bus is variable and
assigned by the operating system at run time.

In [TLP+10], a bus-mesh hybrid architecture to provide a low latency communication
environment for SoC Design was proposed. Their basic idea is to utilize the communication feature
of each IP to decide the IP location. In the proposed hybrid architecture, the IPs with heavy traffic
and communication affinity are placed in the same bus-based subsystem to avoid hot-spots and
reduce the transmission latency. Since the hybrid architecture is based on NoC concept, the router
of the hybrid system not only connects with its neighbour routers but also connects to a single
IP or a bus-based subsystem. It is noteworthy that a new interface is not needed for each IP in
subsystem, and it can further reduce the design cost and power consumption. It also contributes
with partitioning and mapping greedy algorithms that has as input the network dimensions and a
communication graph.

In [MSA12] a work that explores reconfigurability was also presented. The authors proposed
an architecture whose nodes are grouped into some clusters interconnected by a reconfigurable
communication infrastructure. From the traffic management perspective, this structure benefits
from the interesting characteristics of the mesh topology (efficient handling of local traffic where each
node communicates with its neighbours), while avoids its drawbacks (the lack of short paths between
remotely located nodes). The work uses few approaches presented by [MDM04] but proposed few
adjusts, so that, the existing algorithms could be used with the proposed architecture organization.

In [LSS+08], the authors proposed a hierarchical cluster-based customization method. It’s
methodology uses three separated steps: the first one to do the partition of communicating nodes,

37

another one for hierarchically compose and organize the network infrastructure and a third one
to remove unused network links. This approach is very application specific and its partitioning
algorithm has as input a communication-weighted graph, what opens possibilities to improvements
with a communication graph that brings more characteristics about communications.

In [TMT12], an indicator based on average Rent’s Rule [CS00] was proposed to map
applications to cluster-based MPSoCs. The objective is to predict the best form factor of MPSoCs
to obtain the maximum system frequency for a given multi-FPGA prototyping platform and a given
number of processing elements. To accomplish that, a generic cluster-based MPSoC, based on the
Xilinx Microblaze general purpose soft processor, was specifically designed. They build the platform
in a manner that the number of clusters and the number of processing elements per cluster is
generic. Another characteristic of it, is that both the cluster and the processing elements are all
homogeneous. At the end, the target prototyping platform was performed using a six Virtex-5 FPGA
board. In a more simple manner, they parametrize their network in three variables: X for NoC width,
Y for NoC height and Z for the number of processing elements attached to each NoC tile. Then,
they studied the influence of the form factor (X, Y and Z) in the system frequency when prototyping
and based on this study they choose the best form factor.

Table 3.1: Comparison of cluster-based works.

Work Type Focus Cluster Validation Uniformity Algorithm
RAMS
[ANPV10] static low-latency in-house bus

1-8 processors
PARSEC, SIMICS,
NS2 homogeneous Greedy

[TLP+10] static low-latency AMBA MPEG4, VOPD,
ModelSim homogeneous SWG and Greedy

[MSA12] dynamic energy
consumption mesh GSM, H263 and

VOPD. Xmulator - CWG and NMAP

[LSS+08] static power-saving hierarchical MPEG4, VOPD,
MWD homogeneous Greedy

[TMT12] static system
frequency

Virtex-5,
Fast Simplex Link - homogeneous -

XYC static area, latency and
number of IPs HC-MPSoC [Mag13]

MPEG4,
VOPD and
synthetic apps

homogeneous MCWM and
Simulated Annealing

3.3 Distinction of Proposed Work

All the works presented in this section are related to cluster-based MPSoCs. They also
have components known as routers that are in charge of composing the global communication
infrastructure. However, our work has a strong distinction from the works [LSS+08] and [MSA12]
because they do not use buses to implement their clusters, instead, they adopt hierarchical and
mesh-based approaches, respectively.

The work being presented here does have affinity with the works [ANPV10] and [TLP+10],
but, these works apply a more restrictive approach. Both of them use greedy algorithm that have
as input a communication weighted-graph introduced by [HM03]. Greedy algorithms are very quick,

38

but they may fall in very inefficient mappings when the set of inputs is not well defined. In addition
to that, the CWG is a graph that characterizes communications as arrows, and each one is labelled
with a load, that exposes the amount of data being transferred. Some may consider this approach
too simple for the complex systems that are being designed nowadays. Therefore, a map tool that
considers more variables is presented. In this map tool different architectures like bus, NoC and
clustered-NoC are implemented and a comparison of their performance related to minimum latency
is shown.

So, a mapping algorithm that uses a different approach and a communication graph that
describes more details about its contents were chosen. The approach adopted is the Simulated
Annealing and the communication graph is presented in Section 4. The distinction of this work with
the previously presented can be seen at the last line of Table 3.1.

In addition to the mapping algorithm focused on cluster-based architectures, this work
aims to provide several tools to help designers to explore design space. For instance, these tools can
be used to build simulation set-ups and prototypes. These tools will also be exposed and explained.

39

4. PROPOSED WORK

The proposed flow is divided into three main logic steps. These steps work with models
at different levels of data abstraction, but based on well defined structures it is possible to adapt
the data from one step to another automatically. These steps are:

Simulation
Simulation is one of the most important steps since it generates a very sensitive model that
will be the basis for the partition step. User will input its tasks and based on a simulation, each
message transferred will be recorded. The record of each message will be used to compose
the communication model.

Mapping
Optimization algorithms are applied to specific communication task graphs and architectures.
The objective is to obtain mapping alternatives to delegate tasks to PEs. These candidates
are constructed based on iterative methods that explore the solution space based on a cost
function specified by the designer.

End-Source Generation and Target Simulation
With the support of source-code adaptors, simulators and prototype builders, the designer has
tools to validate the obtained mapping candidate.

An overview of the whole flow is presented in Figure 4.1. The arrows and the sheets
represent respectively dependency of stages and artefacts. These artefacts can be both input and
output to other steps. The content syntax of each artefact is explicit in the brackets. Circles are
visual representation of automated tools of the proposed flow.

The implemented work can be divided into three groups of software. The former group is
responsible for the mapping step. All the models and decisions related to that subject are explained
in Section 4.1. The second group of software is related to the Hellfire System. Actually it extends or
modifies the Hellfire System in specific points and the work done in this field is presented in Section
4.2. The last group of the tools is a set of independent programs that implements the work flow
proposed as the novelty of this work (circles of the Figure 4.1). These programs compose the XYC
Toolchain and are presented in Section 4.3.

The name XYC was chosen with the intention to emphasizes the ability to model clustered
mesh-based architectures with the form-factor X ×Y ×C . The variables represent NoC width, NoC
height and cluster depth respectively.

40

Application

Description

(.yaml)

Source

Code

(.c)

Initial Simulation and

Verification

Communication

Task

Graph

(.ctg)

Mapping Tool

Decision

Source Code

Adaptation

Target Simulation

and

Validation

(.c)

(.c)

1

2

3

4

Figure 4.1: Flow to map applications to target architectures.

4.1 Adopted Models and the Mapping Step

There are several parts and decisions needed to implement the mapping step of the work
flow. For instance, it is necessary to specify the input, and chose the target architectures, so,
these activities are explained in Sections 4.1.1 and 4.1.2. Additionally, algorithms and function
costs are needed, so, Section 4.1.3 exposes the function cost adopted while Section 4.1.4 shows the
implemented mapping algorithms.

4.1.1 Communication Task Graphs

This section presents the communication-weighted model [Mar05] (CWM), a model that
captures the amount of bits transmitted between tasks and its extension. This extension (MCWM)
is a superset of the CWM and it is used to increase the precision of mapping costs.

41

Definition 1 : A communication-weighted graph is a directed graph, G(Γ,E), where each
vertex s ∈ Γ represents a task implemented to a defined processor and labelled with a cpu utilization
0 < us ≤ 1. The directed edge s → d(d ∈ Γ) denotes the communication flow from task s to task
d . Each edge s → d is labelled with vsd , the average volume of communication between s and d is
represented in bits.

Definition 2 : The modifed communication-weighted graph is a directed graph, G(Γ,E),
where each vertex s ∈ Γ represents a task implemented to a defined processor and labelled with a
cpu utilization 0 < us ≤ 1. The directed edge s → d(d ∈ Γ) denotes the communication flow from
task s to task d . Each edge s → d has two attributes, denoted by vsd and fsd , where vsd is the
average volume of communication between s and d , while 0 < fsd ≤ 1 means the average frequency
of packets designated to d and injected by s into the communication structure.

CWM takes only into consideration the amount of transmitted data and it does not consider
the channel occupation. On the other hand, MCWM tries to explore this characteristic with the f
attribute assigned to every communication edge. The choice of a good value for f must be carefully
done, once it will play an important role on the results of the experiments and might vary a lot
according to different task mappings. As previously mentioned, MCWM is a superset of CWM. So,
if every f attribute of the MCWM is assigned with the value 1, then the resulting mapping cost is
the same to the equivalent CWM. So, when this information is available, the designer can obtain
better estimations, if not, it is still possible to use it according to the widely adopted model.

4.1.2 Abstract Architectures

Based on three basic components it is possible to configure many architectures and compare
them using the same metric. These three components are Routers, Processors and Channels. The
implemented architectures are Bus, NoC and cluster-based NoC. See that these architectures are
high-level representations and are not related to resembling components implemented in Section
4.2.1.

Figure 4.2a shows an architecture composed of 16 processors connected to a bus. All
processors share the same channel and have the same access priority to it. Figure 4.2b shows a
4 × 4 NoC architecture with the same width and height. Processors and router are connected
via bidirectional connections each one composed of two physical channels. Figure 4.2c presents a
cluster-based NoC. The NoC width is 2, NoC height is 2 and bus length is 4. Routers are connected
to each other via connections with two channels. In addition to that, each router is also connected
to a cluster of processors via a single channel.

42

(a) Bus

(b) 4× 4 NoC (c) 2× 2× 4 cluster-based NoC

Figure 4.2: Different topologies composed by Routers, Processors and Channels.

4.1.3 Function Cost

Depending on the cost function that designers use, different aspects of the application can
be evaluated. Most of the aspects evaluated taken into consideration are energy, heat dissipation or
latency. Each of them can be better evaluated depending on the available data informed because the
efficiency of each cost function depends both on the characterization of the communication model
as well as on the target architecture. The cost function adopted in this work focuses on latency and
it is based on the models described in previous sections. Its implementation is described in Figure
4.3.

The arch parameter is a high-level representation of the architecture that considers that
tasks are already mapped to specific processors of the architecture. The tasks are mapped to
processors according to a scheduling policy. Three policies have being implemented in this work:
(1) best effort, (2) rate monotonic and a (3) hybrid one. The arch parameter has the method
GetComms() that returns a set of communications edges (comms) of the communication graph.
The arch parameter has also a method that given a specific communication edge, it returns a set of
channels that a massage has to pass before being delivered to its final destination. The method is
called GetPath() and the set of channels returned is called path. The GetPath() has to implement
a routing algorithm to know in advance the channels involved during the transmission process of a
given message. In this work the XY routing algorithm was chosen because it is a simple non-adaptive
routing technique, however our approach is not bounded to this algorithm and more sophisticated
algorithms can also be used. Finally, just as the parameter arch does, channels have also a method

43

1: function Cost(arch)
2: cost ← 0
3: comms ← arch.GetComms ()
4: for all comm ∈ comms do
5: path← arch.GetPath (comm)
6: for all channel ∈ path do
7: channel_comms ← channel .GetComms ()
8: for all other ∈ channel_comms do
9: if other 6= comm then

10: cost ← cost + other .v ∗ other .f
11: else
12: cost ← cost + comm.v
13: end if
14: end for
15: end for
16: end for
17: return cost

Figure 4.3: Description of the cost function.

called GetComms(), but in that case, the method returns all comms that pass through the specific
channel before being delivered to the message destination. With this information it is possible
to obtain the costs to send messages in every single channel and sum these costs to obtain an
estimation of arch’s mapping quality.

The meaning of the returned cost represents the number of bits (in the worst case)
necessary to be forwarded before a message can be delivered. Considering that the objective function
is implementing a worst case approach, the absolute value returned should not be taken as a
meaningful value. However, when using the same metric with other architecture models, it is
possible to use the cost variation to evaluate the architectures and consequently take a decision
based on that difference. In other terms, this technique calculates the mapping cost and bigger
values mean that more obstructed are the channels involved in the transmission of the messages.
This technique is also known as PathLoad exploration.

4.1.4 Mapping Algorithms

The Mapping step has few requirements to be properly executed. It requires a communi-
cation task graph, which is obtained at the end of the Initial Simulation step. It requires a high level
architecture model to be the target topology of the applications. It also requires a function cost to
evaluate a specific characteristic of the system. These requirements were already explained in the
previous section, but there is still another necessary feature to realize the mapping step: a mapping
algorithm. The mapping algorithms basically try different mapping candidates against each other to
obtain a convenient mapping solution. Four mapping algorithms were implemented until now, but

44

it is possible to develop other algorithms. These implementations are based on two basic algorithms
and their variations. The algorithms are Random Algorithm and Simulated Annealing, and their
characteristics are detailed below.

Random Algorithm

The random approach is a primitive algorithm that is not usually adopted since it is possi-
ble to obtain better results with other techniques. However, it serves as basis for many optimization
algorithms, including Simulated Annealing. Even though this technique is rarely adopted, the algo-
rithm was implemented in order to obtain a baseline for comparisons. The algorithm is illustrated
in Figure 4.4.

1: function Random(arch)
2: best ← RandomMapping (arch)
3: best_cost ← Cost (best)
4: while stop_condition do
5: alternative ← RandomMapping (arch)
6: alternative_cost ← Cost (alternative)
7: if alternative_cost ≤ best_cost then
8: best ← alternative
9: best_cost ← alternative_cost

10: end if
11: end while

Figure 4.4: Random mapping algorithm.

Simulated Annealing

Simulated Annealing (SA) is a generic probabilistic meta-algorithm for global optimization
problems, namely locating a good approximation to the global optimum of a given function in a large
search space [KGV83]. The technique was developed in 1983 and forms the basis of an optimization
technique for combinatorial and other problems. It is widely used in a large range of applications and
is inspired by the annealing technique in metallurgy. This technique involves heating and controlled
cooling a material to increase the size of its crystals and reduce their defects. The heat causes the
atoms to become unstuck from their initial position and wander randomly through states of higher
energy.

In spite of the fact that Simulated Annealing is a widely adopted algorithm, there are
emerging technologies like clustered-NoCs that were not yet addressed by this approach. With that
in mind, this work focuses on the study of three implementations of the Simulated Annealing that
handles the tasks mapping issue in clustered architectures.

The algorithm, in its basic form, iterates random searches of the space solution, but unlike
the random algorithm, it has a mechanism to avoid becoming trapped in a local minimum. In

45

some iterations, the algorithm may accept changes of the best known solution for another one that
increases the cost function (assuming it is a minimization problem). These changes that increase
the cost are accepted according to a probability p = exp(∆c÷T), where ∆c denotes the increase of
the cost function and T is a control variable. At every iteration the variable T (popularly known as
temperature) decreases, and consequently, the probability of not accepting bad mappings candidates
increases.

The implementation of the Simulated Annealing can be seen in Figure 4.5. There is
another detail that differs SA from the random algorithm beyond the mechanism to accept or not
a new solution. On line 5, the method Copy() copies the whole best known solution. Later, on line
6, it applies a modification using method Modify(). This method changes the location of a single
task and calculates the mapping costs again. So, unlike the random algorithm which generates
a completely different mapping at each iteration, the implementation of the Simulated Annealing
only performs a modification in an architecture representation that is a copy of the momentary best
mapping.

1: function SimulatedAnnealing(arch)
2: best ← InitialMapping (arch)
3: best_cost ← Cost (best)
4: while stop_condition do
5: alternative ← Copy (best)
6: alternative ← Modify (alternative)
7: alternative_cost ← Cost (alternative)
8: ∆← best_cost − alternative_cost
9: if exp(∆÷ temperature) ≥ Random () then

10: best ← alternative
11: best_cost ← alternative_cost
12: end if
13: temperature ← temperature × α
14: end while

Figure 4.5: Traditional implementation of the Simulated Annealing.

Nested Simulated Annealing

There is also another variation of the Simulated Annealing that comprehends two nested
loops. The external loop implements a global search technique, the random for instance. And the
internal loop performs simple modifications, like changing the position of a single task. Dividing
the external mapping algorithm into two nested loops modifies the probability of finding a global
minimum instead of a local minimum. This happens because the algorithm explores space solution
randomly, since the internal loop searches for a local minimum inside each valley (range of solution
candidates from the design space exploration) while the external loop changes randomly the valleys.

46

1: function NestedSimulatedAnnealingV1(arch)
2: best ← InitialMapping (arch)
3: best_cost ← Cost (best)
4: while outer_stop_condition do
5: alternative ← Copy (best)
6: alternative ← ModifySubstantially (alternative)
7: while inner_stop_condition do
8: alternative ← ModifySlightly (alternative)
9: alternative_cost ← Cost (alternative)

10: ∆← best_cost − alternative_cost
11: if exp(∆÷ temperature) ≥ Random () then
12: best ← Copy (alternative)
13: best_cost ← alternative_cost
14: end if
15: temperature ← temperature × α
16: end while
17: end while

Figure 4.6: Second implementation of the Simulated Annealing.

1: function NestedSimulatedAnnealingV2(arch)
2: best ← InitialMapping (arch)
3: best_cost ← Cost (best)
4: while outer_stop_condition do
5: list ← []
6: while inner_stop_condition do
7: alternative ← Copy (best)
8: alternative ← Modify (alternative)
9: alternative_cost ← Cost (alternative)

10: list ← list + [(alternative, alternative_cost)]
11: temperature ← temperature × α
12: end while
13: alternative, alternative_cost ← Min (list)
14: ∆← best_cost − alternative_cost
15: if exp(∆÷ temperature) ≥ Random () then
16: best ← Copy (alternative)
17: best_cost ← alternative_cost
18: end if
19: end while

Figure 4.7: Third implementation of the Simulated Annealing.

47

The implementation of the Nested Simulated Annealing is shown in Figure 4.6. This imple-
mentation has two different methods: ModifySubstantially() and ModifySlightly(). Both methods
are called with tasks already mapped to the architecture. The first method changes the position
of dt ÷ 2e tasks of the architecture, given that t is the total number of tasks. We consider that
changing the position of dt ÷ 2e tasks is a substantial modification because half of the tasks are
moved. The later method does the migration of one task and is equivalent to the method Modify()
from the previous implementation.

Figure 4.7 describes the implementation of a second variant of the Nested Simulated
Annealing. The cost functions calculated in the inner loop and the modification performed by the
Modify() method are stored in a list sequentially. After each iteration of the outer loop, the best
move stored on the list is chosen as the new candidate to be tested in the acceptance test. The
method Min() returns respectively the architecture with a mapping description and its cost. The
variable inner_stop_condition is a simple controller that iterates dt ÷ 2e times.

4.2 Hellfire System

The Hellfire System is a set of subsystems and modules. These modules are basically tools
that support designers to build embedded systems. Between the group of main modules we can
mention the following:

Hellfire OS
Embedded realtime operating system.

Hardware Modules
Set of modules as processor, bus, NoC and Clustered NoC described in HDL.

MPSim
Simulator that emulates all hardware modules.

Web-Framework
An online Integrated Development Environment.

The most important of the modules probably is the HellfireOS (HFOS). It is a real-time
operating system (RTOS) developed intending to ensure maximum flexibility on its configuration
and allow a high-level platform customization. In order to allow such features, the HFOS was
implemented in a modular way, where each module corresponds to some specific functionality.

The HFOS is organized in layers and all hardware-specific functions are defined in the
first layer, known as HAL (Hardware Abstraction Layer). The uKernel lies just above it and the
communication, migration, memory management and mutual exclusion drivers, as well as the API
are placed over the uKernel layer. The user applications belong to the top layer. Due to its modular

48

implementation, the HellfireOS is easily portable to others architectures, requiring only the rewrite
of hardware-dependent functions, implemented in the HAL.

In order to decrease the kernel final size, allowing HFOS to be used even in architectures
with severe memory limitations, parameters such as maximum number of user tasks, stack and
heap size and drivers are configurable. The user applications are written using the C programming
language and the HellfireOS API.

All the architectures implemented and the drivers are focused to run with or over Hellfire
OS. Based on that, the implemented communication medias are presented below and after that an
explanation of the communication driver is also given.

4.2.1 Implemented Architectures

Architecture like Bus, NoC and CNoC are already implemented in the Hellfire System but
they were described using a hardware description language [AFM+10]. Not all architectures were
represented in high-level languages in such a way that it is possible to run fast simulations with
them. Due to that, high-level implementations of the existing architectures (Bus and NoC) were
reviewed and the behaviour of the clustered NoC was implemented in C language.

The implementation of these three architectures have relevant distinctions and they are
described below. In addition to that, some components common to the three architectures are also
presented.

Common Concepts

There are some concepts that are common and presented in the three studied architectures.
They are Network Interfaces, Flits, Packets, Message and Memory Mapped Addresses.

Messages are data sent between communicating tasks. The message before being injected
into the communication media is divided into packets. Packets can have fixed or flexible size but in
this work fixed-sized packets were chosen.

Packets are composed by smaller parts, the flits. Flits represent the smallest amount of
data meaningful for the communication media. Usually flits can have two classification: header flits
and payload flits. Header flits are meaningful for the communication media because they specify
useful information for the forwarding of the following packet’s flits. On the other hand, payload flits
are irrelevant data for the communication media, i.e., they only have to be passed on.

The division of the messages into packets is performed by the communication driver. The
driver is also responsible for composing packet header and controlling data injection and reception.
To interact with the communication media the driver uses memory addressed registers. These
registers are input and output ports for the network interface (NI).

49

NIs are composed by two FIFOs. One of the FIFOs is responsible for storing data injected
from attached devices and for forwarding data to the network media. The other FIFO is responsible
for the opposite data flow. It stores data from communication media and forwards the data to the
attached devices.

Bus

Figure 4.8 shows the block diagram of the bus specification. The bus is composed by
parametrizable network interfaces and a logic control that handles arbitration and flits forwarding.
The blue squares are the attached devices. In particular, this work allows only processors to be
attached to the bus. The main advantage of this architecture is the resulting area that is smaller
than the next architectures because it has a single simple module, the own bus.

CPU
Node

Forward and arbiter logic

CPU
Node

CPU
Node

CPU
Node

Network interface buffers...

Memory mapped registers

Figure 4.8: Bus specification.

Network-on-Chip

For our NoC implementation we use HERMES NoC [MCM+04], which implements a mesh
topology and is composed by routers, buffers and controllers of routers information (switch control).
HERMES routers can have up to five operating channels. Channels are composed by buffers fed by
incoming and outgoing ports. Ports are wires that connect adjacent routers.

As mentioned above, routers can have from two to five channels because routers allocated
in the border of mesh do not have all adjacent routers, thus, the respective channels are unnecessary.
Moreover, not every router need to be attached to a processing element by the port known as local
port. In such situations these channels are unnecessary too.

An overview of the NoC Router is shown in Figure 4.9. Blue squares represent the devices
attached to the media while red components are the parts that compose communication media.
Please, pay attention the fact that each router has one buffer for each port. It was made like that
because outgoing flits go directly to the router adjacent incoming buffer.

The HERMES router enables designers to choose between flits from 8 to 64 bits. However,
the Hellfire System adopt a fixed size of 16 bits per flit. In addition to the flit size, HERMES routers
can be configured with other options. For instance, it is possible to choose the routing algorithm,

50

...

...

CPU
Node

Memory mapped
registers

Network
Interface
Buffers

Routing and
arbiter logic

Channel
buffers

Neighbor
input buffer

Figure 4.9: Router specification.

the control flow strategy, the buffers’ size and the arbiter policy. This work uses the XY routing
algorithm since it is a simple and deadlock free algorithm. This work uses rotative arbiter due to the
fact that it does not suffer from starvation and also because it’s algorithm is not complex. Finally,
this work chose handshake as the control flow strategy because in the future the Hellfire Systems
will enable heterogeneous mixed architecture and such control strategy is favourable to this reason.

Clustered Network-on-Chip

The implementation of the high-level clustered NoC respects precisely the behaviour of
the CNoC implemented by GSE [Mag13]. In addition to that, they use identical routers as the NoC
specification.

However, unlike NoC, clustered NoC does not link network interfaces to routers’ local port
buffers. Instead of that the local port buffers are linked to another module called cluster interface
(CI). CI is a module with the same behaviour as network interface but it is an intermediate step to
forward packets from bus to NoC routers and vice versa. In Figure 4.10 it is possible to see how bus
and NoC router are linked by the cluster interface and the local port buffer.

4.2.2 Communication Driver

The communication protocol was implemented as a Hellfire OS driver. Therefore, it is
possible to evaluate different communicating applications using the tools available by the Hellfire
Web-Framework.

The communication driver implements a stack of software with four layers. The top layer
is the Application Layer and it offers a very simple API to send and receive messages. Table 4.1
shows the primitives available by the operating system to send and receive messages. The layer

51

Forward and
arbiter logic

input buffer

CPU
Node

Forward and arbiter logic

Cluster interface buffers

CPU
Node

CPU
Node

CPU
Node

Network interface buffers...

Memory mapped registers

Neighbor input buffer

Figure 4.10: CNoC Local Interface Structure.

below application layer is the Transport Layer. This layer basically split messages into packets and
reassemble messages. It is also responsible for handling unordered packets or messages whose time-
outs were reached. After that, lies the Network Layer. The network layer adds or removes the header
required by the communication media. We will see that different media require different headers.
Finally, the last layer is the Link Layer. This last layer basically interacts with Networks Interfaces
through memory mapped addresses.

Table 4.1: Hellfire communication primitives.
Signature
uint32 HF_NB_Send(uint16_t target_cpu, uint8_t target_id, uint8_t buf[], uint16_t size, uint32_t timeout)
uint32 HF_Send(uint16_t target_cpu, uint8_t target_id, uint8_t buf[], uint16_t size)
uint32 HF_NB_Receive(uint16_t *source_cpu, uint8_t *source_id, uint8_t buf[], uint16_t *size, uint32_t timeout)
uint32 HF_Receive(uint16_t *source_cpu, uint8_t *source_id, uint8_t buf[], uint16_t *size)

The interaction of the processing element with Networks Interfaces is made by three
memory mapped addresses, in addition to a interrupt signal. The registers are: NET_STATUS,
NET_READ and NET_WRITE. The former is a read register that answers true or false. True
means that the network interface buffer that injects flits into the communication media is available.
Read operations to this registers should be performed in a dedicated segment code, therefore, they
should be performed inside a mutual exclusion controller. The NET_READ register is a read register
and it pops flits from the network interface. Reads from this register should be made by the com-
munication interrupt handler when a interrupt provided by the communication media is triggered.

52

Finally, the NET_WRITE register is used to insert flits to the network interface and should be called
after a polling process on the NET_STATUS register.

TARGET0 15

PAYLOAD16 31

SOURCE CPU ID32 47

SOUR. TASK48 63

MESSAGE SIZE64 79

PACKET SEQUENCE80 95

CONTROL FLOW FLAG96 111

CRC112 127

DEST. TASK

Figure 4.11: Communication protocol header.

Figure 4.11 shows the communication protocol header. Flit target and flit payload compose
the header required by the media. Target varies with the media, but payload has the same meaning
in every architecture and means how many flits are remaining in the body of a packet.

SOURCE CPU ID is a decimal field that answers what was the processing element that
injected the packet into the network. This data is useful for the application layer since it is possible
to identify in run-time the sender of the received messages.

SOURCE TASK and DESTINATION TASK are useful for the transport layer. With this
data, it is possible to address messages to nodes running more than one task, for instance, nodes
running operating systems and their applications. Other flits important for the transport layer are
MESSAGE SIZE and PACKET SEQUENCE. They are complementary data and they are used by
transport layer on the reassembling message process.

Other optional data of the header are CONTROL FLOW FLAG (CFF) and CRC. CFF is
a flag that tells driver if an packet received should generate an acknowledge message. CRC is an
abbreviation Cyclic Redundancy Check and is used to check whether any data corruption occurred.

Figure 4.12 shows how the TARGET flit differs from one communication media to another.
At that point it is important to remember that although Hellfire System tools enable different sizes
for the flit, this work adopts flits with 16 bits as its default flit size. Actually, bigger sizes can be
chosen but smaller sizes would not fit with cluster-based architectures.

The bus target flit is the simplest one. It basically uses the eight least significant bits to
indicate the target CPU. It means that 256 processing elements can be attached to the bus, though
we do not encourage the use of bus with such amount of elements. The remaining most significant
bits are unused.

The mesh network-on-chip also considers only the eight least significant bits to address
packets to their destinations. COL ID and LINE ID are fields responsible for identifying the position
of the destination of the packet. COL ID specifies target cpu on the x-axis while LINE ID specifies

53

0 15

0 15

0 15

TARGET ID

COL ID LINE ID

COL ID LINE IDCLU ID

BUS DESTINATION FLIT

NOC DESTINATION FLIT

CNOC DESTINATION FLIT

Figure 4.12: Target flit specification.

the y-axis target position. Considering that COL ID and LINE ID are four bits fields, it is possible
to build NoCs with 256 tiles (16× 16).

As it was already explained, cluster-based NoCs are clusters connected by network routers.
Considering that the networks are all implemented using the mesh topology, we say that COL ID
and LINE ID identifies target cluster ID on x-axis and y-axis respectively. In addition to these fields,
there is still the cluster position ID field. It is useful to identify the CPU position inside each cluster.
Considering that the three fields are 4 bits each, it is possible to build CNoC architectures with
256 clusters and each cluster can support up to sixteen processing elements. The remaining most
significant bits are unused.

4.3 XYC Toolchain

At that point we present the set of tools that implement the proposed work flow. See
Section 4 for more details about that flow. Pay attention to the fact that the output of the each
tool serves as input for the next tool on the software chain.

4.3.1 XYCSIM - XYC Simulator

XYCSIM is essentially a platform generator. The platform obtained using the tool can
be simulated using OVP [OVP12], a virtual platform simulator, or even using the simulators imple-
mented in GSE. The objective of this simulation is to obtain a MCWG. The MCWG is used as input
by the next tool, the XYCMAP.

In technical terms, the XYCSIM is a composition of three scripts. The former script builds
a makefile used to compile the platform. The next script creates the OVP platform. This platform
is a executable program that makes run-time instantiations of OVP models. The last script is
responsible for generating a C header file. This header file contains macros used to identify every

54

task of the task set. There are two mandatory inputs: -tasks and -procs. -tasks is a string
parameter that points to a file that contains a list of tasks. -procs is a string parameter too but
it points to a file that list processors and describes their characteristics. Figure 4.13 shows tool’s
interface.

Figure 4.13: XYCSIM help command.

4.3.2 XYCMAP - XYC Mapper

Figure 4.14 shows the text-based user interface of the tool. The figure shows the range
of parameters available. The most important parameters are the -arch, -x, -y, -c, -b,

-input, -output, -policy, and -algorithm. The -input parameter is a name to
file that contains the desired communication task graph. This graph in most of the times is the
output of the initial simulation of the flow. The -output parameter is a file name of the file that
will contain the cost of each mapping tool iteration. The parameters -x, -y, -c, and -b are
needed to describe the target architecture. these parameters are strongly coupled to the -arch
that indicates the desired target architecture. If the user defines -arch as NoC, then the user
must fill the parameters -x and -y. If the user chooses -arch as CNoC, then the -x, y and
-c are mandatory. On the other hand, if the user defines -arch as Bus, only the -b parameter
is required and the others are ignored.

55

Figure 4.14: XYCMAP help command.

Considering that the parameters -x, -y, -c, and -b are set of lists results in an
important effect on the mapping phase. It makes the mapping process aggressively more time
consuming because of the growth caused by the combination of acceptable configuration. To
mitigate this growth of the explorable space a simple policy was used. Once an arrangement that
respects the scheduling policy is found, no new arrangements can use more processing elements than
that one. This simple alternative is enough to prevent the algorithm from testing too consuming
arrangements, while easily covers simple decisions that designers have to take, like choosing square
architectures, or irregular ones, like rectangular or even pipelined ones. Alternatively, the designer
can input single values for each axis, then the mapping algorithm is applied to a single architecture
configuration. See that this feature is one of the goals of the work, once it explores architectures
with smallest number of processing elements.

The -policy parameter defines guard for accepted tasks arrangements. At each iteration
of the mapping tool a new task arrangement is obtained. This arrangement is tested against a
scheduling policy. If the test does not succeed, the arrangement is discarded. Currently, only Rate
Monotonic (RM) and Best Effort (BE) were implemented, but it is possible to implement other
policies like single task execution per node or other real-time scheduling algorithms.

The last important parameter is -algorithm. It defines the mapping algorithm that
should be used to map tasks to processors. Currently, there are four algorithms implemented but it
is possible to add new ones. The ones implemented were presented in the previous sections of this
document.

There are also others not so relevant parameters. They do not cause any consequence to
the mapping results but are useful for designers to obtain preprocessed output files. These files are
easier to parse using scripts to obtain analytical tables and figures.

56

4.3.3 XYCADAPT - XYC Adaptor

The third tool of the toolchain performs a important task of the proposed flow. It takes
ANSI C tasks and converts them to Hellfire OS tasks based on a mapping file. To ease the trans-
formation the ANSI C tasks requires some annotations using comments.

The parameters -tasks and -procs are string parameters that points to two distinct
files, one that contain a list of tasks and their attributes, and the other a list of processors and their
characteristics. The other parameter that is the most important is the -map file. This file contains
a mapping arrangement that specifies a network communication infrastructure and also defines the
location of each task (from -tasks parameter) to a tile of the network. Figure 4.15 shows the
tool’s interface.

Figure 4.15: XYCADAPT help command.

4.3.4 XYCPRO - XYC Prototype builder

Finally, the last tool of the XYC toolchain is responsible for building a runnable instance
of the architecture. Actually the target architecture depends directly on the mapping parameters
given to the XYCMAP tool. The architectures available are those shown in Section 4.2.1.

Similarly to the XYCSIM tool, the XYCPRO is also a union of three other smaller builders.
One tool is responsible for creating a makefile that will be used to compile the platform and operating
system binary objects. The second builder creates an OVP platform model. The last builder creates
a C header file that identifies tasks. This header file is especially important because it provides
information to properly address packets given that packet header varies depending on the chosen
architecture. See Section 4.2.2 for more details about it.

Figure 4.16 shows the text-based user interface for the prototype builder. The parameters
are identical to the parameters requested by XYCADAPT except for the -tasks parameter because
at that time the parameter should be fulfilled with an already adapted task description file.

57

Figure 4.16: XYCPRO help command.

58

59

5. EXPERIMENTS

With the aid provided by the tools implemented in this work it is possible to exploit a
big range of scenarios. The exploration can be taken aiming better mapping alternatives or even
evaluating and comparing different mappings or systems’ configurations with the same task set but
with parameters or target architecture variations.

Based on the flexibility of the tools and on the design space flexibility, three different types
of experiments were driven. Each set of experiments is shown in Sections 5.1, 5.2 and 5.3.

The former set of experiments tries to explore target architecture characteristics such as
throughput, area and complexity. To do that, simulation and synthesis tools were used to obtain
some metrics. The simulations performed were done by instruction set simulators and they compared
buses, mesh-based and cluster-based NoCs in ideal conditions. The next type of experiments also
considers simulations in instruction level, but instead, simulations try to explore the performance of
different architectures when the communication media suffers from the injection of many concurrent
data injections. The last type of experiments shows results obtained using the implemented mapping
tools.

5.1 Architecture Analysis

To analyse the implemented architectures and their characteristics some configurations
were used and instruction-level simulations were used to extract the cost of sending and receiving
messages. Each message is sent through the media exclusively, i.e. the communication infrastructure
does not suffer from effects of contention once there is only one message being transmitted at a
time.

The task set used is very simple and has only two types of tasks. The core identified by ID
0 runs exclusively the task Send . This task sends a message and waits for an ack message. When
it receives the ack message it calculates the time needed to send the original message and receive
the ack. This process is repeated to each processing element attached to the architecture and the
time calculated is annotated. See Figure 5.1 for more details about the Send task. The remaining
processing elements of the architecture are mapped with the Receive task. This task merely receives
a message and sends back an ack message.

The first architecture simulated was a bus interconnecting 64 processing elements. All the
processing elements are Plasma Processors and they run at 100MHz while the bus’s frequency was
set to 6MHz. This decision was taken because of the relative good throughput of the architecture
that difficults the elaboration of scenarios. Actually this decision will become sensitive only in the
next type of experiments applied. In addition, the network interfaces are configured with FIFOs with
128 positions and each flit is 16 bits long. FIFOS with such size were chosen because messages are

60

1: function Send()
2: for i ∈ [1− 63] do
3: cycles ← MemoryRead (COUNTER_REG)
4: SendMessage (i , 4096)
5: ReceiveAck ()
6: time ← MemoryRead (COUNTER_REG)− cycles
7: StoreTime (i , time)
8: end for

Figure 5.1: Send task description.

big (4096 bytes) and, therefore, there is less overhead by packet header. Consequently, less packets
are needed to send each message.

The second architecture simulated is a mesh network-on-chip whose height is 8 and width
is also 8. Frequencies configuration are the same used previously. Every tile has a processing element
attached to its local port, so there are 64 processing elements too. Routers have incoming buffers
whose depth is of 16 positions.

The last architecture is a clustered network-on-chip whose width, height and cluster width
are two, four and eight respectively. Routers have incoming buffers whose depth is of 16 positions,
while cluster interfaces have incoming and outgoing buffers of 128 positions.

Table 5.1: Bus (64) time costs.

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
- 3687.27 µs 3687.76 µs 3687.76 µs 3687.92 µs 3687.92 µs 3688.09 µs 3688.1 µss

Core 8 Core 9 Core 10 Core 11 Core 12 Core 13 Core 14 Core 15
3688.26 µs 3688.26 µs 3688.42 µs 3688.25 µs 3688.26 µs 3688.42 µs 3683.3 µs 3683.3 µs
Core 16 Core 17 Core 18 Core 19 Core 20 Core 21 Core 22 Core 23

3683.47 µs 3683.47 µs 3683.63 µs 3683.64 µs 3683.8 µs 3683.8 µs 3683.96 µs 3683.97 µs
Core 24 Core 25 Core 26 Core 27 Core 28 Core 29 Core 30 Core 31

3684.13 µs 3684.13 µs 3684.3 µs 3684.29 µs 3684.46 µs 3684.46 µs 3684.63 µs 3684.63 µs
Core 32 Core 33 Core 34 Core 35 Core 36 Core 37 Core 38 Core 39

3684.79 µs 3684.79 µs 3684.95 µs 3684.96 µs 3685.12 µs 3685.12 µs 3685.29 µs 3685.28 µs
Core 40 Core 41 Core 42 Core 43 Core 44 Core 45 Core 46 Core 47

3685.45 µs 3685.45 µs 3685.62 µs 3685.62 µs 3685.78 µs 3685.79 µs 3685.94 µs 3685.95 µs
Core 48 Core 49 Core 50 Core 51 Core 52 Core 53 Core 54 Core 55

3686.11 µs 3686.11 µs 3686.12 µs 3686.27 µs 3686.28 µs 3686.44 µs 3686.44 µs 3686.61 µs
Core 56 Core 57 Core 58 Core 59 Core 60 Core 61 Core 62 Core 63

3686.61 µs 3686.77 µs 3686.78 µs 3686.94 µs 3686.93 µs 3687.1 µs 3687.1 µs 3687.27 µs

The time annotations of each scenarios are presented by Tables 5.1, 5.2 and 5.3. In Table
5.1, the times vary from 3683 µs to 3688 µs. See that the variation of time to send packets using

61

bus is of 5 µs. We will see that this variation is bigger than the NoC that has a variation time
of only 2 µs (from 3662 µs to 3664 µs). We will see also that the cost to send data using NoC
is smaller than the cost to send using bus in every situation. These phenomena were caused by
implementation differences. The first difference are the buffers. In the NoC, once the flit is inserted
into the Network Interface it can be forwarded through the NoC local port due to the existence of
the FIFOs on the local port. This is not the case on the bus. Another difference is the arbitration
logic delay. In the case of these two scenarios, it is less complex to perform the arbitration on
multiple smaller router ports than arbitrate one bus with too many request ports.

Table 5.2: NoC (8x8) time costs.

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
- 3662.33 µs 3662.49 µs 3662.66 µs 3662.82 µs 3663.15 µs 3663.15 µs 3663.32 µs

Core 8 Core 9 Core 10 Core 11 Core 12 Core 13 Core 14 Core 15
3662.33 µs 3662.49 µs 3662.5 µs 3662.82 µs 3662.99 µs 3663.15 µs 3663.32 µs 3663.49 µs
Core 16 Core 17 Core 18 Core 19 Core 20 Core 21 Core 22 Core 23

3662.49 µs 3662.66 µs 3662.66 µs 3662.82 µs 3663.16 µs 3663.32 µs 3663.48 µs 3663.65 µs
Core 24 Core 25 Core 26 Core 27 Core 28 Core 29 Core 30 Core 31

3662.66 µs 3662.83 µs 3662.99 µs 3663.15 µs 3663.32 µs 3663.49 µs 3663.49 µs 3663.82 µs
Core 32 Core 33 Core 34 Core 35 Core 36 Core 37 Core 38 Core 39

3662.83 µs 3662.99 µs 3663.16 µs 3663.15 µs 3663.48 µs 3663.48 µs 3663.82 µs 3663.98 µs
Core 40 Core 41 Core 42 Core 43 Core 44 Core 45 Core 46 Core 47

3662.99 µs 3663.15 µs 3663.16 µs 3663.49 µs 3663.65 µs 3663.81 µs 3663.98 µs 3664.14 µs
Core 48 Core 49 Core 50 Core 51 Core 52 Core 53 Core 54 Core 55

3663.15 µs 3663.32 µs 3663.32 µs 3663.65 µs 3663.82 µs 3663.82 µs 3664.14 µs 3664.31 µs
Core 56 Core 57 Core 58 Core 59 Core 60 Core 61 Core 62 Core 63

3663.32 µs 3663.49 µs 3663.65 µs 3663.82 µs 3663.98 µs 3664.14 µs 3664.14 µs 3664.48 µs

Another interesting phenomenon that was expected and can be seen in Table 5.2 is the
proportional increase of the calculated time as message is sent to more distant elements. For
instance, to send message from Core 0 to Core 1 it takes 3662.33 µs while the same message takes
3664.48 µs to be sent to Core 63.

The last observations to make are related to clustered NoC. See that the cost to com-
municate between nodes in the same cluster is virtually the same as the cost to send using bus.
However, there is less variation. For instance, the time cost to communicate in bus varies in 5 µs,
while the variation using a cluster with 8 elements is less than 1 µs. This difference is caused by the
arbitration logic that is less costly to arbitrate 8 elements instead of 16. Another thing to notice
is that, as expected, messages changed between nodes in the same cluster cost less time to finish
than messages whose nodes are attached to different clusters. For instance, send message to nodes
in cluster 0 take times from 3683.07 µs to 3683.73 µs, while to send messages to cluster 7 takes
from 3708.65 µs to 3709.96 µs.

62

Table 5.3: Clustered NoC (2x8x4) time costs.

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7
- 3683.24 µs 3683.07 µs 3683.24 µs 3683.56 µs 3683.73 µs 3683.24 µs 3683.57 µs

Core 8 Core 9 Core 10 Core 11 Core 12 Core 13 Core 14 Core 15
3706.84 µs 3706.34 µs 3706.51 µs 3706.34 µs 3705.67 µs 3706.67 µs 3706.01 µs 3707.0 µs
Core 16 Core 17 Core 18 Core 19 Core 20 Core 21 Core 22 Core 23

3705.68 µs 3705.84 µs 3706.0 µs 3706.17 µs 3706.34 µs 3705.68 µs 3705.84 µs 3706.0 µs
Core 24 Core 25 Core 26 Core 27 Core 28 Core 29 Core 30 Core 31

3707.65 µs 3707.82 µs 3707.33 µs 3707.49 µs 3707.65 µs 3707.82 µs 3707.16 µs 3707.32 µs
Core 32 Core 33 Core 34 Core 35 Core 36 Core 37 Core 38 Core 39

3706.83 µs 3707.0 µs 3707.16 µs 3706.51 µs 3707.49 µs 3706.84 µs 3707.82 µs 3707.16 µs
Core 40 Core 41 Core 42 Core 43 Core 44 Core 45 Core 46 Core 47

3708.15 µs 3708.32 µs 3708.31 µs 3709.3 µs 3708.64 µs 3708.16 µs 3708.97 µs 3708.48 µs
Core 48 Core 49 Core 50 Core 51 Core 52 Core 53 Core 54 Core 55

3707.16 µs 3706.67 µs 3708.15 µs 3707.66 µs 3707.82 µs 3707.99 µs 3707.49 µs 3707.66 µs
Core 56 Core 57 Core 58 Core 59 Core 60 Core 61 Core 62 Core 63

3708.49 µs 3708.65 µs 3709.47 µs 3708.98 µs 3709.14 µs 3709.96 µs 3709.47 µs 3708.81 µs

5.1.1 Other Constraints

In addition to the system performance and latency, there are other constraints that may
lead designer decisions. Some projects have area and power requisites, for example. With this context
in mind, a simple study was driven to obtain some information about these design requisites.

Table 5.4 shows a comparison of NoC and clustered NoC with 64 processing elements that
takes into consideration the requisite of area. The technology used to synthesize was 65nm from
STMicroelectronics. It is clear to affirm that the cluster approach has distinguished advantages in
this scenario. However, it is still not possible to affirm that cluster is always less consuming in terms
of area than mesh NoC. To do such affirmation, more elaborated study should be performed.

Table 5.4: Area comparison between NoC and clustered NoC.

Architecture Area (µm2) Growth
Clustered NoC (2× 4× 8) 388567

NoC (8× 8) 1313130 ∼= 338%

Table 5.5 makes a comparison of NoC and clustered NoC with respect to frequency. The
objective was to synthesize the architectures with the goal to better explore frequency. The table
shows that there is a decline on the cluster approach due to the growth of its logic complexity.

63

Table 5.5: Frequency comparison between NoC and clustered NoC on Virtex V. Adapted from
[Mag13].

Architecture Frequency Decline
NoC(8× 8) 167.805 MHz

Clustered NoC(3× 3× 8) 155.109 MHz ∼= 8%

The two experiments shows that there is a gain on area but there is a loss on frequency.
The next set of experiments will show that in some situations the throughput will decrease with
cluster but the loss is so small and the gain in area is so big that it’s worth choosing clusters instead
of mesh networks.

5.2 System Simulation

The second type of experiments were done to elaborate an comparison of the architectures
when these architectures are suffering from multiple injections of packets simultaneously. In such
situations, the existence of contention is possible, and in fact, applications were intentionally selected
to cause it.

The two applications explore pairs of communicating processing elements in very different
aspects. The only difference on the hardware used was on the clustered NoC that used a configuration
of 4× 4× 4, i.e., NoC width. NoC height and cluster size were all set to 4.

The former application has tasks that communicate with the neighbour tiles. It means
that tasks from node 0 communicate with tasks from node 1, tasks from node 2 communicate with
tasks from node 3, and so on. Each node is mapped with two tasks, one task identified as Send and
another as Receive. There are two types of messages transferred: data and acknowledge messages.
Data messages have 4kb while ack messages have only a single packet of size. Packets are composed
by 128 flits, consequently network interface buffers have 128 positions too.

The other application is almost the same as the previous one but with one exception.
The communications occur with more distant nodes. For instance, in this scenario, tasks placed on
node 0 would communicate with tasks placed on node 4 and tasks from node 1 would communicate
with tasks mapped to node 5, and so on. Of course, this configuration does not differ when the
bus communication media is used, but an appreciable difference can be viewed when other media
topologies are used.

Every scenario were simulated for 100.000.000 processor instructions. Plasma processors
operating in 100 MHz were used. The routers were configured with 6 MHz of operating frequency.
As mentioned earlier, this decision was made to highlight the contention of the architecture. Another
way to do it could be increasing the number of processors. However, the alternative to decrease the
media operating frequency was chosen to ease the design elaboration and avoid simulation times
too long.

64

0 10 20 30 40 50
Message number

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000
La

te
nc

y
(c

lo
ck

 c
yc

le
s)

app1/bus/
app1/noc/
app1/cnoc/

Figure 5.2: Performance analysis of application 1. See that line plots for NoC and CNoC are difficult
to distinguish due to their proximity.

The time to send messages of the first application were annotated and are shown in Figure
5.2. See that only 47 messages were shown due to the fact that bus could not perform more
communications in the amount of instructions simulated.

There are two things to highlight immediately. The Bus is definitely the media whose du-
ration times are longer and vary mostly. In addition, the times annotated for NoC and clustered NoC
are virtually the same. Actually mesh average duration time is shorter but the same reasons given
on previous experiments (NoC buffers and distributed arbitration enables faster communications)
applies in this case as well.

Figure 5.3 shows the annotated times for the second application. As explained earlier, the
tasks of this application communicates with tasks mapped to more distant nodes. Such characteris-
tics are better handled by architectures that offers more parallelism. In the case of the architectures
used, it is clear to assert that the network-on-chip offers more parallelism, thus, have the shorter
duration times. On the other hand, cluster-based NoC takes longer times but is still significantly
more efficient than bus.

See that bus can still perform only 47 communications per node during the simulated
time. The number does not vary owing to the fact that message addressing (that changes from
application one to application two) makes no effect on the bus. You can see that in Figure 5.4, that
plots annotated times for both applications.

65

0 10 20 30 40 50
Message number

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000
La

te
nc

y
(c

lo
ck

 c
yc

le
s)

app2/bus/
app2/noc/
app2/cnoc/

Figure 5.3: Performance analysis of application 2.

0 10 20 30 40 50
Message number

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

app1/bus/
app1/noc/
app1/cnoc/
app2/bus/
app2/noc/
app2/cnoc/

Figure 5.4: Performance analysis of applications 1 and 2.

66

There is another phenomenon that may call reader’s attention. In Figure 5.3 it is possible
to see a variation of the communication durations in the 20 initial messages. Actually this variation
exists too in the application one but can be better seen in this second scenario. The cause of
this variation is the deparallelization of the communications. As more contention is created by the
injection of packets into the communication media and as the operating systems schedules tasks in
a more sparse manner, less dispute for accessing the media occurs. Consequently, less contention is
originated. It makes duration time on bus decrease and the parallelism of NoCs be less enjoyed.

5.3 Mapping Algorithms

Another type of experiments were driven to evaluate the mapping tools. We applied the
implemented abstract models with different configurations of architectures. The architectures used
were: (a) Network-on-Chip whose both height and width are 4, and (b) a cluster-based Network-
on-chip whose height and width are 2, and each router links clusters with length of 4 processors.
The clusters are implemented with buses and the communication model is message passing.

The applications implemented are: (a) Video Object Plane Decoder [MDM04], that is
a multimedia processing application composed by 17 communicating tasks; (b) MPEG4, a Video
Encoder described in [MMV07] that comprehends 18 communicating tasks; and (c) MJPEG, an
image compressor with 4 pipelined tasks.

It is worth remembering that the meaning of the returned Mapping Cost is how many bits
(in the worst case) are necessary to be forwarded before a message can be delivered. Therefore, the
absolute value returned should not be taken by itself as a meaning value because it is based on a
worst case scenario. However, it is still useful to compare different topologies.

In Figures 5.5 and 5.6 the execution trace of the three configurations are shown. The
convergence curve of the third implementation of the Simulated Annealing (SAN2) stands out when
compared to the others. It happens due to the fact that the acceptance test of the simulated an-
nealing occurs less frequently. Executing less acceptance tests in the initial iterations is an important
characteristic because at that point the temperature variable is still configured with a high value.
Consequently, it is less likely to accept alternative mapping costs that increase the system’s latency.

It is possible to see that the solutions’ results found for architectures 4× 4 and 2× 2× 4
are very similar and the NoC has a performance slightly better in most of the cases. This happens
because architectures implemented with regular NoC can better explore the parallelism but does not
gain benefits from local message communications since there is only one processor linked to each
router. See that this phenomenon is very similar to the results obtained in the two previous types of
experiments where the cluster architecture performances were very similar but always slightly smaller
than the NoC.

67

 50000

 100000

 150000

 200000

 250000

 0 2000 4000 6000 8000 10000 12000

M
A

P
P

IN
G

 C
O

S
T

S

ITERATIONS

RANDOM

SIMULATED ANNEALING

 NESTED SIMULATED ANNEALING V1

 NESTED SIMULATED ANNEALING V2

Figure 5.5: Mapping costs for the 4× 4 architecture.

 50000

 100000

 150000

 200000

 250000

 0 2000 4000 6000 8000 10000 12000

M
A

P
P

IN
G

 C
O

S
T

S

ITERATIONS

RANDOM

SIMULATED ANNEALING

 NESTED SIMULATED ANNEALING V1

 NESTED SIMULATED ANNEALING V2

Figure 5.6: Mapping costs for the 2× 2× 4 architecture.

68

The whole set of experiments shows that clustered architectures is not an unbeatable
approach. The performance of clustered architecture is very sensitive to the application commu-
nication, hence tasks mapping is also very sensitive to the application performance. Basically, we
have seen that mappings, whose communicating tasks are not on the same cluster, use to be very
burdened. Additionally, due to intrinsic characteristics of local arbitration and hardware complexity,
it is difficult to find mappings where the overall system performance of a cluster based platform is
bigger than the performance of mesh based platforms. In particular, the results shown that in the
best case, clustered architectures have virtually the same (or an insignificant lower) throughput.

69

6. FINAL CONSIDERATIONS

There are many considerations to take based on the experiments elaborated. The former
concerns about the fact that many applications are not well supported by clustered architectures.
We have seen that communication between non-neighbour nodes can lead to very inefficient ar-
chitectures. On the other hand, it was also possible to see that clusters can decrease significantly
other hardware constraints and still have the same throughput as a mesh-based network-on-chip.
In particular, the results shown that spite of the fact that there was a very small loss in terms of
performance, the gains on area were extremely relevant.

Another important point that is important to highlight is the variation between the mapping
algorithms and the simulation results. Actually, more effort have to be done to make high-level
models represent properly low-level models. However, we cannot overlook the effort already done
considering that the set of tools implemented in the work are of great value for their purposes. See
that the work flow implemented demonstrates a high order of complexity and can be easily used to
explore architectures, nevertheless adjustments and improvements are always feasible.

Future Work

There are many aspects that can be explored based on the work proposed. For instance,
it would be of great value if the set of tools of the work flow could be abstracted by a design
framework. The framework would have as input a task set and some target processors, and the
output would be a ready-to-prototype architecture. Alternatively, some of the implemented tools
could also be used to extend existing tools from third-party systems, like Hellfire Framework.

In relation to mapping algorithm, an important feature that could be added is the possibility
to use multiple scheduling policies like Earliest Deadline First and any other hybrid scheduler that is
also implemented by Hellfire Operating System.

Other important contribution of the work that can still evolve is the communication graph
MCWM. It is a superset of the well-known CWM that, with support of simulators, enables a rep-
resentation of communication behaviour with more details than its predecessor. Such evolution can
happen by incorporating other details about communication, for instance, discriminating dependency
or parallelism between communications.

Finally, one very interesting feature that could be added to the work is the possibility to
represent 3D networks. To do that abstract and high-level models should be implemented but all the
tools were designed aiming future modifications, so, it would not demand a big rework to achieve
such extension.

70

71

BIBLIOGRAPHY

[AFM+10] Aguiar, A.; Filho, S.; Magalhaes, F.; Casagrande, T.; Hessel, F. “Hellfire: A design
framework for critical embedded systems’ applications”. In: Quality Electronic Design
(ISQED), 2010 11th International Symposium on, 2010, pp. 730–737.

[ANPV10] Avakian, A.; Nafziger, J.; Panda, A.; Vemuri, R. “A reconfigurable architecture for
multicore systems”. In: Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, 2010, pp. 1 –8.

[BFFM12] Benini, L.; Flamand, E.; Fuin, D.; Melpignano, D. “P2012: Building an ecosystem for
a scalable, modular and high-efficiency embedded computing accelerator”. In: Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, 2012, pp. 983 –987.

[BM06] Bjerregaard, T.; Mahadevan, S. “A survey of research and practices of network-on-
chip”, ACM Comput. Surv., vol. 38–1, Jun 2006.

[CS00] Christie, P.; Stroobandt, D. “The interpretation and application of rent’s rule”, IEEE
Trans. Very Large Scale Integr. Syst., vol. 8–6, Dec 2000, pp. 639–648.

[DT01] Dally, W.; Towles, B. “Route packets, not wires: on-chip interconnection networks”.
In: Design Automation Conference, 2001. Proceedings, 2001, pp. 684 – 689.

[FYX+10] Fangfa, F.; Yuxin, B.; Xinaan, H.; Jinxiang, W.; Minyan, Y.; Jia, Z. “An objective-
flexible clustering algorithm for task mapping and scheduling on cluster-based noc”. In:
Laser Physics and Laser Technologies (RCSLPLT) and 2010 Academic Symposium on
Optoelectronics Technology (ASOT), 2010 10th Russian-Chinese Symposium on, 2010,
pp. 369 –373.

[GG00] Guerrier, P.; Greiner, A. “A generic architecture for on-chip packet-switched
interconnections”. In: Design, Automation and Test in Europe Conference and
Exhibition 2000. Proceedings, 2000, pp. 250 –256.

[HM03] Hu, J.; Marculescu, R. “Energy-aware mapping for tile-based noc architectures under
performance constraints”. In: Design Automation Conference, 2003. Proceedings of the
ASP-DAC 2003. Asia and South Pacific, 2003, pp. 233 – 239.

[HYH+11] Huang, C.-Y.; Yin, Y.-F.; Hsu, C.-J.; Huang, T.; Chang, T.-M. “Soc hw/sw verification
and validation”. In: Design Automation Conference (ASP-DAC), 2011 16th Asia and
South Pacific, 2011, pp. 297 –300.

[ITR09] ITRS. “The international technology roadmap for semiconductors (itrs)”. Capturado
em: http://itrs.net, 2009.

72

[KGV83] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. “Optimization by Simulated Annealing”,
Science, Number 4598, 13 May 1983, vol. 220, 4598, 1983, pp. 671–680.

[KJS+02] Kumar, S.; Jantsch, A.; Soininen, J.-P.; Forsell, M.; Millberg, M.; Oberg, J.; Tiensyrja,
K.; Hemani, A. “A network on chip architecture and design methodology”. In: VLSI,
2002. Proceedings. IEEE Computer Society Annual Symposium on, 2002, pp. 105 –112.

[LK03] Lei, T.; Kumar, S. “A two-step genetic algorithm for mapping task graphs to a
network on chip architecture”. In: Digital System Design, 2003. Proceedings. Euromicro
Symposium on, 2003, pp. 180 –187.

[LRD01] Lahiri, K.; Raghunathan, A.; Dey, S. “Evaluation of the traffic-performance
characteristics of system-on-chip communication architectures”. In: VLSI Design, 2001.
Fourteenth International Conference on, 2001, pp. 29 –35.

[LSS+08] Lin, S.; Su, L.; Su, H.; Jin, D.; Zeng, L. “Hierarchical cluster-based irregular topology
customization for networks-on-chip”. In: Embedded and Ubiquitous Computing, 2008.
EUC ’08. IEEE/IFIP International Conference on, 2008, pp. 373 –377.

[Mag13] de Magalhães, F. G. “Hc-mpsoc : plataforma do tipo cluster para sistemas embarcados”,
2013.

[Mar05] Marcon, C. A. M. “Modelo para mapeamento de aplicações em infra-estruturas de
comunicação intrachip”, Ph.D. Thesis, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil, 2005, 192p.

[MBF+12] Melpignano, D.; Benini, L.; Flamand, E.; Jego, B.; Lepley, T.; Haugou, G.; Clermidy,
F.; Dutoit, D. “Platform 2012, a many-core computing accelerator for embedded socs:
performance evaluation of visual analytics applications”. In: Proceedings of the 49th
Annual Design Automation Conference, 2012, pp. 1137–1142.

[MCM+04] Moraes, F.; Calazans, N.; Mello, A.; Möller, L.; Ost, L. “Hermes: an infrastructure for
low area overhead packet-switching networks on chip”, Integration, the {VLSI} Journal,
vol. 38–1, 2004, pp. 69 – 93.

[MDM04] Murali, S.; De Micheli, G. “Bandwidth-constrained mapping of cores onto noc
architectures”. In: Design, Automation and Test in Europe Conference and Exhibition,
2004. Proceedings, 2004, pp. 896 – 901 Vol.2.

[MMCM08] Marcon, C.; Moreno, E.; Calazans, N.; Moraes, F. “Comparison of network-on-chip
mapping algorithms targeting low energy consumption”, Computers Digital Techniques,
IET, vol. 2–6, november 2008, pp. 471 –482.

[MMV07] Milojevic, D.; Montperrus, L.; Verkest, D. “Power dissipation of the network-on-chip
in a system-on-chip for mpeg-4 video encoding”. In: Solid-State Circuits Conference,
2007. ASSCC ’07. IEEE Asian, 2007, pp. 392–395.

73

[MSA12] Modarressi, M.; Sarbazi-Azad, H. “Reconfigurable cluster-based networks-on-chip
for application-specific mpsocs”. In: Application-Specific Systems, Architectures and
Processors (ASAP), 2012 IEEE 23rd International Conference on, 2012, pp. 153 –156.

[OVP12] OVP. “Open Virtual Platform Website”, 2012.

[TLP+10] Tsai, K.-L.; Lai, F.; Pan, C.-Y.; Xiao, D.-S.; Tan, H.-J.; Lee, H.-C. “Design of
low latency on-chip communication based on hybrid noc architecture”. In: NEWCAS
Conference (NEWCAS), 2010 8th IEEE International, 2010, pp. 257 –260.

[TMT12] TANG, Q.; MEHREZ, H.; TUNA, M. “Design for prototyping of a parameterizable
cluster-based multi-core system-on-chip on a multi-fpga board”. In: Proceedings of the
2012 23rd IEEE International Symposium on Rapid System Prototyping, 2012, pp. 71
– 77.

