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INTEGRANDO PLANEJAMENTO AUTOMATIZADO COM UM
FRAMEWORK DE DESENVOLVIMENTO DE SISTEMAS

MULTI-AGENTE

RESUMO

Planejamento automatizado é uma capacidade importante de se ter em agentes inteligentes.
Já foi realizada uma extensa pesquisa em planejamento para um único agente, porém planeja-
mento multiagente ainda não foi totalmente explorado, principalmente por causa do alto custo
computacional encontrado nos algoritmos para planejamento multiagente. Com o aumento na
disponibilidade e o avanço técnológico de sistemas distribuídos, e mais recentemente de proces-
sadores multinúcleos, novos algoritmos de planejamento multiagente tem sido desenvolvidos,
como por exemplo o algoritmo MAP-POP, que neste trabalho é integrado com o framework
de sistemas multiagente JaCaMo. Este trabalho fornece capacidades para planejamento mul-
tiagente offline como parte de um framework para desenvolvimento de sistemas multiagentes.
Esse framework suporta problemas multiagente complexos baseados em programação orientada
a agentes. Em síntese, a principal contribuição deste trabalho é fornecer aos desenvolvedores
uma implementação inicial do sistema multiagente para um determinado cenário, baseado nas
soluções encontradas pelo planejador MAP-POP, a qual pode aindar ser expandida pelo desen-
volvedor para se tornar um sistema multiagente completo e bem desenvolvido.

Palavras Chave: agentes inteligentes; programação orientada a agentes; planejamento multi-
agente; sistemas multiagentes; JaCaMo.





INTEGRATING AUTOMATED PLANNING WITH A
MULTI-AGENT SYSTEM DEVELOPMENT FRAMEWORK

ABSTRACT

Automated planning is an important capability to have in intelligent agents. Extensive research
has been done in single-agent planning, but so far planning has not been fully explored in multi-
agent systems because of the computational costs of multi-agent planning algorithms. With the
increasing availability of distributed systems and more recently multi-core processors, several
new multi-agent planning algorithms have been developed, such as the MAP-POP algorithm,
which we integrate into the JaCaMo multi-agent system framework. Our work provides offline
multi-agent planning capabilities as part of a multi-agent system development framework. This
framework supports complex multi-agent problems based on agent-oriented programming. In
summary, the main contribution of this work is to provide the developers with an initial multi-
agent system implementation for a target scenario, based on the solutions found by the MAP-
POP multi-agent planner, and on which the developer can work further towards a fully-fledged
multi-agent system.

Keywords: intelligent agents; agent-oriented programming; multi-agent planning; multi-agent
systems; JaCaMo.
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1. INTRODUCTION

The Agents research area evolved rapidly through the mid 90s, and since then the agent
community has been expecting intelligent agents to become a key technology in computer sys-
tems [42,90]. With the increasing advance of distributed systems, and more recently multi-core
processors, there are evidence that both academia and industry are starting to look for concur-
rent and parallel programming languages. The Erlang1 programming language, for example, is
already used in many companies like Amazon, Yahoo!, and Facebook. Erlang is based on the
Actor Model [2], a predecessor of the Agent Model [90]. Recently, the Actor Model has been
receiving increased attention, both from academia and industry, that can be taken as a clue
that the Agent Model is soon to follow.

Planning is the act or process of making or carrying out plans, thinking about the actions
that are required to achieve a desired goal and organizing them; it is considered to be a charac-
teristic of intelligent behaviour. In psychology, cognitive planning is one of the main executive
functions; it encompasses the neurological processes involved in the formulation, evaluation and
selection of a sequence of thoughts and actions to achieve a desired goal [68]. Thus, automated
planning is an interesting and desirable capability to have in intelligent agents and MAS, which
so far has not been fully explored because of the computational costs of MAP algorithms [24,85].
Recent algorithms have managed to significantly improve performance, which was one of the
main incentives for pursuing this topic.

Single-agent planning has been extensively researched over the years [4, 8, 36, 49, 59, 62, 77].
One of its more common models is classical planning, which refers to planning for restricted
state-transition systems where a state is a collection of variables [62]. Although restrictive
and unrealistic, classical planning serves as baseline for other models, such as temporal and
probabilistic planning. One of the earliest classical planners is the STanford Research Institute
Problem Solver (STRIPS) [31], it uses a model of the world and a set of action schemata that
describes the preconditions and effects of all the actions available to the agent. This action
formalism presented in STRIPS continues to be used in modern-day planners, for example,
it is part of the Planning Domain Definition Language (PDDL) [55], a language proposed to
standardise the syntax used for representing planning problems.

PDDL has been used as the standard language for the International Planning Competition
(IPC)2 since 1998, and has been constantly updated and extended during this period of time.
The latest major version is PDDL 3.0 [34], further extended in PDDL 3.13. PDDL is not limited
to classical planning. Besides the STRIPS-like extension there are other models available such
as temporal planning, and recently even a MAP extension [48] was proposed.

1http://www.erlang.org/.
2http://www.icaps-conference.org/
3http://ipc.informatik.uni-freiburg.de/PddlExtension.
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We use the JaCaMo framework as the MAS development platform. It is composed of three
technologies, each representing a different abstraction level that is required for the development
of sophisticated MAS. JaCaMo is the combination of Jason, CArtAgO, and Moise, each of
these technologies are responsible for a different programming dimension. Jason is used for
programming the agent level, CArtAgO is responsible for the environment level, and Moise for
the organisation level.

In this work we provide an approach to integrate Multi-Agent Planning (MAP) algorithms
with a Multi-Agent Systems (MAS) platform. We discuss three implemented MAP algorithms
recently proposed by the planning community: Planning-First [64]; Multi-Agent Distributed A*
(MAD A*) [63]; and Multi-Agent Planning based on Partial-Order Planning (MAP-POP) [50].
Our goal with this work is to provide the developers with an initial multi-agent system imple-
mentation for a target scenario, based on the solutions found by the multi-agent planner, and
to provide a basis for extending other MAP algorithms to work with JaCaMo.

The implementation is done in the form of a translator, which will take as input the name
of the MAP algorithm to be used and the chosen algorithm’s related problem input. As output,
the translator will generate a coordination scheme in Moise, followed by the respective agent
plans in Jason to adopt the roles in the organisation, the solution that will be added to the
agents plan library, and CArtAgO artefacts for both organisation control and environment
representation. All of these come together to form a multi-agent system in JaCaMo.

1.1 Motivation

The 1st Workshop on Distributed and Multi-Agent Planning (DMAP) [73] was held in
2013 during the International Conference on Automated Planning and Scheduling (ICAPS),
suggesting an increase in the research interest of the automated planning community towards
MAP.

Although there is an increase in interest in theoretical research on multi-agent planning, as
evidenced by [21,44,69,87], current implemented multi-agent planning algorithms and planners
are mostly application specific, such as in [54,83]. A distributed multi-agent planning problem
involves the development and execution of joint plans through cooperation (agents on the same
team) and competition (agents on opposing teams) without centralised control. These planning
algorithms normally stop at the planning stage, providing a solution plan but with no means
to execute that plan. By integrating JaCaMo with MAP algorithms we are able to cover both
the planning and the execution stages.

1.2 Objectives

Here we present the main objectives of our work:
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1. Implement a translator that receives as input the solution plan of a problem, and generates
as output a multi-agent system in JaCaMo that is able to execute the solution plan.

2. Provide a grammar and translation algorithms that can be used to make the process of
integrating other MAP algorithms with JaCaMo easier.

3. A qualitative evaluation of the resulting system during both stages, planning and execu-
tion.

1.3 Dissertation Outline

The rest of the dissertation is structured as follows: Chapter 2 provides the relevant back-
ground information on Intelligent Agents, the BDI model, multi-agent systems, agent-oriented
programming languages (namely Jason and JaCaMo), planning (both single-agent and multi-
agent planning), and finally the related work; Chapter 3 contains the description of three MAP
algorithms, and the semi-formal description of the translator that was implemented; in Chapter
4 we present two case studies, and provide a brief qualitative evaluation of both planning and
execution stages; finally, in Chapter 5 some final considerations and future work are discussed.
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2. BACKGROUND

In this Chapter we briefly discuss some of the fundamentals of Intelligent Agents, the Pro-
cedural Reasoning System (PRS) and its foundational Belief-Desire-Intention (BDI) model,
along with one of its popular representative, the AgentSpeak language. Afterwards, we present
some Agent-Oriented Programming (AOP) languages, focusing on the platform that was cho-
sen for this work, JaCaMo. Finally, some relevant concepts in planning techniques, and more
importantly Multi-Agent Planning techniques, are tackled.

2.1 Intelligent Agents

According to [89] “An agent is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet its design objectives”.
In other words, agents receive perceptions through sensors in the environment, and respond to
these events with actions that affect the environment. Therefore, sensor data, i.e. perceptions,
are the input of an agent and the actions its output, as can be seen in Figure 2.1.

Figure 2.1: Diagram representing a simple agent architecture.

Similarly to the above concept, we have a more refined one presented in [75] that states
“An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators”. Although both concepts express practically
the same thing, the latter resembles the similar concept of robots, which are also known to
be equipped with sensors and actuators. This concept is illustrated in Figure 2.2, where the
question mark represents the reasoning that the agent performs with the input from the sensors
to generate an appropriate action output.

The reasoning mechanism can be based on, for example, the PRS [32] architecture. In
this architecture an agent has a library of pre-compiled plans that are composed of: goal —
postcondition of the plan; context — precondition of the plan; and body — the course of action
to carry out. Another important feature of the PRS is the intention stack, as it contains all of
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Figure 2.2: A more complex representation of an agent architecture [75].

the goals not yet achieved, and it is used by the agent to search its library to see what plans
match the goal on the top of the stack as their postcondition. After that it is time to check if
the precondition is satisfied, and if so then these plans become possible options to be executed
by the agent.

The PRS was largely based in the BDI model, first described in [12] and further extended
by [72]. The BDI model has its roots in philosophy, as it tries to understand the process of
deciding which action to perform in order to achieve certain goals — also known as practical
reasoning. This model has three primary mental attitudes: belief — what the agent believes
that is true about its environment, and about the other agents present in it; desire — the desired
states that the agent hopes to achieve; and intention — a sequence of actions that an agent
has to carry out in order to achieve a state. Those mental attitudes respectively represent the
information, motivational, and deliberative states of the agent. Figure 2.3 illustrate how the
BDI model works: the Belief Revision Function (BRF) receives the input information from the
sensors, and updates the belief base. This update will generate more options that can become
current desires based on the belief and intention bases. The filter is responsible for updating the
intentions base, taking into consideration its previous state, and the current belief and desire
bases. Finally an intention is chosen that will be carried out as an action by the agent.

Systems that require the use of the Agent Model will seldom need only a single-agent. Albeit
obvious, a MAS then has multiple agents, or as more formally defined in [89] “Multiagent
systems are systems composed of multiple interacting computing elements, known as agents”.
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Figure 2.3: Generic BDI model, adapted from [88].

2.1.1 Agent-Oriented Programming

As previously discussed, MAS is recently obtaining more popularity, and it can already
be found in a wide variety of applications, as for example in health care [5, 14, 46], smart
grids [29, 47], smart homes [1, 27,41,60], smart cities [20, 53], among others.

Based on the BDI model, many AOP languages were created, including the AgentSpeak
language. Initially conceived by Rao [71], it was later much extended in a series of publications
by Bordini, Hübner, and colleagues, so as to make it suitable as a practical agent programming
language known as Jason. AgentSpeak represents an abstraction of implemented BDI systems
like PRS which allows agent programs to be written and interpreted much like horn-clause
logic programs, hence the resemblance to the logic programming language Prolog. A plan in
AgentSpeak is triggered when events (internal or external) occur, followed by checking if the
context of the plan is applicable; the rest of the plan is composed of basic actions and/or
subgoals that need to be achieved in order for the plan to be successful. The following is from
Agentspeak syntax: ! for achievement goal, ? for test goal, ; for sequencing and <- to separate
the plan context and its body. An achievement goal, for example !g(t), is used when the agent
wants to achieve a state where g(t) is a belief. A test goal, for example ?g(t), is used when
the agent wants to test if g(t) is in the belief base. The convention regarding case sensitivity
is similar as the one used in Prolog: variables start in upper-case and constants in lower-case.

The program for an agent is basically a set of initial goals, beliefs, and plans. While beliefs
and goals are represented by predicates (the latter, preceded by !), plans have the form te :

ct <- b, where te is a trigger event the plan can reacts to, c is a context (a formula that must
be true for the plan to be applicable), and b is a sequence of actions and subgoals.
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We present a simple example of AgentSpeak plans in Listing 2.1. In this example, we have
an agent that can book tickets to a movie for the user. The plan +movie(M,T) is activated
when the agent receives a perception that a new movie M is available in a movie theatre T; the
perception could be received either by another agent or a newsfeed. When activated, it checks
its context for a couple of preconditions: if the movie theatre is located close by to where the
user lives, and if the rating of the movie is higher than seven. The rating could be obtained by
agents from friends or from a website that ranks movies such as IMDb. If the preconditions are
all true, then the agent proceeds to execute the body of the plan; the action suggest(M,T) is
used to suggest the movie to the user, if they accept the plan continues, otherwise it fails and the
agent stops pursuing it. As the plan continues, the agent will now have a new goal of booking
tickets for the user to go watch the movie, this means that the plan +!book_tickets(M,T) will
be activated by the internal event generated by the adoption of a subgoal. The agent checks
in the context of the plan for the website W of the particular movie theatre that will screen the
movie, the agent then proceeds to execute the body of the plan, with actions to check when
the movie will screen, checking it against the user’s schedule, suggesting times and seats to the
user, and finally booking the ticket by choosing a seat.

Listing 2.1: Example of plans in AgentSpeak.
1 +movie(M,T) : closeby(T) & rating(M,R) & R > 7
2 <- suggest(M,T);
3 !book_tickets(M,T).

4

5 +!book_tickets(M,T) : website(T,W)
6 <- getSchedule(W,M,S);
7 checkSchedule(S);
8 ...;
9 choose_seat(M,T,C).

2.1.2 Agent-Oriented Programming Languages

This section presents a collection of brief descriptions of some AOP languages that are all
free software, with the exception of JACK. The 2APL1 [22] — A Practical Agent Programming
Language — is known for its abstraction into two different levels: the multi-agent level —
which provides programming constructs for a MAS in terms of a set of individual agents and a
set of environments in which actions can be performed; and the individual agent level — which
provides programming constructs to implement cognitive agents based on the BDI model. It
supports the implementation of both reactive and pro-active agents.

The Agent Factory Framework2 [65] is a collection of tools, platforms, and languages that
1http://apapl.sourceforge.net/.
2http://www.agentfactory.com/.
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support the development and deployment of MAS. It is essentially split into two parts: the
Agent Factory Standard Edition (AFSE), which deploys agents on laptops, desktops and
servers; and the Agent Factory Micro Edition (AFME), which deploys agents on constrained
devices such as mobile phones and sensors.

Goal-Oriented Agent Language (GOAL)3 [37] is partly based on the BDI model, but it is
also influenced by the UNITY [19] language. In UNITY a set of actions executed in parallel
constitutes a program, however whereas UNITY is based on variable assignment, GOAL uses
more complex notions such as beliefs, goals, and agent capabilities. Message passing is based
on mailboxes, each message that arrives is inserted as a fact in the receiver agent message
base. GOAL’s agent communication is based on speech acts, represented by moods: indicative,
declarative, and interrogative.

JACK4 [15] is developed by the Agent Oriented Software (AOS) company and is a com-
mercial AOP language that is based on the BDI model. One of the most successful industry
AOP language, it is written in Java, which means it has natural portability. JACK’s downside
is that it uses mainly one thread, for security purposes.

Jadex5 [70] is another AOP language based on the BDI model, which allows the program-
ming of intelligent software agents in XML and Java. It also provides a framework including a
runtime infrastructure for agents, the agent platform, and an extensive runtime tool suite.

Several studies indicate that Jason has an excellent performance when compared with other
AOP languages. For example, Jason is included in a qualitative comparison of features alongside
with Erlang, and Java [43]; in a universal criteria catalog for agent development artefacts [13];
in a quantitative analysis of 2APL, GOAL, and Jason regarding their similarity and the time
it takes them to reach specific states [7]; a performance evaluation of Jason when used for
distributed crowd simulations [30]; an approach to query caching and a performance analysis of
its usage in Jason, 2APL and GOAL [3]; an implementation of Jason in Erlang and a benchmark
for evaluating its performance [26]; a quantitative comparison between Jason and two actor-
oriented programming languages (Erlang and Scala) using a communication benchmark [16,
17]; and finally a performance evaluation of several benchmarks between agent programming
languages (Jason, 2APL, and GOAL) and actor programming languages (Erlang, Akka, and
ActorFoundry) [18]. In those cases where performance was considered, Jason typically showed
excellent results. In the next section we present JaCaMo and its three technologies: Jason,
CArtAgO, and Moise.

3http://mmi.tudelft.nl/trac/goal.
4http://aosgrp.com/products/jack.
5http://www.activecomponents.org/.
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2.1.3 JaCaMo

A JaCaMo6 [9] MAS (i.e., a software system programmed in JaCaMo) is given by an agent
organisation programmed in Moise, responsible for the organisation of autonomous agents pro-
grammed in Jason, and those agents work in a shared distributed artefact-based environment
programmed in CArtAgO. An overview of how JaCaMo combines these different levels of ab-
straction can be seen in Figure 2.4.

Figure 2.4: Overview of a JaCaMo MAS, highlighting its three dimensions [9].

Jason7 [10] is a platform for the development of MAS based on the BDI model, inspired by
the AgentSpeak language, Jason focuses on the agent programming level, in Jason an agent is
an entity composed of a set of beliefs, representing agent’s current state and knowledge about
the environment in which it is situated, a set of goals, which correspond to tasks the agent has
to achieve, a set of intentions, which are tasks the agent is committed to achieve, and a set of
plans which are courses of actions triggered by events.

Events in Jason can be related to changes in either the agent’s belief base or its goals. The
agent reacts to the events creating new intentions, provided there is an applicable plan for that

6http://jacamo.sourceforge.net/.
7http://jason.sourceforge.net/.
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event. Therefore, each intention represents a particular “focus of attention” for the various
tasks currently being done by the agent: they all compete for the agent’s choice of intention to
be further executed in a given execution step.

A project file is used to choose particular settings of the platform (e.g., whether it will run
distributed on various hosts or in a single machine) and also to specify all the agents that will
take part in the system, for example in “agents : ag #2”, two instances of agent ag are created
and named ag1 and ag2.

In Jason, as in most agent platforms, the communication between agents is based on speech-
act theory; formal semantics of speech-act for AgentSpeak can be found in [84]. Messages
produce changes on the receivers’ state that are richer than just a new entry in an inbox. For
instance, the action .send(X, achieve, token(5)) sends a message with content token(5) to
agent X. The performative achieve is a directive speech-act, it means that the content will be
a new goal to be adopted by the receiver, represented by the event +!token(5)[source(a)],
where a is the sender of the message.

Last, it should be mentioned the “pool of threads” functionality of Jason, declared by using
(pool,x) next to the infrastructure of choice in the project file. Enabling a pool of threads
means that rather than creating one thread for each agent, Jason creates only a fixed number
of threads that agents compete for, unless they have nothing to do. Generally its best to choose
x to be the number of cores of the processor where Jason is running, but programmers are free
to set it to any number they want.

CArtAgO8 [74] is a framework and infrastructure for environment programming and ex-
ecution in multi-agent systems. The underlying idea is that the environment can be used
as a first-class abstraction for designing MAS, as a computational layer encapsulating func-
tionalities and services that agents can explore at runtime. CArtAgO is based on the A&A
meta-model [66], which means that in CArtAgO such software environments can be designed
and programmed as a dynamic set of computational entities called artefacts, collected into
several workspaces, possibly distributed among various nodes of a network.

Artefacts in CArtAgO are programmed in Java. Artefacts contain a set of operations that
can be used to represent the changes that can occur in the environment. The current state of
the environment is represented by observable properties; when an agent observes a particular
artefact it means that the observable properties of this artefact will be directly represented as
beliefs in that agent’s belief base. The agent’s actions in the environment can be mapped to
operations in the artefact that can change the observable properties and dynamically update
the belief base of all agents that are observing the artefact.

Finally, the Moise9 [40] model is used to program for the organisational dimension. This
approach includes an organisation modelling language, an organisation management infras-
tructure, and support for organisation-based reasoning mechanisms at the agent level. An

8http://CArtAgO.sourceforge.net/.
9http://moise.sourceforge.net/.
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organisation model is represented by an Extensible Markup Language (XML) file that is di-
vided into three layers: the structural specification, where the groups, roles, and links between
roles are specified; the functional specification, where the schemas are specified, containing a
group of goals and missions, along with information on which goals will be executed in parallel
and which will be executed in sequence; and the normative specification, where obligations and
permissions towards certain missions are assigned to certain roles.

The organisation management infrastructure in JaCaMo works through CArtAgO — an-
other example of the natural synergy between the JaCaMo components — creating organ-
isational artefacts that are used to help coordinate the agents that belong to a particular
organisation. For example, an organisational artefact maintains a list of which agents should
pursue which goals, and this is represented by the obligations that were defined in the norma-
tive specification of the XML file of an organisation. When an agent joins an organisation and
adopts a role, it acquires the obligations pertaining to that role by observing the respective
organisational artefact.

JaCaMo integrates these three platforms by defining a semantic link among concepts of the
different programming dimensions (agent, environment, and organisation) at the meta-model
and programming levels, in order to obtain a uniform and consistent programming model that
simplifies the combination of those dimensions for the development of MAS. The end result is
the JaCaMo conceptual framework and platform, that provides high-level first-class support for
developing agents, environments, and organisations in synergy, allowing for the development of
more complex MAS.

At this point we have presented the necessary background in intelligent agents and multi-
agent systems along with several AOP languages, including an extended description of the
MAS development framework we chose, JaCaMo. In the next section of this chapter we discuss
automated planning, planning in intelligent agents, and finally multi-agent planning.

2.2 Planning

This section presents a brief introduction to planning, planning formalisms such as STRIPS
and PDDL, the Graphplan planner, multi-agent planning including early approaches to it, and
multi-agent planning problems.

As briefly discussed in Chapter 1, planning uses some form of deliberation to achieve goals
by anticipating the effect of possible actions and organising these actions in a way that they
can lead to the achievement of those goals. According to [62]: “Automated planning is an area
of Artificial Intelligence (AI) that studies this deliberation process computationally”. Next, we
take a look at how this deliberation process has been computationally realised over the years.

A planner (see Figure 2.5), as described in [4, 89], is an algorithm that given a description
of the initial state of the environment, a goal state, and the actions available to an agent, will
generate a plan, i.e. a sequence of actions, that when executed will guarantee the achievement
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of the goal. A collection of several of these planning algorithms can be found in [49]. These
planning algorithms assume that the environment where the plan was being executed is static,
and while it is possible to have static environments in MAS, its more common for the environ-
ments to be dynamic, even more so when discussing real world applications. While the planner
is generating a solution plan, the beliefs the agents had about the environment could change,
rendering the plan ineffective when it is finally conceived, which can result in plan failure.
These problems can be addressed with look-ahead planning [35] or plan failure handling [78].

Figure 2.5: Typical overview of a planner [89].

2.2.1 Classical Planning

Classical planning, according to [62], “is a deterministic, static, finite, and fully observable
state-transition system with restricted goals and implicit time”. Next, we will describe several
planning formalisms and techniques frequently used in the literature for planning with single-
agents.

STanford Research Institute Problem Solver (STRIPS) [31] uses the same steps from the
planning algorithm explained above, where the initial state, goal, and actions are caracterised
using a subset of first-order logic. Accordingly, STRIPS has two basic components: a model of
the world, and a set of action schemata that describes the preconditions and effects of all the
actions available to the agent. The second component of STRIPS still persists in current AI
planning research, and it is still used in some current planners.

A different approach was presented in [8], representing the planning problem in a graph
structure using the Graphplan algorithm. A planning problem in Graphplan is described as
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the following: a STRIPS-like domain (set of operators); a set of objects; a set of propositions
(initial conditions); and a set of problem goals that are required to be true at the end of a
plan. The algorithm runs in stages, in a stage i it takes the planning graph from stage i — 1
and extends it (i.e. takes the next action level), and then searches for a valid plan of length i.
In each iteration, the algorithm either discovers a valid plan or else proves that no plan with
that number of time steps or fewer is possible. As stated in [75], Graphplan has problems in
domains with lots of objects because too many stages would need to be processed.

The first version of the Planning Domain Definition Language (PDDL) [55] was developed
as an attempt to standardise syntax for representing planning problems, and it has been used as
the standard language for the International Planning Competition (IPC10) since 1998. PDDL is
able to represent a planning problem in a particular domain by using the following components:
objects, things of interest in the domain; predicates, properties of the objects; initial state, the
state that the problem starts in; goal state, the result of solving the problem; and actions
(operators), define changes to the states of the problem. The latest major version is PDDL
3.0 [34], which has been further extended to PDDL 3.111.

Planning problems described in PDDL are composed of two files: a domain file with pred-
icates and actions; and a problem file with objects, initial state, and goal state. The Blocks
World example — see Listing 2.2 for the domain file, and Listing 2.3 for the problem file — is
a popular planning domain in AI; the goal is to move blocks around a surface in order to build
one or more vertical stacks of blocks. The Blocks Wold domain has the following restrictions:
only one block may be moved at a time; a block can either be placed on the table or on top
of another block; and any blocks that are under another block cannot be moved. Figure 2.6
represents the initial state for the listed problem, and Figure 2.7 represents the goal state. The
domain file for this example specifies three predicates, i.e. rules, that can be used in actions:
on to check if a block is on top of another block or the table; block to check if the object is a
block; and clear to check if an object has nothing on top of it, i.e. it is possible to move another
block on top of the object. In this example of the Blocks World domain there are two possible
actions, move(b, x, y) that corresponds to moving a block b, that is atop a block x, to the top
of the block y, and moveToTable(b, x) in order to move a block b, that is atop a block x, to
the table.

Listing 2.2: Domain file for the Blocks World example in PDDL.
1 (define (domain blocks)
2 (:requirements :strips)
3 (:constants-def table)
4 (:predicates (on ?a ?b)
5 (block ?b)
6 (clear ?b)

10http://ipc.icaps-conference.org/.
11http://ipc.informatik.uni-freiburg.de/PddlExtension.
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7 )
8 (:action move
9 :parameters (?b ?x ?y)

10 :precondition (and (on ?b ?x) (clear ?b)
11 (clear ?y) (block ?b) (block ?y)
12 )
13 :effect (and (on ?b ?y) (clear ?x)
14 (not (on ?b ?x)) (not (clear ?y))
15 )
16 )
17 (:action moveToTable
18 :parameters (?b ?x)
19 :precondition (and (on ?b ?x) (clear ?b) (block ?b) (block ?x))
20 :effect (and (on ?b table) (clear ?x) (not (on ?b ?x)))
21 )
22 )

Listing 2.3: Problem file for the Blocks World example in PDDL.
1 (define (problem pb1)
2 (:domain blocks)
3 (:objects a b c table)
4 (:init (on a table)
5 (on b table)
6 (on c a)
7 (block a)
8 (block b)
9 (block c)

10 (clear b)
11 (clear c)
12 )
13 (:goal (and (on a b)
14 (on b c)
15 )
16 )
17 )

Problem formalisms are an important part of automated planning, as a planner can use the
formalism provided by PDDL to formulate a solution plan for the problem. PDDL is constantly
updated with new extensions, resulting in an extensive range of possibilities to represent all
kinds of domains and, as a result, only a small subset of PDDL is usually used by the planners.
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Figure 2.6: Initial state of the Blocks World problem of Listing 2.3.

Figure 2.7: Goal state of the Blocks World problem of Listing 2.3.

2.2.2 Multi-agent Planning

Single-Agent planning is concerned with the task of finding a plan, for a single-agent, suitable
for a problem. Consequently, Multi-Agent Planning is the process of finding a solution plan for
multiple agents. The task of finding a plan can also be done by multiple agents, which is known
as Distributed MAP. According to [89], “Multi-agent planning must take into consideration the
fact that the activities of agents can interfere with one another — their activities must therefore
be coordinated”, thus the coordination of multiple agents can be considered as one of the main
problems in MAP.

In [28], planning is classified as follows:

• Centralised planning for distributed plans: based on the master-slave model of
communication, a plan is developed in which the division and ordering of labour is defined,
the master agent then distributes the plan to the slaves who execute their part of the
plan. This can be considered centralised planning.

• Distributed planning: agents cooperate to form a centralised plan, however the agents
that form the plan will not execute it, their role is only to generate the plan. This can
be considered distributed single-agent planning.

• Distributed planning for distributed plans: agents cooperate to form individual
plans, dynamically coordinating their activities along the way. Potential coordination
problems may arise, in particular for self-interested agents. Possible solutions for coordi-
nation problems are the use of negotiation techniques or an organisational control. This
can be considered distributed multi-agent planning.
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These classifications are in a top-to-bottom order in complexity, the last one being the most
difficult case to consider, as in that case there may never be a global plan representation, the
agents may only have pieces of the plan they are interested in. The three MAP algorithms
that we used in this work are considered as Distributed planning for distributed plans, or also
known as Distributed Multi-Agent Planning.

Now we will discuss some of the earlier approaches to multi-agent planning. In [33], a plan
merging algorithm was proposed, where a planner takes a set of plans generated by single-agents
and produces a conflict free, not necessarily optimal, multi-agent plan. These set of plans are
specified using a modified STRIPS notation, resulting in a synchronised multi-agent plan after
the following three stages [89]:

1. Interaction analysis: search the agents plans to detect any interactions between them.
These interactions are then described using notions of satisfiability, commutativity, and
precedence.

2. Safety analysis: all actions where there is no interaction are removed from the plan,
the remaining actions are considered the set of harmful interactions.

3. Interaction resolution: in order to resolve conflicts the harmful interactions are treated
as critical sections, therefore mutual exclusion of the critical sections must be guaranteed.
Although Hoare’s Communicating Sequential Processes [38] paradigm was used to enforce
mutual exclusion, simpler mechanisms, such as semaphores, could be used to achieve the
same result.

A similar approach was implemented in [80], which takes a set of unsynchronised single-agent
plans and generates a synchronised multi-agent plan. Both approaches use Hoare’s Communi-
cating Sequential Processes to guarantee mutual exclusion of critical sections, and both of them
represent actions using an extended STRIPS notation. The main idea of this second approach
is that the plans are represented as a set of formulae of temporal logic, and agents attempt
to derive a synchronised plan using a temporal logic theorem prover. According to [89] this
approach is considered computationally expensive, as the temporal theorem prover has to solve
a PSPACE-complete problem.

As stated in [75], decoupling has been a major focus of research on multi-agent planning in
order to make the complexity of the problem expand linearly instead of exponentially. This is
considered an important topic not only in automated planning, but also in many other areas
of AI. Most of the problems in a MAS are loosely coupled12, and the standard approach to
decoupling is to pretend they are completely decoupled and then fix up the interactions. There
are many ways of fixing these interactions — e.g. concurrent action list, Hierarchical Task

12Any part of a system contains interdependent elements that vary in the number and strength of their
interdependencies [67].
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Network (HTN), partial observability, replanning, etc. We describe some approaches that use
them in the next section.

Research in MAP is generally branched as follows: Distributed MAP is, at the time of this
writing, the focus of research in the automated planning community, while coordinating and
controlling the actions of the agents in a MAP environment is the focus of research in the MAS
community. Bringing those two topics of research together can provide further insight into
online (also known as continual) MAP.

These are some basic steps that can be taken for solving a Distributed MAP problem: re-
finement of the global goal; allocation of planning tasks to agents; coordination before planning;
individual planning; coordination after planning; and execution of the solution plan. Not all
steps must be necessarily included, some of them can also be combined into the same one.

Usually, agents in a MAP environment do not have access to all of the domain information;
instead, this information is distributed among agents. This results in two different approaches
for MAP, those that allow the initial state of a planning problem to be incomplete, and those
that requires planning with complete information. Coordination mechanism, search algorithm,
and information type are only some of the features that have to be considered for an effective
multi-agent planning algorithm. Others include how planning information is distributed, which
information about the problem each agent has, how common goals are distributed, how private
goals are treated, etc.

Therefore, the most difficult multi-agent problems involves the development and execution
of joint plans through cooperation (agents on the same team) and competition (agents on
opposing teams) without centralised control [75]. In the next section, we take a look at current
research in multi-agent planning, from theoretical to practical, that tries to solve some of the
problems previously discussed, as well as some of the AOP languages that integrate some form
of automated planning, highlighting their limitations.

2.3 Related Work

This section describes some important and relevant research in multi-agent planning, in-
cluding current approaches, and also some of the related research in single-agent planning.

A survey [57] presents a collection of recent techniques used to integrate automated planning
in BDI-based agent-oriented programming languages. The survey focuses mostly on efforts to
generate new plans at runtime, while as with our work we translate the output of distributed
MAP algorithms into a MAS that is then able to execute the solution plan, the MAP algorithms
are not involved during runtime, i.e. the execution stage.

In [54], decommitment penalties and a Vickrey auction mechanism are proposed to solve a
multi-agent planning problem in the context of an airport — deicing and anti-icing aircrafts
during winter — where the agents are self-interested and often have conflicting interests. The
experiments showed that the former ensures a fairer distribution of delay, while the latter re-
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spects the preferences of the individual agents. Both mechanisms outperformed a first come,
first served mechanism. The downside is that the approaches developed were application spe-
cific, while in our work we use multi-agent planners for domain independent solutions.

IndiGolog [35], a programming language for autonomous agents, opted not to use classical
planning based on the premise that it often ends up being computationally costly. Instead
they proposed using a high-level program execution [51], posing as a middle ground between
classical planning and normal programming. The general idea is to give the programmer more
control over the search effort: if a program is almost deterministic then very little search effort
is required; on the other hand the more a program has non-determinism, the more it resembles
traditional planning. IndiGolog is an extension of Golog [52], both based on a situation calculus
action theory that can be used to perform planning/lookahead. This programming language
is not BDI-based, so the plans are not associated with goals and events, which, for example,
makes it difficult to find an alternative plan when a selected plan fails [35], while in our work
we use the BDI-based language Jason for programming the agents.

CANPLAN2 [78] is a modular extension of CANPLAN [77], both BDI-based formal lan-
guages that incorporate an HTN planning mechanism. One of the improvements in CANPLAN2
was to prevent an agent from blindly persisting with a blocked subgoal when an alternative plan
is available for achieving a higher-level goal. This approach was further extended in [79] to ad-
dress previous limitations such as failure handling, declarative goals, and lookahead planning.
It is important to note that the CAN family are not implemented programming languages,
although its features could be used to augment some BDI-based AOP languages. Similarly,
in [23] the authors proposed an approach to obtain new abstract plans in BDI systems for hy-
brid planning problems — where both goal states and the high-level plans already programmed
are considered — bringing classical planning into BDI hierarchical structures. This approach
was directed to single-agent planning in the context of AOP languages, it does not address the
problems of multi-agent planning such as the ones that are approached in our work.

A modification of the X-BDI agent model [61] is presented in [58, 59] that describes the
relationship between propositional planning and means-end reasoning of BDI agents; Graphplan
was used as the propositional planning algorithm, and applied to a scenario of a production
cell controlled by agents. It is common to use Markov Decision Process (MDP) for modelling
non-deterministic environments, and so in [81, 82] Earley graphs are used to shown that it is
possible to bridge the gap between HTNs and MDPs, allowing the use of probabilistic HTN for
planning in an MDP environment. These approaches are also related to single-agent planning,
different from our approach of domain independent multi-agent planning.

It is claimed in [21] that by associating summary information with plans’ abstract operators
it can ensure plan correctness, even in multi-agent planning, while still gaining efficiency. The
key idea is to annotate each abstract operator with summary information about all of its
potential needs and effects, that often resulted in an exponential reduction compared to a
flat representation. This approach depends on some specific conditions and assumptions, and
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therefore cannot be used in all domains.
Temporal decoupling refers to the idea that the threads in a parallel system keep their

own local time, and only synchronize when they need to communicate with each other. There
have been several recent studies regarding the temporal decoupling problem in MAP: in [83],
with an algorithm that can be used to determine the minimum number of resources the agent
requires to accomplish its ground handling task in an airport application; later in [69] the
Simple Temporal Problem (STP) is discussed, showing that finding an optimal decoupling of
the STP is NP-hard, and that it can only be solved efficiently if all the agents have linear
valuation functions; in [87], the authors propose a characterisation of weakly-coupled problems
and quantify the benefits of exploiting different forms of interaction structure between agents;
and finally, in [44], a new algorithm is proposed for temporal decoupling and its efficiency is
evaluated against current Multiagent Simple Temporal Problem solution algorithms, showing
that it still maintains the same computational complexity as the others and even surpasses them
in some cases where efficiency is concerned. These studies regarding temporal decoupling are
important for the coordination aspect of MAP, in both offline and online planning, even more
so in online planning as it often requires time constraints and more tightly coupled systems.

A recent extension for PDDL3.1 enables the description of multi-agent planning prob-
lems [48]. This extension allows planning for agents in temporal, numeric domains and copes
with many of the already discussed open problems in multi-agent planning, such as the ex-
ponential increase in the number of actions, but it also approaches new problems such as the
constructive and destructive synergies of concurrent actions. If this extension becomes consol-
idated in the community it will be an important step towards standardisation in the field of
multi-agent planning, along with the multi-agent planning track at the 2013 IPC.

Finally, the TAEMS framework [25] provides a modelling language for describing task struc-
tures — the tasks that the agents may perform. Such structures are represented by graphs,
containing goals and sub-goals that can be achieved, along with methods required to achieve
them. Each agent has its own graph, and tasks can be shared between graphs, creating relation-
ships where negotiation or coordination may be of use. Coordination in TAEMS is identified
using the language’s syntax, and then the developer choose or create an ad-hoc coordination
mechanism by using the commitment constructs that are available. The TAEMS framework
does no explicit planning, its focus is on coordinating tasks of agents where specific deadlines
may be required, and its development has been discontinued since 2006.

In this section we discussed some of the current research on planning and online planning
with agent programming or multi-agent systems more generally. While most of it is related to
single-agent planning and/or domain specific, in our work we deal with distributed multi-agent
planning and domain independent solutions. In this chapter we presented a brief background
on intelligent agents and automated planning, with a focus on multi-agent systems and multi-
agent planning. In the next chapter we define the details of the translator and the multi-agent
planning algorithms.
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3. INTEGRATING MAP INTO MAS

In this chapter we present an extension to the JaCaMo framework, allowing it to carry out
coordinated plans generated by MAP algorithms. This extension is done by a translator, for
which we propose a grammar and translation algorithms, facilitating the introduction of new
MAP algorithms into the framework. Initially we considered providing translation algorithms
for three MAP algorithms that are available in the literature: Planning-First, MAD-A*, and
MAP-POP. However, during our experiments we noticed that MAP-POP had the best inter-
action with JaCaMo. MAP-POP generates partial order plans allowing parallel goals, while
the other two algorithms use total order. The first section of this chapter describes these three
algorithms, providing more details for the MAP-POP algorithm. The second section details
the translator, its PDDL grammar, its solution grammar, and a set of algorithms that make
use of these grammars in order to create a MAS in JaCaMo.

In order to allow the JaCaMo framework to execute the solution generated by the MAP
algorithm, we define a grammar and a set of algorithms for a translator, which is used to
help bridge the planning and execution stages of multi-agent planning problems. As discussed
throughout this dissertation, MAP algorithms usually ignore the execution stage of planning,
ending up with just a set of solution plans that has to be implemented by the user. On the other
hand, we have AOP languages and MAS development frameworks that usually have some kind
of planning capabilities available during runtime (online), but provide no sophisticated way to
solve complex multi-agent planning problems.

3.1 The Algorithms

In this section we describe three domain independent MAP algorithms, providing details
about their input, output, planner, and coordination mechanism. Before we go into details
about each algorithm, it is important to define the concepts above. It is common for MAP
algorithms to use and improve upon single-agent planning techniques, as single-agent planning
has been extensively researched over the years and has also been the focus of several IPCs.
As a consequence, single-agent planners have an excellent performance. Usually, in distributed
MAP algorithms, agents plan locally using adaptations of single-agent planners, which means
that at some point they will need to exchange information to be able to arrive at a global
solution plan. Therefore in order to properly exchange information the agents need some kind
of coordination mechanism. A distributed MAP algorithm then, is composed of a planner and
a coordination mechanism.

A planner can be classified by the type of node representation: the search can be either
state-space or plan-space based. In state-space search algorithms, each node represents a state
of the world, and each arc represent a state transition [62]. In plan-space search algorithms,
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each node represents partially specified plans rather than states of the world, and arcs are plan-
refinement operations; through these refinements open goals can be achieved or inconsistencies
removed while further completing partial plans [62]. Besides these differences, the approaches
also differ on the definition of a solution: because in state-space algorithms use a sequential
transition of states, the resulting order will be just a sequence of actions; while in plan-space
algorithms it also needs to provide a partial ordering for those actions. Thus, a plan in a plan-
space search is defined as a set of planning operators, a set of ordering constraints, and a set
of binding constraints. These constraints are explained in detail in the MAP-POP algorithm
section, which uses plan-space representation.

Another classification that can be applied to planners is its plan representation: total-order
or partial-order. Total-order consists of strictly linear sequences of actions. Partial-order, on
the other hand is used when the planner adopts a plan-space representation, with the use of
constraints to control the order of actions when needed [75].

A planner can also be classified by its chaining type: forward chaining or backward chain-
ing. In forward chaining the search starts from the initial state of the world — in plan-space
representation the initial node is an empty plan, called initial plan — and tries to find a state
that satisfies the global goal. In backward chaining the search starts from the goal state and
applies in reverse order the planning operators to generate subgoals, stopping when a set of
subgoals satisfy the initial state. Both approaches generate partial solutions at each iteration,
the collection of all partial solutions results in the final solution plan [62].

The input of a MAP algorithm refers to the formalism chosen to represent MAP planning
problems. Similarly to single-agent planners, problem formalisms have also been extensively
researched over the years. PDDL for example has been the standard formalism to represent
single-agent problems for quite some time, and it can be easily adapted to comply with the needs
to represent multi-agent planning problems. The output of a MAP algorithm is the solution
it generates, and contrary to the input, the output does not have any standard representation.
However, as we are dealing with multi-agent plans that can cause interference with each other,
coordination constraints are needed to guarantee that during the execution stage the partial
plans will be executed in the correct order so as to achieve the global goal.

Now that we covered some of the basic aspects of distributed MAP algorithms, we are ready
to understand how they work in the three algorithms.

3.1.1 Planning-First Algorithm

Planning-First [64] is a general, distributed MAP algorithm that uses Distributed Constraint
Satisfaction Problem (DisCSP) [91] to coordinate the agents, and for local planning it uses the
Fast-Forward planning system [39] to search for a plan. In other words, the public aspects that
require coordination between agents are dealt with using CSP, while the internal aspects are
dealt with using the Fast-Forward planning system.

The Planning-First algorithm takes as problem input PDDL files using a MA-STRIPS [11]
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subset. It works similarly to STRIPS, except there are a few extensions such as internal and
public actions. Public actions are available to all agents while internal ones are specific to
some agents. Another addition was the use of dependencies to denote if the effects of an action
affects others. A solution to a MA-STRIPS problem is equivalent to its STRIPS counterpart
— an ordered sequence of actions taking the system from its initial state to a state containing
all goal propositions.

In [11], the CSP+planning methodology is introduced to separate the public and private
aspects of planning problems. This methodology is used to quantify the coupling of a multi-
agent planning problem and to facilitate the coordination during the planing stage. It quantifies
coupling by using two parameters: the tree-width of the agent interaction graph; and the
number of coordination points required per agent.

The Asynchronous Forward Checking (AFC) [56] algorithm for DisCSP uses a middle ground
between forward-checking and back-jumping. There is a trade-off that must be addressed
between the computational effort invested in generating domains, and the efficiency of the
procedure used. This trade-off depends on the coupling level that is required by the particular
problem.

The planner uses a state-space based node representation, and therefore, total-order of
actions. The Fast-Forward planning system relies on that forward state-space search, using a
heuristic to estimate goal distances by ignoring deleted lists, this heuristic information can then
be used to prune the search space, improving performance. The system uses a Graphplan-like
algorithm to find an explicit relaxed solution to each search state.

An adaptation of the agent’s local planner (Fast-Forward planning system) is also necessary
in order to make the search as goal-oriented as possible. This is done by trying to solve the
local planning problem where public sub-goals are encoded as private ones, and removing them
one by one if the search fails. Another option is using rewards or negative costs so that the
planner prefers public-goal achieving plans. The planner was also adapted to store failed plans,
so that it does not assign that same action sequence again.

3.1.2 MAD-A* Algorithm

The MAD-A* [63] algorithm is a multi-agent planning adaptation of one of the best known
search algorithm, A*. The algorithm also has centralised and parallel versions which will not
be discussed here, since our focus is on distributed MAP algorithms. The algorithm distributes
the work among different agents, and reduces the overall workload. Moreover, it reduces exactly
to A* when there is only a single agent.

The algorithm uses heuristics to help coordinate the agents during the planning stage, and a
multi-agent extension of the single-agent planner Fast Downward [36], which has been the basis
for the winners of three past IPCs. This algorithm is from the same authors as the previous one,
and uses the same formalism to represent MAP problems, MA-STRIPS, that was explained in
the previous section.
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In MAD-A*, each agent maintains two lists: an “open” list of states that are candidates for
expansion and a “closed” list of already expanded states. When an agent expands a state s it
uses its own operators only, this means that two agents expanding the same state will generate
different successor states.

Since no agent has complete knowledge of the entire search space, messages informing agents
of open search nodes relevant to them must be sent. These messages sent between agents contain
both public and private variable values, as well as the cost of the best plan from the initial
state to s found so far, and the sender’s heuristic estimate of s. The private data sent by an
agent is merely used as an ID by other agents, for coordination purposes, and may be encrypted
arbitrarily if needed, but only the agent itself may change the value of its own private state.

Once an agent expands a solution state s, it sends it to all agents and initiates the process of
verifying its optimality. When the solution is verified as optimal, the agent starts the traceback
of the solution plan. When the trace-back phase is done, a terminating message is broadcast.

In order to implement the algorithm the authors developed the Multi-Agent Fast Downward
(MA-FD) framework, based on the Fast Downward [36] framework. Minor changes were made
to allow the distribution of operators to agents, such as: in addition to PDDL files, MA-FD
receives a file detailing the number of agents, their names, and their IP addresses; because
agents do not have shared memory, all exchange of information between agents is done by
message passing, and inter-agent communication is performed using the TCP/IP protocol.

3.1.3 MAP-POP Algorithm

MAP-POP [50] is a MAP model devised to cope with cooperative planning. The model
builds upon the concept of refinement planning [45], where agents propose successive refine-
ments to a base plan until a consistent joint plan that solves the problem’s goals is obtained.

MAP-POP is based on partial-order planning [6], establishing partial order relations between
the actions in the plan. POP-based planners work over all the planning goals simultaneously,
maintaining partial order relations between actions without committing to a precise order
among them until the plan’s own structure determines that it is necessary to do so. The two
previous MAP algorithms performed state-space search, while POP models adopt a plan-state
search approach, that is, each node in the search represents a different partial plan.

In MAP-POP refinement planning, an agent proposes a plan Π that typically contain some
open goals, then the rest of the agents collaborate on the refinement of Π by trying to solve
some of its open goals. This means that MAP-POP uses plan-space search, where agents refine
an initially empty partial plan, until arriving at a solution. MAP-POP is also classified as
backward chaining, since it begin the search by satisfying the problem goals, and build the plan
backwards.

The search procedure of refinement planning consists in looking for a flaw in the plan,
making additions to the plan in order to correct the flaw, or if there is no correction to be made
then the search backtracks and tries something different. A flaw in this context is anything
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that is keeping the partial plan in question from being a solution, or part of it [75]. At every
step the least commitment [86] approach is used to fix the flaw, meaning that only the essential
ordering decisions are recorded.

An argumentation approach is proposed as the coordination mechanism [50] at a theoretical
stage only, and so it will not be discussed here. Instead, the coordination mechanism that is
implemented uses an ad-hoc heuristic function to validate plan refinements and choose the most
appropriate plan to be the next base plan.

To adapt POP to multi-agent planning, the authors introduced several modifications. For
initial plan, instead of using a void plan, any partial plan can be used. For subgoal resolution,
only the open goal selected by the agents as the current subgoal is solved, the rest of the open
goals in the initial plan are ignored until a current subgoal is supported by a causal link, which
the planner will then try to solve in a cascading approach. For solution checking, in order to a
partial-order plan to be validated as a refinement plan it needs to be threat free (no conflicts),
it needs causal links that support the current subgoal, and if the plan has added new open
goals over the current base plan, each one of them must be solvable by another agent or group
of agents. In regards to planning restarting, instead of finishing when a solution is found,
MAP-POP allows the planning process to be continued at will if the agent wants to obtain
more refinements to the base plan.

The formalism adopted for specifying a MAP problem, i.e. its input, is PDDL 3.1, with
a few modifications to deal with specific MAP requirements. The first one is the addition
of the shared-data construct defined in the problem file; it indicates the objects that are
shared by each agent. The second one is the separation of global (global-goal) and local
(private-goal) goals in the problem file, although only global goals are implemented at the
time of writing. The third one is the multi-functions construct, which can be used to simplify
the specification of objects in the initial state of an agent. Each agent must have a problem file
for itself where shared and private data can be specified, and each different type of agent must
have its own domain file to specify the actions that are available to that particular agent type.

The algorithm starts with an initial communication stage in which the agents exchange
some information on the planning domain, in order to generate data structures that will be
useful in the subsequent planning process. The next step comprises two different stages that
are interleaved: an internal planning process through which the agents refine the current base
plan individually with an internal POP system, and a MAS coordination process that allows
agents to exchange the generated refinement plans and to select the next base plan. These
stages repeat themselves until a solution plan is found. This process is illustrated in Figure 3.1.

During the initial communication stage a distributed Relaxed Planning Graph (disRPG) [92]
is constructed, and it is used to provide agents with important planning information that is
used throughout the planning process. The agents only have access to their own RPG, i.e.
none of them has the complete representation of the disRPG, this respects agents’ privacy. It
uses the shared-data constructs from the domain definition files to effectively exchange literals
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Figure 3.1: Stages of the MAP-POP algorithm [50].

between agents; if a literal in the agent’s RPG matches with a predicate in the shared-data
construct, it will be sent to the agents specified in this construct.

The disRPG also computes an estimate of the best cost to achieve each literal state, which
can be used as heuristic to guide the problem-solving process. After this initial exchange, each
agent updates its own RPG: if a literal is not yet in the RPG it is stored according to its cost,
otherwise the agent checks the cost of the received literal, if it is lower than the cost registered
it is updated in the agent’s RPG. After the RPG is updated the agent expands it, checking if
the new literals trigger the appearance of new actions in the RPG, which will then be shared
in the next literal exchange stage. The process finishes when there are no new literals in the
system.

In the internal planning process each agent in the system executes an individual POP process
in order to refine the current base plan. A heuristic function is applied, the SUM heuristic, in
order to guide the search. This heuristic is based on the sum of the costs of the open goals found
in the previous stage by the RPG. The current subgoal is solved, and all the subgoals that arise
from this initial resolution are solved in a cascading fashion, leaving the rest of preconditions
unsolved. The valid refinements obtained by the agents during this process are evaluated in
the next stage, the coordination stage, in order to select the next base plan among them.

Finally, in the coordination stage a leadership baton is passed among the agents, following
a round-robin order. The baton is passed to the next agent when a coordination stage is
completed. A coordination stage consists of the following steps:

1. New refinements evaluation: the SUM heuristic (same as the one used in the internal
planning stage) is used to estimate the quality of a refinement, i.e. to what extent it can
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be refined to a solution.

2. Selection of the next base plan: agents select the best valued (lower value equals
better quality) refinement plan as the new base plan.

3. Solution checking: if the current base plan does not have any open goals it is a solution.
However, since open goals might not be visible to some agents, all agents are required to
send their confirmations to the baton agent to reach a consensus.

4. Subgoal selection: the baton agent selects the next most costly open goal to be solved,
according to the baton’s agent RPG. If the baton agent is not able to find any remaining
open goals in the base plan, then it passes the baton to the next agent in order to complete
this step. After this step there is a new subgoal to be solved, which starts the next internal
planning stage, where the agents will refine the new base plan.

The coordination algorithm can be seen as an A* search in which refinement plans are nodes
in the search tree, expanding it during each planning stage. As previously mentioned, these
stages repeat themselves until a solution is found.

3.2 The Translation

The translator needs as input the solution plan from a MAP algorithm and the definition of
a multi-agent planning problem. It then provides as output a MAS specified in JaCaMo that is
able to execute the solution found during the planning stage. If the MAP algorithm being used
during the planning stage also supports single-agent planning, then the translator should still
be able to provide a valid output, but it will not use all of the abstraction levels that JaCaMo
provides, such as Moise organisations, which are not necessary in single-agent systems.

A standard input would be ideal for the translation process, but in this case it means that
we would need to change the source code of the MAP algorithms. If we develop a standard
input, each new algorithm would need to be adapted to accept this new input, while if we
choose to use the inputs of the MAP algorithms, we then have to adapt the grammar and
algorithms of the translator to accept them. Unfortunately, at the time of writing there is no
standard formalism for the representation of multi-agent planning problems that is accepted
by the MAP community, therefore we chose to adapt the translator to accept multiple inputs.

The input depends on which MAP algorithm is used, as each multi-agent planner usually
makes its own adaptations to a planning problem formalism. Both the Planning-First algorithm
and the MAD-A* receives as input a PDDL file using the MA-STRIPS formalism, and the MAP-
POP algorithm uses its own extension of PDDL 3.1 for multi-agent planning. This input from
the PDDL files of the MAP-POP algorithm is used to define the agents in the MAS project
file and the roles in the Moise organisation, while both Planning-First and MAD-A* have a
separate file with the name of the agents. We use the PDDL problem file to build CArtAgO
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artefacts that represent the initial state of the environment, and also use the global goals to
check if the execution stage was successful.

The output of the MAP algorithms consists of a solution that solves the global goal of
the problem. Both Planning-First and MAD-A* perform state-space searches, meaning that
the solution plan will already contain an ordered sequence of actions, while for the MAP-
POP algorithm it is also necessary to provide coordination constraints alongside the actions in
order to establish the partial order in which the actions should be executed. This resulted in
MAP-POP providing a solution that allows the organisation in Moise to use the coordination
constraints in order to construct a MAS with parallel execution of plans. For this reason we
focus mostly on the MAP-POP algorithm when describing the grammar and algorithms for the
translator.

Our challenge, then, was to develop a standard JaCaMo output for the translator. The
output is a MAS specified in JaCaMo, resulting in multiple files as the output: Jason project
and agent’s files, Moise XML specifications, and Java codes for the CArtAgO artefacts. This
standard output provides generic classes that can be used to integrate new MAP algorithms.
In order to integrate new MAP algorithms, one would have to develop input and solution gram-
mars (similar to what we did with MAP-POP), and simply adapt our translation algorithms
accordingly.

The solution is translated into AgentSpeak plans, and added to the respective agent’s plan
library in Jason, but because plan representation and action theory in Jason differs from the
basics of the planning formalisms used by the MAP algorithms (STRIPS-like), we had to force
simple transitions, that is, every action in the set of solution plans would translate to a plan
in Jason with the preconditions at the context, and the effects of the action at the body of
the plan, after executing the action the effects will change the environment, i.e. the CArtAgO
artefacts. A summary of how the translator works is available in the diagram of Figure 3.2.

We now detail the grammar used by the translator. In Listing 3.1 and Listing 3.2 we present
a simplified grammar based on the official PDDL 3.1 definition1. In this simplified version we
omit some of the terminals, such as the non-terminal symbol name which represents a terminal
string of characters a..z|A..Z, and the symbol digit which represents a sequence of numbers
with digits 0..9. Similarly, we present in Listing 3.3 a grammar for the solution generated by
MAP-POP.

1http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.
1-2011.pdf
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Figure 3.2: An overview of the translation process.

Listing 3.1: Simplified BNF grammar for the syntax definition of the PDDL 3.1 domain de-
scription.

1 domain ::= ’(define (domain’ name ’)’
2 [requireDef]
3 typesDef

4 [constantsDef]
5 [predicatesDef]
6 [functionsDef]
7 actionsDef+ ’)’ ;
8

9 requireDef ::= ’(:requirements’ requireKey+ ’)’ ;
10 requireKey ::= ’strips’ | ’typing’ | ’fluents’ | ’multi-agent’ |
11 ’equality’ | ’negative-preconditions’ ;
12

13 typesDef ::= ’(:types’ typedList+ ’)’ ;
14 constantsDef ::= ’(:constants’ typedList+ ’)’ ;
15 typedList ::= (name+ ’-’ type) | name+ ;
16 type ::= ( ’(either’ name+ ’)’ ) | name ;
17

18 predicatesDef ::= ’(:predicates’ predicate+ ’)’ ;
19 predicate ::= ’(’ name variable [’-’ type] ’)’ ;
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20 variable ::= ’?’ name ;
21

22 functionsDef ::= ’(:functions’ textitfunc+ ’)’ ;
23 func ::= ’(’ predicate ’-’ type ’)’ ’-’ type ;
24

25 actionsDef ::= ’(:action’ name

26 ’:parameters (’ (variable [’-’ type])* ’)’ actionBody ’)’ ;
27 actionBody ::= [ ’:precondition (and’ atomic* ’)’ ]
28 [ ’:effect (and’ atomic* ’)’ ] ;
29 atomic ::= atomicFormula | ’(not’ atomicFormula ’)’ ;
30 atomicFormula ::= ’(’ predicate ’)’ | ’(=’ ’(’ predicate ’)’ variable ’)’ ;

Listing 3.2: Simplified BNF grammar for the syntax definition of the PDDL 3.1 problem
description.

1 problem ::= '((define (problem' name ')'
2 ‘(:domain’ name ‘)’
3 objectsDef

4 [sharedData]
5 initDef

6 globalGoals ‘)’ ;
7

8 objectsDef ::= ‘(:objects’ typedList+ ‘)’ ;
9

10 sharedData ::= ‘(:shared-data’ pf+ ‘- (either’ name+ ‘) )’ ;
11 pf ::= predicate | func ;
12

13 initDef ::= ‘(:init’ literal* ‘)’ ;
14 literal ::= term | ’(not’ term ‘)’ ;
15 term ::= ( ‘(’ litName first* name* ‘)’ ) |
16 ( ‘(= (’ litName first ‘)’ name ‘)’ ) ;
17

18 litName ::= name ;
19 first ::= name ;
20

21 globalGoals ::= ‘(:global-goal (and’ literal* ‘) )’ ;

Listing 3.3: BNF grammar for solution generated by MAP-POP.
1 solution ::= ’Steps:’
2 initial

3 final
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4 steps+
5 oc ;
6

7 initial ::= ’0
8 null
9 Action:’ ;

10

11 final ::= ’1
12 null
13 Action: ’
14

15 steps ::= id

16 agent

17 ’Action:’
18 name

19 ’MinTime:’
20 min

21 ’Parameters:’
22 param*
23 ’Precond:’
24 precond*
25 ’Effect:’
26 atomic* ;
27

28 precond ::= ’Type (1 equals 2 distinct):’
29 digit

30 atomic ;
31

32 oc ::= ’Ordering Constraints:’
33 ord* ;
34 ord ::= ’Step 1:’ digit+ ’Step 2:’ digit+ ;
35

36 id ::= digit ;
37 agent ::= name ;
38 min ::= digit ;
39 param ::= name ;

We now detail the translation algorithms that make use of the previous grammars. Algo-
rithm 3.1 represents the main translation process, the translation function receives as parame-
ters the information contained in the domain, problem, and solution files, which are in accor-
dance with their respective grammar. For example, the notation in DomainSpec.domain.typesDef.typedList
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means that we will look in the domain information and inside typesDef for any typedList, as
specified in the domain grammar. The translation starts by getting the agent types from the
PDDL domain file, and the agents names from the PDDL problem file. With this information
it then calls the rest of the algorithms, starting with the algorithm for the translation of the
organisation (Algorithm 3.2), which subsequently calls Algorithm 3.3 for the structural spec-
ification, Algorithm 3.4 for the functional specification, and Algorithm 3.5 for the normative
specification. It then returns to the main algorithm which calls Algorithm 3.6 for the plans in
Jason, finally returning and calling Algorithm 3.7 for the CArtAgO artefacts.

Listing 3.4: Main translation algorithm.
1 function translate (DomainSpec, ProblemSpec, SolutionSpec)
2 agentsTypes := ∅
3 agents := ∅
4 organisation := ∅
5 agentCode := ∅
6 artefacts := ∅
7 for each (n:name,t:type) in DomainSpec.domain.typesDef.typedList do
8 if (t = ’agent’) then
9 agentsTypes := agentsTypes ∪ n

10 end if
11 end for
12 for each t1 in agentsTypes do
13 for each (n:name,t2:type) in ProblemSpec.problem.objectsDef.typedList do
14 if (t1 = t2) then
15 agents := agents ∪ {(n,t2)}
16 end if
17 end for
18 end for
19 organisation := organisation ∪ createOrg(SolutionSpec, agentsTypes, agents)
20 agentCode := agentCode ∪ createAgentCode(SolutionSpec, agents)
21 artefacts := artefacts ∪ createEnv(DomainSpec, ProblemSpec)
22 return (agents ∪ organisation ∪ agentCode ∪ artefacts)
23 end function

Listing 3.5: Organisational specification translation algorithm.
1 function createOrg(SolutionSpec, agentsTypes, agents)
2 structural := ∅
3 functional := ∅
4 normative := ∅
5 structural := createStructural(agentsTypes, agents)
6 functional := createFunctional(SolutionSpec, agents)
7 normative := createNormative(agents, functional)
8 return (structural ∪ functional ∪ normative)
9 end function
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Listing 3.6: Structural specification translation algorithm.
1 createStructural(agentsTypes, agents)
2 roles := ∅
3 extendedRoles := ∅
4 for each t1 in agentsType do
5 roles := roles ∪ t1
6 end for
7 for each (a,t2) in agents do
8 extendedRoles := extendedRoles ∪ {(a, t2)}
9 end for

10 return (roles ∪ extendedRoles)
11 end function

Listing 3.7: Functional specification translation algorithm.
1 createFunctional(SolutionSpec, agents)
2 count := 1
3 minTime := 0
4 goals := ∅
5 missions := ∅
6 for each (g:name,o:min) in SolutionSpec.solution.steps do
7 if (g ∈ goals) then
8 count := count + 1
9 end if

10 if (o 6= minTime) then
11 goals := goals ∪ {(g,count,′ notParallel′)}
12 minTime := o
13 end if
14 else goals := goals ∪ {(g,count,′ parallel′)}
15 end for
16 for each {(a1, _)} in agents do
17 for each (g:name,a2:agent) in SolutionSpec.solution.steps do
18 if (a2 = a1) then
19 m := addFirstChar(a2, ’m’)
20 missions := missions ∪ {(g,m)}
21 end if
22 end for
23 end for
24 return (goals ∪ missions)
25 end function
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Listing 3.8: Normative specification translation algorithm.
1 createNormative(agents, functional)
2 norms := ∅
3 for each {(_, m)} in functional.missions do
4 role := deleteFirstChar(m, ’m’)
5 norms := norms ∪ {(role,m)}
6 end for
7 return (norms)
8 end function

To demonstrate this process consider Listing 3.11 and Listing 3.12, a step (action) from
the solution and its translation to a plan in Jason. The parameters from the step of the
solution are used in the context of the resulting plan in Jason; these parameters are used to
access and update the artefacts, and are also used to check preconditions. The context from
line 1 in Listing 3.12 (note that the context of a plan starts after the colon) contains the
information to access the artefacts, all subsequent lines are each a precondition specified in the
solution. Preconditions that involves only predicates pertaining the agent that is responsible for
executing that plan can be checked directly in that agent’s belief base (line 2 in Listing 3.12).
The remaining preconditions access the artefacts and make the necessary tests, lines 3 and 4 in
Listing 3.12. Finally, at the body of a Jason plan (remember that the body starts after the left
arrow), the effects of the step are translated into Jason actions. The translation can generate
two types of actions: an action that can change the belief base of the agent that is running that
action (as explained before, this happens if the predicate in question involves only that same
agent); or an action can result in a change in the environment, i.e. an update to observable
properties of the artefacts that represent the environment.

A simple print mechanism is added using the syntax for detecting plan failure in Jason, -!,
that provides basic feedback on which plans failed. If a plan fails and it has any subsequent
dependent plans in the Moise organisation schema, the organisation will prevent the execution
of those plans as the previous goals were not achieved. If there were no errors during the
translation process, then these plans should never fail. However, they may fail because of two
different reasons: new plans were added or translated plans were edited by the developer; or
there may be other agents that may cause some kind of interference during execution, resulting
in plan failure. Regardless, the mechanism for handling plan failure is present only to inform
the user of the failure, it is not possible for the translator to call for replanning mechanisms as
the MAP algorithms do not have any kind of interaction with the execution stage. This is part
of future work that is discussed in Chapter 5.
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Listing 3.9: Agent code translation algorithm.
1 createAgentCode(SolutionSpec, agents)
2 agentCode := ∅
3 for each (i:id,ag:agent,g:name,pr:param,pc:precond,e:atomic)
4 in SolutionSpec.solution.steps do
5 for each p in pr do
6 if (p ∈ agents) then
7 pr := pr ∪ removeP(pr, p)
8 end if
9 end for

10 agentCode := agentCode ∪ {(i,ag,g,pr,pc,e)}
11 end for
12 return (agentCode)
13 end function

Listing 3.10: Environment translation algorithm.
1 createEnv(DomainSpec, ProblemSpec)
2 obsProp := ∅
3 updateOp := ∅
4 initAg := ∅
5 arts := ∅
6 for each (pred:name,t:type) in DomainSpec.domain.predicatesDef.predicate do
7 if (t 6= ’agent’) then
8 obsProp := obsProp ∪ {(type,pred)}
9 end if

10 end for
11 for each(func:name,t:type)in DomainSpec.domain.functionsDef.func.predicate do
12 if (t 6= ’agent’) then
13 obsProp := obsProp ∪ {(type,func)}
14 end if
15 end for
16 for each (type, obs) in obsProp do
17 updateOp := updateOp ∪ createOp(type, obs)
18 end for
19 for each n:name in ProblemSpec.problem.objectsDef.typedList do
20 arts := arts ∪ n
21 end for
22 for each art1 in arts do
23 for each (lit:litName,art2:first,objs:name)
24 in ProblemSpec.problem.initDef.literal.term do
25 if (art1 = art2) then
26 initAg := initAg ∪ createArt(art2, lit, objs)
27 end if
28 end for
29 end for
30 return (obsProp ∪ updateProp ∪ initAg)
31 end function
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Listing 3.11: A step from the solution of a driverlog problem.
1 3 // step id

2 driver2 // agent responsible for executing this step

3 Action:

4 board
5 Parameters:

6 driver2 truck1 street0
7 Precond:

8 pos truck1
9 street0

10

11 at driver2
12 street0
13

14 empty truck1
15 true

16 Effect:

17 at driver2
18 truck1
19

20 empty truck1
21 false

Listing 3.12: A Jason translated plan for a driverlog problem.
1 +!board1 : V1 = "truck1" & V2 = "street0" & id(V1,Id1) & id(V2,Id2) &
2 at(V2) &
3 pos(L)[artifact_id(Id1)] & processList(L,V2) &
4 empty(E)[artifact_id(Id1)] & E
5 <- -at(V2);
6 +at(V1);
7 updateEmpty(false)[artifact_id(Id1)].
8 -!board1 <- .print("Plan board1 failed, check solution plan.").

The roles of the organisation are acquired from the formalism used to represent the problem,
in case of MAP-POP we use the PDDL files. By checking for agent types in Listing 3.13, and
then checking the objects that use those types in Listing 3.14, the translator generates the
roles present in Listing 3.15. The coordination constraints from the MAP-POP algorithm are
instantiated in a Moise specification file as a new schema to be followed by the agents, the
plans for adopting this schema are also added to each agent’s plan library. This conversion
of coordination constraints into schemas is exemplified in the next chapter, along with the



57

descriptions of the domains and problems that were used as examples.

Listing 3.13: Types of the driverlog domain.
1 (:types location truck obj - object
2 driver - agent)

Listing 3.14: Objects from the problem file that use types in the driverlog domain.
1 (:objects
2 driver1 driver2 - driver
3 truck1 truck2 - truck
4 package1 package2 - obj
5 s0 s1 s2 p1-0 p1-2 - location
6 )

Listing 3.15: Example of translated PDDL types into Moise roles.
1 <role-definitions>
2 <role id="driver" />
3 <role id="driver1"> <extends role="driver"/> </role>
4 <role id="driver2"> <extends role="driver"/> </role>
5 </role-definitions>

At the end of this process all files necessary for the execution stage are available and the
user can run the system as any normal JaCaMo system, by running the MAS project file with
the .mas2j extension that was also generated in the translation.

This chapter presented in detail the MAP-POP algorithm, the one that better integrated
into JaCaMo, the specifics of the grammars and translation algorithms used in the implemen-
tation of the translator, and a brief demonstration of the translation process.
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4. CASE STUDIES

In this chapter, two multi-agent planning problems are presented. Both are adaptations of
single-agent versions from previous IPCs: the driverlog domain and the depots domain. We
explain the domains and present the input used by MAP-POP. As explained in the previous
chapter, MAP-POP provided better integration with JaCaMo than the other two algorithms.
In the planning stage, Section 4.3, we discuss the solution and coordination constraints found
by the MAP-POP algorithm. While in the execution stage, Section 4.4 we discuss the output
of the translation and excerpts of the code that was generated.

Performance is not an issue discuss here since there is no purpose in benchmarking the
translation, as the planning stage is separated from the execution stage. Instead, we focus on a
more qualitative evaluation, analysing the input and output during the planning and execution
stages.

4.1 Driverlog Domain

The Driverlog domain is a simple problem of logistics. There are several streets and passage-
ways that may contain packages, trucks, and drivers. A driver cannot directly walk through
streets, it can only walk through passageways that have paths between a street and a passage-
way. When driving a truck, a driver can then drive through streets that are linked with each
other.

In this domain we only have one type of agent, the driver, as it is the only object that can
perform actions. The agent can perform the following actions:

• load truck: loads a package from a location into a truck;

• unload truck: unloads a package from a truck into a location;

• board truck: the driver enters the truck at a location;

• disembark truck: the driver leaves the truck at a location;

• drive truck: the driver drives the truck from a street to another;

• walk: the driver walks from a location that contains a path to another location.

A problem in this domain normally consists of having objects in certain locations. Now we
specify a simple problem in the Driverlog domain, containing the following objects:

• two agents: driver1 and driver2;

• two trucks: t1 and t2;



60

• five locations: s0, s1, s2, p1-0, and p1-2;

The initial state of the problem can be observed in Figure 4.1. All the streets are linked,
but note that only a truck can move through the linked streets. The drivers, when not driving
a truck, can only move through passageways that have paths to streets. The global goal is to
have driver1 at s1, and t1 at s1. That is, driver1 and truck1 should be at street1.

Figure 4.1: Initial state of our problem for the Driverlog domain.

The PDDL files for the driverlog domain and problem are shown in Appendices A.1 and
A.2. There are two agents in this example, therefore there are two problem files, one for each
agent, but we do not show the problem file for the second agent, driver2, as it is the same
as for the the first agent, driver1. Although they are the same in this example, this may not
always be the case as the shared-data construct can be different, especially when dealing with
multiple types of agents. This is not relevant to the translation as the shared-data construct
is only useful during the planning stage, and therefore only one problem file is needed as input
to the translator.

4.2 Depots Domain

The Depots domain is more complex than the previous domain, as it involves different types
of agents. In this domain trucks are used to transport crates between warehouses, with the
help of hoists that are present in each warehouse.
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There are two types of agents: trucks and locations. Note here that a location (depots
or distributors) is a type of agent, since each location has control over a hoist. A truck can
perform the following actions:

• drive: move the truck from a place to another;

• load: loads a crate that a hoist has into the truck;

• unload: unloads a crate from the truck to a hoist.

A location can perform the following control actions with its hoist:

• liftP: lifts a crate that is on top of a pallet;

• liftC: lifts a crate that is on top of another crate;

• dropP: drops a crate on top of a pallet;

• dropC: drops a crate on top of another crate.

We define a simple problem in the Depots domain, using the following objects:

• three location agent: depot0, distributor0, and distributor1;

• two truck agents: t1 and t2;

• three pallets: p0, p1, and p2;

• two crates: c0 and c1;

• three hoists: h0, h1, and h2;

The initial state of the problem can be observed in Figure 4.2. Truck t1 is located at
depot0, and truck t2 is located at distributor1. A truck agent is able to move freely between
any of the locations. The global goal is to have c0 on p2, and c1 on p1, i.e. crate0 must be
moved to distributor1 and crate1 must be moved to distributor0.

The PDDL files for the depots domain and problem are shown in Appendices B.1, B.2, and
B.3. In this example there is one domain file for the locations and one for the trucks, that
is, one domain file for each different type of agent (each type has access to different actions).
As in the previous example, we do not show the problem file for the rest of the agents as the
translator only requires one problem file.
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Figure 4.2: Initial state of our problem for the Depots domain.

4.3 Planning Stage

The solution found by MAP-POP for the Driverlog problem contained the following steps1:

• Id 0 — Initial Step

• Id 1 — Final Step

• Id 2 — agent driver2: drive t1 to s1

• Id 3 — agent driver2: board t1 at s0

• Id 4 — agent driver2: walk from p1-0 to s0

• Id 5 — agent driver2: walk from s1 to p1-0

• Id 6 — agent driver2: walk from p1-2 to s1

• Id 7 — agent driver2: walk from s2 to p1-2

• Id 8 — agent driver1: walk from p1-2 to s1

• Id 9 — agent driver1: walk from s2 to p1-2
1The initial and final steps are always defined previously to the planning stage of the algorithm. This is

necessary so that the agents can come up with new plan refinements. Because MAP-POP uses plan-based
search, there are no initial and final states.
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The order of the Ids of the actions depicts the backwards-chaining aspect of MAP-POP.
The first refinements are made to accommodate the final global goals, and then it keeps making
refinements until arriving at the conditions that satisfy the subgoals of the initial step.

The partial order in which these steps need to be executed can be obtained from the ordering
constraints, also provided in the solution. The ordering constraints are represented in pairs of
Ids, the first Id is the step that must come before the second, e.g. 0 — 1 means that the
step with Id 0 must come before the step with Id 1. We can also use this order to set the
plan operators, i.e. if it will be executed in parallel or sequentially, in the Moise schema. The
execution order for the solution of this problem is (numbers between commas can be executed
in parallel): 0 — 7,9 — 6,8 — 5 — 4 — 3 — 2 — 1.

Next we have the solution found by MAP-POP for the Depots domain:

• Id 0 — Initial Step

• Id 1 — Final Step

• Id 2 — agent ditributor1: drop c0 on p2 at distributor1

• Id 3 — agent distributor0: drop c1 on p1 at distributor0

• Id 4 — agent distributor0: lift c0 from p1 at distributor0

• Id 5 — agent truck2: unload c0 to h2 at distributor1

• Id 6 — agent truck2: load c0 from h1 at distributor0

• Id 7 — agent truck1: unload c1 to h1 at distributor0

• Id 8 — agent truck1: load c1 from h0 at depot0

• Id 9 — agent truck2: drive from distributor0 to distributor1

• Id 10 — agent depot0: lift c1 from p0 at depot0

• Id 11 — agent truck1: drive from depot0 to distributor0

• Id 12 — agent truck2: drive from distributor1 to distributor0

Once again, we find the partial order of actions by retracing all the ordering constraints,
resulting in the order: 0 — 4,10,12 — 6,8 — 9,11 — 5,7 — 2,3 — 1. Now that we have the
solution from both problems we can proceed to the execution stage and check the output of
the translation.
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4.4 Execution Stage

The translator extracts from the solution the steps and the ordering constraints. Each
agent directly represents a role in the Moise organisation, e.g. objects driver1 and driver2 are
translated as roles that extend a driver role in the Moise specification file under the structural
specification. For future work we expect to implement, for example, only the role of driver
with a maximum cardinality of 2. For the Moise functional specification we translate steps
into goals, with the plan operators (sequence or parallel) that was extracted from the ordering
constraints.

Now we have enough information to create the Moise XML file, which we show in Appendices
A.4 for the driverlog domain, and Appendices B.5 for the depots domain. Every role (agent) has
its mission, and that mission contains all the goals that need to be executed by that particular
role. Links and formation constraints, two Moise features, are not considered in our translation
algorithms, but they could be expressed by making a few adaptations in the planning formalism.
However, since we are using the default input of the MAP algorithms we chose not to make use
of these features.

As for the environment, the translator checks the initial state provided by the input of the
MAP algorithms. If one of the variables in an initial state is an agent, then that state will be
represented as a belief in that particular agent’s belief base. If not, then it will be stored as an
observable property in its respective artefact.

The information about initial states is also used to instantiate initial values for the observable
properties, that are defined by the predicates and functions of the problem domain. An artefact
is created for each type declared as an object in the domain file, to represent the initial state
of the environment. For the driverlog domain we have artefacts for location, truck, and obj.
For the depots domain we have artefacts for hoist and surface. When an agent executes the
operation of an artefact, it updates the observable properties of the artefact that is involved by
using the effects of that particular action. The codes for these artefacts are shown in Appendices
A.5, A.6, and A.7 for driverlog, and Appendices B.6 and B.7 for depots.

For the Jason plans, each step is converted to a plan that is added to the agent’s plan
library, with that step’s respective preconditions and effects. These driverlog translations are
located in Appendices A.10 and A.11, and for depots in Appendices B.10, B.11, B.12, and
B.13. The necessary plans for agents to join the organisation, focus on artefacts, and commit
to goals (i.e., the common.asl file) are also available in Appendices A.9 and B.9. The init
agent, which is responsible for creating the environment and organisation artefacts, is expected
to be automated in a configuration file in future versions of JaCaMo. The source code for the
translator is available at https://github.com/rafaelcaue/MAP-JaCaMo/translator.



65

5. CONCLUSION

We integrated distributed MAP into JaCaMo through the use of a translator, and detailed
its grammar and translation algorithms. JaCaMo provided practical solutions for some of
the problems that appeared, such as the coordination of agents using Moise organisations,
representation of the environment with CArtAgO artefacts, and execution of the solution using
Jason agents.

The translator takes as input the name of the MAP algorithm to be used and its associated
input. As output, it generates an organisation in Moise, Jason plans that are added to the
agents plan library, and CArtAgO artefacts that represent the initial state of the environment.

There are many experiments that can be done with this translator for multi-agent planning
problems. For example, it can be further extended to cope with the problems in multi-robot
planning. ROS1 is an open-source, meta-operating system for robots that provides hardware
abstraction, low-level device control implementation of commonly-used functionalities, message-
passing between processes, and package management. ROS can be interfaced with JaCaMo,
which can be operate along with the MAP algorithms as a cognitive high-level control mecha-
nism.

Another line for future work includes the standardisation of input used by the algorithms, so
that the translator accepts a standard input file. This input could be, for example, the PDDL
3.1 Multi-Agent extension introduced in [48], or a completely new formalism. This would also
make the process of including a new MAP algorithm easier and at the same time promote a
standard formalism to represent domains and problems in multi-agent planning.

Some performance adaptations could also be made to the MAP algorithms, for example,
the Planning-First algorithm has a low performance on tightly-coupled systems, but by using
temporal decoupling algorithms it could improve its performance by reducing the coupling in
the system. By using the grammar and translation algorithms that we provided, the process
of adding new MAP algorithms into JaCaMo also becomes easier.

Our goal with this research was to check if current general-purpose MAP algorithms could
be easily integrated with a MAS framework in order to execute the solution, and if the resulting
MAS in JaCaMo was complex enough to be of any help to developers. Our results are encour-
aging, the coordination aspect that is needed for the distributed planning stages of a MAP
algorithm is a natural fit for the specification of a Moise organisation. The plans generated in
Jason are parsed from the solution presented by each algorithm, and generally were a simple
conversion from a step to a plan, maintaining its pre-conditions and effects.

There are a few downsides that we identified during this work:

1http://www.ros.org/.
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• although our translator can be used to fill the gap between planning and execution stages,
it does not provide a seamless transition;

• Plans in Jason are different from the PDDL formalism used by the three MAP algorithms,
which resulted in a simplified conversion of steps to plans;

• the performance was strictly dependent on the performance of the MAP algorithm used
during the planning stage. From the three algorithms discussed, MAP-POP is the one
with the best computational performance according to [50].

These downsides all have possible solutions. One of them is to develop a new MAP algorithm
based on the Hierarchical Task Network (HTN) [76] formalism, which is able to provide agents
in Jason with much more robust plans than previously, and also allows it to make use of
current plans present in the agent’s plan library prior to the planning stage. This may lead to
performance gains and possibly some kind of planning and/or replanning during runtime.

As for the translator, JaCaMo agents can be used not only during the execution stage, but
also during the planning stage, which would allow most of the translation to be done directly,
and make the transition between planning and execution stages much more seamless.
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A. Driverlog domain codes

Listing A.1: Driverlog MAP-POP PDDL domain.
1 (define (domain driverlog)
2 (:requirements :typing :equality :fluents)
3 (:types location truck obj - object
4 driver - agent)
5 (:predicates (link ?x ?y - location)
6 (path ?x ?y - location) ; list
7 (empty ?v - truck) ; boolean
8 (myAgent ?a - agent))
9 (:functions (at ?d - driver) - (either location truck)

10 (pos ?t - truck) - location
11 (in ?o - obj) - (either location truck))
12 (:action load
13 :parameters (?obj - obj ?truck - truck ?loc - location)
14 :precondition (and (= (pos ?truck) ?loc) (= (in ?obj) ?loc))
15 :effect (assign (in ?obj) ?truck))
16 (:action unload
17 :parameters (?obj - obj ?truck - truck ?loc - location)
18 :precondition (and (= (pos ?truck) ?loc) (= (in ?obj) ?truck))
19 :effect (assign (in ?obj) ?loc))
20 (:action board
21 :parameters (?driver - driver ?truck - truck ?loc - location)
22 :precondition (and (myAgent ?driver) (= (pos ?truck) ?loc)
23 (= (at ?driver) ?loc) (empty ?truck))
24 :effect (and (assign (at ?driver) ?truck) (not (empty ?truck))))
25 (:action disembark
26 :parameters (?driver - driver ?truck - truck ?loc - location)
27 :precondition (and (myAgent ?driver) (= (pos ?truck) ?loc)
28 (= (at ?driver) ?truck))
29 :effect (and (assign (at ?driver) ?loc) (empty ?truck)))
30 (:action drive
31 :parameters (?truck - truck ?loc-from - location ?loc-to - location
32 ?driver - driver)
33 :precondition (and (myAgent ?driver) (= (pos ?truck) ?loc-from)
34 (= (at ?driver) ?truck) (link ?loc-from ?loc-to))
35 :effect (assign (pos ?truck) ?loc-to))
36 (:action walk
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37 :parameters (?driver - driver ?loc-from - location ?loc-to - location)
38 :precondition (and (myAgent ?driver) (= (at ?driver) ?loc-from)
39 (path ?loc-from ?loc-to))
40 :effect (assign (at ?driver) ?loc-to)))

Listing A.2: Driverlog MAP-POP PDDL problem.
1 (define (problem DLOG-2-2-2)
2 (:domain driverlog)
3 (:objects

4 driver1 driver2 - driver
5 truck1 truck2 - truck
6 package1 package2 - obj
7 street0 street1 street2 p10 p12 - location
8 )
9 (:shared-data

10 (empty ?v - truck)
11 ((at ?d - driver) - (either location truck))
12 ((pos ?t - truck) - location)
13 ((in ?o - obj) - (either location truck)) -

14 driver2
15 )
16 (:init (myAgent driver1)
17 (= (at driver1) street2)
18 (= (at driver2) street2)
19 (= (pos truck1) street0)
20 (empty truck1)
21 (= (pos truck2) street0)
22 (empty truck2)
23 (= (in package1) street0)
24 (= (in package2) street0)
25 (link street0 street1)
26 (link street0 street2)
27 (path street0 p10)
28 (link street1 street0)
29 (link street1 street2)
30 (path street1 p10)
31 (path street1 p12)
32 (link street2 street0)
33 (link street2 street1)
34 (path street2 p12)
35 (path p10 street0)
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36 (path p10 street1)
37 (path p12 street1)
38 (path p12 street2)
39 )
40 (:global-goal (and

41 (= (at driver1) street1)
42 (= (pos truck1) street1)
43 (= (in package1) street0)
44 (= (in package2) street0)
45 ))

Listing A.3: Driverlog JaCaMo project file.
1 MAS driverlog {
2 infrastructure: JaCaMo
3 agents:

4 init;
5 driver1;
6 driver2;
7 aslSourcePath: "src/asl";
8 }

Listing A.4: Driverlog Moise organisation.
1 <?xml version="1.0" encoding="UTF-8"?>

2 <organisational-specification

3 id="driverlog"
4 os-version="0.8"
5

6 xmlns=’http://moise.sourceforge.net/os’

7 xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

8 xsi:schemaLocation=’http://moise.sourceforge.net/os

9 http://moise.sourceforge.net/xml/os.xsd’ >

10 <structural-specification>

11 <role-definitions>

12 <role id="driver" />

13 <role id="driver1" > <extends role="driver"/> </role>

14 <role id="driver2" > <extends role="driver"/> </role>

15 </role-definitions>

16 <group-specification id="driverlog">

17 <roles>

18 <role id="driver1" min="1" max="1"/>
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19 <role id="driver2" min="1" max="1"/>

20 </roles>

21 </group-specification>

22 </structural-specification>

23 <functional-specification>

24 <scheme id="driverlog_sch">

25 <goal id="goal">

26 <plan operator="sequence">

27 <goal id="par1">

28 <plan operator="parallel">

29 <goal id="walk1" />

30 <goal id="walk2" />

31 </plan>

32 </goal>

33 <goal id="par2">

34 <plan operator="parallel">

35 <goal id="walk3" />

36 <goal id="walk4" />

37 </plan>

38 </goal>

39 <goal id="walk5" />

40 <goal id="walk6" />

41 <goal id="board1" />

42 <goal id="drive1" />

43 </plan>

44 </goal>

45 <mission id="mdriver1" min="1" max="1">

46 <goal id="walk2" />

47 <goal id="walk4" />

48 </mission>

49 <mission id="mdriver2" min="1" max="1">

50 <goal id="walk1"/>

51 <goal id="walk3" />

52 <goal id="walk5" />

53 <goal id="walk6" />

54 <goal id="board1" />

55 <goal id="drive1" />

56 </mission>

57 </scheme>

58 </functional-specification>

59 <normative-specification>
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60 <norm id="n1" type="obligation" role="driver1" mission="mdriver1" />

61 <norm id="n2" type="obligation" role="driver2" mission="mdriver2" />

62 </normative-specification>

63 </organisational-specification>

Listing A.5: Driverlog location artefact.
1 package tools;
2

3 import cartago.Artifact;
4 import cartago.OPERATION;
5 import cartago.ObsProperty;
6

7 public class location extends Artifact {
8 @OPERATION public void init(String newLink, String newPath) {
9 defineObsProperty("link", newLink);

10 defineObsProperty("path", newPath);
11 }
12 @OPERATION public void updateLink(String newLink) {
13 ObsProperty opLink = getObsProperty("link");
14 opLink.updateValue("["+newLink+"]");
15 }
16 @OPERATION public void updatePath(String newPath) {
17 ObsProperty opPath = getObsProperty("path");
18 opPath.updateValue("["+newPath+"]");
19 }
20 }

Listing A.6: Driverlog obj artefact.
1 package tools;
2

3 import cartago.Artifact;
4 import cartago.OPERATION;
5 import cartago.ObsProperty;
6

7 public class obj extends Artifact {
8 @OPERATION public void init(String newIn) {
9 defineObsProperty("in", newIn);

10 }
11

12 @OPERATION public void updateIn(String newIn) {
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13 ObsProperty opIn = getObsProperty("in");
14 opIn.updateValue("["+newIn+"]");
15 }
16 }

Listing A.7: Driverlog truck artefact.
1 package tools;
2

3 import cartago.Artifact;
4 import cartago.OPERATION;
5 import cartago.ObsProperty;
6

7 public class truck extends Artifact {
8 @OPERATION public void init(Boolean newEmpty, String newPos) {
9 defineObsProperty("empty", newEmpty);

10 defineObsProperty("pos", newPos);
11 }
12 @OPERATION public void updateEmpty(Boolean newEmpty) {
13 ObsProperty opEmpty = getObsProperty("empty");
14 opEmpty.updateValue(newEmpty);
15 }
16 @OPERATION public void updatePos(String newPos) {
17 ObsProperty opPos = getObsProperty("pos");
18 opPos.updateValue("["+newPos+"]");
19 }
20

21 }

Listing A.8: Driverlog init agent.
1 !start.

2

3 +!start <- !create_truck_art("truck1", true, [street0]);
4 !create_truck_art("truck2", true, [street0]);
5 !create_obj_art("package1", [street0]);
6 !create_obj_art("package2", [street0]);
7 !create_location_art("street0", [street1,street2], [p10]);
8 !create_location_art("street1", [street0,street2], [p10,p12]);
9 !create_location_art("street2", [street0,street1], [p12]);

10 !create_location_art("p10", [], [street0,street1]);
11 !create_location_art("p12", [], [street1,street2]);
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12 createWorkspace("ora4mas");
13 joinWorkspace("ora4mas",_);
14 makeArtifact("driverlog","ora4mas.nopl.GroupBoard",
15 ["src/driverlog-os.xml", driverlog, false, true],GrArtId);
16 focus(GrArtId);
17 makeArtifact("driverlog_sch", "ora4mas.nopl.SchemeBoard",
18 ["src/driverlog-os.xml", driverlog_sch, false, true], SchArtId);
19 .broadcast(achieve, join("driverlog"));
20 focus(SchArtId);
21 ?formationStatus(ok)[artifact_id(GrArtId)];
22 addScheme("driverlog_sch")[artifact_id(GrArtId)].

23

24 +!create_truck_art(ArtName,Empty,Pos)
25 <- .term2string(Pos,PosS);
26 makeArtifact(ArtName, "tools.truck", [Empty, PosS], ArtId);
27 .broadcast(achieve, discover_art(ArtName)).

28 -!create_truck_art(ArtName,Empty,Pos)[error_code(Code)]
29 <- .print("Error creating artifact ", Code).

30

31 +!create_obj_art(ArtName,In)
32 <- .term2string(In,InS);
33 makeArtifact(ArtName, "tools.obj", [InS], ArtId);
34 .broadcast(achieve, discover_art(ArtName)).

35 -!create_obj_art(ArtName,In)[error_code(Code)]
36 <- .print("Error creating artifact ", Code).

37

38 +!create_location_art(ArtName,Link,Path)
39 <- .term2string(Link,LinkS);
40 .term2string(Path,PathS);
41 makeArtifact(ArtName, "tools.location", [LinkS, PathS], ArtId);
42 .broadcast(achieve, discover_art(ArtName)).

43 -!create_location_art(ArtName,Link,Path)[error_code(Code)]
44 <- .print("Error creating artifact ", Code).

45

46 +?formationStatus(ok)[artifact_id(G)]
47 <- .wait({+formationStatus(ok)[artifact_id(G)]}).

Listing A.9: Driverlog common code.
1 processList(L,R) :- .term2string(T1,R) & .term2string(T2,L) & .member(T1,T2).

2

3 // try to find a particular artifact and then focus on it
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4 +!discover_art(ToolName)
5 <- lookupArtifact(ToolName,ToolId);
6 +id(ToolName,ToolId);
7 focus(ToolId).

8 // keep trying until the artifact is found

9 -!discover_art(ToolName)
10 <- .wait(100);
11 !discover_art(ToolName).

12

13 /* Organisational Plans Required by all agents */

14

15 +!in_ora4mas : in_ora4mas.

16 +!in_ora4mas : .intend(in_ora4mas)
17 <- .wait({+in_ora4mas},100,_);
18 !in_ora4mas.

19 @lin[atomic]
20 +!in_ora4mas
21 <- joinWorkspace("ora4mas",_);
22 +in_ora4mas.

23

24 // plans to handle obligations

25 // obligation to commit to a mission

26 +obligation(Ag,Norm,committed(Ag,Mission,Scheme),Deadline)
27 : .my_name(Ag)
28 <- println("I am obliged to commit to ",Mission," on ",Scheme,"... doing so");
29 commitMission(Mission)[artifact_name(Scheme)].

30 // obligation to achieve a goal

31 +obligation(Ag,Norm,achieved(Scheme,Goal,Ag),Deadline)
32 : .my_name(Ag)
33 <- //println("I am obliged to achieve goal ",Goal);

34 println(" ---> working to achieve ",Goal);
35 !Goal[scheme(Scheme)];
36 println(" <--- done");
37 goalAchieved(Goal)[artifact_name(Scheme)].

38 // an unknown type of obligation was received

39 +obligation(Ag,Norm,What,DeadLine)
40 : .my_name(Ag)
41 <- println("I am obliged to ",What,", but I don’t know what to do!").

Listing A.10: Driverlog driver1 agent.
1 { include("common.asl") }
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2

3 at("street2").

4

5 +!join(GroupName)
6 <- !in_ora4mas;
7 lookupArtifact(GroupName, GroupId);
8 adoptRole(driver1)[artifact_id(GroupId)];
9 focus(GroupId);

10 !discover_art("driverlog_sch").

11

12 +!walk2 : V1 = "street2" & V2 = "p12" & id(V1,Id1) & id(V2,Id2) &
13 at(V1) &
14 path(L)[artifact_id(Id1)] & processList(L,V2)
15 <- -at(V1);
16 +at(V2).

17 -!walk2 <- .print("Plan walk2 failed, check solution plan.").

18

19 +!walk4 : V1 = "p12" & V2 = "street1" & id(V1,Id1) & id(V2,Id2) &
20 at(V1) &
21 path(L)[artifact_id(Id1)] & processList(L,V2)
22 <- -at(V1);
23 +at(V2).

24 -!walk4 <- .print("Plan walk4 failed, check solution plan.").

Listing A.11: Driverlog driver2 agent.
1 { include("common.asl") }
2

3 at("street2").

4

5 +!join(GroupName)
6 <- !in_ora4mas;
7 lookupArtifact(GroupName, GroupId);
8 adoptRole(driver2)[artifact_id(GroupId)];
9 focus(GroupId);

10 !discover_art("driverlog_sch").

11

12

13 +!walk1 : V1 = "street2" & V2 = "p12" & id(V1,Id1) & id(V2,Id2) &
14 at(V1) &
15 path(L)[artifact_id(Id1)] & processList(L,V2)
16 <- -at(V1);
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17 +at(V2).

18 -!walk1 <- .print("Plan walk1 failed, check solution plan.").

19

20 +!walk3 : V1 = "p12" & V2 = "street1" & id(V1,Id1) & id(V2,Id2) &
21 at(V1) &
22 path(L)[artifact_id(Id1)] & processList(L,V2)
23 <- -at(V1);
24 +at(V2).

25 -!walk3 <- .print("Plan walk3 failed, check solution plan.").

26

27 +!walk5 : V1 = "street1" & V2 = "p10" & id(V1,Id1) & id(V2,Id2) &
28 at(V1) &
29 path(L)[artifact_id(Id1)] & processList(L,V2)
30 <- -at(V1);
31 +at(V2).

32 -!walk5 <- .print("Plan walk5 failed, check solution plan.").

33

34 +!walk6 : V1 = "p10" & V2 = "street0" & id(V1,Id1) & id(V2,Id2) &
35 at(V1) &
36 path(L)[artifact_id(Id1)] & processList(L,V2)
37 <- -at(V1);
38 +at(V2).

39 -!walk6 <- .print("Plan walk6 failed, check solution plan.").

40

41 +!board1 : V1 = "truck1" & V2 = "street0" & id(V1,Id1) & id(V2,Id2) &
42 at(V2) &
43 pos(L)[artifact_id(Id1)] & processList(L,V2) &
44 empty(E)[artifact_id(Id1)] & E
45 <- -at(V2);
46 +at(V1);
47 updateEmpty(false)[artifact_id(Id1)].

48 -!board1 <- .print("Plan board1 failed, check solution plan.").

49

50 +!drive1 : V1 = "truck1" & V2 = "street0" & V3 = "street1"& id(V1,Id1) &
51 id(V2,Id2) & id(V3,Id3) &
52 at(V1) &
53 pos(P)[artifact_id(Id1)] & processList(P,V2) &
54 link(L)[artifact_id(Id2)] & processList(L,V3)
55 <- updatePos(V3)[artifact_id(Id1)].

56 -!drive1 <- .print("Plan drive1 failed, check solution plan.").
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B. Depots domain codes

Listing B.1: Depots MAP-POP PDDL domain for location agent.
1 (define (domain depot)
2 (:requirements :typing :equality :fluents)
3 (:types place hoist surface - object
4 depot distributor - (either place agent)
5 truck - agent
6 crate pallet - surface)
7 (:predicates

8 (myAgent ?a - place)
9 (clear ?x - (either surface hoist)))

10 (:functions

11 (located ?h - hoist) - place
12 (at ?t - truck) - place
13 (placed ?p - pallet) - place
14 (pos ?c - crate) - (either place truck)
15 (on ?c - crate) - (either surface hoist truck))
16 (:action LiftP
17 :parameters (?h - hoist ?c - crate ?z - pallet ?p - place)
18 :precondition (and (myAgent ?p) (= (located ?h) ?p)
19 (= (placed ?z) ?p) (clear ?h) (= (pos ?c) ?p)
20 (= (on ?c) ?z) (clear ?c))
21 :effect (and (assign (on ?c) ?h) (not (clear ?c)) (not (clear ?h))
22 (clear ?z)))
23 (:action LiftC
24 :parameters (?h - hoist ?c - crate ?z - crate ?p - place)
25 :precondition (and (myAgent ?p) (= (located ?h) ?p)
26 (= (pos ?z) ?p) (clear ?h)
27 (= (pos ?c) ?p) (= (on ?c) ?z) (clear ?c))
28 :effect (and (assign (on ?c) ?h) (not (clear ?c)) (not (clear ?h))
29 (clear ?z)))
30 (:action DropP
31 :parameters (?h - hoist ?c - crate ?z - pallet ?p - place)
32 :precondition (and (myAgent ?p) (= (located ?h) ?p)
33 (= (placed ?z) ?p) (clear ?z) (= (on ?c) ?h)
34 (not (clear ?c)) (not (clear ?h)))
35 :effect (and (clear ?h) (clear ?c) (not (clear ?z))
36 (assign (on ?c) ?z)))
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37 (:action DropC
38 :parameters (?h - hoist ?c - crate ?z - crate ?p - place)
39 :precondition (and (myAgent ?p) (= (located ?h) ?p)
40 (= (pos ?z) ?p) (clear ?z)
41 (= (on ?c) ?h) (not (clear ?c))
42 (not (clear ?h)))
43 :effect (and (clear ?h) (clear ?c) (not (clear ?z))
44 (assign (on ?c) ?z))))
45 )

Listing B.2: Depots MAP-POP PDDL domain for truck agent.
1 (define (domain depot)
2 (:requirements :typing :equality :fluents)
3 (:types place hoist surface - object
4 depot distributor - (either place agent)
5 truck - agent
6 crate pallet - surface)
7 (:predicates

8 (myAgent ?a - truck)
9 (clear ?x - (either surface hoist)))

10 (:functions

11 (located ?h - hoist) - place
12 (at ?t - truck) - place
13 (placed ?p - pallet) - place
14 (pos ?c - crate) - (either place truck)
15 (on ?c - crate) - (either surface hoist truck))
16 (:action Drive
17 :parameters (?t - truck ?x ?y - place)
18 :precondition (and (myAgent ?t) (= (at ?t) ?x))
19 :effect (and (assign (at ?t) ?y)))
20 (:action Load
21 :parameters (?h - hoist ?c - crate ?t - truck ?p - place)
22 :precondition (and (myAgent ?t) (= (at ?t) ?p) (= (pos ?c) ?p)
23 (not (clear ?c)) (not (clear ?h))
24 (= (on ?c) ?h) (= (located ?h) ?p))
25 :effect (and (clear ?h) (clear ?c) (assign (pos ?c) ?t)
26 (assign (on ?c) ?t)))
27 (:action Unload
28 :parameters (?h - hoist ?c - crate ?t - truck ?p - place)
29 :precondition (and (myAgent ?t) (= (located ?h) ?p) (= (at ?t) ?p)
30 (= (pos ?c) ?t) (= (on ?c) ?t) (clear ?h)
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31 (clear ?c))
32 :effect (and (assign (pos ?c) ?p) (assign (on ?c) ?h)
33 (not (clear ?c)) (not (clear ?h))))
34 )

Listing B.3: Depots MAP-POP PDDL problem.
1 (define (problem depotprob1818)
2 (:domain depot)
3 (:objects

4 depot0 - depot
5 distributor0 distributor1 - distributor
6 truck0 truck1 - truck
7 crate0 crate1 - crate
8 pallet0 pallet1 pallet2 - pallet
9 hoist0 hoist1 hoist2 - hoist

10 )
11 (:shared-data

12 (clear ?x - (either surface hoist))
13 ((at ?t - truck) - place)
14 ((pos ?c - crate) - (either place truck))
15 ((on ?c - crate) - (either surface hoist truck)) -

16 (either distributor0 distributor1 truck0 truck1)
17 )
18 (:init

19 (myAgent depot0)
20 (= (pos crate0) distributor0)
21 (clear crate0)
22 (= (on crate0) pallet1)
23 (= (pos crate1) depot0)
24 (clear crate1)
25 (= (on crate1) pallet0)
26 (= (at truck0) distributor1)
27 (= (at truck1) depot0)
28 (= (located hoist0) depot0)
29 (clear hoist0)
30 (= (located hoist1) distributor0)
31 (clear hoist1)
32 (= (located hoist2) distributor1)
33 (clear hoist2)
34 (= (placed pallet0) depot0)
35 (not (clear pallet0))
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36 (= (placed pallet1) distributor0)
37 (not (clear pallet1))
38 (= (placed pallet2) distributor1)
39 (clear pallet2)
40 )
41 (:global-goal (and

42 (= (on crate0) pallet2)
43 (= (on crate1) pallet1)
44 ))

Listing B.4: Depots JaCaMo project file.
1 MAS depots {
2 infrastructure: JaCaMo
3 agents:

4 init;
5 depot0;
6 distributor0;
7 distributor1;
8 truck1;
9 truck2;

10 aslSourcePath: "src/asl";
11 }

Listing B.5: Depots Moise organisation.
1 <?xml version="1.0" encoding="UTF-8"?>

2 <organisational-specification

3 id="depots"
4 os-version="0.8"
5

6 xmlns=’http://moise.sourceforge.net/os’

7 xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

8 xsi:schemaLocation=’http://moise.sourceforge.net/os

9 http://moise.sourceforge.net/xml/os.xsd’ >

10 <structural-specification>

11 <role-definitions>

12 <role id="depot" />

13 <role id="depot0" > <extends role="depot"/> </role>

14 <role id="distributor" />

15 <role id="distributor0" > <extends role="distributor"/> </role>

16 <role id="distributor1" > <extends role="distributor"/> </role>
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17 <role id="truck" />

18 <role id="truck1" > <extends role="truck"/> </role>

19 <role id="truck2" > <extends role="truck"/> </role>

20 </role-definitions>

21 <group-specification id="depots">

22 <roles>

23 <role id="depot0" min="1" max="1"/>

24 <role id="distributor0" min="1" max="1"/>

25 <role id="distributor1" min="1" max="1"/>

26 <role id="truck1" min="1" max="1"/>

27 <role id="truck2" min="1" max="1"/>

28 </roles>

29 </group-specification>

30 </structural-specification>

31 <functional-specification>

32 <scheme id="depots_sch">

33 <goal id="goal">

34 <plan operator="sequence">

35 <goal id="par1">

36 <plan operator="parallel">

37 <goal id="lift1" />

38 <goal id="lift2" />

39 <goal id="drive1" />

40 </plan>

41 </goal>

42 <goal id="par2">

43 <plan operator="parallel">

44 <goal id="load1" />

45 <goal id="load2" />

46 </plan>

47 </goal>

48 <goal id="par3">

49 <plan operator="parallel">

50 <goal id="drive2" />

51 <goal id="drive3" />

52 </plan>

53 </goal>

54 <goal id="par4">

55 <plan operator="parallel">

56 <goal id="unload1" />

57 <goal id="unload2" />
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58 </plan>

59 </goal>

60 <goal id="par5">

61 <plan operator="parallel">

62 <goal id="drop1" />

63 <goal id="drop2" />

64 </plan>

65 </goal>

66 </plan>

67 </goal>

68 <mission id="mdepot0" min="1" max="1">

69 <goal id="lift2" />

70 </mission>

71 <mission id="mdistributor0" min="1" max="1">

72 <goal id="lift1"/>

73 <goal id="drop2" />

74 </mission>

75 <mission id="mdistributor1" min="1" max="1">

76 <goal id="drop1"/>

77 </mission>

78 <mission id="mtruck1" min="1" max="1">

79 <goal id="load2"/>

80 <goal id="drive3" />

81 <goal id="unload2" />

82 </mission>

83 <mission id="mtruck2" min="1" max="1">

84 <goal id="drive1"/>

85 <goal id="load1" />

86 <goal id="drive2" />

87 <goal id="unload1" />

88 </mission>

89 </scheme>

90 </functional-specification>

91 <normative-specification>

92 <norm id="n1" type="obligation" role="depot0" mission="mdepot0" />

93 <norm id="n2" type="obligation" role="distributor0" mission="mdistributor0" />

94 <norm id="n3" type="obligation" role="distributor1" mission="mdistributor1" />

95 <norm id="n4" type="obligation" role="truck1" mission="mtruck1" />

96 <norm id="n5" type="obligation" role="truck2" mission="mtruck2" />

97 </normative-specification>

98 </organisational-specification>
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Listing B.6: Depots hoist artefact.
1 package tools;
2

3 import cartago.Artifact;
4 import cartago.OPERATION;
5 import cartago.ObsProperty;
6

7 public class hoist extends Artifact {
8 @OPERATION public void init(Boolean newClear, String newLocated) {
9 defineObsProperty("clear", newClear);

10 defineObsProperty("located", newLocated);
11 }
12 @OPERATION public void updateClear(Boolean newClear) {
13 ObsProperty opClear = getObsProperty("clear");
14 opClear.updateValue(newClear);
15 }
16 @OPERATION public void updateLocated(String newLocated) {
17 ObsProperty opLocated = getObsProperty("located");
18 opLocated.updateValue("["+newLocated+"]");
19 }
20

21 }

Listing B.7: Depots surface artefact.
1 package tools;
2

3 import cartago.Artifact;
4 import cartago.OPERATION;
5 import cartago.ObsProperty;
6

7 public class surface extends Artifact {
8 @OPERATION public void init(String newPos, String newOn, String newPlaced,
9 Boolean newClear) {

10 defineObsProperty("pos", newPos);
11 defineObsProperty("on", newOn);
12 defineObsProperty("placed", newPlaced);
13 defineObsProperty("clear", newClear);
14 }
15

16 @OPERATION public void updatePos(String newPos) {
17 ObsProperty opPos = getObsProperty("pos");
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18 opPos.updateValue("["+newPos+"]");
19 }
20 @OPERATION public void updateOn(String newOn) {
21 ObsProperty opOn = getObsProperty("on");
22 opOn.updateValue("["+newOn+"]");
23 }
24 @OPERATION public void updatePlaced(String newPlaced) {
25 ObsProperty opPlaced = getObsProperty("placed");
26 opPlaced.updateValue("["+newPlaced+"]");
27 }
28 @OPERATION public void updateClear(Boolean newClear) {
29 ObsProperty opClear = getObsProperty("clear");
30 opClear.updateValue(newClear);
31 }
32 }

Listing B.8: Depots init agent.
1 !start.

2

3 +!start <- !create_surface_art("crate0", [distributor0], [pallet1], [], true);
4 !create_surface_art("crate1", [depot0], [pallet0], [], true);
5 !create_surface_art("pallet0", [], [], [depot0], false);
6 !create_surface_art("pallet1", [], [], [distributor0], false);
7 !create_surface_art("pallet2", [], [], [distributor1], true);
8 !create_hoist_art("hoist0", true, [depot0]);
9 !create_hoist_art("hoist1", true, [distributor0]);

10 !create_hoist_art("hoist2", true, [distributor1]);
11 createWorkspace("ora4mas");
12 joinWorkspace("ora4mas",_);
13 makeArtifact("depots","ora4mas.nopl.GroupBoard",
14 ["src/depots-os.xml", depots, false, true],GrArtId);
15 focus(GrArtId);
16 makeArtifact("depots_sch", "ora4mas.nopl.SchemeBoard",
17 ["src/depots-os.xml", depots_sch, false, true], SchArtId);
18 .broadcast(achieve, join("depots"));
19 focus(SchArtId);
20 ?formationStatus(ok)[artifact_id(GrArtId)];
21 addScheme("depots_sch")[artifact_id(GrArtId)].

22

23 +!create_surface_art(ArtName,Pos,On,Placed,Clear)
24 <- .term2string(Pos,PosS);
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25 .term2string(On,OnS);
26 .term2string(Placed,PlacedS);
27 makeArtifact(ArtName, "tools.surface", [PosS,OnS,PlacedS,Clear], ArtId);
28 .broadcast(achieve, discover_art(ArtName)).

29 -!create_surface_art(ArtName,Pos,On,Placed,Clear)[error_code(Code)]
30 <- .print("Error creating artifact ", Code).

31

32 +!create_hoist_art(ArtName,Clear,Located)
33 <- .term2string(Located,LocatedS);
34 makeArtifact(ArtName, "tools.hoist", [Clear, LocatedS], ArtId);
35 .broadcast(achieve, discover_art(ArtName)).

36 -!create_hoist_art(ArtName,Clear,Located)[error_code(Code)]
37 <- .print("Error creating artifact ", Code).

38

39 +?formationStatus(ok)[artifact_id(G)]
40 <- .wait({+formationStatus(ok)[artifact_id(G)]}).

Listing B.9: Depots common code.
1 processList(L,R) :- .term2string(T1,R) & .term2string(T2,L) & .member(T1,T2).

2

3 // try to find a particular artifact and then focus on it

4 +!discover_art(ToolName)
5 <- lookupArtifact(ToolName,ToolId);
6 +id(ToolName,ToolId);
7 focus(ToolId).

8 // keep trying until the artifact is found

9 -!discover_art(ToolName)
10 <- .wait(100);
11 !discover_art(ToolName).

12

13 /* Organisational Plans Required by all agents */

14

15 +!in_ora4mas : in_ora4mas.

16 +!in_ora4mas : .intend(in_ora4mas)
17 <- .wait({+in_ora4mas},100,_);
18 !in_ora4mas.

19 @lin[atomic]
20 +!in_ora4mas
21 <- joinWorkspace("ora4mas",_);
22 +in_ora4mas.

23
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24 // plans to handle obligations

25 // obligation to commit to a mission

26 +obligation(Ag,Norm,committed(Ag,Mission,Scheme),Deadline)
27 : .my_name(Ag)
28 <- println("I am obliged to commit to ",Mission," on ",Scheme,"... doing so");
29 commitMission(Mission)[artifact_name(Scheme)].

30 // obligation to achieve a goal

31 +obligation(Ag,Norm,achieved(Scheme,Goal,Ag),Deadline)
32 : .my_name(Ag)
33 <- //println("I am obliged to achieve goal ",Goal);

34 println(" ---> working to achieve ",Goal);
35 !Goal[scheme(Scheme)];
36 println(" <--- done");
37 goalAchieved(Goal)[artifact_name(Scheme)].

38 // an unknown type of obligation was received

39 +obligation(Ag,Norm,What,DeadLine)
40 : .my_name(Ag)
41 <- println("I am obliged to ",What,", but I don’t know what to do!").

Listing B.10: Depots truck1 agent.
1 { include("common.asl") }
2

3 at("depot0").

4

5 +!join(GroupName)
6 <- !in_ora4mas;
7 lookupArtifact(GroupName, GroupId);
8 adoptRole(truck1)[artifact_id(GroupId)];
9 focus(GroupId);

10 !discover_art("depots_sch").

11

12

13 +!load2 : V1 = "hoist0" & V2 = "crate1" & V3 = "truck1" & V4 = "depot0" &
14 id(V1,Id1) & id(V2,Id2) &
15 at(V4) &
16 pos(Pos1)[artifact_id(Id2)] & processList(Pos1,V4) &
17 clear(Clear1)[artifact_id(Id2)] & (not Clear1) &
18 clear(Clear2)[artifact_id(Id1)] & (not Clear2) &
19 on(On1)[artifact_id(Id2)] & processList(On1,V1)
20 <- updateClear(true)[artifact_id(Id1)];
21 updateClear(true)[artifact_id(Id2)];
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22 updatePos(V3)[artifact_id(Id2)];
23 updateOn(V3)[artifact_id(Id2)].

24 -!load2 <- .print("Plan load2 failed, check solution plan.").

25

26 +!drive3 : V1 = "truck1" & V2 = "depot0" & V3 = "distributor0" &
27 at(V2)
28 <- -at(V2);
29 +at(V3).

30 -!drive3 <- .print("Plan drive3 failed, check solution plan.").

31

32 +!unload2 : V1 = "hoist1" & V2 = "crate1" & V3 = "truck1" & V4 = "distributor0" &
33 id(V1,Id1) & id(V2,Id2) &
34 at(V4) &
35 pos(Pos1)[artifact_id(Id2)] & processList(Pos1,V3) &
36 on(On1)[artifact_id(Id2)] & processList(On1,V3) &
37 clear(Clear1)[artifact_id(Id1)] & Clear1 &
38 clear(Clear2)[artifact_id(Id2)] & Clear2
39 <- updatePos(V4)[artifact_id(Id2)];
40 updateOn(V1)[artifact_id(Id2)];
41 updateClear(false)[artifact_id(Id2)];
42 updateClear(false)[artifact_id(Id1)].

43 -!unload2 <- .print("Plan unload2 failed, check solution plan.").

Listing B.11: Depots truck2 agent.
1 { include("common.asl") }
2

3 at("distributor1").

4

5 +!join(GroupName)
6 <- !in_ora4mas;
7 lookupArtifact(GroupName, GroupId);
8 adoptRole(truck2)[artifact_id(GroupId)];
9 focus(GroupId);

10 !discover_art("depots_sch").

11

12 +!drive1 : V1 = "truck2" & V2 = "distributor1" & V3 = "distributor0" &
13 at(V2)
14 <- -at(V2);
15 +at(V3).

16 -!drive1 <- .print("Plan drive1 failed, check solution plan.").

17
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18 +!load1 : V1 = "hoist1" & V2 = "crate0" & V3 = "truck2" & V4 = "distributor0" &
19 id(V1,Id1) & id(V2,Id2) &
20 at(V4) &
21 pos(Pos1)[artifact_id(Id2)] & processList(Pos1,V4) &
22 clear(Clear1)[artifact_id(Id2)] & (not Clear1) &
23 clear(Clear2)[artifact_id(Id1)] & (not Clear2) &
24 on(On1)[artifact_id(Id2)] & processList(On1,V1)
25 <- updateClear(true)[artifact_id(Id1)];
26 updateClear(true)[artifact_id(Id2)];
27 updatePos(V3)[artifact_id(Id2)];
28 updateOn(V3)[artifact_id(Id2)].

29 -!load1 <- .print("Plan load1 failed, check solution plan.").

30

31 +!drive2 : V1 = "truck2" & V2 = "distributor0" & V3 = "distributor1" &
32 at(V2)
33 <- -at(V2);
34 +at(V3).

35 -!drive2 <- .print("Plan drive2 failed, check solution plan.").

36

37 +!unload1 : V1 = "hoist2" & V2 = "crate0" & V3 = "truck2" & V4 = "distributor1" &
38 id(V1,Id1) & id(V2,Id2) &
39 at(V4) &
40 pos(Pos1)[artifact_id(Id2)] & processList(Pos1,V3) &
41 on(On1)[artifact_id(Id2)] & processList(On1,V3) &
42 clear(Clear1)[artifact_id(Id1)] & Clear1 &
43 clear(Clear2)[artifact_id(Id2)] & Clear2
44 <- updatePos(V4)[artifact_id(Id2)];
45 updateOn(V1)[artifact_id(Id2)];
46 updateClear(false)[artifact_id(Id2)];
47 updateClear(false)[artifact_id(Id1)].

48 -!unload1 <- .print("Plan unload1 failed, check solution plan.").

Listing B.12: Depots depot0 agent.
1 { include("common.asl") }
2

3 +!join(GroupName)
4 <- !in_ora4mas;
5 lookupArtifact(GroupName, GroupId);
6 adoptRole(depot0)[artifact_id(GroupId)];
7 focus(GroupId);
8 !discover_art("depots_sch").
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9

10 +!lift2 : V1 = "hoist0" & V2 = "crate1" & V3 = "pallet0" & V4 = "depot0" &
11 id(V1,Id1) & id(V2,Id2) & id(V3,Id3) &
12 clear(Clear1)[artifact_id(Id1)] & Clear1 &
13 pos(Pos1)[artifact_id(Id2)] & processList(Pos1,V4) &
14 on(On1)[artifact_id(Id2)] & processList(On1,V3) &
15 clear(Clear2)[artifact_id(Id2)] & Clear2
16 <- updateOn(V1)[artifact_id(Id2)];
17 updateClear(false)[artifact_id(Id2)];
18 updateClear(false)[artifact_id(Id1)];
19 updateClear(true)[artifact_id(Id3)].

20 -!lift2 <- .print("Plan lift2 failed, check solution plan.").

Listing B.13: Depots distributor0 agent.
1 { include("common.asl") }
2

3 +!join(GroupName)
4 <- !in_ora4mas;
5 lookupArtifact(GroupName, GroupId);
6 adoptRole(distributor0)[artifact_id(GroupId)];
7 focus(GroupId);
8 !discover_art("depots_sch").

9

10 +!lift1 : V1 = "hoist1" & V2 = "crate0" & V3 = "pallet1" & V4 = "distributor0" &
11 id(V1,Id1) & id(V2,Id2) & id(V3,Id3) &
12 clear(Clear1)[artifact_id(Id1)] & Clear1 &
13 pos(Pos1)[artifact_id(Id2)] & processList(Pos1,V4) &
14 on(On1)[artifact_id(Id2)] & processList(On1,V3) &
15 clear(Clear2)[artifact_id(Id2)] & Clear2
16 <- updateOn(V1)[artifact_id(Id2)];
17 updateClear(false)[artifact_id(Id2)];
18 updateClear(false)[artifact_id(Id1)];
19 updateClear(true)[artifact_id(Id3)].

20 -!lift1 <- .print("Plan lift1 failed, check solution plan.").

21

22 +!drop2 : V1 = "hoist1" & V2 = "crate1" & V3 = "pallet1" & V4 = "distributor0" &
23 id(V1,Id1) & id(V2,Id2) & id(V3,Id3) &
24 clear(Clear1)[artifact_id(Id3)] & Clear1 &
25 on(On1)[artifact_id(Id2)] & processList(On1,V1) &
26 clear(Clear2)[artifact_id(Id2)] & (not Clear2) &
27 clear(Clear3)[artifact_id(Id1)] & (not Clear3)
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28 <- updateClear(true)[artifact_id(Id1)];
29 updateClear(true)[artifact_id(Id2)];
30 updateClear(false)[artifact_id(Id3)];
31 updateOn(V3)[artifact_id(Id2)].

32 -!drop2 <- .print("Plan drop2 failed, check solution plan.").

Listing B.14: Depots distributor1 agent.
1 { include("common.asl") }
2

3 +!join(GroupName)
4 <- !in_ora4mas;
5 lookupArtifact(GroupName, GroupId);
6 adoptRole(distributor1)[artifact_id(GroupId)];
7 focus(GroupId);
8 !discover_art("depots_sch").

9

10 +!drop1 : V1 = "hoist2" & V2 = "crate0" & V3 = "pallet2" & V4 = "distributor1" &
11 id(V1,Id1) & id(V2,Id2) & id(V3,Id3) &
12 clear(Clear1)[artifact_id(Id3)] & Clear1 &
13 on(On1)[artifact_id(Id2)] & processList(On1,V1) &
14 clear(Clear2)[artifact_id(Id2)] & (not Clear2) &
15 clear(Clear3)[artifact_id(Id1)] & (not Clear3)
16 <- updateClear(true)[artifact_id(Id1)];
17 updateClear(true)[artifact_id(Id2)];
18 updateClear(false)[artifact_id(Id3)];
19 updateOn(V3)[artifact_id(Id2)].

20 -!drop1 <- .print("Plan drop1 failed, check solution plan.").


