
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

META-LEVEL REASONING IN
REINFORCEMENT LEARNING

JIÉVERSON MAISSIAT

Thesis presented as partial requirement for

obtaining the degree of Master in Computer

Science at Pontifical Catholic University of

Rio Grande do Sul.

Advisor: Prof. Felipe Meneguzzi

Porto Alegre
2014

Dados Internacionais de Catalogação na Publicação (CIP)

M231m Maissiat, Jiéverson

Meta-level reasoning in reinforcement learning / Jiéverson

Maissiat. – Porto Alegre, 2014.

61 p.

Diss. (Mestrado) – Fac. de Informática, PUCRS.

Orientador: Prof. Dr. Felipe Meneguzzi.

1. Informática. 2. Inteligência Artificial. 3. Jogos Eletrônicos.

 4. Aprendizagem. I. Meneguzzi, Felipe. II. Título.

CDD 006.3

Ficha Catalográfica elaborada pelo

Setor de Tratamento da Informação da BC-PUCRS

To Caroline Seligman Froehlich

“There is a theory which states that if ever any-

one discovers exactly what the Universe is for and

why it is here, it will instantly disappear and be

replaced by something even more bizarre and inex-

plicable.There is another theory which states that

this has already happened.”

(Douglas Adams)

ACKNOWLEDGMENTS

I would like to thank people who contributed, not just to this work, but also to the good

time spent during my masters degree.

First of all, to my advisor Felipe Meneguzzi for all support, help, insight and ideas, making

it possible to end this work the way it is.

To prof. Rafael Bordini for the valuable time dedicated during the course of this work.

To prof. Avelino Francisco Zorzo for the encouragement to discover my own area of

interest.

To anonymous reviewers of SBGames 2013 whose feedback our paper allowing me to refine

this work.

To BTHAI and BWAPI developers for creating and documenting the tools that have made

this work possible.

To Caroline Seligman Froehlich for showing me that it is always worth giving up what

makes you unhappy to run after your dreams.

To my parents Fernando Maissiat and Cerli Maissiat and my brother Jackson for providing

me full support and good family structure.

META-LEVEL REASONING IN REINFORCEMENT LEARNING

ABSTRACT

Reinforcement learning (RL) is a technique to compute an optimal policy in stochastic

settings where actions from an initial policy are simulated (or directly executed) and the value of

a state is updated based on the immediate rewards obtained as the policy is executed. Existing

efforts model opponents in competitive games as elements of a stochastic environment and use

RL to learn policies against such opponents. In this setting, the rate of change for state values

monotonically decreases over time, as learning converges. Although this modeling assumes that the

opponent strategy is static over time, such an assumption is too strong with human opponents.

Consequently, in this work, we develop a meta-level RL mechanism that detects when an opponent

changes strategy and allows the state-values to “deconverge” in order to learn how to play against

a different strategy. We validate this approach empirically for high-level strategy selection in the

Starcraft: Brood War game.

Keywords: artificial intelligence, learning, reinforcement learning, high level strategy, starcraft,

games.

META-LEVEL REASONING IN REINFORCEMENT LEARNING

RESUMO

Reinforcement learning (RL) é uma técnica para encontrar uma política ótima em ambien-

tes estocásticos onde, as ações de uma política inicial são simuladas (ou executadas diretamente) e

o valor de um estado é atualizado com base nas recompensas obtida imediatamente após a execução

de cada ação. Existem trabalhos que modelam adversários em jogos competitivos em ambientes

estocásticos e usam RL para aprender políticas contra esses adversários. Neste cenário, a taxa de

mudança de valores do estado monotonicamente diminui ao longo do tempo, de acordo com a con-

vergencia do aprendizado. Embora este modelo pressupõe que a estratégia do adversário é estática

ao longo do tempo, tal suposição é muito forte com adversários humanos. Conseqüentemente, neste

trabalho, é desenvolvido um mecanismo de meta-level RL que detecta quando um oponente muda

de estratégia e permite que taxa de aprendizado almente, a fim de aprender a jogar contra uma

estratégia diferente. Esta abordagem é validada de forma empírica, utilizando seleção de estratégias

de alto nível no jogo Starcraft: Brood War.

Palavras-Chave: inteligência artificial, aprendizado, reinforcement learning, high-level strategy,

starcraft, jogos.

LIST OF FIGURES

Figure 2.1 – An example of MDP with three states and two actions. 26

Figure 2.2 – Model to describe the process of reinforcement learning. 29

Figure 2.3 – Common cycle of perception and actions choice. 34

Figure 2.4 – Adding meta-level reasoning to the common cycle of perception and choice

of actions. 35

Figure 2.5 – The different races in StarCraft. 36

Figure 3.1 – Modeling the meta-level reasoning in reinforcement learning. 38

Figure 4.1 – BTHAI bot playing StarCraft: Brood War. 42

Figure 4.2 – Most common Terran Units: SCV, Marine, Wraith, Medic and Siege Tank . 43

Figure 4.3 – Strategies Q-value over time using the classical Q-Learning method. 44

Figure 4.4 – Strategies Q-value over time using Meta-Level Reinforcement Learning. . . . 45

Figure 4.5 – Learning-rate variation over time using Meta-Level Reinforcement Learning. 45

Figure 4.6 – Comparison between the number of victories and defeats of each strategy. . 46

Figure 4.7 – Graphic that presents a comparation between the win rate of each strategy. 46

LIST OF ALGORITHMS

Algorithm 2.1 – An exploratory Q-learning agent that returns an action after receiving

immediate feedback . 30

Algorithm 2.2 – SARSA . 31

Algorithm 2.3 – Dyna-Q . 32

Algorithm 3.1 – Meta-Level Reasoning in Q-Learning . 39

Algorithm 3.2 – Meta-Level Exploration Policy . 40

CONTENTS

1 INTRODUCTION . 23

2 BACKGROUND . 25

2.1 ENVIRONMENTS . 25

2.2 MARKOV DECISION PROCESS . 25

2.3 MACHINE LEARNING . 27

2.4 REINFORCEMENT LEARNING . 28

2.4.1 Q-LEARNING . 29

2.4.2 SARSA . 30

2.4.3 DYNA-Q . 31

2.4.4 PRIORITIZED SWEEPING . 33

2.5 EXPLORATION POLICY . 33

2.6 META-LEVEL REASONING . 34

2.7 STARCRAFT . 35

3 META-LEVEL REINFORCEMENT LEARNING . 37

3.1 PARAMETER CONTROL . 37

3.2 META-LEVEL REASONING IN REINFORCEMENT LEARNING 37

3.2.1 META-LEVEL REASONING IN Q-LEARNING . 38

3.2.2 META-LEVEL REASONING IN EXPLORATION POLICY . 39

3.2.3 META-LEVEL REINFORCEMENT LEARNING . 40

4 EXPERIMENTS AND RESULTS . 41

4.1 INTERACTING WITH STARCRAFT . 41

4.2 A REINFORCEMENT LEARNING APPROACH FOR STARCRAFT 41

4.3 EXPERIMENTS WITH STARCRAFT . 43

4.3.1 APPLYING CLASSICAL Q-LEARNING . 43

4.3.2 APPLYING META-LEVEL REINFORCEMENT LEARNING . 44

5 CONCLUSION . 47

REFERENCES . 49

APPENDIX A – Paper accepted in SBGames conference on Computing 2013 53

23

1. INTRODUCTION

For thousands of years, humans have tried to understand their own thinking and reasoning.

It is difficult to understand how we are able to perceive, understand, reason, act, and, finally, learn.

Artificial Intelligence (AI) is trying to understand this as well as to build agents with these capabilities.

In computer games we have basically the same difficulties. It is dificult to make an agent play a game

from the point of view of a regular player, with promising results [Tay11, ML10]. When humans play

against other humans, it is usually difficult to forecast each individual player’s actions and strategies.

However, when playing against a computer, humans often start to understand the pre-programmed

strategies after a few matches. Solving this problem is interesting because it can make games more

dynamic and less predictable.

Reinforcement learning is a technique often used to generate an optimal (or near-optimal)

agent in a stochastic environment in the absence of knowledge about the reward function of this

environment and the transition function [KLM96]. A number of algorithms and strategies for rein-

forcement learning have been proposed in the literature [SSK05, GHG04], which have shown to be

effective at learning policies in such environments. Some of these algorithms have been applied to

the problem of playing computer games from the point of view of a regular player with promising

results [Tay11, ML10]. However, traditional reinforcement learning often assumes that the environ-

ment remains static throughout the learning process while the learning algorithm converges. Under

the assumption that the environment remains static over time, when the learning algorithm con-

verges, the optimal policy has been computed, and no more learning is necessary. Therefore, a key

element of RL algorithms in static environments is a learning-rate — parameter that defines the

intensity of the learning process — that is expected to decrease monotonically until the learning con-

verges. However, this assumption is clearly too strong when part of the environment being modeled

includes an opponent player that can adapt its strategy over time.

In this work, we apply meta-level reasoning [CR08, UJG08] to reinforcement learning [SD03]

and allow an agent to react to changes of strategy by the opponent. Our technique relies on using

another reinforcement learning component to vary the learning-rate as negative rewards are obtained

after the policy converges, allowing our player agent to deal with changes in the environment in-

duced by changing strategies of competing players. To collect results, we set up an environment

for tests in the well known game StarCraft: Brood War. The first part of this work was submitted

and is already published at SBGames 2013 [MM13]. Our experiments have shown that by using our

proposed meta-level reasoning, the agent start dealing with environment changes earlier than with

already known methods.

This work is organized as follows: in Chapter 2 we review the main concepts used for

this work: the different kinds of environments (2.1), some concepts of machine learning (2.3) and

reinforcement learning (2.4), and an explanation of the StarCraft game domain (2.7); in Chapter 3 we

describe our solution. Finally, we demonstrate the effectiveness of our algorithms through empirical

experiments and results in Chapter 4.

24

25

2. BACKGROUND

2.1 Environments

In the context of multi-agent systems, the environment is the world in which agents act.

The design of an agent-based system must take into consideration the environment in which the

agents are expected to act, since it determines which AI techniques are needed for the resulting

agents to accomplish their design goals. Environments are often classified according to the following

attributes [RN09]: observability, determinism, dynamicity, discreteness, and the number of agents.

The first way to classify an environment is related to its observability. An environment can

be unobservable, partially observable, or fully observable. For example, the real world is partially

observable, since each person can only perceive what is around his or herself, and usually only

artificial environments are fully observable. The second way to classify an environment is about

its determinism. In general, an environment can be classified as stochastic or deterministic. In

deterministic environments, an agent that performs an action a in a state s always result in a

transition to the same state s′, no matter how many times the process is repeated, whereas in

stochastic environments there can be multiple possible resulting states s′, each of which has a

specific transition probability. The third way to classify an environment is about its dynamics.

Static environments do not change their transition dynamics over time, while dynamic environments

may change their transition function over time. Moreover an environment can be classified as

continuous or discrete. Discrete environments have a countable number of possible states, while

continuous environments have an infinite number of states. A good example of discrete environment

is a chessboard, while a good example of continuous environment is a real-world football pitch.

Finally, environments are classified by the number of agents acting concurrently, as either single-

agent or multi-agent. In single-agent environments, the agent operates by itself in the system (no

other agent modifies the environment concurrently) while in multi-agent environments agents can

act simultaneously, competing or cooperating with each other. A crossword game is a single-agent

environment whereas a chess game is a multi-agent environment, where two agents take turns acting

in a competitive setting.

2.2 Markov Decision Process

Agents need to make careful decisions, since today’s decisions can impact on tomorrow’s

and tomorrow’s on the next day. Markov Decision Process (MDP), also known as stochastic control

problems [Put94], is a model used to represent sequential decision making when its consequences

are not deterministic. That is, MDP is a mathematical model used for modeling decision making

where choices of actions are partially random and partially under the control of an agent. An MDP

is represented by a tuple 〈S, A, T, R〉 [GHG04, Tay11] consisting of:

26

1. a state space S is a finite set of states s ∈ S. We could say that the state space is a set

of bindings of values to variables. In computer games, one state represents a set of characteristics

about the game, such as: the character is on the ground, is jumping, is facing a wall, is carrying

certain items, the current life (health bar) from the character, etc.;

2. a action space A with a finite set of actions a ∈ A. Actions are responsible for change

the game states. In computer games, action could be things like: jump, shoot, move left, move

forward, pick up an item, etc..;

3. A transition probabilities T represents a set of probabilities of transitions given by

T : S × A Ô→ S. The probability function is generally defined as: P (s′ | s, a) and represents the

transition probability of a state s to s′ when an action is performed by the agent;

4. a reward function R : S × A × S ′ Ô→ R. The reward is one of the key elements in

the learning process, since it describes the feedback the agent uses to improve itself. In fighting

games [GHG04], for example, the reward could be given by the difference from the values of the life

bar between both characters, after an action is performed;

Figure 2.1 represents a MDP with three states (S0, S1 and S2) and two actions (a0 and

a1). In this example, each state has two avaliable actions, each of these actions lead to a new state.

An action can lead to different states with different probabilities. For example: at state S2, if the

action a0 is executed, there is 40% (0.4) chance to reaching the state S0 and 60% (0.6) chance

of remaining at the same state (S2). After the state transition occurs through the execution of an

action, the agent receives feedback that can be either positive or negative — in Figure 2.1 feedback

from performing action a0 at state S1 and reaching state S0 is +5, while performing the action a1

at state S2 and reaching state S0 is −1.

Figure 2.1 – An example of MDP with three states and two actions.

27

An MDP is a mapping from states to actions that tells an agent what to do at each

state [Bel57, Dre02]. MDPs can be used to find optimal policies, i.e., a kind a mapping of each

state to the action that yields the highest long-term reward. An optimal policy [Mor82, Mit64]

is the policy that maximizes the reward obtained for each state/action [GRO03]. The Bellman’s

Principle of Optimality states that all parts of an optimal solution must also be optimal [Mor82]:

“An optimal policy has the property that, whatever the state and the initial decision, upcoming

decisions from the resulting state must also be an optimal policy” [Bel57, p. 83].

The Bellman equation describes the optimal policy for an MDP whose parameters are

known, i.e., all states, actions, and transitions probabilities are known and are represented by Equa-

tion 2.1, where:

V (s) ←

[

maxaγ
n

∑

s′

P (s′|s, a) ∗ V (s′)

]

+ R(s) (2.1)

• s represents a MDP’s state;

• a represents an action, responsible for the transition between the states of the MDP;

• n represents the number of possible actions at the state s;

• s′ represents the state resulting from the execution of the action a at state s;

• V (s) is the long term value of s;

• R(s) is the immediate reward at state s;

• γ is the discount factor, which determines the importance of future rewards — a factor of 0

makes the agent opportunistic [SD03] by considering only the current reward, while a factor

of 1 makes the agent consider future rewards, seeking to increase their long-term rewards;

maxaγ
∑

N

s′ P (s′|s, a) ∗ V (s′) represents the best action to perform at the state s. It is

part of the value iteration algorithm responsible for seeking the optimal action, at the state with the

highest obtainable value from the current state.

2.3 Machine Learning

An agent is said to be learning if it improves its performance after observing the world

around it [RN09]. Common issues in the use of learning in computer games include questions such

as whether to use learning at all, or wether or not insert improvement directly into the agent code if

it is possible to improve the performance of an agent. Russell and Norvig [RN09] state that it is not

always possible or desirable, to directly code improvements into an agent’s behavior for a number

of reasons. First, in most environments, it is difficult to enumerate all situations an agent may find

itself in. Furthermore, in dynamic environments, it is often impossible to predict all the changes

28

over time. And finally, the programmer often has no idea of an algorithmic solution to the problem,

so it is better to let a learning algorithm achieve the desired results.

Thus, in order to create computer programs that change behavior with experience, learning

algorithms are employed. There are three main methods of learning, depending on the feedback

available to the agent. In supervised learning, the agent approximates a function of input/output

from observed examples. In unsupervised learning, the agent learns patterns of information without

knowledge of the expected classification. In reinforcement learning, the agent learns optimal behavior

by acting on the environment and observing/experiencing rewards and punishments for its actions.

In this work, we focus in reinforcement learning techniques.

2.4 Reinforcement Learning

When an agent carries out an unknown task for the first time, it does not know exactly

whether it is making good or bad decisions. Over time, the agent makes a mixture of optimal, near

optimal, or completely suboptimal decisions. By making these decisions and analyzing the results of

each action, it can learn the best actions at each state in the environment, and eventually discover

what the best action for each state is.

Reinforcement learning (RL) is a learning technique for agents acting in a stochastic,

dynamic and partially observable environments, observing the reached states and the received rewards

at each step [SB98]. Figure 2.2 illustrates the basic process of reinforcement learning, where the

agent performs actions, and learns from their feedback. An RL agent is assumed to select actions

following a mapping of each possible environment state to an action. This mapping of states to

actions is called a policy, and reinforcement learning algorithms aim to find the optimal policy for

an agent, that is, a policy that ensures long term optimal rewards for each state.

RL techniques are divided into two types, depending on whether the agent changes acts

on the knowledge gained during policy execution [RN09]. In passive RL, the agent simply executes

a policy using the rewards obtained to update the value (long term reward) of each state, whereas

in active RL, the agent uses the new values to change its policy after a certain number of iterations.

A passive agent has a fixed policy: at state s, the agent always performs the same action a. Its

mission is to learn how good its policy is — to learn the utility of it. An active agent has to decide

what actions to take in each state: it uses the information obtained by reinforcement learning to

improve its policy. By changing its policy in response to learned values, an RL agent might start

exploring different parts of the environment. Nevertheless, the initial policy still biases the agent to

visit certain parts of the environment [RN09], so an agent needs to have a policy to balance the use

of recently acquired knowledge about visited states with the exploration of unknown states in order

to approximate the optimal utility values [Gho04].

29

�����

����	
�����

���������	����
�	

��
�
�����������

�����
�����������

����	

��������

��������

Figure 2.2 – Model to describe the process of reinforcement learning.

2.4.1 Q-Learning

Depending on the assumptions about the agent knowledge prior to learning, different

algorithms can be used. When the rewards and the transitions are unknown, one of the most

popular reinforcement learning techniques is Q-learning. This method updates the value of a pair

of state and action — named state-action pair, Q(s, a) — after each action performed using the

immediately reward. When an action a is taken at a state s, the value of state-action pair, or

Q-value, is updated using the adjustment function [AS10] shown in Equation 2.2, where:

Q(s, a) ← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′) − Q(s, a)] (2.2)

• s represents the current state of the world;

• a represents the last action chosen by the agent;

• Q(s, a) represents the value obtained the last time action a was executed at state s. This

value is often called Q-value.

• r represents the reward obtained after performing action a in state s;

• s′ represents the state reached after performing action a in state s;

• a′ ∈ A(s′) represents a possible action from state s′;

• maxa′∈A(s′)Q(s′, a′) represents the maximum Q-value that can be obtained from the state s′,

independently of the action chosen;

30

• α is the learning-rate, which determines the weight of new information over what the agent

already knows — a factor of 0 prevents the agent from learning anything (by keeping the

Q-value identical to its previous value) whereas a factor of 1 makes the agent consider all

newly obtained information;

• γ is the same discount factor as in Section 2.2;

Once the Q-values are computed, an agent can extract the best policy known so far (π≈)

by selecting the actions that yield the highest expected rewards using the Equation 2.3:

π≈(s) = arg max
a

Q(s, a) (2.3)

The complete algorithm for an exploratory Q-learning agent is show in 2.1.

Algorithm 2.1 – An exploratory Q-learning agent that returns an action after receiving immediate
feedback

Require: s, a, r
1: if TERMINAL?(s) then

2: Q(s, None) ← r
3: a′ ← None
4: else

5: Q(s, a) ← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′) − Q(s, a)]
6: a′ ← π≈(s)
7: end if

8: return a′

Q-learning converges to an optimal policy after visiting each state-action pair a sufficient

number of times, but it often requires many learning episodes [WD92]. In dynamic environments,

Q-learning does not guarantee convergence to the optimal policy since it is possible that the required

number of leaning episodes never occurs. This occurs because the environment is always changing

and demanding that the agent adapts to new transition and reward functions. However, Q-learning

has been proven efficient in stochastic environments, even without guaranteed convergence [SC96,

TK02, AS10]. In multi-agent systems, where the learning agent models the behavior of all other

agents as a stochastic environment (an MDP), Q-learning provides the optimal solution when these

other agents — or players in the case of human agents in computer games — do not change their

policy choice.

2.4.2 SARSA

Q-learning is a learning algorithm that separates the policy being evaluated from the policy

used to control. Sarsa — its name comes from its parameters: s, a, r, s′, a′ — is an alternative to

the Q-learning [GHG04, SSK05] working policy being evaluated together with the policy used to

31

control. Sarsa is based on Equation 2.4, where 0 ≤ α ≤ 1 represents the learning-rate and

0 ≤ γ ≤ 1 represents the discount factor for future rewards. The adjustment of the state-action

pair (s, a) ∈ SxA is to add a minor fix (depending on α) to the old value. The fix is the immediate

reward r increased by future (discounted) value of state-action γQ(s′, a′).

Q(s, a) ← (1 − α)Q(s, a) + α[r + γQ(s′, a′)] (2.4)

The full SARSA algorithm is presented in Algorithm 2.2:

Algorithm 2.2 – SARSA

1: initialize Q(s, a) arbitrarily
2: for each episode do

3: initialize s
4: a ← chooseByQV alue(s)
5: for each step of episode do

6: r ← getReward(s, s′)
7: a′ ← chooseByQV alue(s′)
8: Q(s, a) ← (1 − α)Q(s, a) + α[r + γQ(s′, a′)]
9: s ← s′

10: a ← a′

11: end for

12: end for

The update function is performed after each transition from a non-terminal state s (in

other words, immediately after the execution of an action which does not reach the final state). If

the state reached s′ is terminal, then Q(s′, a′) is set to zero [SB98]. The update function uses all

elements of the tuple 〈s, a, r, s′, a′〉, which represents a transition from current state-action pair to

the next.

There are cases where it may become very difficult to determine the set of actions available

A(s) for calculate γmaxa′∈A(s′)Q(s′, a′). In these cases, it is a good idea to choose SARSA, since

this requires no knowledge of A(s) [GHG04].

2.4.3 Dyna-Q

Learning a model means to learn the transition probabilities, the reward values for each

state and action, or both simultaneously. It is possible to find optimal policies when the parameters

of the model are known. One can learn the parameters of a model through the simulation of a

template. This model can be evaluated by using passive reinforcement learning, as seen previously

(Section 2.4). Dyna-Q [Sut91] is a model-based approach that first builds a correct model, then

finds the policies through this model [KLM96]. This approach first learns the parameters of a

model, and then uses this definition of parameters to calculate the optimal policy learned about the

model [AS10].

32

Dyna-Q can use the model to generate learning experiences — simulate the learning within

a built model — and learn the Q-values more quickly than simply applying Q-learning. The agent

learns both the model and the Q-values through executing its actions on the environment. The

model is used to simulate the environment and update the Q-values. The better the representation

of model parameters, the faster the convergence of learning will occur. The algorithm Dyna-Q

operates by learning the model at each step, and then applying the technique of Q-learning to learn

the model’s policy.

Algorithm 2.3 – Dyna-Q

Require: Q, r, s, a, numIter

1: Q(s, a) ← Q(s, a) + α(r + γmaxa′∈A(s′)Q(s′, a′) − Q(s, a))
2: P (s′|s, a) ← updatePAverage(s, a, s′)
3: R(s, a) ← updateRAverage(s, a)

4: for i = 0 to numIter do

5: s′ ← randomPreviouslySeenS()
6: a′ ← randomPreviouslyTakenA(s′)
7: s′′ ← sampleFromModel(s′, a′)
8: r′ ← fromModel(s′, a′)
9: Q(s, a) ← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′) − Q(s, a)]

10: end for

11: return Q

Dyna-Q is shown in Algorithm 2.3. The first step of Dyna-Q is to update the value of

the Q−values using Q-learning. The transition probability (updatePAverage function from the

algorithm, present in Equation 2.5) is given by the number of times the agent has chosen action a

at state s and reached state s′, divided by the number of times the agent was in state s and has

chosen the action a:

P (s′|s, a) =
count(s, a, s′)

count(s, a)
(2.5)

The reward value, is the average reward received (updateRAverage function from the

algorithm, present in Equation 2.6) after choosing the action a and reaching the state s:

R(s, a) =
count(s, a) ∗ R(s, a) + r

count(s, a) + 1
(2.6)

The loop for is responsible for generating the model. The model simulates the specified

number of iterations and the Q-values are updated according to its model. First it chooses a state

s′ that was previously visited (randomPreviouslySeenS function). After it chooses an action a′

that has already been performed on state s′ (randomPreviouslyTakenA function). Based on this

model, a new state s′′ is simulated (sampleFromModel function). Finally, the reward for executing

action a′ at state s′ is given by fromModel function of the algorithm, and these values are used

33

to update the appropriate Q-value (Q(s′, a′)). For this, the algorithm makes use the Q-learning

equation (Equation 2.2) as a way to learn the model’s policy.

2.4.4 Prioritized Sweeping

When dealing with non-stationary environments, model-free RL approaches need to con-

tinuously relearn everything, since that the policy calculated for a given environment is no longer

valid after dynamics change. This requires a readjustment phase, which drops the performance of

learning and also forces the algotithm to relearn policies even for previously experienced environ-

ment dynamics [dOBdS+06]. Beyond Dyna-Q, there are other model-based alternatives to deal with

learning.

Prioritized Sweeping [MA93] is a model-based alternative that works similar to Dyna-Q,

except for the fact that it learns and estimates the current policy instead of its rewards. It updates

more than one state value per iteration making direct use of state values, instead of Q-values.

At each iteration, the transition probabilities T and the reward function R are estimated. The

transition probabilities T can usually be updated by calculating the maximum likelihood probabil-

ity [dOBdS+06]. The reward function R can be estimated according to the most probable state.

Instead of storing the transition probabilities in the form T (s, a, s′), Prioritized Sweeping stores

the number of times the transition (s, a, s′) occurred and the total number of times the situation

(s, a) has been reached. Thus, to compute the maximum likelihood probability, T is calculated as

presented in Equation 2.7.

T =
[(s, a, s′)]

[(s, a)]
(2.7)

2.5 Exploration Policy

So far, we have considered active RL agents that simply use the knowledge obtained so

far to compute an optimal policy. However, as we saw before, the initial policy biases learning

towards the parts of the state-space through which an agent eventually explores, possibly leading

the learning algorithm to converge on a policy that is optimal for the states visited so far, but not

overall optimal (a local maximum). Therefore, active RL algorithms must include some mechanism

to allow an agent to choose different actions from those computed with incomplete knowledge of the

state-space. Such a mechanism must seek to balance exploration of unknown states and exploitation

of the currently available knowledge, allowing the agent both to take advantage of actions he knows

are optimal, and exploring new actions [AS10].

In this work we use an exploration mechanism known as ǫ-greedy [RGK09]. This mechanism

has a probability ǫ to select a random action, and a probability 1 − ǫ to select the optimal action

learned so far (one that has the highest Q-value). In order to make this selection we define a

34

probability vector over the action set of the agent for each state, and use this probability vector

to bias the choice of actions towards unexplored states. A probability vector is a vector containing

probabilities for each of its actions. In the probability vector x = (x1, x2, ..., xn), the probability xi

to choose the action i is given by Equation 2.8, where n is the number of actions in the set.

xi =

(1 − ǫ) + (ǫ/n), if Q of i is the highest

ǫ/n, otherwise
(2.8)

2.6 Meta-Level Reasoning

Traditionally, reasoning is modeled as a decision cycle, in which the agent perceives envi-

ronmental stimuli and responds to it with an appropriate action. The result of the actions performed

in the environment (ground-level) is perceived by the agent (object-level), which responds with a

new action, and so the cycle continues. This reasoning cycle is illustrated in Figure 2.3 [CR08].

��������	
	�

��	����	
	�

��������	
	������	��	����

��������	

����	�	

Figure 2.3 – Common cycle of perception and actions choice.

Meta-reasoning or meta-level reasoning is the process of explicitly reasoning about this

reasoning cycle. It consists of both the control, and monitoring of the object-level reasoning,

allowing an agent to adapt the reasoning cycle over time, as illustrated in Figure 2.4. This new

cycle represents a high level reflection about its own reasoning cycle.

When meta-level reasoning is applied to learning algorithms, this gives rise to a new term:

meta-learning [SD03, Doy02]. Meta-learning represents the concept of learning to learn, and the

meta-learning level is generally responsible for controlling the parameters of the learning level. While

learning at the object-level is responsible for accumulating experience about some task (e.g, take de-

cisions in a game, medical diagnosis, fraud detection, etc.), learning at the meta-level is responsible

for accumulating experience about learning algorithm itself. If learning at object-level is not suc-

ceeding in improving or maintaining performance, the meta-level learner takes the responsibility to

adapt the object-level, in order to make it succeed. In other words, meta-learning helps solve impor-

tant problems in the application of machine learning algorithms [VGCBS04], especially in dynamic

environments.

35

��������	
	�

��	����	
	�

��������	
	������	��	����

��������	

����	�	

�	����	
	� �����
����	�	

������
����������

Figure 2.4 – Adding meta-level reasoning to the common cycle of perception and choice of actions.

2.7 StarCraft

Real-time strategy (RTS) are computer games in which multiple players control teams of

characters and resources over complex simulated worlds where their actions occur simultaneously

(thus there is no turn-taking between players). Players often compete over limited resources in

order to strengthen their team and win the match. As such, RTS games are an interesting field

for AI, because the state space is huge, actions are concurrent, and part of the game state is

hidden from each player. Game-playing involves both the ability to manage each unit individually

(micro-management), and a high-level strategy for building construction and resource gathering

(macro-management).

StarCraft is an RTS created by Blizzard Entertainment, Inc.1. In this game, a player

chooses between three different races to play (illustrated in Figure 2.5), each of which having

different units, buildings and capabilities, and uses these resources to battle other players.

1StarCraft website in Blizzard Entertainment, Inc. http://us.blizzard.com/pt-br/games/sc/

36

Figure 2.5 – The different races in StarCraft.

The game consists on managing resources and building an army of different units to

compete against the armies built by opposing players. Units in the game are created from structures,

and there are prerequisites for building other units and structures. Consequently, one key aspect

of the game is the order in which buildings and units are built, and good players have strategies

to build them so that specific units are available at specific times for attack and defense moves.

Such building strategies are called build orders or BOs. Strong BOs can put a player in a good

position for the rest of the match. BOs usually need to be improvised from the first contact with

the enemy units, since the actions become more dependent on knowledge obtained about the units

and buildings available to the opponent [Hag12, CB11].

37

3. META-LEVEL REINFORCEMENT LEARNING

Having presented the state of the art on reinforcement learning and its related concepts,

the following sections present our proposed solution.

3.1 Parameter Control

As we have seen in Section 2.4, the parameters used in the update rule of reinforcement

learning influence the way state values are computed, and ultimately how a policy is generated.

Therefore, the choice of parameters in reinforcement learning — such as α — can be crucial to the

success in learning [SD03]. Consequently, there are different strategies to control and adjust these

parameters.

When an agent does not know much about the environment, it needs to explore the

environment with a high learning-rate to be able to quickly estimate the actual values of each

state. However, a high learning-rate can either prevent the algorithm from converging, or lead

to inaccuracies in the computed value of each state (e.g., a local maximum). For this reason,

after the agent learns something about the environment, it should begin to modulate its learning-

rate to ensure that either the state values converges, or that the agent overcomes local maxima.

Consequently, maintaining a high learning-rate hampers the convergence of the Q-value, and Q-

learning implementations often use a decreasing function for α as the policy is being refined. A

typical way [SD03] to vary the α-value, is to start interactions with a value close to 1, and then

decrease it over time toward 0. However, this approach is not effective for dynamic environments,

since a drastic change in the environment when the learning-rate is close to 0 prevents the agent

from learning the optimal policy in the changed environment.

3.2 Meta-Level Reasoning in Reinforcement Learning

The objective of meta-level reasoning is to improve the quality of decision making by

explicitly reasoning about the parameters of the decision-making process and deciding how to change

these parameters in response to the agent’s performance. Consequently, an agent needs to obtain

information about its own reasoning process to reason effectively at the meta-level. In this work, we

consider the following processes used by our learning agent at each level of reasoning, and illustrate

these levels in Figure 3.1:

• ground-level refers to the implementation of actions according to the MDP’s policy;

• object-level refers to learning the parameters of the MDP and the policy itself;

• meta-level refers to manipulating the learning parameters used at the object-level ;

38

��������	
�������

�������

��������	
	������	��	����

��������	

����	�	

����������������� �����
����	�	

������
����������

Figure 3.1 – Modeling the meta-level reasoning in reinforcement learning.

We have developed a number of strategies for meta-level reinforcement learning and eval-

uated them.

3.2.1 Meta-Level Reasoning in Q-Learning

Our approach to meta-level reasoning consists of varying the learning-rate (known as

α−value) to allow an agent to handle dynamic environments. More concretely, at the meta-level,

we apply RL to learn the α−value used as the learning-rate for object-level RL. In other words, we

apply reinforcement learning to control the parameters of reinforcement learning.

The difference between RL applied at the meta-level and RL applied at the object-level

is that, at the object-level, we learn Q-value for the state-action pair, increasing it when we have

positive feedback and decreasing it when we have negative feedback. Conversely, at the meta-level,

what we learn is the α-value, by decreasing it when we have positive feedback and increasing it

when we have negative feedback — that is, making mistakes means we need to learn at a faster

rate. Our approach to meta-level reinforcement learning is shown in Algorithm 3.1.

Meta-level reinforcement learning algorithm requires the same parameters as Q-learning:

a state s, an action a and a reward R. In Line 1 we apply the RL update rule for the α-value used

for the object-level Q-learning algorithm. At this point, we are learning the learning-rate, and as

we saw, α decreases with positive rewards. We use a small constant step of 0.05 for the meta-level

update rule and bound it between 0 and 1 (Lines 2–7) to ensure it remains a consistent learning-rate

value for Q-learning. Such a small learning-rate at the meta-level aims to ensure that while we are

constantly updating the object-level learning-rate, we avoid high variations. Finally, in Line 8 we

use the standard update rule for Q-learning, using the adapted learning-rate. As our algorithm is

nothing but a short sequence of mathematical operations, it is really efficient when it comes to time.

39

Algorithm 3.1 – Meta-Level Reasoning in Q-Learning

Require: s, a, R
1: α ← α − (0.05 ∗ R)

2: if α < 0 then

3: α ← 0
4: end if

5: if α > 1 then

6: α ← 1
7: end if

8: Q(s, a) ← Q(s, a) + (α ∗ R)

Thus, it is able to execute in few clock cycles and could be utilized in real-time after each action

execution.

3.2.2 Meta-Level Reasoning in Exploration Policy

Since we are modifying the learning-rate based on the feedback obtained by the agent, and

increasing it when the agent detects that its knowledge is no longer up to date, we can also use this

value to guide the exploration policy. Thus, we also modify the ǫ−greedy action selection algorithm.

Instead of keeping the exploration-rate (ǫ−value) constant, we apply the same meta-level reasoning

to the ǫ−value, increasing the exploration-rate, whenever we find that the agent must increase its

learning-rate — the more the agent wants to learn, the more it wants to explore; if there is nothing

to learn, there is nothing to explore. To accomplish this, we had first defined the exploration-rate

as been always equal to the learning-rate:

ǫ ← α

This solution has proved not to work well, since there are cases when the learning-rate

and exploration-rate are maximized in 1, causing the agent to choose all its actions randomly and

preventing the convergence of learning. When the exploration-rate is near 1, the agent chooses

more random actions than learned actions, which normally makes the agent commit more mistakes,

preventing the learning-rate from converging to 0. To solve this, we defined the exploration-rate to

be half of learning-rate. This makes the highest exploration-rate be 0.5, when the learning-rate is

maximized in 1, while still maintaining a exploration-rate of 0 when learning-rate is 0.

ǫ ← α/2

Our approach to meta-level exploration policy is shown in Algorithm 3.2.

40

Algorithm 3.2 – Meta-Level Exploration Policy

Require: Va (vector with possible actions), α (learning-rate)
1: amax ← maxa∈Va

2: r ← rand(0, 1)
3: ǫ ← α/2
4: if r > ǫ then

5: return amax

6: else

7: return any(Va)
8: end if

The Meta-level exploration policy algorithm requires two parameters: learning-rate (α) and

a vector with all the possible actions (Va). First, it selects the max-action — action with highest

Q-value for current state — in Line 1. Next it gets a random value between 0 and 1 (in Line 2)

using it as random factor. Then, in Line 3 it calculates the exploration-rate (ǫ). Finally, between

lines 4 and 8, if the random factor was higher than exploration-rate, it returns the max-action; else,

it just returns any possible action.

3.2.3 Meta-Level Reinforcement Learning

By using meta-level reasoning, we have improved the classical reinforcement learning. We

use meta-level reasoning in the two approaches — Q-learning and exploration policy — together

to create meta-level reinforcement learning. With both, we cover the two parts of our problem:

learning and exploration.

41

4. EXPERIMENTS AND RESULTS

In this section, we detail our implementation of meta-level reinforcement learning and its

integration to the Starcraft game, followed by our experiments and their results. These results

concern the complete implementation of this work. For the results of our first implementation of

the incomplete model, please see [MM13] (Appendix A).

4.1 Interacting with StarCraft

The first challenge in implementing the algorithm is the integration of our learning algo-

rithm to the proprietary code from Starcraft, since we cannot directly modify its code and need

external tools to do this. In the case of StarCraft, community members developed the BWAPI,

which allows us to inject code into the existing game binaries. The BWAPI (Brood War Application

Programming Interface)1 enables the creation and injection of artificial intelligence code into Star-

Craft. BWAPI was initially developed in C++, and later ported to other languages like Java, C#

and Python, and divides StarCraft in 4 basic types of object:

• Game: manages information about the current game being played, including the position of

known units, location of resources, etc.;

• Player: manages the information available to a player, such as: available resources, buildings

and controllable units;

• Unit: represents a piece in the game, either mineral, construction or combat unit;

• Bullet: represents a projectile fired from a ranged unit;

Since the emergence of BWAPI in 2009, StarCraft has drawn the attention of researchers

and an active community of bot programming has emerged [BC12]. For our implementation, we

modified the open source bot BTHAI [Hag12], adding a high-level strategy learning component to

it2. Figure 4.1 shows a screenshot of a game where one of the players is controlled by BTHAI, notice

the additional information overlaid on the game interface.

4.2 A Reinforcement Learning Approach for StarCraft

Following the approach used by [AS10], our approach focuses on learning the best high-

level strategy to use against an opponent. We assume here that the agent will only play as Terran,

and will be able to choose any one of the following strategies (units can be see at Figure 4.2):

1An API to interact with StarCraft: BroodWar http://code.google.com/p/bwapi/
2The source code can be fount at: https://github.com/jieverson/BTHAIMOD

42

Figure 4.1 – BTHAI bot playing StarCraft: Brood War.

• Marine Rush: is a very simple Terran strategy that relies on quickly creating a specific number

of workers (just enough to maintain the army) and then spending all the acquired resources

on the creation of Marines (the cheapest Terran battle unit) and making an early attack with

a large amount of units.

• Wraith Harass: is similar, but slightly improved, Marine rush that consists of adding a mixture

of 2–5 Wraiths (a relatively expensive flying unit) to the group of Marines. The Wraith’s

mission is to attack the opponent from a safe distance, and when any of the Wraiths are in

danger, use some Marines to protect it. Unlike the Marine Rush, this strategy requires strong

micromanagement, making it more difficult to perform.

• Terran Defensive: consists of playing defensively and waiting for the opponent to attack before

counterattacking. Combat units used in this strategy are Marines and Medics (a support unit

that can heal biological units), usually defended by a rearguard of Siege Tanks.

• Terran Defensive FB: is slightly modified version of the Terran Defensive strategy, which

replaces up to half of the Marines by Firebats — a unit equipped with flamethrowers that is

especially strong against non-organic units such as aircrafts, tanks and most of Protoss’ units.

• Terran Push: consists of creating approximately five Siege Tanks and a large group of Marines,

and moving these units together through the map in stages, stopping at regular intervals to

regroup. Given the long range of the Tank’s weapons, opponents will often not perceive their

43

approach until their units are under fire, however, this setup is vulnerable to air counterattack

units.

Figure 4.2 – Most common Terran Units: SCV, Marine, Wraith, Medic and Siege Tank

After each game, the agent observes the end result (victory or defeat), and uses this

feedback to learn the best strategy. If the game is played again, the learning continues, so we can

choose the strategy with the highest value for the current situation. If the agent perceives, at any

time, that the strategy ceases to be effective — because of a change in the opponent’s strategy, map

type, race or other factors — the agent is able to quickly readapt to the new conditions, choosing

a new strategy.

4.3 Experiments with StarCraft

To demonstrate the applicability of our approach we have designed an experiment whereby

a number of games are played against a single opponent that can play using different AI bot

strategies. We seek to determine if our learning methods can adapt an agent’s policy when the AI

bot changes. Each game was played in a small two-player map (Fading Realm) using the maximum

game speed (since all players were automated). The game was configured to start another match

as soon as the current one ends. For the experiment, all the Q-values are initialized to 0, and the

learning-rate (α) is initialized to 0.5. Our experiment consisted of playing a total of 100 matches

where one of the players is controlled by an implementation of our meta-learning agent. In the first

30 matches, the opponent have played a fixed Terrain policy provided by the game and in subsequent

matches, we have changed the opponent policy to the fixed Protoss policy provided by the game.

It is worth noting that our method used very little computation time–it runs in real time, using

accelerated game speed (for matches between two bots).

4.3.1 Applying Classical Q-Learning

First of all, we have applied the classical Q-learning, with the purpose of comparing with

Meta-Level Reinforcement Learning methods.

Figure 4.3 illustrates the variation of the strategies Q-values over each game execution

using the classical Q-Learning method. We can see that the Marine Rush strategy was optimal

44

��

��

��

��

��

��

��

���

���

	�
	�� ��� ��� ��� ��� ����

�
��

��
�

����������

��������	
�

�����������
���

�����������
������

��������	
�

�����������

Figure 4.3 – Strategies Q-value over time using the classical Q-Learning method.

against the first opponent policy, while the Terrain Push has proven to be the worst. When the

opponent changes its policy in the execution 30, we can see the Q-value of Marine Rush decreases,

resulting in an increase in exploration. After the execution 53, we notice that the Terrain Defensive

FB strategy stood out from the others, although the basic Terrain Defensive strategy has shown to

yield good results too. Wraith Harass and Marine Rush seem to lose to the second opponent policy,

and Terrain Push remains the worst strategy.

4.3.2 Applying Meta-Level Reinforcement Learning

Next, Figure 4.4 illustrates the variation of the strategies’ Q-values over each game exe-

cution using the proposed Meta-Level Reinforcement Learning. The results look similar to the last

experiment, with some subtle differences:

• Using the Meta-Level Learning, Q-values stabilize and stop growing at some point. Figure 4.4

shows that the values stabilize between executions 10 and 30, as well as between the executions

60 and 100. It occurs because the Q-values stop getting higher when the learning-rate becomes

0;

• The classical Q-Learning method has reached higher Q-values (Figure 4.3) such as 10 on the

execution 30, and 12 at execution 100, while the Meta-Level strategy (Figure 4.4) has reached

just 2 on the execution 30 and 4 at execution 100;

• Because of the lower Q-values, the Meta-Level method proved to respond faster to opponent

changes. This can be see after the execution 30. Using classical Q-Learning, the agent only

45

discovered the new best strategy at the execution 53, while the Meta-Level Reinforcement

Learning discovered it at execution 40: it learned twice as fast. If the opponent change was

made after the execution 30, this difference would be larger.

��

��

��

��

��

��

��

���� ��� ��� ��� �	� ����

��
�
�
�

����������

��������	
�

�����������
���

�����������
������

��������	
�

�����������

Figure 4.4 – Strategies Q-value over time using Meta-Level Reinforcement Learning.

In the Meta-Level Reinforcement Learning, as the agent learns, its learning-rate tends to

decrease towards 0, which means that the agent has nothing to learn. After the change in opponent

policy (at game execution 30), we expected the learning-rate to increase, denoting that the agent

is starting to learn again, which was indeed the case, as illustrated by the graph of Figure 4.5.

��

����

����

����

����

����

���	

���� ��� ��� �	� �
� ����

�
�
�
��
�

����������

���������	�
�

Figure 4.5 – Learning-rate variation over time using Meta-Level Reinforcement Learning.

46

The learning-rate should remain greater than 0 until the RL algorithm converges to the

optimal policy, and then start decreasing towards 0. We note that, although the learning-rate may

vary between 0 and 1, it has never gone beyond 0.6 in the executions we performed.

��

���

���

���

���

����

��������	
� �����������
��� �����������
������ ��������	
� �����������

 �����

���������
	�
����

�����������

Figure 4.6 – Comparison between the number of victories and defeats of each strategy.

��

���

���

���

���

����

��������	
� �����������
��� �����������
������ ��������	
� �����������

 �����

���������

	�
����

Figure 4.7 – Graphic that presents a comparation between the win rate of each strategy.

The results obtained are also illustrated in the graph of Figure 4.6 and Figure 4.7, which

shows that our meta-learning agent consistently outperforms fixed opponents. Moreover, we can

see that the agent quickly learns the best strategy to win against a fixed policy opponent when its

strategy changes.

47

5. CONCLUSION

In this work we have developed a reinforcement learning mechanism for high-level strategies

in RTS games that is able to cope with the opponent abruptly changing its play style. To accomplish

this, we have applied meta-level reasoning techniques over the already known RL strategies, so

that we learn how to vary the parameters of reinforcement learning allowing the algorithm to “de-

converge” when necessary. The aim of our technique is to learn when the agent needs to learn faster

or slower. Although we have obtained promising initial results, our approach was applied just for

high-level strategies, and the results were collected using only the strategies built into the BTHAI

library for Starcraft control. To our knowledge, ours is the first approach to mix meta-level reasoning

and reinforcement learning that applies RL to control the parameters of RL. Furthermore, we have

modified the way exploration policy is done, introducing a new concept to vary exploration policy

using learning-rate. We had part of this work published in [MM13].

Results have shown that this meta-level strategy can be a good solution to find high-level

strategies. The meta-learning algorithm we developed is not restricted to StarCraft and can be used

in any game in which the choice of different strategies may result in different outcomes (victory or

defeat), based on the play style of the opponent.

In the future, we aim to apply this approach to low-level strategies, such as learning detailed

build orders and to micro-manage battles. In this work we have not experimented the use of model-

based learning, which we think is a promising avenue for further development. Other approaches

to try would be to vary just exploration-rate (ǫ) while keeping a static learning-rate (α). Given our

initial results, we believe that meta-level reinforcement learning is a useful technique in game AI

control that can be used in other games, at least at the strategic level.

48

49

BIBLIOGRAPHY

[AS10] Amato, C.; Shani, G. “High-level reinforcement learning in strategy games”.

In: Proceedings of the 9th International Conference on Autonomous Agents and

Multiagent Systems, 2010, pp. 75–82.

[BC12] Buro, M.; Churchill, D. “Real-time strategy game competitions”, AI Magazine, vol. 33–

3, 2012, pp. 106–108.

[Bel57] Bellman, R. “Dynamic Programming”. Princeton University Press, Princeton, New

Jersey, 1957.

[CB11] Churchill, D.; Buro, M. “Build order optimization in starcraft”. In: Proceedings of

the Seventh Annual AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, 2011, pp. 14–19.

[CR08] Cox, M. T.; Raja, A. “Metareasoning: A manifesto”. In: Proceedings of AAAI 2008

Workshop on Metareasoning: Thinking about Thinking, 2008, pp. 106–112.

[dOBdS+06] de Oliveira, D.; Bazzan, A. L.; da Silva, B. C.; Basso, E. W.; Nunes, L.; Rossetti, R.;

de Oliveira, E.; da Silva, R.; Lamb, L. “Reinforcement learning based control of traffic

lights in non-stationary environments: A case study in a microscopic simulator.” In:

EUMAS, 2006.

[Doy02] Doya, K. “Metalearning and neuromodulation”, Neural Networks, vol. 15–4, 2002, pp.

495–506.

[Dre02] Dreyfus, S. “Richard bellman on the birth of dynamic programming”, Operations

Research, 2002, pp. 48–51.

[GHG04] Graepel, T.; Herbrich, R.; Gold, J. “Learning to fight”. In: Proceedings of the

International Conference on Computer Games: Artificial Intelligence, Design and

Education, 2004, pp. 193–200.

[Gho04] Ghory, I. “Reinforcement learning in board games”, Technical Report CSTR-04-004,

University of Bristol, 2004.

[GRO03] Guelpeli, M.; Ribeiro, C.; Omar, N. “Utilização de aprendizagem por reforço para

modelagem autônoma do aprendiz em um tutor inteligente”. In: Anais do Simpósio

Brasileiro de Informática na Educação, 2003, pp. 465–474.

[Hag12] Hagelbäck, J. “Potential-field based navigation in starcraft”. In: Proceedings of the

2012 IEEE Conference on Computational Intelligence and Games (CIG), 2012, pp.

388–393.

50

[KLM96] Kaelbling, L.; Littman, M.; Moore, A. “Reinforcement learning: A survey”, Arxiv

preprint cs/9605103, vol. 4, 1996, pp. 237–285.

[MA93] Moore, A. W.; Atkeson, C. G. “Prioritized sweeping: Reinforcement learning with less

data and less time”, Machine Learning, vol. 13–1, 1993, pp. 103–130.

[Mit64] Mitten, L. “Composition principles for synthesis of optimal multistage processes”,

Operations Research, vol. 12–4, 1964, pp. 610–619.

[ML10] Mohan, S.; Laird, J. E. “Relational reinforcement learning in infinite mario.” In:

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010,

pp. 1953–1954.

[MM13] Maissiat, J.; Meneguzzi, F. “Adaptive high-level strategy learning in starcraft”. In:

Proceedings of the SBGames conference on Computing, 2013.

[Mor82] Morin, T. “Monotonicity and the principle of optimality”, Journal of Mathematical

Analysis and Applications, vol. 88–2, 1982, pp. 665–674.

[Put94] Puterman, M. “Markov decision processes: Discrete stochastic dynamic programming”.

John Wiley & Sons, Inc., 1994.

[RGK09] Rodrigues Gomes, E.; Kowalczyk, R. “Dynamic analysis of multiagent q-learning with

ε-greedy exploration”. In: Proceedings of the 26th Annual International Conference on

Machine Learning, 2009, pp. 369–376.

[RN09] Russell, S.; Norvig, P. “Artificial Intelligence: A Modern Approach”. Prentice Hall,

2009, vol. 2.

[SB98] Sutton, R.; Barto, A. “Reinforcement learning: An introduction”. Cambridge Univ

Press, 1998, vol. 1.

[SC96] Sandholm, T.; Crites, R. “Multiagent reinforcement learning in the iterated prisoner’s

dilemma”, Biosystems, vol. 37–1-2, 1996, pp. 147–166.

[SD03] Schweighofer, N.; Doya, K. “Meta-learning in reinforcement learning”, Neural

Networks, vol. 16–1, 2003, pp. 5–9.

[SSK05] Stone, P.; Sutton, R.; Kuhlmann, G. “Reinforcement learning for robocup soccer

keepaway”, Adaptive Behavior, vol. 13–3, 2005, pp. 165–188.

[Sut91] Sutton, R. S. “Dyna, an integrated architecture for learning, planning, and reacting”,

ACM SIGART Bulletin, vol. 2–4, 1991, pp. 160–163.

[Tay11] Taylor, M. “Teaching reinforcement learning with mario: An argument and case

study”. In: Proceedings of the Second Symposium on Educational Advances in Artifical

Intelligence, 2011, pp. 1737–1742.

51

[TK02] Tesauro, G.; Kephart, J. O. “Pricing in agent economies using multi-agent q-learning.”,

Autonomous Agents and Multi-Agent Systems, vol. 5–3, 2002, pp. 289–304.

[UJG08] Ulam, P.; Jones, J.; Goel, A. K. “Combining model-based meta-reasoning and

reinforcement learning for adapting game-playing agents.” In: Proceedings of the

Fourth AAAI Conference on AI in Interactive Digital Environment, 2008.

[VGCBS04] Vilalta, R.; Giraud-Carrier, C. G.; Brazdil, P.; Soares, C. “Using meta-learning to

support data mining”, International Journal of Computer Science & Applications,

vol. 1–1, 2004, pp. 31–45.

[WD92] Watkins, C. J.; Dayan, P. “Technical note: Q-learning”. In: Reinforcement Learning,

Springer, 1992, pp. 55–68.

52

53

APPENDIX A – PAPER ACCEPTED IN SBGAMES CONFERENCE ON

COMPUTING 2013

Adaptive High-Level Strategy Learning in StarCraft

Jiéverson Maissiat

Faculdade de Informática

Pontifı́cia Universidade Católica

do Rio Grande do Sul (PUCRS)

Email: contact@jieverson.com

Felipe Meneguzzi

Faculdade de Informática

Pontifı́cia Universidade Católica

do Rio Grande do Sul (PUCRS)

Email: felipe.meneguzzi@pucrs.br

Abstract—Reinforcement learning (RL) is a technique to com-
pute an optimal policy in stochastic settings whereby, actions from
an initial policy are simulated (or directly executed) and the value
of a state is updated based on the immediate rewards obtained
as the policy is executed. Existing efforts model opponents in
competitive games as elements of a stochastic environment and
use RL to learn policies against such opponents. In this setting,
the rate of change for state values monotonically decreases over
time, as learning converges. Although this modeling assumes that
the opponent strategy is static over time, such an assumption is
too strong when human opponents are possible. Consequently, in
this paper, we develop a meta-level RL mechanism that detects
when an opponent changes strategy and allows the state-values
to “deconverge” in order to learn how to play against a different
strategy. We validate this approach empirically for high-level
strategy selection in the Starcraft: Brood War game.

I. INTRODUCTION

Reinforcement learning is a technique often used to gener-
ate an optimal (or near-optimal) agent in a stochastic environ-
ment in the absence of knowledge about the reward function
of this environment and the transition function [9]. A number
of algorithms and strategies for reinforcement learning have
been proposed in the literature [15], [7], which have shown to
be effective at learning policies in such environments. Some
of these algorithms have been applied to the problem of
playing computer games from the point of view of a regular
player with promising results [17], [10]. However, traditional
reinforcement learning often assumes that the environment
remains static throughout the learning process so that when
the learning algorithm converges. Under the assumption that
the environment remains static over time, when the algorithm
converges, the optimal policy has been computed, and no
more learning is necessary. Therefore, a key element of RL
algorithms in static environments is a learning-rate parameter
that is expected to decrease monotonically until the learning
converges. However, this assumption is clearly too strong when
part of the environment being modeled includes an opponent
player that can adapt its strategy over time. In this paper,
we apply the concept of meta-level reasoning [4], [19] to
reinforcement learning [14] and allow an agent to react to
changes of strategy by the opponent. Our technique relies on
using another reinforcement learning component to vary the
learning rate as negative rewards are obtained after the policy
converges, allowing our player agent to deal with changes in
the environment induced by changing strategies of competing
players.

This paper is organized as follows: in Section II we review
the main concepts used in required for this paper: the different

kinds of environments (II-A), some concepts of machine
learning (II-B) and reinforcement learning (II-C); in Section III
we explain the StarCraft game domain, and in Section IV we
describe our solution. Finally, we demonstrate the effectiveness
of our algorithms through empirical experiments and results in
Section V.

II. BACKGROUND

A. Environments

In the context of multi-agent systems, the environment is
the world in which agents act. The design of an agent-based
system must take into consideration the environment in which
the agents are expected to act, since it determines which AI
techniques are needed for the resulting agents to accomplish
their design goals. Environments are often classified according
to the following attributes [12]: observability, determinism,
dynamicity, discreteness, and the number of agents.

The first way to classify an environment is related to its
observability. An environment can be unobservable, partially
observable, or fully observable. For example, the real world
is partially observable, since each person can only perceive
what is around his or herself, and usually only artificial
environments are fully observable. The second way to classify
an environment, is about its determinism. In general, an
environment can be classified as stochastic or deterministic. In
deterministic environments, an agent that performs an action
a in a state s always result in a transition to the same state s′,
no matter how many times the process is repeated, whereas
in stochastic environments there can be multiple possible
resulting states s′, each of which has a specific transition
probability. The third way to classify an environment is about
its dynamics. Static environments do not change their transition
dynamics over time, while dynamic environments may change
their transition function over time. Moreover an environment
can be classified as continuous or discrete. Discrete envi-
ronments have a countable number of possible states, while
continuous environments have an infinite number of states.
A good example of discrete environment is a chessboard,
while a good example of continuous environment is a real-
world football pitch. Finally, environments are classified by
the number of agents acting concurrently, as either single-
agent or multi-agent. In single-agent environments, the agent
operates by itself in the system (no other agent modifies the
environment concurrently) while in multi-agent environments
agents can act simultaneously, competing or cooperating with
each other. A crossword game is a single-agent environment

whereas a chess game is a multi-agent environment, where two
agents take turns acting in a competitive setting.

B. Machine Learning

An agent is said to be learning if it improves its perfor-
mance after observing the world around it [12]. Common is-
sues in the use of learning in computer games include questions
such as whether to use learning at all, or wether or not insert
improvement directly into the agent code if it is possible to
improve the performance of an agent. Russell and Norvig [12]
state that it is not always possible or desirable, to directly
code improvements into an agent’s behavior for a number of
reasons. First, in most environments, it is difficult to enumerate
all situations an agent may find itself in. Furthermore, in
dynamic environments, it is often impossible to predict all the
changes over time. And finally, the programmer often has no
idea of an algorithmic solution to the problem.

Thus, in order to create computer programs that change
behavior with experience, learning algorithms are employed.
There are three main methods of learning, depending on the
feedback available to the agent. In supervised learning, the
agent approximates a function of input/output from observed
examples. In unsupervised learning, the agent learns patterns
of information without knowledge of the expected classifica-
tion. In reinforcement learning, the agent learns optimal behav-
ior by acting on the environment and observing/experiencing
rewards and punishments for its actions. In this paper, we focus
in reinforcement learning technique.

C. Reinforcement Learning

When an agent carries out an unknown task for the first
time, it does not know exactly whether it is making good or bad
decisions. Over time, the agent makes a mixture of optimal,
near optimal, or completely suboptimal decisions. By making
these decisions and analyzing the results of each action, it can
learn the best actions at each state in the environment, and
eventually discover what the best action for each state is.

Reinforcement learning (RL) is a learning technique for
agents acting in a stochastic, dynamic and partially observable
environments, observing the reached states and the received
rewards at each step [16]. Figure 1 illustrates the basic process
of reinforcement learning, where the agent performs actions,
and learns from their feedback. An RL agent is assumed to se-
lect actions following a mapping of each possible environment
state to an action. This mapping of states to actions is called a
policy, and reinforcement learning algorithms aim to find the
optimal policy for an agent, that is, a policy that ensure long
term optimal rewards for each state.

RL techniques are divided into two types, depending on
whether the agent changes acts on the knowledge gained
during policy execution [12]. In passive RL, the agent simply
executes a policy using the rewards obtained to update the
value (long term reward) of each state, whereas in active RL,
the agent uses the new values to change its policy on every
iteration of the learning algorithm. A passive agent has fixed
policy: at state s, the agent always performs the same action
a. Its mission is to learn how good its policy is − to learn
the utility of it. An active agent has to decide what actions
to take in each state: it uses the information obtained by

�����

����	
�����

���������	����
�	

��
�
�����������

�����
�����������

����	

��������

��������

Fig. 1. Model to describe the process of reinforcement learning.

reinforcement learning to improve its policy. By changing its
policy in response to learned values, an RL agent might start
exploring different parts of the environment. Nevertheless, the
initial policy still biases the agent to visit certain parts of the
environment [12], so an agent needs to have a policy to balance
the use of recently acquired knowledge about visited states
with the exploration of unknown states in order to approximate
the optimal values [6].

1) Q-Learning: Depending on the assumptions about the
agent knowledge prior to learning, different algorithms are
used. When the rewards and the transitions are unknown, one
of the most popular reinforcement learning techniques is Q-
learning. This method updates the value of a pair of state and
action — named state-action pair, Q(s, a) — after each action
performed using the immediately reward. When an action a is
taken at a state s, the value of state-action pair, or Q-value, is
updated using the following adjustment function [1].

Q(s, a)← Q(s, a) + α[r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)]

Where,

• s represents the current state of the world;

• a represents the action chosen by the agent;

• Q(s, a) represents the value obtained the last time
action a was executed at state s. This value is often
called Q-value.

• r represents the reward obtained after performing
action a in state s;

• s′ represents the state reached after performing action
a in state s;

• a′ ∈ A(s′) represents a possible action from state s′;

• maxa′∈A(s′)Q(s′, a′) represents the maximum Q-
value that can be obtained from the state s′, inde-
pendently of the action chosen;

• α is the learning-rate, which determines the weight of
new information over what the agent already knows —
a factor of 0 prevents the agent from learning anything
(by keeping the Q-value identical to its previous value)

whereas a factor of 1 makes the agent consider all
newly obtained information;

• γ is the discount factor, which determines the im-
portance of future rewards — a factor of 0 makes
the agent opportunistic [14] by considering only the
current reward, while a factor of 1 makes the agent
consider future rewards, seeking to increase their long-
term rewards;

Once the Q-values are computed, an agent can extract the
best policy known so far (π≈) by selecting the actions that
yield the highest expected rewards using the following rule:

π≈(s) = argmax
a

Q(s, a)

In dynamic environments, Q-learning does not guarantee
convergence to the optimal policy. This occurs because the
environment is always changing and demanding that the agent
adapts to new transition and reward functions. However, Q-
learning has been proven efficient in stochastic environments
even without convergence [13], [18], [1]. In multi-agent sys-
tems where the learning agent models the behavior of all
other agents as a stochastic environment (an MDP), Q-learning
provides the optimal solution when these other agents – or
players in the case of human agents in computer games — do
not change their policy choice.

2) Exploration Policy: So far, we have considered active
RL agents that simply use the knowledge obtained so far to
compute an optimal policy. However, as we saw before, the
initial policy biases the parts of the state-space through which
an agent eventually explores, possibly leading the learning
algorithm to converge on a policy that is optimal for the states
visited so far, but not optimal overall (a local maximum).
Therefore, active RL algorithms must include some mechanism
to allow an agent to choose different actions from those
computed with incomplete knowledge of the state-space. Such
a mechanism must seek to balance exploration of unknown
states and exploitation of the currently available knowledge,
allowing the agent both to take advantage of actions he knows
are optimal, and exploring new actions [1].

In this paper we use an exploration mechanism known as
ǫ-greedy [11]. This mechanism has a probability ǫ to select a
random action, and a probability 1 − ǫ to select the optimal
action known so far — which has the highest Q-value. In order
to make this selection we define a probability vector over the
action set of the agent for each state, and use this probability
vector to bias the choice of actions towards unexplored states.
In the probability vector x = (x1, x2, ..., xn), the probability
xi to choose the action i is given by:

xi =

{

(1− ǫ) + (ǫ/n), if Q of i is the highest
ǫ/n, otherwise

where n is the number of actions in the set.

D. Meta-Level Reasoning

Traditionally, reasoning is modeled as a decision cycle, in
which the agent perceives environmental stimulus and responds
to it with an appropriate action. The result of the actions
performed in the environment (ground-level) is perceived by

the agent (object-level), which responds with a new action, and
so the cycle continues. This reasoning cycle is illustrated in
Figure 2 [4].

��������	
	�

��	����	
	�

��������	
	������	��	����

��������	

����	�	

Fig. 2. Common cycle of perception and actions choice.

Meta-reasoning or meta-level reasoning is the process of
explicitly reasoning about this reasoning cycle. It consists of
both the control, and monitoring of the object-level reasoning,
allowing an agent to adapt the reasoning cycle over time, as
illustrated in Figure 3. This new cycle represents a high level
reflection about its own reasoning cycle.

��������	
	�

��	����	
	�

��������	
	������	��	����

��������	

����	�	

�	����	
	� �����
����	�	

������
����������

Fig. 3. Adding meta-level reasoning to the common cycle of perception and
choice of actions.

When meta-level reasoning is applied to learning algo-
rithms, this gives rise to a new term: meta-learning [14], [5].
Meta-learning represents the concept of learning to learn, and
the meta-learning level is generally responsible for controlling
the parameters of the learning level. While learning at the
object-level is responsible for accumulating experience about
some task (e.g, take decisions in a game, medical diagnosis,
fraud detection, etc.), learning at the meta-level is responsible
for accumulating experience about learning algorithm itself. If
learning at object-level is not succeeding in improving or main-
taining performance, the meta-level learner takes the responsi-
bility to adapt the object-level, in order to make it succeed. In
other words, meta-learning helps solve important problems in
the application of machine learning algorithms [20], especially
in dynamic environments.

III. STARCRAFT

Real-time strategy (RTS) games are computer games in
which multiple players control teams of characters and re-
sources over complex simulated worlds where their actions
occur simultaneously (so there is no turn-taking between
players). Players often compete over limited resources in order
to strengthen their team and win the match. As such RTS
games are an interesting field for the AI, because the state
space is huge, actions are concurrent, and part of the game
state is hidden from each player. Game-play involves both the
ability to manage each unit individually micro-management,
and a high-level strategy for building construction and resource
gathering (macro-management).

StarCraft is an RTS created by Blizzard Entertainment,
Inc.1. In this game, a player chooses between three different
races to play (illustrated in Figure 4), each of which having
different units, buildings and capabilities, and uses these re-
sources to battle other players, as shown in Figure 5. The

Fig. 4. StarCraft: Brood War − Race selection screen.

game consists on managing resources and building an army of
different units to compete against the armies built by opposing
players. Units in the game are created from structures, and
there are prerequisites for building other units and structures.
Consequently, one key aspect of the game is the order in which
buildings and units are built, and good players have strategies
to build them so that specific units are available at specific
times for attack and defense moves. These building strategies
are called build orders or BOs. Strong BOs can put a player in a
good position for the rest of the match. BOs usually need to be
improvised from the first contact with the enemy units, since
the actions become more dependent on knowledge obtained
about the units and buildings available to the opponent [8],
[3].

1 StarCraft website in Blizzard Entertainment, Inc. http://us.blizzard.com/
pt-br/games/sc/

Fig. 5. StarCraft: Brood War − Batttle Scene.

IV. META-LEVEL REINFORCEMENT LEARNING

A. Parameter Control

As we have seen in Section II-C, the parameters used in the
update rule of reinforcement learning influence how the state
values are computed, and ultimately how a policy is generated.
Therefore, the choice of the parameters in reinforcement
learning — such as α and γ — can be crucial to success
in learning [14]. Consequently, there are different strategies to
control and adjust these parameters.

When an agent does not know much about the environment,
it needs to explore the environment with a high learning-rate
to be able to quickly learn the actual values of each state.
However, a high learning-rate can either prevent the algorithm
from converging, or lead to inaccuracies in the computed value
of each state (e.g. a local maximum). For this reason, after the
agent learns something about the environment, it should begin
to modulate its learning-rate to ensure that either the state
values converge, or that the agent overcomes local maxima.
Consequently, maintaining a high learning-rate hampers the
convergence of the Q-value, and Q-learning implementations
often use a decreasing function for α as the policy is being
refined. A typical way [14] to vary the α-value, is to start
interactions with a value close to 1, and then decrease it
over time toward 0. However, this approach is not effective
for dynamic environments, since a drastic change in the
environment with a learning-rate close to 0 prevents the agent
from learning the optimal policy in the changed environment.

B. Meta-Level Reasoning on Reinforcement Learning

The objective of meta-level reasoning is to improve the
quality of decision making by explicitly reasoning about the
parameters of the decision-making process and deciding how
to change these parameters in response to the agent’s perfor-
mance. Consequently, an agent needs to obtain information
about its own reasoning process to reason effectively at the
meta-level. In this paper, we consider the following processes
used by our learning agent at each level of reasoning, and
illustrate these levels in Figure 6:

• ground-level refers to the implementation of actions
according to the MDP’s policy;

• object-level refers to learning the parameters of the
MDP and the policy itself;

• meta-level refers to manipulating the learning param-
eters used in object-level;

��������	
�������

�������

��������	
	������	��	����

��������	

����	�	

����������������� �����
����	�	

������
����������

Fig. 6. Modeling the meta-level reasoning in reinforcement learning.

Our approach to meta-level reasoning consists of varying
the learning-rate (known as α−value) to allow an agent to han-
dle dynamic environments. More concretely, at the meta-level,
we apply RL to learn the α−value used as the learning-rate at
the object-level RL. In other words, we apply reinforcement
learning to control the parameters of reinforcement learning.

The difference between RL applied at the meta-level and
RL applied at the object-level is that, at the object-level, we
learn Q-value for the action-state pair, increasing it when
we have positive feedback and decreasing it when we have
negative feedback. Conversely, at the meta-level, what we
learn in the α-value, by decreasing it when we have positive
feedback and increasing it when we have negative feedback —
that is, making mistakes means we need to learn at a faster rate.
Our approach to meta-level reinforcement learning is shown in
Algorithm 1.

Algorithm 1 Meta-Level Reinforcement Learning

Require: s, a,R
1: α← α− (0.05 ∗R)

2: if α < 0 then
3: α← 0
4: end if
5: if α > 1 then
6: α← 1
7: end if

8: Q(s, a)← Q(s, a) + (α ∗R)

The meta-level reinforcement learning algorithm requires
the same parameters as Q-learning: a state s, an action a
and a reward R. In Line 1 we apply the RL update rule for
the α-value used for the object-level Q-learning algorithm. At
this point, we are learning the learning-rate, and as we saw,

α decreases with positive rewards. We use a small constant
learning-rate of 0.05 for the meta-level update rule and bound
it between 0 and 1 (Lines 2–7) to ensure it remains a consistent
learning-rate value for Q-learning. Such a small learning-rate
at the meta-level aims to ensure that while we are constantly
updating the object-level learning-rate, we avoid high varia-
tions. Finally, in Line 8 we use the standard update rule for
Q-learning, using the adapted learning-rate. As the algorithm is
nothing but a sequence of mathematical operations, it is really
efficient when it comes to time. Thus, it is able to execute in
few clock cycles and could be utilized in real-time after each
action execution.

Since we are modifying the learning-rate based on the
feedback obtained by the agent, and increasing it when the
agent detects that its knowledge is no longer up to date, we
can also use this value to guide the exploration policy. Thus, we
also modify the ǫ−greedy action selection algorithm. Instead
of keeping the exploitation-rate (ǫ−value) constant, we apply
the same meta-level reasoning to the ǫ−value, increasing the
exploration rate, whenever we find that the agent must increase
its learning-rate — the more the agent wants to learn, the more
it wants to explore; if there is nothing to learn, there is nothing
to explore. To accomplish this, we define the exploitation-rate
as been always equal to the learning-rate:

ǫ = α

V. EXPERIMENTS AND RESULTS

In this section, we detail our implementation of meta-
level reinforcement learning and its integration to the Starcraft
game, followed by our experiments and their results.

A. Interacting with StarCraft

The first challenge in implementing the algorithm is the
integration of our learning algorithm to the proprietary code
from Starcraft, since we cannot directly modify its code and
need external tools to do this. In the case of StarCraft, commu-
nity members developed the BWAPI, which allows us to inject
code into the existing game binaries. The BWAPI (Brood War
Application Programming Interface)2 enables the creation and
injection of artificial intelligence code into StarCraft. BWAPI
was initially developed in C++, and later ported to other
languages like Java, C# and Python, and divides StarCraft in
4 basic types of object:

• Game: manages information about the current game
being played, including the position of known units,
location of resources, etc.;

• Player: manages the information available to a player,
such as: available resources, buildings and controllable
units;

• Unit: represents a piece in the game, either mineral,
construction or combat unit;

• Bullet: represents a projectile fired from a ranged unit;

Since the emergence of BWAPI in 2009, StarCraft has
drawn the attention of researchers and an active community

2An API to interact with StarCraft: BroodWar http://code.google.com/p/
bwapi/

of bot programming has emerged [2]. For our implementation,
we modified the open source bot BTHAI [8], adding a high-
level strategy learning component to it3. Figure 7 shows a
screenshot of a game where one of the players is controlled
by BTHAI, notice the additional information overlaid on the
game interface.

Fig. 7. BTHAI bot playing StarCraft: Brood War.

B. A Reinforcement Learning Approach for StarCraft

Following the approach used by [1], our approach focuses
on learning the best high-level strategy to use against an
opponent. We assume here that the agent will only play as
Terran, and will be able to choose any one of the following
strategies:

• Marine Rush: is a very simple Terran strategy that
relies on quickly creating a specific number of workers
(just enough to maintain the army) and then spending
all the acquired resources on the creation of Marines
(the cheapest Terran battle unit) and making an early
attack with a large amount of units.

• Wraith Harass: is similar, but slightly improved, Ma-
rine rush that consists of adding a mixture of 2–
5 Wraiths (a relatively expensive flying unit) to the
group of Marines. The Wraith’s mission is to attack
the opponent from a safe distance, and when any of
the Wraiths are in danger, use some Marines to protect
it. Unlike the Marine Rush, this strategy requires
strong micromanagement, making it more difficult to
perform.

• Terran Defensive: consists of playing defensively and
waiting for the opponent to attack before counterat-
tacking. Combat units used in this strategy are Marines
and Medics (a support unit that can heal biological
units), usually defended by a rearguard of Siege Tanks.

• Terran Defensive FB: is slightly modified version of
the Terran Defensive strategy, which replaces up to

3The source code can be fount at: https://github.com/jieverson/BTHAIMOD

half of the Marines by Firebats — a unit equipped
with flamethrowers that is especially strong against
non-organic units such as aircrafts, tanks and most of
Protoss’ units.

• Terran Push: consists of creating approximately five
Siege Tanks and a large group of Marines, and moving
these units together through the map in stages, stop-
ping at regular intervals to regroup. Given the long
range of the Tank’s weapons, opponents will often not
perceive their approach until their units are under fire,
however, this setup is vulnerable to air counterattack
units.

After each game, the agent observes the end result (victory
or defeat), and uses this feedback to learn the best strategy.
If the game is played again, the learning continues, so we
can choose the strategy with the highest value for the current
situation. If the agent perceives, at any time, that the strategy
ceases to be effective — because of a change in the opponent’s
strategy, map type, race or other factors — the agent is able to
quickly readapt to the new conditions, choosing a new strategy.

C. Experiments with StarCraft

To demonstrate the applicability of our approach we have
designed an experiment whereby a number of games are played
against a single opponent that can play using different AI bot
strategies. We seek to determine if our learning methods can
adapt its policy when the AI bot changes. Each game was
played in a small two-player map (Fading Realm) using the
maximum game speed (since all players were automated). The
game was configured to start another match as soon as the
current one ends. For the experiment, all the Q-values are
initialized to 0, and the learning-rate (α) is initialized to 0.5.
Our experiment consisted of playing the game a total of 138
matches where one of the players is controlled by an imple-
mentation of our meta-learning agent. In the first 55 matches,
the opponent have played a fixed Terrain policy provided by
the game and in subsequent matches, we have changed the
opponent policy to the fixed Protoss policy provided by the
game. It is worth noting that our method used very little
computation time–it runs in real time, using accelerated game
speed (for matches between two bots).

���������	
��	���
��

Fig. 8. Comparison between the number of victories and defeats of each
strategy.

 ! " ! # ! $! % ! & !

'(')*

+,-./01-,-22

'3,,-4536342.7389

'3,,-4:;20

'3,,-4536342.73

<-,.43=;20

��������	
��������

>.?/@,.32 5363-/2

Fig. 9. Graphic that presents a comparation between the win rate of each
strategy.

The results obtained are illustrated in the graph of Figure 8
and Figure 9, which shows that our meta-learning agent
consistently outperforms fixed opponents. Moreover, we can
see that the agent quickly learns the best strategy to win against
a fixed policy opponent when its strategy changes. As it learns,
its learning-rate should tend to decrease towards 0, which
means that the agent has nothing to learn. After the change
in opponent policy (at game execution 55), we expected the
learning-rate to increase, denoting that the agent is starting to
learn again, which was indeed the case, as illustrated by the
graph of Figure 10. The learning rate should remain above 0
until the RL algorithm converges to the optimal policy, and
then start decreasing towards 0. We note that, although the
learning-rate may vary between 0 and 1, it has never gone
beyond 0.7 in the executions we performed.

 !"#

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

 !

"

#

"

$

#

%

&

&

!

%

#

%

$

'

%

!

!

!

(

#

(

$

$

%

)

)

!

"

#

"

$

"

"

%

"

#

"

#

!

"

&

#

"

&

$

!

"

#

$

%

$

&

'

#

"

(

!

)

*

"

+

,

!

 !"#$%&'()

�����������	�

Fig. 10. Learning-rate variation over time.

Finally, the graphic in Figure 11 illustrates the variation
of the strategies Q-values over each game execution. We can
see that the Wraith Harass strategy was optimal against the
first opponent policy, while the Terrain Push has proven to
be the worst. When the opponent changes its policy, we can
see the Q-value of Wraith Harass decreases, resulting in an
increase in exploration. After the execution 85, we notice that

the Terrain Defensive FB strategy stood out from the others,
although the basic Terrain Defensive strategy has shown to
yield good results too. Wraith Harass and Marine Rush seem
to lose to the second opponent policy, and Terrain Push shows
remain the worst strategy.

 !

 "

 #

 $

%

$

#

"

!

&

 !

"

#

"

$

#

%

&

&

!

%

#

%

$

'

%

!

!

!

(

#

(

$

$

%

)

)

!

"

#

"

$

"

"

%

"

#

"

#

!

"

&

#

"

&

$

!

"

#

$

%

 !"#$%&'()

����������	
��������

'()*+,-)().. /0(()120301.*4056 /0(()178.,

/0(()120301.*40 9)(*10:8.,

Fig. 11. Strategies Q-Value over time.

VI. CONCLUSION

In this paper we have developed a reinforcement learning
mechanism for high-level strategies in RTS games that is able
to cope with the opponent abruptly changing its play style.
To accomplish this, we have applied meta-level reasoning
techniques over the already known RL strategies, so that we
learn how to vary the parameters of reinforcement learning
allowing the algorithm to “de-converge” when necessary. The
aim of our technique is to learn when the agent needs to learn
faster or slower. Although we have obtained promising initial
results, our approach was applied just for high-level strategies,
and the results were collected using only the strategies built
into the BTHAI library for Starcraft control. To our knowledge,
ours is the first approach to mix meta-level reasoning and rein-
forcement learning that applies RL to control the parameters of
RL. The results have shown that this meta-level strategy can be
a good solution to find high-level strategies. The meta-learning
algorithm we developed is not restricted to StarCraft and can
be used in any game in which the choice of different strategies
may result in different outcomes (victory or defeat), based on
the play style of the opponent. In the future, we aim to apply
this approach to low-level strategies, such as learning detailed
build orders or to micro-manage battles. Given our initial
results, we believe that meta-level reinforcement learning is
a useful technique in game AI control that can be used on
other games, at least at a strategic level.

ACKNOWLEDGMENT

The authors would like to thank the members of the BTHAI
and BWAPI groups for making available and documenting the
tools that made this work possible.

REFERENCES

[1] C. Amato and G. Shani. High-level reinforcement learning in strat-
egy games. In Proceedings of the 9th International Conference on

Autonomous Agents and Multiagent Systems, pages 75–82, 2010.

[2] M. Buro and D. Churchill. Real-time strategy game competitions. AI

Magazine, 33(3):106–108, 2012.

[3] D. Churchill and M. Buro. Build order optimization in starcraft.
In Proceedings of the Seventh Annual AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, pages 14–19, 2011.

[4] M. T. Cox and A. Raja. Metareasoning: A manifesto. In Proceedings

of AAAI 2008 Workshop on Metareasoning: Thinking about Thinking,
pages 106–112, 2008.

[5] K. Doya. Metalearning and neuromodulation. Neural Networks,
15(4):495–506, 2002.

[6] I. Ghory. Reinforcement learning in board games. Technical Report
CSTR-04-004, University of Bristol, 2004.

[7] T. Graepel, R. Herbrich, and J. Gold. Learning to fight. In Proceed-

ings of the International Conference on Computer Games: Artificial

Intelligence, Design and Education, pages 193–200, 2004.

[8] J. Hagelbäck. Potential-field based navigation in starcraft. In Proceed-

ings of the 2012 IEEE Conference on Computational Intelligence and

Games (CIG), pages 388–393. IEEE, 2012.

[9] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A
survey. Arxiv preprint cs/9605103, 4:237–285, 1996.

[10] S. Mohan and J. E. Laird. Relational reinforcement learning in infinite
mario. In Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence, pages 1953–1954, 2010.

[11] E. Rodrigues Gomes and R. Kowalczyk. Dynamic analysis of multia-
gent q-learning with ε-greedy exploration. In Proceedings of the 26th

Annual International Conference on Machine Learning, pages 369–376.
ACM, 2009.

[12] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach,
volume 2. Prentice Hall, 2009.

[13] T. Sandholm and R. Crites. Multiagent reinforcement learning in the
iterated prisoner’s dilemma. Biosystems, 37(1-2):147–166, 1996.

[14] N. Schweighofer and K. Doya. Meta-learning in reinforcement learning.
Neural Networks, 16(1):5–9, 2003.

[15] P. Stone, R. Sutton, and G. Kuhlmann. Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[16] R. Sutton and A. Barto. Reinforcement learning: An introduction,
volume 1. Cambridge Univ Press, 1998.

[17] M. Taylor. Teaching reinforcement learning with mario: An argument
and case study. In Proceedings of the Second Symposium on Educa-

tional Advances in Artifical Intelligence, pages 1737–1742, 2011.

[18] G. Tesauro and J. O. Kephart. Pricing in agent economies using
multi-agent q-learning. Autonomous Agents and Multi-Agent Systems,
5(3):289–304, 2002.

[19] P. Ulam, J. Jones, and A. K. Goel. Combining model-based meta-
reasoning and reinforcement learning for adapting game-playing agents.
In Proceedings of the Fourth AAAI Conference on AI in Interactive

Digital Environment, 2008.

[20] R. Vilalta, C. G. Giraud-Carrier, P. Brazdil, and C. Soares. Using meta-
learning to support data mining. International Journal of Computer

Science & Applications, 1(1):31–45, 2004.

