
PONTIFICAI. CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL

FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

ARGUMENTATION-BASED

DIALOGUES FOR TASK

REALLOCATION AMONG

RATIONAL AGENTS

ALISON ROBERTO PANISSON

Dissertation presented as partial

requirement for obtaining the degree of

Master in Computer Science at Pontificai

Catholic University of Rio Grande do Sul.

Advisor: Prof. Rafael Heitor Bordini

Porto Alegre

2015

Dados Internacionais de Catalogação na Publicação (CIP)

P192a Panisson, Alison Roberto
Argumentation-based diologues for task reallocation among rational

agents / Alison Roberto Panisson. - Porto Alegre, 2015.
95 f.

Diss. (Mestrado) - Fac. de Informática, PUCRS.
Orientador: Prof. Dr. Rafael Heitor Bordini.

1. Informática. 2. Sistemas Multiagentes. 3. Linguagens de
Programação. I. Bordini, Rafael Heitor. II. Título.

CDD 005.13

Ficha Catalográflca elaborada pelo
Setor de Tratamento da Informação da BC-PUCRS

FACINl

PUCRS

Pontifícia Universidade Católica do Rio Grande do Sul
FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

TERMO DE APRESENTAÇÃO DE DISSERTAÇÃO DE MESTRADO

Dissertação intitulada "Argumentation-Based Dialogues for Task Reallocation

Among Rational Agents" apresentada por Alison Roberto Panisson como parte

dos requisitos para obtenção do grau de Mestre em Ciência da Computação,

aprovada em 27/03/2015 pela Comissão Examinadora:

Prof. Dr. Rafael Heitor Bordini-

Orientador

PPGCC/PÜCRS

Profa. Dra. Profa. Dra. Renata Vieira- PPGCC/PUCRS

h" ■ " 'J '

Prof. Dr. Felipe Rech Meneguzzi- PPGCC/PUCRS

'/ ./-■ ■■ fi t ff") /' /" /-•
lã,..

Prof. Dr. Antônio Carlos da Rocha Costa- FURG

Prof. Dr. Álvaro Freitas Moreira-

Homologada emâ

Coordenadora.

UFRGS

1 conforme Ata No. pela Comissão

Prof. Df. LuizGustavo Leão Fernandes

Coordenador/

PUCRS

Campus Central
Av, Ipiranga, 6681 - P32- sala 507 - CEP: 90619-900
Fone: (51) 3320-3611 - Fax (51) 3320-3621
E-mail: ppQCC@pucrs.br
www.pucrs.br/facin/pos

I dedicate my work to my family and friends.

ACKNOWLEDGMENTS

I thank the project titled "Semantic and Multi-Agent Technologies for Group Interaction"

and ali its members for the help and encouragement to my research, in particular, my advisor

Rafael H. Bordini. I thank the project sponsorship oífered by Samsung Eletrônica da Amazônia

Ltda. I thank the support of my family, my friends and my fiancee, both in the good days as well as

in the bad days, as surely they are the ones who give us strength to pursue our dreams and goals.

Part of the results presented in this document were obtained through research on a project

titled "Semantic and Multi-Agent Technologies for Group Interaction", sponsored by Samsung

Eletrônica da Amazônia Ltda. under the terms of Brazilian federal law No. 8.248/91.

DIÁLOGOS BASEADO EM ARGUMENTAÇÃO PARA REALOCAÇÃO

DE TAREFAS ENTRE AGENTES RACIONAIS

RESUMO

Argumentação aparece em duas principais linhas de pesquisa no campo de sistemas

multi-agentes; raciocínio baseado em argumentação e diálogos baseados em argumentação. Neste

documento nós apresentamos uma abordagem que explora essas duas linhas de pesquisa. Primeiro,

nós desenvolvemos um mecanismo de raciocínio baseado em argumentação em uma linguagem de

programação orientada a agentes, a qual é baseada na arquitetura BDI. Este mecanismo de racio-

cínio é baseado no formalismo de defeasible logic e na noção da semântica defeasible. Usando este

mecanismo de raciocínio baseado em argumentação, agentes podem raciocinar sobre incertezas e

podem usar argumentos para dar suporte às suas alegações quando envolvidos em diálogos multi-

agentes. Segundo, nós damos semântica operacional para um conjunto de atos de fala encontrados

na literatura de diálogos baseados em argumentação. Esta semântica é também dada no contexto

de linguagens de programação orientada a agentes inspiradas pela arquitetura BDI. Além disso,

nós definimos um protocolo para diálogos baseados em argumentação para realocação de tarefas,

considerando o mecanismo de raciocínio e a semântica operacional apresentados. Provou-se que

o protocolo termina e que atinge soluções ideais, dados alguns pressupostos desse trabalho. Final-

mente, nós descrevemos um domínio de aplicação usado como estudo de caso, e avaliamos nosso

trabalho com alguns exemplos de problemas reais dentro desse cenário da aplicação.

Palavras Chave: Diálogos Baseado em Argumentação, Raciocínio Baseado em Argumentação,

Semântica Formal, Programação Orientada a Agentes.

ARGUMENTATION-BASED DIALOGUES FOR TASK REALLOCATION

AMONG RATIONAL AGENTS

ABSTRACT

Argumentation appears in two main Unes of research in the íield of multi-agent systems:

argumentation-based reasoning and argumentation-based dialogues. In this document we present

an approach exploring both of those Unes of research. First, we develop an argumentation-based

reasoning mechanism in an agent-oriented programming language based on the BDI architecture.

This reasoning mechanism is based on a defeasible logic formalism and the notion of defeas-

ible semantics. Using that argumentation-based reasoning mechanism, agents can reason under

uncertainty and can use arguments to supports their claims when engaging in multi-agent dia-

logues. Second, we give operational semantics to a set of speech acts found in the literature on

argumentation-based dialogues. That semantics is also given in the context of BDI-inspired agent-

oriented programming languages. Next, we define a protocol for argumentation-based dialogues

for task reallocation, using the reasoning mechanism and the operational semantics. We prove that

the protocol terminates and that it can reach ideal solutions under certain assumptions. Finally, we

describe an application domain used as case study, and we evaluate our work with some examples

of real problems from that application scenario.

Keywords: Argumentation-Based Dialogues, Argumentation-Based Reasoning, Formal Semantics,

Agent-Oriented Programming.

CONTENTS

1 INTRODUCTION 17

2 BACKGROUND 19

2.1 ARGUMENTATION 19

2.1.1 ABSTRACT ARGUMENTATION 21

2.1.2 EVALUATING AN ARGUMENT IN ABSTRACT ARGUMENTATION 21

2.2 DEFEASIBLE REASONING 22

2.3 DIALOGUE GAMES 25

2.4 ARGUMENTATION-BASED DIALOGUES 25

2.5 NEGOTIATION 28

2.5.1 ARGUMENTATION-BASED NEGOTIATION 29

2.6 AGENT ORIENTED PROGRAMMING AND THE JASON PLATFORM 30

3 RELATED WORK 35

3.1 REASONING MECHANISM 35

3.2 ARGUMENTATION FRAMEWORK 39

3.3 ARGUMENTATION-BASED DIALOGUES 40

3.4 SEMANTICS TO AGENT-ORIENTED PROGRAMMING LANGUAGES 46

4 ARGUMENTATION-BASED REASONING IN AGENT-ORIENTED PRO-

GRAMMING LANGUAGE 49

4.1 THE APPROACH FOR ARGUMENTATION-BASED REASONING USING DEFEA-

SIBLE LOGIC 49

4.1.1 EXAMPLE OF REASONING 50

5 SEMANTICS OF SPEECH-ACT FOR ARGUMENTATION-BASED DIA-

LOGUES 53

5.1 NEW PERFORMATIVES FOR AGENTSPEAK 53

5.2 THE BASIS FOR THE OPERATIONAL SEMANTICS 54

5.3 SEMANTIC RULES FOR NEW INTERNAL ACTIONS 57

5.4 SEMANTIC RULES FOR SENDING THE NEW PERFORMATIVES 58

5.5 SEMANTIC RULES FOR RECEIVING THE NEW PERFORMATIVES 61

6 PROTOCOL FOR ARGUMENTATION-BASED DIALOGUE 65

6.1 DIALOGUE GAME 65

6.2 AGENT CONFIGURATION 66

6.3 DIALOGUE GAME PROTOCOL 67

6.4 DIALOGUE RULES 68

6.5 PROPERTIES OF THE PROTOCOL 71

7 APPLICATION DOMAIN 75

7.1 APPLICATION 75

7.2 ACCESSING ONTOLOGICAL INFORMATION 76

7.3 TASK ONTOLOGY 77

7.4 ARGUING ABOUT TASK REALLOCATION 77

7.4.1 DECISION-MAKING FOR TASK REALLOCATION USING ONTOLOGICAL IN-

FORMATION 78

8 EVALUATION 81

8.1 SCENARIO DESCRIPTION 81

8.2 IMPLEMENTATION 83

8.3 SOLUTION FOR SCENARIO CASE 1 84

8.4 SOLUTION FOR SCENARIO CASE 2 84

8.5 SOLUTION FOR SCENARIO CASE 3 85

8.6 FINAL REMARKS ABOUT THE SOLUTIONS 86

9 CONCLUSION 87

REFERENCES 89

17

1. INTRODUCTION

Argumentation has received significant interest in the multi-agent system community in

recent years because it gives us means for allowing an agent to reconcile: (i) conflicting Information

within itself; (ii) its informational state with new perception of the environment; and (iii) conflicting

information from multiple agents through communication [42],

Argumentation can be divided into two main Unes of research in the multi-agent commu-

nity; (i) argumentation focused on reasoning (nonmonotonic reasoning) over incomplete, conflict-

ing, or uncertain information, where arguments for and against certain conclusions (beliefs, goals,

etc.) are constructed and compared; and (ii) argumentation focused on communication/interaction

between agents that allows the exchange of arguments to justify a stance and to provide reasons

that defend claims.

In this dissertation we present our research, which explores argumentation-based rea-

soning and argumentation-based dialogues in agent-oriented programming languages based on

"mental attitudes" [e.g., BDI) such as AgentSpeak(L) and its extensions available injason [18]. Ja-

son has been chosen because it has important characteristics for our research, as we will describe

later.

The main contributions of our work cover the two areas mentioned above. First, we de-

velop and implement argumentation-based reasoning in an agent-oriented programming language

based on the BDI architecture, where agents can reason over inference rules, as well as they can

recover the rules used in such inferences to justify their conclusions. Second, we identify, formalise

and implement the main performatives/speech-acts used in the literature of argumentation-based

dialogues. We follow the formalisation found in [87] to give operational semantics to these per-

formatives and, as such formalisation makes references to the agents' mental attitudes, it can be

easily implemented in any language based on the BDI architecture, as we do injason. Third, we

define and formalise an argumentation-based protocol for task reallocation between agents, which

considers a set of performatives formalised and the reasoning mechanism developed. Further, we

define a decision-making process to support task reallocation which uses information from an on-

tology to decide on the possible courses of action; this is used by an agent that realises it cannot

accomplish a task to which it was committed. Finally, we demonstrate in practice the techniques

described in real scenarios developed for the SeaTeaMS Project (funded by Samsung Research

Brazil and run at FACIN-PUCRS).

This document is organised as follows. In Chapter 2, we describe the background of

our research, where we describe the main concepts used in the remainder of this document. In

Chapter 3, we describe some related work. In Chapter 4, we present the argumentation-based

reasoning mechanism developed in Jason, which we published in [56], In Chapter 5, we give

operational semantics to the performatives/speech-acts found in literature of argumentation-based

dialogues and incorporated into Jason, which we published in [55]. In Chapter 6, we define the

argumentation-based protocol and we make some eflbrts towards proving some properties of this

18

protocol. We published some of the ideas used in that protocol in [54], In Chapter 7, we describe

the application domain where we use the techniques developed in our research, including the

decision-making process which uses information from a domain-specific ontology. In Chapter 8,

we describe an evaluation of our work, where we implement three scenarios of the application

domain. We use CArtAgO [74] artifacts and the Jason platform [18] to implement the techniques

described in this work. Finally, in Chapter 9, we make some final remarks and point out possible

directions for our work.

19

2. BACKGROUND

In this Chapter, we provide the background needed for understanding the remainder of

our work. Initially, in Section 2.1, we give a brief account of argumentation in multi-agent systems.

After that, in Section 2.2, we describe defeasible reasoning, a type of rule-based reasoning that

bears significant relation to argumentation systems. In Section 2.3 we give a brief introduction to

dialogue game. In Section 2.4 we describe argumentation-based dialogues where the interactions

are formalised as dialogue games. In Section 2.5, we describe brieíly the three major approaches

to automated negotiation focusing on the argumentation-based approach, which move us towards

demonstrating the benefits of using argumentation-based approaches in dialogues. Finally, in

Section 2.6, we give a brief introduction to agent-oriented programming and Jason, the platform

that will be used in our work.

2.1 Argumentation

Argumentation can be seen as the principled interaction of different, potentially conflict-

ing arguments, for the sake of arriving at a consistent conclusion [42],

The survey presented in [42] states that argumentation in multi-agent systems has two

main lines of research; (i) autonomous agent reasoning, such as belief revision and decision-making

under uncertainty; and (ii) as a vehicle for facilitating multi-agent interaction, because argumen-

tation naturally provides tools to designing, implementing and analysing sophisticated forms of

interaction among rational agents.

According to Maudet et al. [42], argumentation lends itself naturally to two main sorts of

problems encountered in multi-agent systems:

• Forming and revising beliefs and decísíons: Argumentation provides means for forming

beliefs and decisions on the basis of incomplete, conflicting, or uncertain information. This

is because argumentation provides a systematic means for resolving conflicts among different

arguments and arriving at consistent, well-supported standpoints;

• Rational interaction: Argumentation provides means for structuring dialogues between

participants that have potentially conflicting viewpoints. In particular, argumentation pro-

vides a framework for ensuring that interaction respects certain principies (e.g., consistency

of each participant's statements).

"As a reasoning mechanism, argumentation provides an alternative way to mechanise

nonmonotonic reasoning. Argument-based frameworks view the problem of nonmonotonic rea-

soning as a process in which arguments for and against certain conclusions are constructed and

compared. Nonmonotonicity arises from the fact that new premises may enable the construction

of new arguments to support new beliefs, or stronger counterarguments against existing beliefs. As

20

the number of premises grows, the set of arguments that can be constmcted from those premises

grows monotonically. However, because new arguments may overturn existing beliefs, the sets of

beliefs may grow nonmonotonically" [42],

Essentially, argumentation can be used both for theoretical reasoning (reasoning about

what to believe) as well as practical reasoning (reasoning about what to do) [42, 66].

In the communication/interaction strand, an inherent, almost defining, characteristic of

multi-agent systems is that agents need to communicate in order to achieve their individual or

collective goals. Agent communication with argumentation techniques allows agents to exchange

arguments to justify their stance and to provide reasons that defend their claims. This improved

expressivity has many potential beneíits, but it is often claimed that it should, in particular [42];

• make communication more efficient by allowing agents to reveal relevant pieces of informa-

tion when it is required during a conversation;

• allow for a verifiable semantics based on the agents' ability to justify their claims (and not

on private mental states); and

• make protocols more flexible, by replacing traditional protocol-based regulation by more

sophisticated mechanics based on commitments.

On the other hand, this improved expressivity comes with a price. According to [42],

it poses some serious challenges when it comes to designing autonomous agents that actually

communicate by means of argumentation, and makes more difficult;

• the integration with agents' reasoning, which requires to precisely specify what agents should

respond to others on the basis of their internai state, but also on the basis of their goals (a

strategy for the agent to participate in the interaction);

• to prove whether the protocols satisfy desirable properties.

Often, argumentation is treated abstractly, where the content of individual arguments is

not relevant and an overall structure of the relations between arguments is used instead. Abstract

argumentation frameworks have their origins in [27], which studies the acceptability of arguments.

In [27], the focus is on the attack relation between arguments, and the sets of arguments that

defend its members, representing the ones that, given a set of arguments, are acceptable. As

most of the work found in literature make reference to properties and concepts defined in [27], we

dedicate the next section to describe abstract argumentation. We describe abstract argumentation

for completeness, because some of these definitions and concepts are used in the remaining of this

document.

21

2.1.1 Abstract Argumentation

Dung showed in [27] that argumentation can be studied without consideration for the

internai structure of the individual arguments (which became known as abstract argumentation).

In his work, arguments are nodes in an argument graph and ares in this graph represent attack

relationships between arguments. Formally:

Definition 1 (Argumentation framework). An argumentation framework is a pair AF = (A, B)

where A is a finite set of arguments and B Ç AXA is an attack relation (also known as defeat

relation). An argument a attacks an argument (3 if (a, fi) e B.

A simple example is shown in Figure 2.1, where argument ai has two attackers (i.e.,

counterarguments) a2 and «4; furthermore, a2 is attacked by a3 and a4 is attacked by a5.

Figure 2.1 - Simple argument graph.

2.1.2 Evaluating an Argument in Abstract Argumentation

To evaluate an argument consists in checking whether this argument is acceptable or not

given the other arguments and the attack relation. The acceptability of arguments is defined by

a logical semanties, where it is considered how an argument interacts with the other arguments.

Below, we have some important defmitions to study the acceptability of arguments.

Definition 2 (Conüict-free [27]). Let (A, B) be an argument framework and S a set of arguments

(S Ç A). S is conflict-free if no argument in that set attacks another. S defends an argument if it

attacks ali the attackers of this argument.

For example, in Figure 2.1, arguments {a3, a5} defend al. The collective acceptability of

a set of arguments can be characterised by various different semanties, as dehned below.

Definition 3 (Admissible set [27]). Let S to be a conflict-free set of arguments in a framework AF. S

is admissible if it is conflict-free and defends every element in S.

An arguments is admissible if it is a conflict-free set that defends itself against ali attack-

ers. In Figure 2.1, the sets: 0, {a3}, {a5}, {a3, a5} and {al, a3, a5} are ali admissible.

0

22

Definítíon 4 (Complete extension [27]). An admissihle set S is a complete extension if and only if

ali argurnents defended by S are also in S (i.e., S is a fixedpoint).

In the example in Figure 2.1 the only complete extension is the set {al, a3, a5}.

The complete extension has some refinements, for example, for S a set of argurnents:

• S is a grounded extension if it is the minimal complete-extension [S is the least fixed point);

• S is a preferred extension if it is a maximal complete extension [S is the maximal admissible set).

The grounded extension is unique and contains ali argurnents that are not attacked, as well as the

argurnents that are defended directly or indirectly by non-attacked argurnents.

As for the definition of the acceptability of sets of argurnents, we can define the status of

individual argurnents:

Definition 5 (Argument status [27]). Let {A, R) to be an argumentation system, and E\,.... En its

extensions under a given semantics. For a E A an individual argument, we say that:

• a is skeptically accepted iff\lE.t.a G Ei, with i = 1,.... n;

• a is credulously accepted iff3Ei.Oí G

• a is rejected ijf$Ei.a G Ei.

The latest instantiation of Dung's abstract formalism [27] appears in Prakken's work [65],

Prakken [65] defines the structure of argument using two types of inference rules, strict and de-

feasible rules, respectively. Further, this work defines three types of attack between argurnents,

undercutting and rebutting attack (originally formalised in [63]), also a third type called undermin-

ing attack (inspired in [89]). In this latest instantiation, the author justifies that the structure of

argurnents permits more expressible representation of the attack relation.

2.2 Defeasible Reasoníng

Defeasible reasoning is a simple and efificient approach to nonmonotonic reasoning where

the objective is to formalise nonmonotonic inferences of the type "birds generally fly". Such

inferences hold only if a defeasible theory contains no rule inferring contrary information, which

will be explained throughout this section using a specific formalisation of defeasible reasoning

called defeasible logic [51, 52],

Knowledge in a defeasible theory is organised as facts, rules, and a "superiority" relation.

Rules are separated into strict rules, defeasible rules, and defeaters:

• Facts: facts are indisputable statements (e.g., "Alison is a graduate student");

23

• Strict rules: strict rules are rules in the classical logic sense, where if the premises are

indisputable (i.e., facts) then so is the conclusion (e.g., "graduate students are students");

• Defeasible rules: defeasible rules are rules that can be defeated by contrary evidence (e.g.,

"graduate students usually study hard");

• Defeaters or Undercutting Defeaters: defeaters are rules that are used to prevent some

conclusions from being derived rather than to draw particular conclusions;

• Superiority relatíon: superiority relation is a binary relation between rules which defines

whether a rule is superior to another, and is used in case applying the rules would lead to

contradicting conclusions.

Conclusions can be derived strictly or defeasibly. A conclusion is strictly derived if it

is derived using only strict rules and facts contained in the knowledge base. A conclusion is

defeasibly derived if it is derived using any clauses of the knowledge base including defeasible

rules, presumptions1 and defeaters [50].

As defeasible rules represent disputable knowledge, they can be defeated by contrary

evidence (provided by other rules). The two types of defeat are: (i) rebut, where the conclusion of

the rule is defeated because another rule derives the negation of that conclusion (i.e., a contrary

conclusion can be obtained through another rule); and (ii) undercut, where the conclusion of the

rule cannot be derived because an applicable defeater rule concludes the contrary (recall that the

defeater cannot be used to conclude anything, it just prevents the conclusion of the contrary).

An answer to a query in a defeasible knowledge base can be of five types [50]:

• definitely yes: meaning that a conclusion is proved using only facts and strict rules, and

therefore cannot be withdrawn when new knowledge is added to the available theory;

• definitely no: meaning that the negation of the queried conclusion can be proved using

facts and strict rules;

• presumably yes: meaning that the conclusions can be defeasibly proved, so it might need

to be withdrawn when new knowledge becomes available;

• presumably no: meaning that the negation of the query can be defeasibly proved, that is,

although the query cannot be presently concluded, it might be concluded if new knowledge

becomes available;

• cannot tell: it is not possible to answer the query either afi&rmatively or negatively (because

both the queried formula and its conclusion can be defeasibly derived and the superiority

relation does not favour one or the other).

'Presumptions are defeasible rules of the form Head := true [50].

24

Defeasible logic is a nonmonotonic logic introduced by Nute [51, 52] as a way to formalise

defeasible reasoning, and made practical as the d-Prolog programming language [50] (an extension

of Prolog based on defeasible logic). Defeasible logic and defeasible Prolog (d-Prolog for short)

have ali types of knowledge representation mechanisms defined in the theory of defeasible reason-

ing, including facts, strict rules, defeasible rules, undercutting rules or defeaters, and superiority

relation, as described above.

The representation in d-Prolog of defeasible rules and defeaters is possible through the

introduction of the new binary infix functors := and : A, respectively. It also introduces strong

negation with the functor neg, which differs from the negation-as-failure operator not. D-Prolog

also introduces a type of defeat by specihcity, where more specific conclusions defeat more general

ones. This is exemplified by the well-known Tweety triangle:

flies (X) := bird(X).

neg flies(X) := penguin(X).

bird(X) := penguin(X).

penguin(tweety).

Ali clauses in the example are defeasible rules. If we make a query for whether "tweety

flies" using ?-flies (tweety) in d-Prolog, the answer will be "presumably no" because the rule

for penguin is more specific than the rule for bird. The specificity is defined by two inferences where

it is tested for the two rules in conflict whether one of them can be derived from the other, and

if that is the case, that which is derived from the other is defeated for being less specific. In this

example, a rule with a penguin premise is more specific than one requiring bird to be inferred

because the rule bird (X) : = penguin (X) says that normally penguins are birds, hence the

class of penguins is more specific than that of birds (membership to the latter can be inferred from

membership to the former).

Another characteristic of defeasible logic is having the so-called "preempting de-

featers" [50] or "ambiguity blocking" [29], where defeasible rules that are rebutted by a superior

rule are no longer available to rebut other rules.

An example of preempting defeaters is the knowledge base represented by 11 below (where

we use => to refer to defeasible inferences);

a = > b x => e

b = > c e => -ic

c > d y => -.e

a

X

y

In this example, we may conclude d using the inferences {a, a => ò, b => c. c => d},

although there is a derivation {x, x => t, e => -ic} which rebuts the rule that concludes c; this

25

rule (the mie that derives ^c) is defeated by mie {y, y -ie} which prevents the use of that mie

to rebut the inference of d.

2.3 Dialogue Games

Recently, dialogue games have been used as the basis for agent interaction protocols.

According to [46], dialogue game protocols are more expressive than auctions and game-theoretic

mechanisms, as dialogue games allow the participant to question and contest assertions, to support

assertions with arguments and counter-arguments, etc. The authors of [46] also claim that these

dialogues conducted by dialogue game protocols are more constrained than interactions using

other agent communication languages (such as FIPA ACL [28], for example).

A formal dialogue game contains the following elements [44]:

Commencement Rules: Rules which define the circumstance under which the dialogue com-

mences.

Locutíons: Rules which indicate what utterances are permitted (locutions which permit partici-

pants to assert propositions, to question or to contest prior assertions, etc.).

Combination Rules: Rules which define the dialogue context under which particular locutions

are permitted or not, or obligatory or not.

Commitments: Rules which define the circumstance under which participants express commit-

ment to a proposition.

Termination Rules: Rules that define the circumstances under which the dialogue ends.

In [46] it was stated that the semantics for dialogue game protocols was still very im-

mature. Further, the authors of that paper argue that the formal semantics for dialogue game

protocols has the objective of enabling a better understanding of the formal properties of protocols

and of dialogues conducted under them. According to [46], the study of the formal properties of

dialogues and protocols is, like the development of formal semantics, still very immature, and con-

siderable scope exists for further research in this area. The authors of [10] confirm this assertion,

with [10] and [48] being some of the few examples of work found in the literature about formal

properties of argumentation-based dialogues and protocols.

One property of great interest in dialogue games is termination [46] (examples of proves

of such property can be found in [78, 60] where analyses for the termination of the protocols

in [5, 7] are given).

2.4 Argumentation-Based Dialogues

In an argumentation-based dialogue, the agents trade propositions for which they have

acceptable arguments, and accept proposition put forward by other agents if they find that the

26

arguments are acceptable. The locutions presented at each round and the way that they are

exchanged define a formal dialogue game (a dialogue governed by a protocol) in which agents

engage [5, 60],

In a dialogue, each agent has a knowledge base E, containing its knowledge or beliefs. In

addition, each agent has a further knowledge base, the commitment store (C,5'), accessible to both

agents2 in a dialogue, containing commitments made by the agents during the dialogue (other

names can be found for CS such as dialogue obligation store in [47] and dialogue store in [78]).

Singh [82, 83] argues that agents are social entities, therefore, when involved in social interactions,

they are committed to what they say. The CS is simply a subset of the knowledge base, and the

union of ali CSs can be viewed as the state of the dialogue at a given time [60].

How that dialogue will unfold depends on the message exchanges (what messages agents

actually send and how they respond to message they receive). This aspect of the dialogue is speci-

fied by a protocol (stating the allowed message exchanges), and by some decision-making apparatus

within the agent (the agent strategy depends on choices made by agent through reasoning).

A strategy in an argumentation dialogue specifies what utterances to make in order to

bring about some desired outcome (e.g., to persuade the counterpart to perform a particular

action). How the agent makes the choice is an aspect of its strategy, and relevance may come into

its strategic thought [42],

The choices that an agent makes are referred to in the argumentation literature as agent

attitudes. According to [57, 60, 6], agent attitudes can be separated into assertion attitudes and

acceptance attitudes:

• Assertion attitudes: An agent may have two assertion attitudes:

- a confident agent can assert any proposition p for which it can construct an argument

for p;

- a thoughtful agent can assert any proposition p for which it can construct an acceptable

argument for p.

That is, a thoughtful agent will only put forward propositions which, as far as it knows, are

correct. A confident agent will not stop to check that this is the case.

• Acceptance attitudes; An agent may have three acceptance attitudes:

- a credulous agent can accept any proposition p if it is backed up by an argument;

- a cautious agent can accept any proposition p if it is unable to construct a strong

argument for —ip;

- a skeptical agent can accept any proposition p if there is an acceptable argument for p.

2Note that most work in the literature consider dialogues of two agents only.

27

Clearly skeptical agents are more demanding than credulous ones in terms of the conditions

they put on accepting new information.

In [6], further, the authors describe the "question attitudes", where an agent executes a

question move3 based on its argumentation systems (if the agent is able to construct an argument

for or against the previous move).

Some of the locutions/performatives commonly used in argumentative dialogues are

found in work such as [5, 57, 60], where its informal meaning are;

• assert; an agent that performs an assert utterance declares, to ali participants of the

dialogue, that it is committed to defending this claim. The receivers of the message become

aware of this commitment;

• accept: an agent that performs an accept utterance declares, to ali participants of the

dialogue, that it accepts the previous claim of another agent. The receivers of the message

become aware of this acceptance;

• retract: an agent that performs a retract utterance declares, to ali participants of the

dialogue, that it is no longer committed to defending its previous claim. The receivers of the

message become aware of this fact;

• question: an agent that performs a question utterance desires to know the reasons for

a previous claim of another agent. The receiver of the message is committed to defend its

claim, and presumably will provide the support set for its previous claim;

• challenge: the challenge performative is similar to the question performative, except

that the sender of the message is committed to defending a claim contrary to the previous

claim of another agent.

These performatives can also be found in the work by McBurney and Parsons [47], where

they propose some performatives, that they consider necessary for argumentation, to be added to

FIPA ACL [28]. In that work, they also give axiomatic and operational semantics to a protocol

called Fatio. Other performatives, different from these, can also be found in the literature, as in

[64].

Another, more recent, related work is [13], where the authors propose the use of some

performatives for argumentation in AgentSpeak and give semantics to those performatives. That

work is focused on negotiation (as in [7]) and uses an electronic trading scenario. That work is

similar to [87] in treating the communication of a single message exchange and not as a sequence

of interactions {i.e., a dialogue).

3The name "moves" is from game-theoretic approaches to agent argumentation where a dialogue is treated as an
adversarial game. In that context, each move corresponds to a communicative action made by an agent [42].

28

2.5 Negotiation

"Negotiation is a process that aims at íinding some compromise or consensos on an

issue between two or more agents having diflerent goals" [10], In the negotiation literature, the

issue under negotiation is called the negotiation object. Generally the negotiation objects are

represented as a set of offers. For example, if an agent negotiation about an allocation of resources

(as in [33, 71, 78, 61]), the set of offers will contain ali possible allocations. On the importance of

negotiation for multi-agent applications, we can quote;

"In most agent applications, the autonomous components need to interact with one

another because of the inherent interdependencies which exist between them, and negotiation is

the predominant mechanism for achieving this by means of an exchange of offers" [4],

In the multi-agent systems field, the three major approaches to automated negotiation are:

game-theoretic approaches, heuristic-based approaches and argumentation-hased approaches. Further,

the literature describes several limitations and emphasises that argumentation-based negotiation

minimises these limitations [72],

Game theory has roots in the work of Von Neuman and Morgenstern [88], It studies

the interaction between self-interested economic agents (where economic is meant in the sense of

people and organisations) and has been used to study interaction between self-interested compu-

tational agents [76],

Game-theoretic approaches to negotiation are based in dialogue-games (as described in

the Section 2.3) that are interactions between two or more players, where each player makes a

move by making some utterance in a common communication language, and according to some

pre-defined rules. A dialogue-game protocol is dehned in terms of a set of locutions, as well as dif-

ferent types of rules: commencement rules, combination rules, commitment rules, and termination

rules. Commencement and termination rules specify when a dialogue starts and how it fmishes.

Commitment rules specify how the contents of commitment stores change as a result of different

locutions. Finally, combination rules specify the legal sequences of dialogue moves [42],

However, classical game-theoretic approaches have some significant limitations from the

computational perspective, as they generally assume that agents have unbounded computational

resources and that the space of outcomes is completely known [72],

The heuristic-based approaches address some of the limitations of game-theoretic ap-

proaches using heuristics. Heuristics produce good enough (rather than optimal) outcomes and

use more relaxed assumptions about the rationality and resources of the agents. In general, these

methods offer approximations to the decisions made according to game-theoretic techniques.

While heuristic methods do indeed overcome some of the shortcomings of game-theoretic

approaches, they also have a number of disadvantages [34], Their models lead to outcomes that

are sub-optimal because they adopt an approximate notion of rationality and because they do not

examine the full space of possible outcomes, and it is very difficult to predict precisely how the

system and the constituent agents will behave.

29

2.5.1 Argumentation-based Negotiation

In recent years, the prominence of argumentation-based dialogues in the literature has

increased, in particular, argumentation-based negotiation, partly because of the promise to resolve

the problems in other approaches [game-theoretic and heuristic-based approaches). The advantage

of argumentation-based negotiation over others approaches is the additional exchange of meta-

information that the approach permits as part of the offers, that allow more sophisticated forms of

interaction than the other approaches [72],

Other approaches cited above, do not allow agents to exchange any additional informa-

tion and in several negotiation situations, the agents may have incomplete information which limits

their ability to negotiate. Thus, the agents might [72]:

• lack some of the information relevant to making a comparison between two potential out-

comes;

• have limited resources preventing them from acquiring such information;

• have the information, but lack the time needed to process it in order to make the comparison;

• have inconsistent or uncertain beliefs about the environment;

• have unformed or undetermined preferences (e.g., about products new to them); or

• have incoherent preferences.

Finally, the game-theoretic and heuristic-based approaches assume that agent's utilities

or preferences are fixed. One agent cannot directly influence another agent's preference model, nor

any of its internai mental attitudes (e.g., beliefs, desires, goals, etc.) that generate its preference

model. A rational agent would only modify its preferences upon receipt of new (reliable) informa-

tion, however, as mentioned, traditional automated negotiation mechanisms do not facilitate the

exchange of such information [72].

Argumentation-based negotiation approaches do not have the limitations mentioned

above. Agents are capable of exchange additional information, or to "argue" about their beliefs

and other mental attitudes during the negotiation process [72], In the context of negotiation, the

argument is viewed as a piece of information that may allow an agent to; (a) justify its negotiation

stance; or (b) influence another agent's negotiation stance [35].

Thus, besides the agent accepting or refusing a proposal, it can offer a critique; this can

help make the negotiation more efficient, because the agent can understand why its counterpart

cannot accept a particular deal. In the next interaction, the agent can use the new information to

make an alternative offer that has a higher chance of being accepted.

Besides criticism, another type of information that the agents can exchange in an

argumentation-based negotiation is a justification of a proposal. This new information can change

30

the region of acceptability of an agent. This change can turn offers that previously were not

acceptable into acceptable ones [35],

Also, more specific types of information can be exchanged by the agents in an

argumentation-based negotiation, whereby they can make appeals [84] (or, as defined in [8], ex-

planatory arguments), threats, and promises of rewards [9, 41, 81]. Appeals are used to justify a

proposal; threats are used to warn about negative consequences in case the counterpart does not

accept a proposal; and rewards are used to promise future rewards if the counterpart accepts the

proposal.

2.6 Agent Oriented Programming and the Jason Platform

In the agent-oriented programming paradigm, the agents are computational entities with

autonomous behaviour (i.e., able to make decisions and act without direct human intervention on

unexpected circumstances). These computational entities are situated in an environment that they

are to able to sense (through sensors), act upon it (through effectors), and communicate through

message passing.

Sensors

Effectors/ / V
actuators /

ngure z.z - Agent and Environment ([18]).

Generally, the systems built with the agent oriented programming paradigm are not

composed for a single agent, but composed by a set of agents in the same environment (as shown

in Figure 2.3). This characteristic makes evident the need for Communications (interaction) between

the agent in such systems. This interaction is generally about beliefs, goals and plans. This allows

the existence of social ability for cooperation and coordination [18].

One of the most studied architectures for cognitive agents is the BDI [Beliefs-Desires-

Intentions) architecture which provides a particular structure for agent internai states based on

"mental attitudes". The internai state of a BDI agent is formed by: (i) Beliefs that represent the

information about the world (including itself and other agents) available to that agent; (ii) Desires

Environment

o o

31

O;

Organizational relationship

 Interaction

O Agent

nvironment

Sphere of influence

Figure 2.3 - Typical Structure of a Multi-Agent System (based on [36]).

representing the motivations of the agent, i.e., the states of the environment that the agent would

like to reach; and (iii) Intentions which are desires that the agent is committed to achieve by

following particular plans of action.

There exist many agent-oriented programming languages and platforms, such as Jason,

Jadex, Jack, AgentFactory, 2APL, GOAL, Golog, and MetateM, as pointed out in [17], Those

languages differ in the agent architecture used, in the form of communication/interaction between

them, and also on the programming paradigms that inspired or underlie each language.

Among the languages mentioned above, AgentSpeak(L), the language on which Jason

is based, is one of the best-known languages inspired by the BDI architecture. AgentSpeak(L)

is an abstract logic-based agent-oriented programming language introduced by Rao [73], and

subsequently extended and formalised in a series of papers by Bordini, Hübner, and various

colleagues.

AgentSpeak(L) is based in the Procedural Reasoning System (PRS) (Figure 2.4) where

the agents are equipped with a library of pre-compiled plans. Plans in PRS have the following

components: (i) a goal - the post-condition of the plan (the things that it achieves); (ii) a context -

the pre-condition for the plan, deíining what must be true of the environment in order for the plan

32

to be successful; and (iii) a body - the 'recipe' part of the plan - it may contain a list of actions and

sub-goals in order to achieve the main goal.

P an Beliefs hbrary

Sensor input Action output Interp reter

D es ires ntentions

Figure 2.4 - The Procedural Reasoning System (PRS) ([18]).

Plans in AgentSpeak(L) have the following format:

triggering_event : context <- body.

where the triggering_event represents a new agent goal (or belief), which is to be pursued and

has the format \goal{Parameter), the context has preconditions needed to perform that plan to

achieve that goal, and the body is a sequence of actions and sub-goals (which trigger others events

and the use of other plans) to achieve the goal.

In particular, the main AgentSpeak(L) extensions available injason (ajava-based platform

for the development of multi-agent systems), according to [18], are:

• Strong negation: Strong negation helps the modeling of systems where uncertainty cannot

be avoided, allowing the representation of things that the agent believes to be true, believes

to be false, and things that the agent is ignorant about;

• Handlíng of plan faílures: Jason has a particular form of plan failure handling mechanism

consisting of plans that are triggered by such failure, giving the programmer the chance to

act so as to undo the effects of any action already done before the plan failed, if necessary,

and then adopting the goal (that was not achieved) again, if the conditions are appropriate;

• Belief annotations: One interesting characteristic present in Jason is that it automati-

cally generates annotations for ali beliefs in the belief base about the source from where

the belief was obtained (sensing the environment, communication with other agents, or

a mental note created by the agent itself). The annotation has the following format:

33

likes{john, music)[source{john)], stating that the source of the belief that john likes music

is agent john itself;

• Speech-act based communicatíon: Jason uses performatives based on speech acts in its

communication language, which goes well with the availability of formal semantics of mental

attitudes for the Jason extension of AgentSpeak; this permits rich communication;

• Plan annotations: programmers can add annotations to plan labels which can be used by

elaborate selection functions, for example for defming preferences in case various different

plans are applicable.

The Jason platform, more generally, has the following features:

• Dístributíon: The platform permits easy distribution on a computer network; further details

can be found in [18];

• Environment: In many cases, during development, a simulation of the target application

environment will be needed, so Jason provides support for developing environments, which

are programmed injava;

• Customisation: programmers can customise important parts of the agent platform by pro-

viding application-specific Java methods for certain aspects of an agent and the agent ar-

chitecture. These parts can be customised through methods of the agent class and agent

architecture class (more details in [18]);

• Language extensibility and legacy code: The extension of the AgentSpeak language in

Jason can be done through the so-called "internai actions", which are implemented injava

(or any other language using Java Native Interface);

• Integrated Development Environment: Jason is distributed as a plug-in for thejEdit and

Eclipse IDEs. This facilitates the development of applications.

As mentioned above, the communication between agents is via message passing, and

Jason's communication is based on speech acts and is performed by the pre-delined internai action
í.send'' that has the following format:

.send{receiver, ülocufÃonary_force, propositionaljzontent)

where receiver is the name of an agent (each agent has a unique individual name in the multi-agent

system) or a list of agent names, for whom the message is being sent. The propositionaljzontent

is a term in AgentSpeak (a literal, triggering event, plan, or a list of literais or plans). The

illocutionary^force denotes the intention of the sender (often called performativé), as in speech-

act theory. The formal semantics of receiving such messages is given in [87], and a complete list

of ali the illocutionary forces available can be found in [18],

34

New illocutionary forces can be easily added, as well as the effects that each will have on

the agent's mental state. This is an important feature for our work, because argumentation-based

dialogue needs illocutionary forces that represent specific intentions of message senders, as well

as the required effect in the mental state of receivers of the message. In Jason, agent plans can be

written in AgentSpeak to give such semantics to new performatives, hence providing an elegant

and transparent way for programming agents that are capable of argumentation.

35

3. RELATED WORK

In this chapter, we provide a literature review where we describe some of the most

relevant work in the argumentation-based reasoning and argumentation-based dialogues literature

within the multi-agent systems íield. We cover a small part of this vast literature, focusing ou the

work that is most related to our research.

First, in Section 3.1, we describe in more depth a recent practical work on argumentation-

based reasoning, which, to the best of our knowledge, was the first argumentation-based reason-

ing implemented in Jason (although using a different approach than we do). Further, also in

Section 3.1, we describe the link between argumentation and defeasible reasoning which guided

us to adapt Defeasible Prolog for Jason. In Sections 3.2 and 3.3, we describe general work that

cover argumentation-based reasoning and argumentation-based dialogues, in particular those from

which we use some concepts and formalisations or, rather, we describe them just for the sake of

completeness (of an overall view of this research topic). Finally, in Section 3.4, we describe briefly

some work on semantics for agent-oriented programming languages, which is important for the

work we present in Chapter 5.

3.1 Reasoning Mechanísm

Argumentation is a promising model for reasoning about inconsistent knowledge, based

on the construction and the comparison of arguments. It may also be considered as an alternative

method for handling uncertainty [2],

Reasoning mechanisms for argumentation-based dialogues, especially argumentation-

based negotiation, refers to the capability of the agents to reason about the received assertion/pro-

posals (the best offer, the acceptance or rejection of offers) and the capability of generating ar-

guments to defend or attack offers. Several works considering reasoning mechanisms based on

argumentation can be found in the literature ([2, 2, 11, 16, 66]), most of them based on abstract

argumentation systems at the theoretical levei.

As stated in [15], "we have a rich and well structured abstract theory, the challenge now

is to put this work into practice and prove its usefulness in real applications". This author presents

an approach for defeasible reasoning to enable argumentative capabilities in BDI agents. The work

extends the Jason platform with a module for argumentation, which is decoupled from the BDI

reasoning cycle, operating in a customised belief base of the agent and does not interfere in the

execution of plans, creation of goals, or agent's commitments [15].

The module gives to the agents the capabilities of general argumentation and not just

for a specihc needed of a particular application. With it, the agent is capable of non-monotonic

argumentation-based reasoning and can participate in dialogues and negotiation if the strategies

and protocol which the agent must follow are programmed in the agent (but no example is given).

36

In other words, only the reasoning mechanism is implemented, and it requires the implementation

of strategies and protocol to permit argumentation-based dialogues, which are the three charac-

teristics mentioned in a recent overview of the area available in [25],

The work [15] is based on the latest instantiation of Dung's abstract formalism presented

by Prakken's in [65], which uses two kinds of inferences: strict and defeasible rules (as defined

in Section 2.2). The extension-based semantics (described in Section 2.1) is used, which provides

two alternative types of justification, skeptical and credulous, depending on whether the argument

belong to ali extensions (skeptical) or belong to at least an extension (credulous). Using this

classification the author deünes the justification state of an argument as:

justified : corresponds to skeptical justihcation;

defensible : corresponds to credulous justihcation;

overruled : arguments that cannot be justihed and are rejected.

Special beliefs are used in the belief base, defeasible_rule{RuleName,RuleText) and

strict_7,ule{RuleName, R.uleText), representing defeasible and strict rules, respectively. An-

other special belief predicate is used to represent contradictory and contrary information,

contradictory[Literall, Literal2) and contrary{Literall, Literal2), respectively.

The module works in the following manner: an agent queries the argumentation module

with the belief why[Proposition) and the response is in format of a belief because{X, Y) with X

being either in or out1. The possible responses are:

• becausefiut, unknown) : the proposition is not in KB (Knowledge Base);

• becauseijn, Premise[premise_type)) : the proposition is a premise, and is not the result of

any form of reasoning;

• because{out, -<Proposition) : the proposition is not in the KB, but its negation is an accept-

able argument;

• because{in, ^Preposition) : the proposition is not in the KB, but its negation is an overruled

argument;

• because(in, R.ule) : the proposition is accepted and is the result of applying rule Rule;

• because{out, ListOfDefeats) : returns a list the conclusions of the arguments that defeated

the proposition;

A part of our work is closely related to this work, because we implement argumentation-

based reasoning in Jason (as the work described above), but we use the defeasible logic formalism

'That is, whether the proposition is acceptable or not following the extension-based semantics.

37

through Prolog-like ruies that Jason permits with some limitations such as disallowing the "cut"

operator. This permits the agent to reason about such rules (defeasible and strict ruies) during the

executions of plans to achieve a goal as well as to query if an argument is acceptable or not.

The use of defeasible logic is justihed by the connection made by [29] between argu-

mentation and defeasible logic, as well as an existing implementation of defeasible logic called

defeasible Prolog (d-Prolog for short).

In [29], a significant link between defeasible reasoning and argumentation is established,

where Dung-like argumentation semantics is given for defeasible logic, providing a Dung-like

argumentation system. The author argues that defeasible logic provides an efficient implementation

platform for systems of argumentation.

The argumentation semantics proposed is for classical defeasible logic (as in [51, 52]) and

provides an ambiguity blocking argumentation system. The paper presents the usual pieces of an

argumentation system: logical language and definitions of argument, conflict between arguments, and

the status of arguments. The language is the same as defeasible logic (presented in Section 2.2).

Arguments of the type (i?,, h) are formed by a set of rules R that have as consequent the literal h.

The types of arguments depend on the rules used:

• A supportive argument is a fmite argument where no defeaters are used;

• A strict argument is an argument in which only strict rules are used;

• An argument that in not strict is called defeasible.

The characterisation of conclusions of defeasible logic in argumentation terms also is

defined (being p a literal):

• if p is strictly proved there is a strict supportive argument for p-,

• if j& is not strictly proved there is no strict argument for j&;

• if p is defeasibly derived there is a supportive argument for p\

• if is not defeasible derived there is no supportive argument for p.

The dehnition of attack is usual, where defeasible arguments can attack or undercut other

defeasible arguments and can be attacked or undercut by strict arguments (strict argument cannot

be attacked).

The paper defines the so called defeasible semantics which determines whether an argu-

ment is accepted or rejected in order to capture defeasible provability in defeasible logic [51, 52]

with ambiguity blocking (in original defeasible logic). This is formally dehned below.

Definition 6. An argument A for p is acceptable in a set of arguments S if A is finite, and: (a) A is

strict, or (b) every argument attacking A is undercut by S (i.e., it is proved that the premises of ali the

arguments that attack A cannot be proved, the so called ambiguity blocking).

38

This definition is achieved with ambiguity blocking, also called preempting defeaters de-

íined in Section 2.2.

Definition 7. An argument A is rejected by the sets of arguments S and T when A is not strict and: (a)

a proper suhargument of A is in S, or (b) it is attacked by an argument supported by T (i.e., the attacking

argument must be supported by the set of justified arguments).

In relation to grounded semantics defined by Dung in [27], the paper defines that:

• if an argument A is justified under grounded semantics, then A is justified under defeasible

semantics;

• if an argument A is rejected under grounded semantics, then A is rejected under defeasible

semantics;

• if a literal p is justified under grounded semantics, then p is justified under defeasible seman-

tics;

• if a literal p is rejected under grounded semantics, then p is rejected under defeasible seman-

tics.

Another interesting related work is [66], where Rahwan and Amgoud present a frame-

work for argumentation-based practical reasoning based in Dung's abstract argumentation frame-

work [27], In their work, agents argue about their beliefs, desires, and plans. The agents compare

arguments based on decision-theoric notions (utility), i.e., the worth of desires and the cost of

resources are integrated into the proposed framework.

The desires and plans are represented by rules such as: (fl A ... A Lpn Alpi A ... Aipn => ip

where ip denotes beliefs and tp denotes desires. The rule means that if the agent believes in

pi A ... A pn and desire ipi A ... A 'Wn, then the agent will desire w as well.

The authors assume that a proposition is believed because it is true and relevant. Desires,

on the other hand, are adopted because they are justified and achievable. Also, it is defined that

an argument for a belief can be attacked by arguing that it is not consistent, or because there is

a reason to believe the contrary. On the other hand, arguments for desires could be attacked by

demonstrating that the justification for that desire does not hold, or that the plan intended for

achieving it is itself not achievable.

The work extends others frameworks: (i) Dung's framework extended by Amgoud e

Cayrol in [2] that handles beliefs; and (ii) for arguing about desires and plans, they extend work on

argumentation-based desire generation and planning [1, 4, 32], Moreover, they adapted the notion

of attack and preference among arguments in order to capture the differences in arguing about

beliefs, desires, and plans.

Our work has some similarity with [66], We also use inference rules to represent argu-

ments, and the idea of an agent believing something because there is no reason to believe the

contrary is considered in our work too.

39

3.2 Argumentatíon Framework

The survey found in [72] focused in argumentation-based dialogues, especially

argumentation-based negotiation, considers various aspects of the surveyed frameworks that the

authors find important: the communicatíon language and domain language, protocol, and information

store.

Dialogues are, by delinition, a form of interaction between agents. Elements of the

communicatíon language are usually referred to as locutions, utterances, or speech acts [80]. Several

locutions can be found in literature (as described in Section 2.4).

In addition to the communication language, a domain language is also needed, which

permits ali the agents to "speak the same language" and understand each other in the interactions.

In multi-agent systems, the major proposals for agent communication language are:

Knowledge Query and Manipulation Language (KQML) [43] and the Foundation for Intelligent

Physical Agents' Agent Communication Language (FIPA ACL) [28]. FIFA ACL fails to capture ali

the utterances needed in negotiation interaction, and some works in the literature propose to add

new locutions in order to address this problem (for example [47]).

Given a communication and domain language, an argumentatíon framework should also

specify a protocol to constrain the use of the language. The protocol defines, at each stage of the

dialogue process, which moves are allowed to each agent [72], Normally, for rational agents the

protocol is defined in terms of the conditions that need to be satisfied (like the context of a plan in

Jason), and those that indicate the next move (or interaction) that the agent must make. Also, the

protocol usually is represented as a finite-state machine. An important characteristic of protocols

is termination.

In argumentation-based dialogues it is important to store the information exchanged

by the agents because this makes it possible to prevent an agent from denying a promise it has

previously made, for example. One type of information store that is common in the argumentatíon

literature is the commitment store, which has its origin in the work of Hamblin [30] who used it as

a way of tracking the claims made by participants in dialogue games.

In the work on the philosophy of dialogue (e.g., [90]) the focus is on commitment towards

action, i.e. promises to initiate, execute, or maintain an action or course of action. Commitments

to defend a claim if questioned, called propositional commitments, are viewed by the authors as

special cases of such action commitments, and give rise to the commitment store mentioned in

Section 2.4.

When an agent asserts a proposition p, it may not only be committed to believing that p

holds, but also to defend p (if challenged), not to deny p, give evidence that p, and so on [90],

40

3.3 Argumentation-based Dialogues

In this section, we describe the related work on argumentation-based dialogues (most

of them focused on argumentation-based negotiation), where the references cover the three main

topics pointed out in [25]: (i) the reasoning mechanism that the agent uses for negotiating based

on argumentation, (ii) the protocol that the agents use for conveying arguments and offers (in the

case of argumentation-based negotiation), and (iii) the strategy that determines an agent's choices

at each step of the dialogue.

Kakas and Moraitis, in [38], propose a protocol that is sensitive to the context and roles

of the agents in which the agents can adapt their negotiation strategies and offers, as their envi-

ronment changes, and when they exchange information within the negotiation. The authors also

emphasise that argumentation-based negotiation removes many of the limitations of the alternative

approaches [game theoretic and heuristic based approaches).

The agents can build arguments through a theory (formed by their knowledge base and

goals), and the representation of their knowledge uses abduction. The work is based on argumen-

tation systems with dynamic preference proposed by the same authors in [39, 37].

The agent has rules for representing the knowledge of the default and specific context,

and the authors stress that the process of deliberation of the agent adapts their strategies, offers

and counter-offers as the negotiation environment changes.

The protocol proposes that, when an agent cannot satisfy his own goal, it can consider,

in a conciliation phase, the other agent's goals and searching for conditions under which it could

accept the offer (extending the object of negotiation).

The main relevance of this work is the representation of knowledge through rules,

whereas, in our work, the agents will have the representation of part of the knowledge by rules as

in [15] (strict and defeasible rules). The change of strategy by the agent with changes in the envi-

ronment is also relevant, as new information in the agent's theory (new rules, facts, etc.) changes

the possible conclusions in defeasible reasoning.

Dimopoulos, Moraitis, and Amgoud, in [26], present a characterisation of outcomes of

argumentation-based integrative negotiation. The authors argue the existence of two types of

negotiation: integrative negotiation where ali sides are looking for solutions that are "good" for

everyone (the negotiation type that the authors treat); and distributive negotiation where each party

tries to maximize his gain.

The work is presented in an abstract way, and the structure of arguments is not con-

sidered. The negotiation theory, which consist of a set of arguments, a function for each offer

(or outcome), the arguments that support an offer, a non specified conflict relation among the

arguments, and a preference relation between arguments are also ali presented in an abstract way.

The authors assume the so-called "ideal" situation, where the agents have complete infor-

mation about the negotiating agents or that the agents negotiate through a mediator, and that each

41

agent has a negotiation theory and an argumentation-based reasoning mechanism originally pro-

posed in [2] and further extended in [3], Furthermore, the authors ignore the arguments' support

beliefs and consider only the support offers (the "object" of negotiation).

They propose the integration of the theories of ali agents who are negotiating into a single

theory (the so-called aggregate argumentation systení] which contains the arguments that the agents

have as a group. This integration permits a reasoning mechanism to identify the outcomes that are

"good" for ali negotiating agents. The authors argue that this approach allows for polynomial-time

solutions in contrast to the intractability results known for general argumentation frameworks [26],

The authors demonstrate that the credulous conclusions of the aggregate theory are in

direct correspondence to the Pareto optinial arguments of the theory. In the context of argumen-

tation frameworks, Pareto optimality refers to the argument in the union theory for which there

exists no preferred argument.

Amgoud and Vesic, in [10], analyse the role of argumentation in negotiation dialogues,

proposing an abstract framework for argumentation-based negotiation where the impact of ex-

changing arguments on agents' theories is formally described, the different types of solutions in

negotiation are investigated, and the added value of argumentation in negotiation dialogues dis-

cussed. The authors argue that argumentation can improve the quality of an outcome but never

decrease it.

The authors further argue that the notion of optimal solution is not defined for

argumentation-based negotiation. This is because the literature is not clear what kind of solu-

tion (or outcome) is reached by their dialogues and whether optimal solutions (when they exist) can

be reached by a dialogue under such protocols. The paper proposes to cover this gap.

The authors argue that, by exchanging arguments, the theories of the agents (i.e., their

mental states) may evolve and thus the status of offers may change. For example, an agent may

accept an offer (which was rejected) after receiving a strong argument in favour of this offer. The

exchange of information permits optimal solutions for both agents.

The paper characterises three types of outcomes (solutions): (i) local solutions; (ii) Pareto

optimal solutions; and (iii) ideal solutions. Local and Pareto optimal solutions are the best out-

comes at a given step of a dialogue, while an ideal solution is the best solution in general and is

time-independent.

In that work, the concepts of epistemic arguments and practical arguments are presented.

An epistemic argument justifies beliefs and is itself based only on beliefs, whereas a practical

argument justifies an offer and is built from both beliefs and goals. Epistemic arguments can

attack practical arguments, undermining the beliefs used as support of a practical arguments, and

practical arguments cannot attack epistemic arguments. The status of an argument using that

semantics are: skeptical, credulously and rejected (as in [15], discussed in Section 3.1). Based on this

definitions, the offers can be partitioned into three classes: credulous, rejected, and non-supported.

Credulous offers are strictly preferred to any non-supported offer, and a non-supported offer is

better than a rejected one [10].

42

Agents in a framework use the same language, and the same definition of arguments,

and recognise both arguments and conflicts between arguments. Its theory contains the offers,

arguments, the relation between arguments and ordering over arguments. The negotiation is

described as moves where the agents exchange offers. When the set of arguments change, the

attack relation may change as well since new attacks may appear between the new arguments and

the existing ones.

Outcomes/solution can be of two categories; time-dependent and global ones. Time-

dependent solutions are good at a given step of a dialogue. Global solutions are the ideal outcomes

that should be reached independently from protocol and dialogue. Time-dependent solution can

be accepted in step t of a dialogue and no longer in step t+1. Optimal solution do not dependent

on dialogue step, they are offers that an agent would choose if it had access to ali arguments owned

by the other agent (as in [26] where the theory of the agents are combined into a single theory

to analyse the best outcomes). New arguments allow agents to revise their mental states, thus the

best decision for an agent is the one it makes under complete information.

As in real life, where people, from the same information, do not necessarily draw the

same conclusions, agents have different preferences on arguments, and can have different optimal

solutions. In real life, it may also be the case that two people exchange arguments and at the end

the negotiation fails; the same occurs between negotiating agents.

The paper proves that argumentation-based negotiation improves the quality of the out-

come but never decreases it. They prove that: (i) only argumentative dialogues guarantee that

ideal solutions will be reached, of course provided that the protocol is deüned in an effiicient way;

(ii) the argumentative dialogue will lead to an outcome which is at least as good as the outcome

that may be reached by a non-argumentative dialogue; (iii) the negotiation ends up with a failure

or with a Pareto optimal solution, and that the agent can make more informed decisions; and (iv)

arguing allows the agents to make better decisions and to reach outcomes in a rich context [10].

The two papers described above dehned important characteristics that we take in con-

sideration in our research, and reinforce the use of defeasible logic (dehned in Section 2.2) as

reasoning mechanism. This is because defeasible logic has this characteristic of changing the

possible conclusions when new information is acquired and the union of the information provides

the optimal solution (a conclusion that is guaranteed on that set of arguments). This situation,

also, is described in [59], where the work shows how the beliefs of two agents that engage in an

argumentation-based dialogue will converge over time (the new information - i.e., beliefs - changes

the agents' conclusions).

Rahwan et al. in [71] investigate "interest-based negotiation", a form of argumentation-

based dialogues where the agents can exchange information about their goals and alternative ways

to achieve these goals [71], The work proposes a model for reasoning about the interest-based

negotiation protocol.

Also, the authors describe the three categories of automated negotiation (game theo-

retic, heuristic-based, and argumentation). They argue that the work (the framework proposed)

43

contributes to bridging the gap between the theory and the practice of argumentation-based ne-

gotiation.

The work assumes that the resources (in the system) are unique and indivisible, and the

reallocation can benefit the agents (reallocation is referred to as a deal), and rational agents do

not accept deals that result in loss of utility. The work proposes the use of payments in order to

enable agents compensate each other for accepting deals that result in loss utility. They argue that

reaching a deal depends not only on the protocol, but also the strategies of the agents.

The approach proposes that if an agent has goals but not the resource to achieve the

goals, and has the information that the other agent has another goal which has the same sub-goal,

the other agent will prefers this goal where both agents to achieve its goals. Also propose that new

plans can be exchanged between the agents, and new plans can have more utility for the agent. A

classical example of this situation is the painting/mirror problem presented by Parsons et al. [58],

where an agent has the goal to hang a painting, and the other agent has the goal to hang a mirror.

With the exchange of plans both agents can achieve their goals using resource reallocation and the

plans previously unknown.

The author argue that "while much has been said about the intuitive advantage of

argument-based negotiation over other forms of negotiation, very little has been done on mak-

ing these intuitions precise" [71], which emphasizes the importance of research in this field.

This work is relevant because the exchange of plans that the agent do is facilitated, as

proved in paper, by argumentation-based dialogues which permits the agents acquire information

that makes it possible to suggest new plans to the other agent, cooperatively. Another work in the

same line is [70], where the authors investigate an argumentation-based dialogue protocol in which

agents exchange information about their underlying goals, and such information enables agents to

discover mutual goals and thus increases the likelihood of reaching deals.

Rueda and Martínez in [77] propose an interaction language that allows argumentation-

based dialogue among collaborative BDI agents. The knowledge that each agent uses for reasoning

is formed by its specific knowledge and the knowledge shared with others members of the system.

Ali members of the system are autonomous and rational entities, but have a collaborative attitude,

in the sense that when their beliefs do not suftice to reach their goals they request collaboration.

Each agent elaborates arguments as part of its own planning process and justifies its

proposals, counter-proposals, and rejections during the negotiation process [77],

The interaction language proposed in this work is presented in the form of preconditions,

meaning (informal meaning), response (the possible responses for this locution) and updates (the

effects over the belief base of the agents).

Hussain and Toni in [33] demonstrate the beneíits of the use argumentation-based di-

alogues in a scenario of resource reallocation. It is assumed that the resources are unique and

indivisible. In this work, the agents always justify their requests and responses. The requests are

justified with the information that the agent needs the resource and does not have it. The responses

given by agents depend on the information that they have, for example, if an agent knows who has

44

the resource requested, the agent can refuse to give the resource because it does not have it but

inform that another agent has the resource, allowing the requesting agent to directly contact that

agent.

In this work ali interactions are through tell performatives, for example;

tell{X, Y, {request(Kgive{R))because{needs{Y, fí), -^has(Y, i?)}))

where agent Y sends to agent X the tell message requesting the resource i?, and uses as justification

that it needs the resource and does not have. The knowledge of the agents is represented through

inference mies over a set of assumptions based on [16], Assumptions are represented as Prolog-like

rules, for example, asm{has{X, B)) = not^has^X, i?)), i.e., the agent has the assumption that

an agent has a resource when it does not have the information that the agent does not have the

resource.

This work is relevant because the justification given by the agents permits reaching the

goal faster, showing the benefits of argumentation-based dialogues. The representation and def-

inition which performatives to use at each time step is also very interesting, because it is similar

to plans in Jason, where the precondition (or plan context, in Jason) defines what performatives

to use, and the argumentation generating is part of the agent's process of planning. Our research

follows this Une in the definition of the protocol and in the argument generation.

In [86], a model of an argumentation-based deliberation dialogue is presented which

shows the benefits of argumentation schemes. The deliberation is over actions, goals, and norms,

where the agents can formulate arguments that deal with potential conílicts between the proposed

action and other actions, norms, and goals, using the criticai questions: (i) is the action possible

given other concurrent actions in the plan? (ii) is the action possible according to casual plan

constraints? (iii) is there any conflicting norm that regulates actions or states of the world? and (iv)

is the goal justified?

A support relation justifies an agent's commitment, and a defeat relation describes a

conflict between a task of an agent and a task, a norm, or a goal of the opponenfs plan. The

authors argue that argumentation is useful in complex collaboration situations, where new infor-

mation from argumentation-based dialogues allow the agents to reason about alternative plans.

In our work, the agents use argumentation-based dialogues to reallocate task. Further, the new

information from these dialogues will allow the agent to try alternative plans to solve the problems.

In [85], the authors propose an argumentation-based model for deliberativo dialogues

based on argumentation schemes. This model facilitates agreements about joint plans by enriching

the quality of the dialogue through the exchange of relevant information about plan commitments

and norms.

Rahwan and Larson introduce in [67] the so-called argumentation mechanism design

(ArgMD) which enables the design and analysis of argumentation mechanism for self-interested

agents. In that paper the authors also define the notion of a direct-revelation argumentation

mechanism where the agents decide which arguments to reveal simultaneously.

45

In [67] it is argued that argumentation in multi-agents systems is an adversarial process,

and the agents in these systems may have conflicting preferences over the arguments which end up

being acceptable.

The direct-revelation argumentation mechanism consists in the agent revealing a set

of arguments and the (centralised) mechanism for calculating the outcome using the skeptical

(grounded) semantics. The agents' preferences are based on utility (how good is the outcome to

this agent), where more arguments accepted in the outcome means more utility for that particular

agent.

The same authors present in [68] a number of preference relations over argumentation

outcome. The focus of the paper is Pareto Optimality, where it is analysed if an outcome can be

improved for one agent without harming the other agent. This work extends previous work of

the authors (such as [67]) where a comparison is made between different argumentation semantics

using the notion of Pareto Optimality.

The paper uses the approach of argumentation labelling [21] where the arguments are

labeled with in, out, or undec, depending on whether the argument is, respectively, acceptable,

rejected, or undecided with respect to the outcome of the argumentation. The arguments are in

if ali their defeaters are out and an argument is out if at least one of its defeaters is in. The

labelling approach corresponds to the complete extension, where ali in arguments in the outcome

are conflict-free, self-defending, and contain ali arguments they defend.

In [68] the agents are interested in the status (i.e., labelling) of their own arguments and

not a particular status of others agent's arguments. In previous work, the authors present the

notion of individual acceptability maximizing preferences [67], where the agents want to maximize

the number of their arguments that are accepted in the outcome of the dialogue. This paper

presents other possible preferences of the agents, for example, minimizing rejections in the outcome

[Rejection minimizing preferences), that minimize the uncertainty in the outcome [Decisive preferences),

to have ali arguments acceptable [All-or-nothing preferences), and an agent can prefer to defeat as

many arguments as possible [Aggressive preferences).

The paper shows that every pareto optimal outcome is a preferred extension. The

grounded extension is a pareto optimal outcome for agents that have rejection-minimizing prefer-

ences. The semi-stable extension characterises the pareto optimal outcome for agents with decisive

preferences. An agent that have all-or-nothing preferences, there exists a pareto optimal preferred

extension. For an agent that has aggressive preferences, ali pareto optimal outcomes are preferred

extensions.

Previous work of the same authors studies agents' strategic behaviour in argumentation

over the grounded semantics. In [53], the authors analyse the preferred semantics which is a more

credulous semantics and allows multiple outcomes (whereas grounded semantics produces only one

outcome). The paper, also, proposes an analysis of two more refined semantics: the ideal and

skeptical-preferred semantics (which produces only a unique extension).

46

The work assumes that the defeat relation is known and understood by ali agents (abstract

argumentation systems). The agents can only reveal arguments once. This mechanism, with this

restriction, is called direct mechanism. The agents have focai arguments (the argument that is

preferred to be accepted over the others), and the paper assumes that the agents do not contain

direct or indirect defeats against their own focai argument. Also, the paper uses randomisation to

chose among the several preferred possible semantics in the mechanism.

The insertion of randomisation into the mechanism (into ArgMD [67]) incentivises the

agents to reveal ali their arguments (the agents do not know which preferred extension will be

selected, so the agents reveal the arguments with the higher probability to be accepted).

In [69] the authors present the first analysis of the case where agents can lie, using more

realistic preference classes (focai arguments, as in [53]). In that paper each agent has a single focai

argument it wishes to have accepted (to represent more naturally agent preferences). The paper

contributes in providing the first comprehensive analysis of strategy incentives under grounded

semantics when agents have focai arguments and to provide the first analysis of incentives when

agents can lie in argumentation. [69] presents direct mechanisms for argumentation based on

grounded semantics (as in [67]). The mechanism calculates the grounded extension given the

arguments revealed by agents.

The authors argue that in many realistic dialogues, each agent is interested in the ac-

ceptance of a particular argument. This argument is called focai argument. The other arguments

are called instrumental arguments towards the acceptance of the focai argument. The paper, also,

argues that when ali agents introduce their arguments, the mechanism demonstrates possible falla-

cies from the agents. When the agent does not know the indirect defeat for the argument presented

by another agent, the mechanism can find this defeat relation and demonstrates to the agent that

it is a fallacy.

3.4 Semantics to Agent-oriented Programming Languages

Some work on operational semantics for agent-oriented programming languages can be

found in the literature, among which is [87], defining operational semantics for speech-act based

communication, which serves as the basis for our work in defining the operational semantics to

new speech acts (Chapter 5). In that paper, semantics is given for basic performatives that allow

the communication between agents through simple message exchanges. We follow and extend

that work with new performatives to allow argumentation-based dialogues, which also requires the

exchange of sequences of interactions.

More recently, the work reported in [13] proposed the use of some performatives for

argumentation in AgentSpeak and attempted to give semantics to those performatives. Unlike

what we present in the Chapter 5, the work in [13], as well as [7], is focused on negotiation and uses

an electronic trading scenario. Also, the work in [13] is similar to [87] in treating the communication

of a single message exchange and not as a sequence of interactions (i.e., a dialogue) as in our work.

47

In [22], the authors propose an approach to the operational semantics of agent-oriented

programming languages based on a game-theoretic approach to dialogue games (dialogue games

have their origin in the philosophy of argumentation). The approach leads to a natural, uniform,

and modular way of modeling ali the components of the interpreter (agents), including the commu-

nication component and the communication protocol. The interpreter behaviour can be abstracted

from the operational rules so as to define and prove useful properties.

Operational semantics allows agent programs to be precisely defined and interpreted [20].

"The effort of providing an abstract formalisation of agent behaviour is aimed at the application of

formal methods in a rigorous definition and analysis of agents functionality" [22], This may allow

the demonstration of interesting properties of such systems.

McBurney and Parsons [45, 44, 49, 92] study argumentation-based dialogues between

agents, and discuss the proof of some properties of dialogues under a given protocol, such as

termination, dialogue outcome, and complexity.

The claimed advantage of the approach in [22] is the description in a uniform way of

ali aspects of an agent-oriented language, including communication. Another claimed advantage

in [22] is the modularity, as the language interpreter is seen as composed of modules which are the

players of a game.

49

4. ARGUMENTATION-BASED REASONING IN

AGENT-ORIENTED PROGRAMMING LANGUAGE

In this chapter we describe the argumentation-based reasoning mechanism developed.

We found reasons in literature for using defeasible logic [51, 52] and its practical implementation

as Defeasible Prolog [50] (d-Prolog for short) as a basis for argumentation systems (as described

in Section 3.1). We demonstrate that an adaptation of d-Prolog allows the implementation of

argumentation-based reasoning in an agent-oriented programming language. The approach allows

the agents to reason about rules (defeasible and strict rules) during the executions of plans to

achieve their goals as well as to query if an argument is acceptable or not at runtime.

4.1 The approach for argumentation-based reasoning using defeasible logic

We have implemented defeasible reasoning (defeasible logic more specifically) in Jason

through a set of Prolog-like rules that had to be modified in order to be processed in Jason [e.g.,

the cut operator is not available). We have adapted the mie presentation representing defeasible

and strict knowledge to a form similar to the approach in [15], as follows:

Facts: facts are represented as in the d-Prolog implementation of defeasible logic, where

"Alison is a graduate student" is represented by a simple predicate such as

grad_student(alison);

Strict Rules: the strict rules are represented as a special predicate

strict_rule (Head, Body), where for example "graduate students are students"

is represented as strict_rule (student (X) , grad_student (X));

Defeasible Rules: the defeasible rules are represented as a special predicate

defeasible_rule (Head, Body), where "graduate student usually studies hard"

is represented as defeasible_rule (studies_hard (X) , grad_student (X));

Defeater: the defeaters are represented with the predicate undercut_rule (Head, Body);

Superiority relatíon: the superiority relation is represented as sup (Ralei, Rulez) where Rulei

is superior who Rule2.

Another predicate is used to declare the complement of a proposition, for example, good

is the complement of bad, in our representation we use the predicate comp{good, bad) to define

the complement. The adaptation of d-Prolog follows the example presented below. The rules are

based on logic programming and the syntax and formal semantics of the AgentSpeak language

extension can be found in [18],

50

strict_der(Content) Content.

strict_der([Content])strict_der(Content).

strict_der([First|Rest]):- strict_der(First) & strict_der(Rest).

strict_der(Content) strict_rule(Content,Condition) &

strict_der(Condition).

In this example we show the derivation of strict rules using Prolog-like rules in Jason,

where íirst is checked if the queried content is a premise, after if it is a list of one element, after if

it is a list of more elements, and íinally if it is the Head of a strict rule and if the Condition (which

derives the Content) is aiso strictly derived. These rules allow an agent to query if a content is

strictly derived in its knowledge base (remember that strict knowledge is indisputably known).

When an agent needs an argument (facts and inference rules used in the derivation of

a content) to support a claim in a dialogue, for example, this information is accessible by an

second parameter which we call Arg. We store each rule and fact, used in the derivation, using

the internai action . concat (which concatenates a list with the new element - a rule or fact).

Thus, depending on the strategy of the agent, it can verify if it has a strict or defeasible argument,

using strict_der (Arg, Content) and def_der (Arg, Content), or if this distinction is

not necessary, the agent can use the predicate argument (Content, Arg).

argument(Content,Arg)strict_der(Arg,Content)

| def_der(Arg,Content).

As described in Section 3.1, this implementation has a well-defined semantics called

defeasible semantics which defines the acceptability of the arguments. The adaptation of d-Prolog

does not change this semantics and the status of any argument can be defined by this formalisation.

4.1.1 Example of Reasoning

An agent has submitted a paper to AAMAS conference and believes that its paper will

be accepted, so it will buy its ticket to Paris because it has an argument that conclude go to Paris

to present the paper.

defeasible_rule[go_to_paris_tojpresent{X), accepted{X)).

defeasible_rule{accepted{X), submitted{X)).

submitted{paper).

The plan to buy a ticket has the following format (in Jason platform):

+\buyTicket{paris) : defeasible_der{go_tojparis_tojpresent{paper))

<- buyTicket{paris).

51

Before the agent buys its ticket, its coauthor informs1 it that the paper was submitted

without a required field and this will invalidate its submission and so it will not go to Paris. The

new knowledge received is:

strict_rule{-^goJbOjparis_to_present(KX), -^accepted{X)).

strict_rule{-^accepted{X), incomplete{X)).

incomplete{paper).

The new information changes the conclusion of go to Paris to present the paper, and so the

plan above no longer applies. The above example demonstrates our implementation, where more

sophisticate reasoning are allowed, but to a simple example we argue that this is sufhcient.

'We do not describe here how this knowledge is acquired; for the moment, it suffices to understand that this
information becomes part of the agent's knowledge.

53

5. SEMANTICS OF SPEECH-ACT FOR ARGUMENTATION-BASED

DIALOGUES

In this chapter, we extend the performatives normally available in implementations of

the AgentSpeak agent-oriented programming language, such as Jason [18], as well as other agent

programming languages, to enable argumentation-based dialogues between agents. We use a

selection of performatives widely used in the argumentation-based dialogue literature (as described

in Section 2.4), and we give operational semantics to them. In particular, we also define the

semantics of a multi-agent system, i.e., at the social levei, extending the work presented in [87],

where operational semantics was given to basic speech acts, for which it sufliced to show how the

mental attitudes of an individual agent were altered when a message with a particular speech act

is received, whereas in this work both sending and receiving dialogue statements alter the social

state of the argumentative system. Also, because we need to address the social perspective of

a dialogue based on argumentation, we have adapted the operational semantics to include two

separate transition systems, at the individual and social leveis, and how one affects the other.

Here, we define the formal semantics of speech acts for argumentation-based dialogues

building on a computationally grounded semantics for agent mental attitudes [19]. Those mental

attitudes are directly involved in the semantics of the argumentation speech acts. This means

that if a performative refers to agent beliefs or intentions, this can be concretely realised in a

computational system (providing a more principled way to implement real-world argumentation-

based agent systems). As a consequence, we also make the semantics more detailed, covering

the relation to individual and social changes in the system states, although perhaps slightly more

complex to specify. Furthermore, with the clear understanding of the semantics, it allows for agents

in a multi-agent system to be independently designed by different programmers [6].

5.1 New Performatives for AgentSpeak

The performatives selected to enable argumentation-based dialogues in AgentSpeak are

presented below, along with the intended (informal) meaning:

• assert; an agent that sends an assert message declares, to ali participants of the dialogue,

that it is committed to defending this claim. The receivers of the message become aware of this

commitment.

• accept: the sender declares, to ali participants of the dialogue, that it accepts a previous claim

of another agent. The receivers of the message become aware of this acceptance.

• retract: the agent declares, to ali participants of the dialogue, that it is no longer committed

to defending its previous claim. The receivers of the message become aware of this fact.

54

• question: the sender desires to know the reasons for a previous claim from another agent. The

receiver of the message is committed to defending its claim, so presumably it will provide the

support set for its claim.

• challenge; the challenge performative is similar to question, except that the sender of the

message is committed to defending a claim contrary to the previous claim of another agent.

Further, performatives opendialogue and closedialogue are used for creating and

concluding dialogues, respectively; justify is used to justify agents' position in the dialogue; and

two other performatives, acceptdialogue and refusedialogue, are used by the participants to

accept or refuse taking part in a dialogue, respectively.

5.2 The Basis for the Operatíonal Semantics

We define the semantics of speech acts for argumentation-based dialogues in AgentS-

peak using operational semantics, a widely used method for giving semantics to programming

languages [62], The operational semantics is given by a set of inference rules that define a transi-

tion relation between configurations {AG, D) of the multi-agent system1 where:

• The AG component is a set of tuples (z/i. Cem/) representing each agent in the society, where

each agent is identified by a unique identifier id and the agent current internai state is repre-

sented by Conf. The agent state is in fact given by a configuration of the operational semantics

of AgentSpeak as formalised in the existing literature (e.g., [87]); we assume some familiarity

with the semantics of AgentSpeak.

• The set of ali dialogues in that society, D, is a set of tuples {did, Ags, Status) where:

- did is a dialogue identifier (which is unique for each dialogue within that multi-agent system);

- Ags is a set of tuples (id. CS), where id identifies a particular agent that is participating in

the dialogue and CS1 is its commitment store;

- Status represents the status of the dialogue and for the time being we assume it is one of

only two values: OPEN if the dialogue is ongoing and CLOSED otherwise.

The agent configuration [Conf) is given by a tuple {ag,C, M,T, s), originally defined

in [87], where:

• ag is a set of beliefs bs and a set of plans ps.

• An agent's circumstance C is a tuple (/, E, A) where:

'We use only components that are needed to demonstrate the semantics, but we emphasise the existence of other
components such as roles, norms, etc.

55

- / is a set of intentions {i, i'....}. Each intention i is a stack of partially instantiated plans.

- is a set of events {(te, i), (te', t'),..Each event is a pair (te, i), where te is a triggering

event and i is an intention — a stack of plans in case of an internai event, or the empty

intention T in case of an externai event. For example, when the belief revision function

(which is not part of the AgentSpeak interpreter but rather of the agent's overall architecture),

updates the belief base, the associated events — i.e., additions and deletions of beliefs —

are included in this set. These are called externai events; internai events are generated by

additions or deletions of goals from plans currently executing.

- A is a set of actions to be performed in the environment.

• M is a tuple (In, Out, SI) whose components characterise the following aspects of communi-

cating agents (note that communication is typically asynchronous):

- In is the mail inbox: the multi-agent system runtime infrastructure includes ali messages

addressed to this agent in this set. Elements of this set have the form {rnid. id, ilf, cnt), where

mi d is a message identifier, id identifies the sender of the message, ilf is the illocutionary

force of the message, and cnt its content: a (possibly singleton) set of AgentSpeak predicates

or plans, depending on the illocutionary force of the message.

- Out is where the agent posts messages it wishes to send; it is assumed that some underlying

communication infrastructure handles the delivery of such messages. Messages in this set

have exactly the same format as above, except that here id refers to the agent to which the

message is to be sent.

- SI is used to keep track of intentions that were suspended due to the processing of commu-

nication messages; the intuition is as follows: intentions associated with illocutionary forces

that require a reply from the interlocutor are suspended, and they are only resumed when

such reply has been received.

• When giving semantics to an AgentSpeak agent's reasoning cycle, it is useful to have a structure

which keeps track of temporary information that may be subsequently required within a reason-

ing cycle. T is a tuple {11, Ap, t, e. p) with such temporary information; these components are as

follows:

- i? is the set of relevant plans (for the event being handled).

- Ap is the set of applicable plans (the relevant plans whose contexts are tme).

- i, s, and p record a particular intention, event, and applicable plan (respectively) being

considered along the execution of one reasoning cycle.

• The current step within an agent's reasoning cycle is symbolically annotated by s G

{ProcMsg, SelEv, RelPI, AppIPI, SelAppl, AddIM, Sellnt, Execlnt, Clrlnt}. These labels stand for,

respectively: processing a message from the agent's mail inbox, selecting an event from the set

56

of events, retrieving ali relevant plans, checking which of those are applicable, selecting one

particular applicable plan (the intended means), adding the new intended means to the set of

intentions, selecting an intention, executing the selected intention, and clearing an intention or

intended means that may have íinished in the previous step.

• The semantics of AgentSpeak makes use of "selection functions" which allow for user-defined

components of the agent architecture. We use here only the Sm functions, as originally defined

in [87]; the select message function is used to select one message from an agent's mail inbox.

In the interests of readability, we adopt the following notational conventions in our se-

mantics rules:

• If C is an AgentSpeak agent circumstance, we write Ce to make reference to the E component

of C, and similarly for other components of the multi-agent system and of the configuration of

each agent.

• We write AGld to identify the agent represented by that id in the set of agents AG. We use

this whenever the component corresponds to a set of tuples {id,...). Also, if AG is a set of

tuples {id, Conf), then we refer to a configuration (Conf) of one agent (identified by id) in AG

by AG^nl.

• We write h[d{did), s{id)\ to identify the origin of a belief related to a dialogue, where did is

a dialogue identifier, and id an agent identifier [d refers to dialogue and s refers to sourcé).

Whenever an agent makes a statement related to a dialogue, the dialogue identifier did is added

as an annotation.

• We use two transitions to represent the state change of the multi-agent system, where the tran-

sition —>as (transition of the configuration of an individual agent) is part of the transition

—>ds (the transition of the multi-agent system). So each transition in the agent configura-

tion also causes a transition in the multi-agent system configuration exactly in the component

AG'fSnf, where aid refers to the identifier of the agent which went through the transition.

Also, we use aid to refer to the agent that is executing an internai action of interest or

receiving a message. Finally, we make use of a function called CTJ (where CTJ stands for "care to

justify") that returns TRUE if the agent wishes to justify its previous assertion (this depends on the

agent's reasoning and makes reference to agents' autonomy).

57

5.3 Semantic Rules for new Internai Actions

In this section we give semantics to the internai actions .opendialogue and

.closedialogue that are necessary to create a new dialogue and close a dialogue, respectively.

Tb = i[head •(— .opendialogue^^enís);/!]

(a) {AG, D) —>Ds {AG', D')

(ò) {ag, C, M, T, Execlnt) —)-as {Wj C', M', T, ProcMsg)

(ExecActOpenDialogue)

(a) where:

D'

A r^aid
Conf

(b) where:

M'out =

M'si

ag'bs =

Cr =

D U {{did, Ags, OPEN)} where

Ags = {{id, CS)\id E Agents and CS = {}}

with did a new dialogue identiíier

the transition given by (b)

Mout U {{rnid, id, opendialogue, did)}

for each id E {Agents \ {aid})

Msi U {{mid,i[head E- h], Agents)},

with mid a new message identiíier;

agbs + dialogue((ii(i)[s(self)]

c, \ [Z]

Internai Action .opendialogue: The agent that intends to start a new dialogue per-

forms the internai action .opendialogue(Agenís), where Agents is a set of agents with whom

the agent wants to have a dialogue. This action creates a new dialogue (in our implementation,

an artifact) that is represented by a tuple {did, Ags, Status), with did being the dialogue identifier

(that is unique in the system), Ags is the set of agents participating in the dialogue, and Status is

the dialogue status. Ags is a set of tuples of the form {id, CS), its cardinality being the number of

agents in Agents, with id an agent identiíier and CS its commitment store (where its positions in

the dialogue are stored). The agent's commitment store CS1 is initially empty, i.e., CS1 is an empty

set. The status can assume one of two values, either OPEN or CLOSED, depending on whether the

dialogue is open or closed respectively; a dialogue always starts with an OPEN status.

After the dialogue was created, a message is sent to ali agents requesting their participa-

tion, and the intention that started the action execution is suspended waiting for ali replies from

the agents (accepting or declining to participate in the dialogue).

58

T), = i[head ■(— .closedialogue((ii(i);/i]
 (ExecActCloseDialogue)

(а) {AG, D) —)-Ds {AC, D')

(б) {ag, C, M, T, Execlnt) —)-As {ag, C, M', T, ProcMsg)

(a) where:

D' = {D\{{did,Ags,OPEN)})U {{did,Ags,CLOSED)}

AG'conf = the transition given by (b)

(b) where:

M'0ut = Mout U {{mid, id, closedialogue, did)}

for each Agsid G {D^s \ {Agsaid})

Cj = (C/ \ {T;,}) U {i[head h]}

Internai Action .closedialogue: This internai action is used by an agent when it

decides to finish a dialogue. The action updates the status of the dialogue to CLOSED and sends a

message to each agent to inform that the dialogue has been closed.

5.4 Semantic Rules for Sending the New Performatives

In this section, we give semantics for sending the new performatives which allow

argumentation-based dialogues, showing how it affects the state of the agent and the state of

the dialogue.

(ExecActSndAssert)

Tl = i[head •(— .send(cM, assert,p);/i]

p(£CS {aid, CS) e Dfd
gs

(a) {AG, D) —)-Ds {AG', D')

(b) {ag, C, M, T, Execlnt) —>as {ag, C', M', T, ProcMsg)

where:

MVit = (OÍJ\{(««.CS>})U{(o«.CS')}

with CS' = CS U !))(

AG'c0
d

nf
= the transition given by (b)

(b) M'0ut = Mout U {{mid, id, assert,p[d{did)])}

for each Agsid G (DfJs \ {Agsaid})

Cj = {C:\iT,}) U{i[head^h]}

Internai Action .send with assert: The action .send with performative assert up-

dates the CS oí the agent that performs the action and sends, to ali agents in the dialogue, a

message stating that the sender is willing to defend this claim.

The agent can use assertion attitudes as dehned in [57, 60], but in any case the agent can

only assert a formula it did not previously assert; that is, an agent cannot assert again formulas

that are already in its CS.

59

Another important point to be noticed is that an assertion is always made to a particular

dialogue (identiíied by did) and not to a specific agent; this is because the agents will introduce

new claims to be defended to ali agents participating in the dialogue and not to an individual

agent.

(ExecActSndAccept)
Tt = i[head .send{tid,a.ccept:p[d{did)])]h\

(a) {AG, D) —yDs {AG1, D')

(ò) {ag, C, M, T, Execlnt) —)-as {ag, C, M', T, ProcMsg)

where:

(") D'i% = \ {{aid, 05)}) U {{aid, CS')}

Wieh CS' = CSU {p}

AG'conf = ^e transition given by (b)

(b) M'0ut = Mout^ {{mid,id,^cce^t,p[d{did)\)]

for each Agsid G (Df^ \ {Agsaid})

Cj = (C7\{Tt}) U{i[/iead^/i]}

Internai Action .send with accept: The action .send with performative accept up-

dates the CS of the agent that performs the action and sends, to ali agents in the dialogue, a

message stating that the agent accepts the claim made by another agent identiíied by tid. Note

that p (the formula that was accepted) has the annotation [d{did)], this means that p has been

previously asserted in that dialogue (identiíied by did). In other words, an agent can only accept a

claim made by another agent in that same dialogue.

(ExecActSndJustify)

Tl = i[head •<— .send{did, justify, S);h]

S(£CS {aid, CS) e

{a) {AG, D) —yDs {AG', D')

(ò) {ag, C, M, T, Execlnt) —>as {ag, C', M', T, ProcMsg)

where:

M Dff, = (D^g \ {{aid.CS)}) U {{aid,CS')}

with CS' = CSU {S}

AG'cd
nf = the transition given by (b)

(b) M'0ut = MoutC {{mid,id, justify, S[d{did)])}

for each Agsid G {Dfd
s \ {Agsaid})

C) = {CjXiT^Uiiihead^ h]}

Internai Action .send with justify; The action .send with performative justify

updates the CS1 of the agent that performs the action and sends, to ali agents in the dialogue, a

message with an argument which defends the agent's position. The justilication is always made

to a particular dialogue (identiíied by did) and not to a specific agent; this is because the agent

will introduce new information (defending a previous position) to be considered by ali agents

60

participating in the dialogue and not just the individual agent(s) who might have questioned the

previous position.

T), = i[head .sendldid, retract,p[d{did)])]h\

(а) {AG,D)^Ds{AG',D')

(б) {ag, C, M, T, Execlnt) —> 45 {ag, C, M', T, ProcMsg)

where:

(a) = (D%,\{{aid,CS)})U{(aid,CS')}

with CS' = CS\ Ip}

AG'conf = transition given by (b)

(b) M'0ut = Mout U {{mid, id, retract,p[(i(did)])}

for each AgSid G {D(^s \ {Agsaid})

= {CjXiT^Uiiihead^h]}

(ExecActSndRetract)

Internai Action .send with retract: The agent performs this internai action to retract

a previous claim that the agent itself asserted in that dialogue. The agent's CS is updated with

the removal of the given formula. A message is sent to each agent in the dialogue informing the

decision of that agent to retract its previous claim.

71 = i[head .send{id, question,p[d((ii(i)]);/?.]
 (ExecActSndQuestion)

(a) {AG, D) —>Ds {AG', D,)

(b) {ag, C, M, T, Execlnt) —>as {ag, C', M', T, ProcMsg)

where:

(a) AG'cd
nf = the transition given by (b)

(b) Mout = Mout U {{mid, id, question,p[(i(7i7)])}

Cl = (CjVIT,}) U{i[/iea7^/i]}

Internai Action .send with question: The action .send with performative question

is used when an agent wants to question another agent about an assertion it has previously made.

This message is sent only to the agent that previously made the assertion.

61

Tl = i[head ■(— .send{tid, challenge,p[d{did)])-,h]
 (ExecActSndChallenge)

(a) {AG, D) —>Ds {AG', D')

(ò) {ag, C, M, T, Execlnt) —{ag, C, M', T, ProcMsg)

where:

(a) D'ili = (D^\{{md,CS)})U{(aid,CS')}

with CS' = CS U (

AG'conf — lhe transition given by (b)

(b) M'0ut = (MoMt U challenge,p[(i(cíid)])})

U {{mid, id, assert, ^p[d{did)])}

for each Agsid E (D'^s \ {Agsaid U Agsld})

Cj = {CjXiT^Uiilhead^ h]}

Internai Action .send with challenge: The action .send with the performative

challenge is performed when an agent wants to challenge another agent about an assertion

it previously made. Differently from the question performative, when an agent makes a challenge

move it is willing to defend a claim contrary to the claim of the other agent.

The message with a performative challenge is sent only to the agent that made the

previous claim. As the agent is willing to defend its claim, messages are sent to ali agents in the

dialogue with the respective assert messages.

5.5 Semantic Rules for Receiving the New Performatives

In this section we give semantics for receiving the new performatives that allow

argumentation-based dialogues, showing how they affect the state of the agent and the state of

the dialogue.

SM{Min) — (m«d, fd, acceptdialogue, díd)

(mid, i, Set) E Msi (for some intention i) id E Set
 (AcceptDialogue)

(a) {AG, D) —>Ds {AG', D,)

(b) {ag, C, M, T, ProcMsg) —{ag, C', M', T, Execlnt)

the transition given by (b)

Min \ {{mid, id, acceptdialogue, did)}

(Msi \ {(mid, i, Set)}) U {(mid, i, Set')}

with Set' = Set \ {id}-,

í Cj U {z} if Set' = O

I Cj if Set' / 0

(a) where:
A s^/aid

Conf —

(b) where:

M'In =

M'SI =

C} =

62

Receiving an acceptdialogue Message: The sender of the message is removed from

the set of agents that are expected respond. If ali agents have now responded, the intention can be

resumed, otherwise the intention continues suspended.

Sm {Min) = (míd, zd, refusedialogue, did)

(mid, i, Set) G Msi (for some intention i) id E Set

(a) {AG, D) —>Ds {AG', D')

(ò) {ag, C, M, T, ProcMsg) —>as {ag, C', M', T, Execlnt)

(RefuseDialogue)

(a) where:

Df. = D%,\mcs)}

AG'(Mrij = the transition given by (b)

(b) where:

M'In = M/n \ {(mzd, zd, refusedialogue, dzd)}

M'SI = {Msi \ {{mid, i, Set)}) U {(mid, i, Set')}

with Set' = Set \ {id}-,

Cj U {z} if Set' = O

C, if Set' yt 0
C}

Receiving a refusedialogue Message: The sender of the message is removed from

the set of agents that are expected respond, as well as from the set of agents participating in the

dialogue. If ali agents have replied, the intention can be resumed. It should be useful for the agent

to check, after resuming the intention, if the set of agents remaining in the dialogue is sufficient

for it to continue the dialogue given the purposes for which it originally opened this dialogue.

= {mid,sid, assert,p[d(dzd)])
 (Assert)

{a) {AG, D) —>Ds {AC, D,)

{b) {ag, C, M, T, ProcMsg) {ag', C, M', T, Execlnt)

where:

(a) AG'c0
d

nf = the transition given by (b)

(b) M'In = M/n \ {(mzd, szd, assert,p[d(dzd)])}

a9'bs = agbs+p[d{did),s{sid)]

C'E = CE U {{+p[d{did), s{sid)],T)}

Receiving an assert Message: The claim asserted in the dialogue is added to the

belief base of the receiver with an annotation of the dialogue identifier d(dzd) and the identifier of

the agent that asserted the claim as the source of that information s{sid). The agent that received

the message can react to this claim because of the event generated by the belief addition, as usual

in AgentSpeak. Whether an agent accepts or not the claim made by another agent depends on its

acceptance altitude as described in [57, 60], which depends on if the agent has or not an acceptable

argument to or against the claim.

63

SM{MIn) = {mid,sid, aiCceTpt,p[d{did)])

(a) {AG, D) —yDs {AC, D,)

(ò) {ag, C, M, T, ProcMsg) —>as {ag', C', M', T, Execlnt)

where:

(Accept)

(a) A csraid
Conf = the transition given by (b)

(b) M'In = M/n \ {{mid, sid, accept,p[oí((íi(i)])}

ag'bs = agbs + p[d{did), s{sid)]

C'E = Ce U {{+p[d{did), s{sid)],J)}

Receiving an accept Message: This message means an agent (identified by sid) accepts

a claim previously made, as part of this dialogue, by another agent. The receiver of the message

becomes aware of this acceptance.

= {mid, sid, retTa.ct, p[d{did)])

(а) {AG, D) —>Ds {AC, D,)

(б) {ag, C, M, T, ProcMsg) —^as {ag', C', M', T, Execlnt)

where:

(Retract)

(a) A r^aid
Conf = the transition given by (b)

(b) ML = MIn \ {{mid, sid, retract,p^did)])}

ag'bs = agbs-p[d{did),s{sid)]

Ce = Ce U {{—p[d{did), s{sid)],T)}

Receiving a retract Message: This message means an agent, identified by sid, is

withdrawing its earlier assertion. The formula is removed from belief base of the receiver of the

message, with the appropriate source and dialogue annotation.

Sjvf(M/ra) = {mid, sid, qu.estion,p[d{did)])

CTJ(p) = TRUE

(а) {AG, D) —>Ds {AG', D')

(б) {ag, C, M, T, ProcMsg) —Yas {ag, C, M', T, Execlnt)

where:

(a) D%i = \ {{aid, C5)}) U {{aid,CS')}

with CS' = CS U {Sp}

AG'conf = the transition given by (b)

(b) M'In = Mjn\{{mid,sid,c[uestlon,p[d{did)])}

M'0ut = Mout U {{mid, id, justify, Sp[d{did)])}

for each Agsid G {Dfd
gs \ {Agsaid})

where Sp \= p and Sp G agbs

(Question)

64

Receiving a question Message: If the agent can or wants to reply, in keeping with

agent autonomy (this is represented in the semantics through a CT J function which is meant to be

agent specific), then the agent's CS will be updated with the support of the previous claim p, and

the support will be also sent to ali other agents in the dialogue.

SM^Min) = {mid,sid,iustlfy,Sp[d{did)\)
 (Justify)

(a) {AG, D) —)-Ds {AC, D,)

(ò) {ag, C, M, T, ProcMsg) —^5 {ag1, C, M', T, Execlnt)

where:

(a) AG'"Cnf = the transition given by (b)

(b) M'In = M/„ \ {(mfd, sid, justify, ^[^(did)])}

and for each p G Sp :

ag'bs = agbs + p[d(did),s(sid)]

C'E = Ce Li {{+p[d{did): s{sid)],T)}

Receiving a justify Message: This is similar to the assert performative, except for the

fact that the content of the message is a set of formulae that justify the previous claim of the sender

of the message (identihed by sid).

(Challenge)

SM{Mjn) = {rnid. sid., challenge, p^cM)])

CTJ(p) = TRUE

(a) {AG, D) —yDS {AC, D')

(ò) {ag, C, M, T, ProcMsg) —^as {ag' 1C, M', T, Execlnt)

where:

(a) D%i = (D™\Uaid,CS)})U{{md,CS')}

with CS' - Cs l {Sp};

ACcanf = the transition given by (b)

(b) M'In = Min \ {{mid, sid, challenge,pjc^úM)])}

M'0ut = Mout Li {{mid, id, justify, Sp[d{did)])}

for each Agsid G (Df^ \ {Agsaid})

where Sp \= p and Sp G agis

ag'bs = agbs + ^p[d{did), s{sid)]

Receiving a challenge Message: If the agent can or wants to reply (we assume the CT J

function determines whether that is the case or not), the agent's C51 is updated with the support

of the previous claim p and the support is also sent to ali other agents in the dialogue. In addition

to the question performative, this rule adds that the agent identihed by sid (i.e., the sender of the

message) is willing to defend the claim contrary to the previous claim that is being challenged.

65

6. PROTOCOL FOR ARGUMENTATION-BASED DIALOGUE

In this chapter we describe and formalise the argumentation-based dialogues we pro-

pose as a dialogue game. Towards this formalisation, we describe the protocol and the dialogue

rules which consider the agents' strategy participating in these dialogues. At the end, we make

initial efforts towards proving some properties of this protocol considering the agents' strategies

(formalised as dialogue rules). This protocol has been developed specifically for the domain of task

reallocation in cooperative multi-agent systems. However, we argue that the protocol can be used

for similar domains with similar characteristics (especially cooperativeness).

6.1 Dialogue Game

In this section we describe the dialogue game in terms of components and speciíication;

this model is based in [45] and the work in [44] discussed in Section 2.3. As described in [45], the

topic of discussion in a dialogue needs to be represented in some logical language; in our approach

the representation follows the predicates described in Chapter 4. The elements that correspond to

the dialogue game speciíication in our domain are:

Commencement Rule: In our approach, an agent can start a dialogue when it needs to reallocate

a task which is attributed to it and which the agent is failing to complete. The agent starts the

dialogue executing an assert move suggesting it will not execute the task (when the agent has

information that the task does not need to be executed) or an assert move suggesting that another

agent executes the task. To start a dialogue, the agent needs to have an argument which allows

it to conclude the assertion (the subject of the dialogue), and this is formally defined below (in

Section 6.4).

Locutions: In our approach, the agents can use the set of locutions described in the Chapter 5,

following the protocol described below (in Section 6.3).

Combinatíon Rules: In our approach, the combination rules depend on the strategy of the agent

(corresponding the agent attitudes to assert and to accept claims in the dialogue [60, 57]). The

combination rules are formally described in Section 6.4.

Commitments: In our approach, the update of commitments of the participants is formally

defined in the semantics of the speech acts used (as described in Chapter 5), where each speech-

act/performative introduces or removes commitments of participants in accordance with the liter-

ature [5, 57, 60],

Termination Rules: In our approach, the dialogue ends when either the opponent executes the

accept move, accepting the subject of the dialogue; or the proponent closes the dialogue,

because it cannot make the opponent accept the subject of the dialogue (the proponent either

accepts the justification from opponent which introduces reasons for it not to accept the first

assertion or its arguments fail to convince the opponent to accept the subject). These rules are

formally defined in Section 6.4.

66

6.2 Agent Configuration

In this Section, we describe the agent configuration. We assume that two agents (as

in [5, 23, 24, 49]) will participate of an argumentation-based dialogue (in this section, we will use a

and b to refer to these two agents). The agent that introduces the subject of the dialogue is called

proponent, and the other agent participating in the dialogue is called opponent (we use Pr and Op,

respectively, to refer to them as in [23, 24]). Each agent has a knowledge base which contains facts

and rules. The agents are capable of generating acceptable arguments from this knowledge base,

as well as evaluating the acceptability of the arguments (when new information is available) as

described in the Chapter 4.

We assume that agents exchange arguments for and against the subject (the predicate

that will be discussed in the dialogue). Considering the application domain and that agents are

cooperatives in this domain, the agents are not allowed to question or to challenge the support of

arguments. For example, if an agent argues that its owner cannot execute a task because they are

late, it would not be appropriate (considering the cooperative system and the application domain)

to doubt this (i.e., we assume that agents do not lie).

The agents rationally decide about the next move to play (e.g., accept, question, etc.)

based on their argumentation systems (i.e., depending on whether the agents have or not an

argument for or against a certain claim). These decisions taken by the agents correspond to their

strategies. Each agent has a commitment store (CS) which is accessible to ali agents participating

in the dialogue, but only the owner agent can update the information in its commitment store (the

other agents can only read its contents).

The commitment store of each agent is updated following the semantics presented in

Chapter 5, depending on the performative used in that interaction. We use CSa to represent the

commitment store of agent a at the current moment.

The agents can build an acceptable argument S which supports a claim/predicate p

(denoted as S |= p) from its knowledge base and the commitment store of the other participant.

For example, agent a can build an acceptable argument S (which supports a predicate p) from its

knowledge base (KBa) and from the commitment store of b (CSb) (denoted (KBa U CSb) |= S) '.

We use the notation p to describe the complement and contrary of a predicate, for

example, we can describe the complement of p as p where p = -p. We can have p as "good", and

"good" is the contrary of "bad"; in this case "bad" can be also denoted by p.

'The commitment store of the agent a (CSa) is a subset of the knowledge base of a (KBa), formally CSa Ç KBa.

67

6.3 Dialogue Game Protocol

In this section, we describe the dialogue game protocol which restricts the moves allowed

by agents. The sequence of moves allowed is represented in Figure 6.1, where the white circle

represents the start move and the black circle the hnish move.

JUSTIFY
JUSTIFY ASSERT QUESTION

> > >

ACCEPT
ACCEPT

>

CLOSE DIALOGUE

GLOSE DIALOGUE

Figure 6.1 - Allowed Moves.

Regarding Figure 6.1, we can make the following considerations:

A dialogue game starts with an agent executing an assert move, introducing the subject

of the dialogue.

When an agent receives an assert message, it can either accept, executing an accept move,

or question, executing a question move. The choice of the agent depends on its strategy,

as described in the next section.

When an agent receives a question message, it can only execute a justify move (the agent

is committed to provide an argument which supports the previously asserted predicate).

When an agent receives a justify message, it can either accept the subject of the dia-

logue (executing an accept move) or provide an argument not to accept the subject of

the dialogue (executing a justify move). This choice depends on the agent's strategy, as

described in the next section. Further, after receiving a justify message, the agent may

close the dialogue as well.

When an agent receives an accept message it may close the dialogue.

68

Figure 6.1 describes ali possible allowed moves by the agents. The protocol also restricts

who can execute the moves, as well as who can close the dialogue;

• As described, the dialogue starts with an agent executing an assert move, introducing the

subject of the dialogue. We call the agent that starts the dialogue the proponent.

• An agent can never repeat a move with the same content; this is guaranteed by the semantic

specification and the structure which maintains the information introduced in the dialogue

as commitments (the commitment storé).

• The dialogue can be closed only by the proponent, so there is only a single agent that can

execute the dosedialogue move in a particular dialogue, namely the proponent.

• The dialogue ends when the proponent executes a dosedialogue move. We prove that a

dialogue following our protocol will always terminate in the next sections.

6.4 Dialogue Rules

Now, in this section, we describe the dialogue rules (which are defined based on the

protocol) that govern the interactions between the agents considering their strategies, where each

agent moves by performing the allowed utterances. These rules (which correspond to a dialogue

game [45]) are expressed as if-then rules, which are then easy to implement.

The dialogue rules specify the moves the other player can make next, and so specify the

protocol under which the dialogue takes place [5] (in our case, the protocol is the one specified in

Section 6.3).

Definition 8 (Dialogue). A dialogue is formally represented as a tuple (MO, Dl), where MO is a finite

set of moves, containing ali moves made thus far in that dialogue which are exchanged according to Dl,

a set of dialogue rules that also take into account the strategy of each agent.

Definition 9 (Dialogue Move). We denote a move in MO as M1(a!, /?, cont, t), where i is the type of

move made by agent a and addressed to agent 3 at time t regarding content cont. We consider the

following set of types of moves, denoted by P, which contains the performativ es presented and formalised

in Chapter 5: assert, accept, question, justify, and dosedialogue. The content of a move

(cont) can be an argument (a set of predicates and rules) or a predicate (for example, in an assert

move the content is a predicate and in a justify move the content will be an argument that supports a

claim/predicate uttered in a previous assert move).

The dialogue rules in Dl indicate the possible moves that an agent can make following

a previous move of the other agent. The formalisation we give here follows the work in [14]).

To define the dialogue rules, we use a set of condition (denoted by C) which reflect the agents'

strategies. Formally, we have:

69

Definítíon 10 (Dialogue Rules). Dialogue rules can assume one of two forms:

• First, we have dialogue rules that specify which moves are allowed given the previous move and

conditions (corresponding to the combination rules of the dialogue game).

f\ (M1(q;, f cont, t) A Ck =>■ M^(^, a, contk, t')
0<k<ni,

iJGP

where P is the set of move types, M1 and are in MO, t < t' and rii is the number of allowed

communicative acts that ft couldperform after receiving a move of type i from a.

• Second, we have the initial conditions (corresponding to the commencement rules of the dialogue

game), which do not require that any move was previously executed.

f\ (Ck => Mk(Q!, /?, contk, to)
0<k<n,

jep

where to is the initial time and n is the number of allowed moves that a could make initially.

1 - Initial Rule

The first move (corresponding to the commencement rule) introduces the subject of the

dialogue and we will make reference to that statement using the term subject (where subject(p)

means that the predicate p is the subject of the dialogue). In our approach, each dialogue has only

one subject.

Cínl =» assert(Q:,/5,p)

where:

Cmi = 33, S |= p : (KBq, U CS^) [= S A subject(p)

The dialogue starts when an agent needs to argue about a given subject, for example, in

our domain (application) the agents will start an argumentation-based dialogue when they need to

reallocate a particular task. To start a dialogue the agents need to have an argument to propose

that another agent executes that task (i.e., it will try to reallocate the task to another participant of

the collaborative team using the application), or to propose that the task will not be executed at ali

(i.e., the agent will try to postpone the task). The initial rule restricts that an agent needs to have

an argument (corresponding to the thoughtful attitude described in the section 2.4) that defends

its claim in order to start an argumentation-based dialogue (as the agent will be committed to

defending the initial assertion, i.e., the subject of the dialogue).

70

2 - Assert Rules

We have two dialogue rules that restrict the possible next move for agents to respond to

an assert move:

assert(a, 13, p) A Casi =>■ accept(/3, a, p)

assert(a;, [3, p) A Cas2 question(/3, a, p)

Where:

Casl = ^s, S h P : (KB^ U CSq,) h S

Cas2 = 3S, S h P : (KB^g U CSa) h S

The options of the agent are: (i) to accept the previous claim (the subject asserted in

the dialogue), where condition Casi means that the agent will accept a claim if it has no argu-

ment against it (corresponding to the cautious altitude introduced in [60, 57] and described in

Section 2.4); and (ii) when the agent has an argument against the previous assertion, Cas2, the

agent will question the other agent to provide the support of its previous claim.

3 - Question Rule

The dialogue rule which restricts the moves after an agent receives a question message

is:

question(Q:, (3, p) A C9Si justify(/3, a, S)

Where:

Zqsl = 3S, S h P : (KB^ U CSQ,) h S

As the agent has asserted a predicate p previously (which allowed the question move), the

agent is committed to defend its claim in the dialogue, so it will provide the support to this claim.

4 - Justify Rules

We have four dialogue rules to restrict the moves to respond to a justify move:

justify(Q;, f3, S) A CJsi accept(/3, a, p)

justify(Q;, (3, S) A Cjs2 =4 justify(/3, a, S')

justify(Q;, f3, S) A CJS3 closedialogue(/3, a)

justify(Q;, /3, S) A Cjs4 => justify(/3, a, S')

71

Where:

Cjsl = ÍS', S' h P

Cis2 = 3S', S' h p

Cjs3 = ÍS', S' h P

Cjs4 = 3S', S' h p

(KB/3 U CS,,) \=S' AS' £ CS/3 A 0p((5) A subject(p)

(KB^ U CSa) |= S' A S' ^ CS^ A Op(/í) A subject(p)

(KB/3 U CS,,) \=S' AS' £ CS/s A Pr((5) A subject(p)

(KB^ U CSq,) |= S' A S' ^ CS^ A Pr(/í) A subject(p)

The agent will accept the subject of the dialogue, according to condition CjSi, if the

justification received from the proponent has changed the agent's conclusion, otherwise the agent

will justify why it cannot accept the subject, CjS2. The agent cannot accept the subject because it

still has an argument against it, even after receiving this new information. In the case where the

agent that receives the justify from the opponent but cannot itself reach the same conclusion given

the new information received (i.e., the agent does not have an acceptable argument for the subject),

the agent closes the dialogue, CjS3. In the hnal case, the agent sends the new argument2 to support

the subject of the dialogue, CJS4.

5 - Accept Rule

The dialogue rule that restricts the moves when an agent receives an accept message is;

accept(«, [3, p) A Caci closedialogue(/3, a)

Where:

Cacl = subject(p) A Pr(/3)

When the agent receives an accept move it will close the dialogue. Only the proponent

will receive an accept move, when the opponent accepts the subject of the dialogue.

6.5 Properties of the Protocol

After we have dehned the protocol, it is interesting to demonstrate its effectiveness

through the properties commonly found in the literature. One of the more important properties to

be proved over a protocol is that a dialogue, following such protocol, will always terminate.

Theorem 1 (Termination). Any argumentation-based dialogue, following the protocol defined above,

eventually terminates.

Proof Considering that at least one agent (the agent a) needs to have p as acceptable (where we

use p as the subject of the dialogue), the initial configurations are restricted to two:

• In the first case, where KBQ |= p and KB^ |= p, agent a. will introduce p in the dialogue using

the assert move; as agent [3 has no argument against (i.e., no argument for p), following

2The argument is new because, as defined in the protocol, the agent cannot repeat a move with the same content.

72

the dialogue rule condition Casi the agent will accept p executing the accept move. Agent

a receives the accept message and, following the dialogue rule condition Caci, closes the

dialogue.

• In the second case, where KBa (= p and KBg 1= p, agent a, as before, will introduce p

in the dialogue using the assert move. As agent /? has an argument against (i.e., an

argument to p), agent /5, following the dialogue rule condition CaS2, will execute the question

move. Agent a receives the question message and, following the dialogue rule condition

CgSi, executes the justify move with the argument which support p (the existence of this

argument is guaranteed by initial dialogue rule condition Cini which allowed the agent to

start the dialogue). The agent â receives this new information and has two options: (i)

When the new information changes the acceptability of p to agent f3 (the agent has no

acceptable argument for p which has not yet been introduced in the dialogue), then the

agent, following the dialogue rule condition C^i, accepts p (executing the accept move).

The process continues as in the first case, where agent a receives the accept message and

closes the dialogue; (ii) Otherwise, even considering the new information received, agent [5

still has an argument for p which has not yet been introduced in the dialogue, then the agent,

following the dialogue rule condition C^, will execute a justify move. The agent a. receives

the justify message and has two options: (i) Agent a closes the dialogue, following the

dialogue rule condition C^s, because it has no acceptable argument to support p that has not

yet been introduced in the dialogue; (ii) The agent a introduces a new acceptable argument,

considering the new information, following the dialogue rule condition 0^4, support p. As

the knowledge bases of the agents are finite and the justify move cannot be repeated

with the same content, as formally defined in the semantic rule ExecActSndJustify in

Chapter 5 and in the dialogue rule conditions C.JS-2 and CJS4, eventually agent a will close

the dialogue, because it has no acceptable argument that has not yet been introduced in the

dialogue or agent 3 will accept p because it has no acceptable argument for p that has not

been introduced in the dialogue, and a will close the dialogue as in the first case.

Therefore, any argumentation-based dialogue following that protocol eventually terminates. □

The termination of a dialogue is an important and well-known property of protocols.

However, as described in [10], except the termination of each dialogue generated under those pro-

tocols, nothing is said on their quality. Therefore, we will also prove such properties demonstrating

that the dialogues following our protocol will always end with the best solution [ideal solution3 [10])

when it exists.

As described in [10], the ideal solution is the best solution in the general and is time-

independent. Considering our reasoning mechanism, the ideal solution is the result achieved when

the agents have ali information related to the subject (ali arguments to and against the subject).

This definition is characterised as integrative, where both sides are looking for solutions that are

:!The ideal solution is the best solution in general and is time-independent [10].

73

"good" for everyone [26]. "Ideal" is also called, following [26], the situation in which the agents

have complete information about the other agents, suggesting the integration of the theories of ali

agents into a single theory (the so-called aggregate argumentation systení). According to [26] this

integration of ali arguments (agent theories) allows a centralised reasoning mechanism to identify

the outcomes that are "good" for ali agents participating in the dialogue.

Our work differs from [26] because we do not have a centralised reasoning mechanism,

but with the exchange of ali arguments related to the subject the agents can, rationally, reach the

same conclusion of a centralised reasoning mechanism.

Deíinítion 11 (Ideal Solution). The ideal solution is the conclusion resulting from the ali information

related to subject (arguments and preferences regarding subjectj. The conclusion is whether the

subject is acceptable, it is not acceptable, or it is not possible to determine the acceptability of the

subject (i.e., the ideal solution does not exist).

As in the real life, arguing does not necessarily lead to an agreement, it may be the

case that two agents will exchange arguments and at the end the dialogue fail to agree about

the subject [10]. This disagreement is caused by different preferences between the agents, but

even with the disagreement, in the worst case, argumentation-based dialogue improves the choices

made by each agent (using the additional information exchanged). Therefore, as described in [10],

argumentation may improve the quality of the outcome but never decrease it.

To prove that the agents, using our protocol, strategies, and reasoning mechanism defined

will reach the ideal solution (when it exists), we will consider the union of the knowledge bases (as

in [26]).

Theorem 2 (Ideal Solution). The ideal solution for a dialogue with subject p is for both agents to agree

about p when (KB„ U KB^) |= p and for both agents to conclude p if (KB(> U KB^) |= p; otherwise, the

ideal solution will not exist (when neither (KBq, U KBg) |= p nor (KBa U KBg) \= p hold).

Proof. First, we will prove that the ideal solution p is agreed upon by both agents when (KBa U

KBa) H P- As p is always acceptable to the proponent (we refer to the proponent in this proof as

a), the cases where KBq, |= p and KB^ |= p, and the case where KBq |= p and KBa H P ^ not exist.

Therefore, the possible cases are limited to two:

1. KBq |= p and KBa H P- In this case the proponent agent will start the dialogue asserting p

(using the assert move) and the other agent will execute the accept move (the other agent

does not have an acceptable argument against, as for both agents KB [= p), hence terminating

the dialogue with both agents agreeing on p, i.e., the ideal solution in this case. Note that,

as we are assuming in this part of the proof that (KBq U KB^) |= p, agreement on p is indeed

the ideal solution.

2. KBq [= p and KB/? |= p. In this case the agent identified by a starts the dialogue using the

move assert, the agent identified by 3 will execute the move question because, as yet, p is

74

acceptable to it. The agent a does a justify move; if this argument changes the conclusion

of agent /?, the agent accepts the subject (executing the move accept). Otherwise, agent

[3 will send its arguments for not accepting the subject (doing another justify move). The

agents will exchange arguments until a new argument from a changes the conclusion of ft

and agent 3 accepts the subject of the dialogue (executing the accept move), given that

(KBq, U KB;v) |= p. It follows that the ideal solution p is reached.

The part of the proof for when (KBa U KB.g) |= p is similar to the one above. The difference

is that, in case two (i.e., when agents initially disagree), at a certain moment agent 3 will introduce

an argument (using the justify move) where the new information will change the acceptability of

the subject to agent a, and it will then close the dialogue. Given that (KBq, U KB^) |= p, it follows

that p, the ideal solution, is reached through the dialogue following our protocol.

I the last case, where the ideal solution does not exist, the agents will exchange arguments

with the justify move and the dialogue will terminate in disagreement. As before, the agents

initially disagree about the subject, at a certain moment agent a will introduce an argument

(using the justify move) where the new information will not make the subject acceptable for

agent 3- Agent 3 will justify its position executing a justify move hence not accepting the

subject, when the new information does not change the acceptability of subject for agent a.

At this moment, if agent a does not satisfy the dialogue mie condition Cjs:i, i.e., it has no new

argument which supports the subject, the agent will close the dialogue and the dialogue will

ends in disagreement. Otherwise, a new round of justify moves will occur. Given that neither

(KBq U KB^) |= p nor (KBq U KB^) |= p hold, i.e., the ideal solution does not exist, the dialogue ends

with the agents disagreeing about the subject. □

An important point to be noticed, in the proof above, is that the non existence of the ideal

solution is consequence of agent's preferences, as described before. When individual preferences are

considered, an agent's own argument will be acceptable even with the argument against presented

by the other agent. For example, agent a executes the justify move, introducing an argument to

p in the dialogue, agent 3 receives this information and uses the justify move because it has an

argument to p, agent a receives this information but its own argument is still acceptable. At this

moment the agent detects that there exist different preferences between the agents and, following

the dialogue rule condition CJ43, the agent closes the dialogue.

75

7. APPLICATION DOMAIN

In this Chapter we describe the application (demo) developed in the SeaTeaMS Project

(Semantic and Multi-Agent Technologies for Group Interaction). The SeaTeaMS Project has as ob-

jective the research and development of a programming framework which allows the development

of complex applications that integrate multiple autonomous entities, both agents and humans. The

applications that can be developed using the proposed framework have the purpose of coordinating

the execution of tasks by members of the group. For example, when a member will fail to execute

one of their tasks, the system can try to reallocate this task to another member of the group.

7.1 Application

The application developed to demonstrate the effectiveness of the framework is in the

context of assisted-living. The application provides functionalities such as activity recognition and

task reallocation among agents representing human users through the use of planning, agent and

semantic technologies. More specifically, this multi-agent application is designed to provide the

following functionalities for its users:

• allocate tasks and commitments considering the context of patient care;

• detect if the person responsible for the patient is following their appointments/commitments;

• detect problems which may prevent someone responsible for the patient to do their tasks;

• reallocate tasks among users if required (using an argumentation-based approach);

• send reminders for users to monitor the patient schedule.

Among these characteristics of the application, we focus on the task reallocation. In

particular, we demonstrate agents using information provided by an ontology to engage in

argumentation-based dialogues about task reallocation. We only brieíly explain the remainder

of the application to provide an overall understanding of the application as a whole. Consider-

ing this scenario/application, a member of the project has created an ontology [79] to represent

collaborative tasks that correspond to caring for an elderly person and the interactions with the

members of the group of people who care for the elderly person (the members of the extended

family of that person plus some professional carers). The ontology allows agents to reason and

query information about the typical tasks and commitments of that group of people.

In the next Sections we describe some aspects of the application which are necessary in

our work. In Section 7.2 we describe how the agents access the information from the ontology

and then, in Section 7.3, we describe a little of the ontology developed in the project. Next,

in Section 7.4, we describe how the agents use the information provided by the ontology in a

decision-making process to argue about the task reallocation.

76

7.2 Accessing Ontologícal Information

To provide access to ontological information (i.e., domain-specific knowledge developed

by a knowledge engineer) in a MAS, it has been developed in the context of the project a

CArtAgO [75] artifact. CArtAgO is a platform that provides MAS with support to the notion

of artifacts. Artifacts are function-oriented computational abstractions which provide services that

agents can exploit to support their activities [74], An artifact makes its functionalities available and

exploitable by agents through a set of operations and observable properties. Operations represent

computational processes executed inside artifacts, which can be triggered by agents or other arti-

facts. Observable properties are artifact attributes that are directly mapped into the belief base of

the agents that observe (i.e., focus on) an artifact.

The artifact developed uses the OWL API, which is an open source Java API [31], for

creating, querying, manipulating, and serialising ontologies coded in OWL (Web Ontology Lan-

guage). These functionalities are made available to the agents through a set of operations such

as load the ontology, add instances and add concepts, for example. In our work, we make use the

following operations in particular:

• isInstanceOf(instance, concept)

- checks whether the instance belongs to the given concept, returning a boolean value.

• getlnstances(instance, property)

- returns the instances (Set<OWLNamedIndividual>) that related by the given instance

through property.

As a design and implementation decision, each instance of the proposed artifact can load

and encapsulate exactly one OWL ontology. However, each workspace can have any number of

instances of this artifact, where each instance makes reference to an ontology, and the agents in the

same workspace of the artifacts can observe and manipulate any number of such artifacts. Thus,

each MAS using this type of artifact can handle multiple ontologies, ali shared by the agents that

enter the workspace where those artifact instances are located.

Using an artifact to access information from ontologies is an alternative to the approach

of representing ali the knowledge in platform-speciúc mechanisms such as the belief base of an

agent, for example. However, agents can still use their regular knowledge representation approach

simultaneously with the information provided by the ontology (or completely replace the native

approach to knowledge representation, if necessary).

77

7.3 Task Ontology

An ontology was developed to represent task-related knowledge, such as location, tem-

poral characteristics, and execution properties. It gives the Information of who is involved in each

type of task execution, where the tasks normally take place, when they happen, what changes in

the environment they cause, what is required for their execution, and so on. Agents can use this

information to make decisions at various moments, for example during the execution of plans

to achieve some goal and in the reallocation of tasks among agents. Logical rules and semantic

reasoners may be applied over the ontology to infer new knowledge about tasks. Such knowledge

may be required by agent programs to implement task reasoning mechanisms, such as techniques

for task recognition, allocation, and negotiation.

In the ontology, the Task concept is specialised in various dimensions to address the task

representation needs for collaborative groups. For example, in terms of its complexity, a Task may be

classihed as SimpleTask or CompositeTask (if it is divided into other tasks through the has-subtask

property). Also, a Task can be reallocatable between members of the group and/or temporally,

as addressed by the ReallocatableTask concept, that subsumes the ReallocatableResponsible and

ReallocatableTime subconcepts. In our approach, a Task can be reallocated in two occasions: (/)

when a person cannot execute it at the scheduled time — in this case, a ReallocatableTime task

will be reallocated to a different time, but it will be assigned to the same person; and [ii] when a

ReallocatableResponsible task cannot be reassigned to the same person at a different time — in this

case, the Task has a property called can-be-reallocated-to to identify the persons who can execute it.

Information about Persons may be used to deüne characteristics that people must have in order to

perform certain tasks, such as AdultTask, that represents tasks that only adults can perform (e.g.,

tasks that involve driving a car). Also, when a Task is assigned to a Person who needs to be assisted

by another, it is classihed as an AssistedTask.

In OWL, a class C can be declared with certain conditions (i.e., every instance of C has

to satisfy those restrictions, and/or every instance that satishes those restrictions can be inferred

as belonging to C). OWL class restrictions [12] can be dehned by elements such as cardinality and

logic restrictions (e.g., the universal and existential quantifiers). In our ontology, the concepts were

dehned based on a series of restrictions and other logical characteristics, e.g. the CompositeTask

concept is equivalent to a task that has sub-tasks, and a SimpleTask is equivalent to a task (a

subclass of Task) that is not a CompositeTask (i.e., it has no sub-tasks). These restrictions allow task

recognition to be conducted by means of the classihcation capability by semantic reasoners.

7.4 Arguing About Task Reallocation

Using the information provided by the ontology artifact in their decision-making process,

the agents decide if a particular task can be transferred to another time slot, as well as which

78

persons (members of the group using the application) can execute this particular task if it cannot

be postponed. In the latter case, it is argued with the group members the reallocation of the task to

one of them. As previously described, the scenario corresponds to a MAS designed to monitor and

support the execution of tasks in an assisted living context. The agents have the goal of helping the

users to conclude the tasks for which they are responsible. For example, if an agent detects a failure

that could negatively impact the completion of a task, it can try to hnd an alternative manner to

conclude that task (transferring temporally or transferring to another person who would be able

to execute it successfully). The knowledge of this domain is described in an ontology designed by

a knowledge engineer, based on the task ontology, and can be reused in other applications. In

some cases it is even possible that the application [i.e., the MAS) can be used in another domain

by simply changing the domain ontology.

7.4.1 Decision-Making for Task Reallocation Using Ontological Information

Decision-making can be seen as a process whereby an agent looks for the information

available to it in order to decide which course of action to take [40], In this section, we describe

our agent decision-making process for task reallocation, which uses information provided by the

ontology described earlier in this paper. It is important to note that the tasks are assigned to users

and not to agents, therefore the agents argue about the reallocation on behalf of their users, using

the information available to them.

The process of task reallocation starts when the system detects that a user could not

execute a task because of a particular problem (e.g., the user is late, or the system recognises that

the user will not be able to execute the task because another more important task/commitment

was created with conflicting times, etc.). Then the system generates an event which is treated by

the agent responsible for helping that particular user. The decision-making process proceeds as

follows:

• Step 1; The user agent checks if the task is temporally reallocatable (this is domain-specihc

knowledge and is provided by the ontology, accessed by the agent using the artifact). If that

is the case, the agent tries to reallocate the task to another time slot, and the decision-making

process goes to Step 2. In case the task is not temporally reallocatable, the user agent tries

to reallocate it to another user of the application — the process goes to Step 4.

• Step 2: The user agent starts a dialogue with the agents representing those involved in the

task suggesting that the task be transferred to another time slot (following the protocol for

argumentation-based dialogue defined in Chapter 6). There are three possible results to this

dialogue: (i) the dialogue ends with agreement about transferring the task to another time slot

— the decision-making process goes to Step 3; (ii) the dialogue ends with agreement about

'In our domain, generally, the task has two people involved, the person responsible for the task (who will usually
try to reallocate it if needed) and the elderly family member who requires constant care.

79

not transferring the task to another time slot; and (iii) the agents cannot reach an agreement

about postponing the task. In both the last two cases the decision-making process goes to

Step 4.

• Step 3: The user agent informs the user that the task has been transferred to another time

slot. Further, the elder user (or other participants of the dialogue) are also informed about

the reallocation. The decision-making process ends.

• Step 4: The user agent checks which other members of the group of users are allowed to

execute the task (this information is also provided by the ontology). If the list of members that

can execute the task is empty, then the decision-making process goes to Step 7; otherwise, it

goes to Step 5.

• Step 5: The user agent selects one member of the list of members who can execute the

task and starts a dialogue with the agent of that user, suggesting that the selected member

executes the task instead (following our argumentation-based dialogue protocol). As before,

there are three possible results to this dialogue: (i) the dialogue ends with agreement about

the selected member executing the task — the process goes to Step 6; (ii) the dialogue ends

with agreement that the selected member cannot execute the task either; and (iii) the agents

cannot reach an agreement about the selected member executing or not the task. In the last

two cases, that selected member is removed from the local list of members that can be asked

to execute the task and the process goes back to the beginning of Step 5 if the list is not

empty, otherwise it goes to Step 7.

• Step 6: The user agent informs the user about the suggestion of the system (to reallocate

the task to that selected person) and waits for coníirmation from the other member. If the

other member accepts the suggestion (coníirms that they will execute the task), the user is

informed and the process ends. If the other member rejects the suggestion, that member is

removed of the local list of the members who can be asked to execute the task, the user is

informed, and the decision-making process goes to Step 5.

• Step 7: The user agent informs the user that the task can be neither postponed nor trans-

ferred to another member of the group. The user will have to personally make the necessary

decisions and negotiations using the provided information. The process ends.

81

8. EVALUATION

To evaluate our work, we implemented three use cases of the SeaTeaMS Project that we

will describe in this chapter, corresponding to the scenario implemented as a Demo application

that resulted from the project. We will consider three cases where the task reallocation is started

by the system. To do so, we start describing the scenario and a typical day (where nothing fails)

in the routine of elder person assisted by his family, then we describe the three cases where the

system tries to reallocate the task because it identiíies failure in their fullilment.

8.1 Scenario Description

'João is an elder man (76 years old) who suffers from severe arthritis and has early signs

of dementia. He has trouble walking (he sometimes falls over if left to walk alone), cannot lift

heavy weights or perform fine motor actions with his hands, and should not be tmsted to take

medicine nor leave his home without being accompanied. He lives by himself in his own house.

João has two sons, Paulo and Stefano. Paulo lives next door with his wife Jane and two children,

Pedro (12) and Maria (14). Stefano lives in the same city, but 10 km away from João's house. João

has some professional help, in particular two professional carers who collaborate with the family

to take care of him. There is a day carer and a night carer with some time in between the end of

the day shift and the start of the night shift. João has to take various different medicines 4 times

a day, and has physiotherapy sessions in general three times a week. The sessions are ílexible and

can be postponed to the next day, unless João is in a particularly bad day, in which case he must

be taken to physiotherapy as it alleviates the most acute pain from which he suffers occasionally.

Paulo is assigned as responsible for takingjoão to the physiotherapy clinic (if he is not available

for that in a particular day, another adult member of the group with a driving license and a car

must take over the task)."

The following sequence exemplifies a typical day in the life of João and his extended

family:

1. João wakes up;

2. He takes a bath, with the help of the day carer;

3. The day carer prepares breakfast;

4. After breakfast, João has to take his pills (the family and carers need to be notified if it

appears that João did not take the required medicine at the appropriate time);

5. João and the day carer go for a walk in a park;

6. When they get home, João watches TV while the day carer cleans the house and prepares

lunch;

82

7. After lunch, João has to take a second set of pills;

8. He takes a nap after lunch, in the meantime the day carer loads the dishwasher;

9. At 15;00h João has to go to physiotherapy with Paulo;

10. When João gets back home, he has a snack, and the day carer finishes his shift;

11. Just before the day carer leaves, Pedro comes home from school and spends time with his

grandfather, playing a memory game with him on the smart TV;

12. João has dinner with Paulo (who is the responsible for providing the dinner) and his family;

13. After dinner, João has to take more pills;

14. Between dinner and bedtime, João spends time with his family, and the night carer arrives;

15. Before going to bed, João takes yet another set of pills;

16. João goes to sleep;

17. The night carer loads the washer-drier and watches over João's sleep (in case he needs to go

to the toilet, for example); the night carer only leaves when the day carer arrives.

The three cases presented bellow describe situations in which the normal daily schedule

could not be met due to changes in the individual schedules of the people related to the scenario.

Case 1

As a first example of a problem with the usual schedule, consider that Pedro has to stay

longer at school to do a school project with his colleagues. This means that he will not be at

home to look for João (grandpa) during the interval between the day and night carers' shifts. The

application recognises this because:

(a) Pedro puts the new appointment in his Google calendar, or;

(b) Pedro is still at school when he should have left to go home, as recognised by the GPS in his

Galaxy S5 phone.

In this case, the application reminds Pedro of his obligation and starts to check (through

negotiation between the agents that represent the family members) if another member of the family

can perform this task instead. As the application detects that Maria (the sister) is able to perform

the task, it asks Pedro if he wants it to ask her to do it. If Pedro confirais the proposed course of

action, the application asks Maria to perform the task. If she accepts it, the task is reallocated.

Otherwise, there is a conflict. In both cases (reallocation or conflict), Paulo and/or Jane (whoever

is the assigned responsible) are notified so as to become aware of the reallocation or to resolve the

conflict.

83

Case 2

Paulo is supposed to take João to physiotherapy that particular date but his boss has

just added a meeting with him at the time he should be leaving the oflice to go home to pick

up João. Paulo's agent concludes that Paulo will postpone the task since physiotherapy sessions

have a flexible schedule and normally can be postponed. The agent confirais with Paulo and tells

João's agent that Paulo cannot make it so the physiotherapy will be left for tomorrow. João's agent

says that this is not acceptable because it noted signs that João was in more pain than usual that

particular day (for example, there was a note from the carer saying that extra painkillers were

administered). Paulo's agent then informs him that it will try to reallocate the task to Jane (the

children are not considered for this task as only adults can perform it). Jane's agent questions the

request but when informed about João being in too much pain the agent proposes to reallocate

Jane's next appointment and asks if she agrees to take João to physiotherapy.

Case 3

In the third case, Paulo gets stuck in the traífic on his way home from work and cannot

cook dinner for João at the usual time. This situation is recognised by the application if it verifies

that Paulo is not moving or it has not reached a specific point at a predefined time stamp (which

can be understood as moving too slowly).

Similar to the previous case, in this situation the agent observing Paulo initially warns him

about the failure in the plan, then it tries to negotiate the task with other members of the family.

As the children are not allowed to cook and Paulo's wife is away in business, the application asks

Paulo if he wants to ask Stefano to perform the task (as it was identified that he can do it). If Paulo

accepts the proposal, the application asks Stefano if he can take care of João and the children

and provide the dinner. If Stefano accepts the proposal the task is reallocated, otherwise, there is

no known alternative solution. In both cases Paulo (which is the assigned responsible) receives a

notification in order to become aware of the reallocation or that he will need to resolve the problem

himself.

8.2 Implementation

We implemented the techniques described in Chapters 4, 5 and 6 in a modular way, in

order to make them independent of one another. The argumentation-based reasoning mechanism

and the performative semantics implementation are independent of application. The protocol, the

decision-making process and the strategy are implemented specifically to our scenario/application

(but they can be used to similar domains/applications).

• The reasoning mechanism was implemented using the adaptation of d-Prolog, as described

before; it is an AgentSpeak file that can be included in any agent. When that file is included,

the agents can use the corresponding reasoning.

84

• The semantics presented in the Chapter 5 has been implemented extending the internai

action .send (for sending messages) and a .asl file (which can be included as the previous

one) with plans similar to the KQML plans available with Jason. That AgentSpeak file is used

to treat the receiving of messages related to the performatives to which we gave semantics.

The corresponding dialogue system has been implemented using a CArtAgO artifact [75] to

coordinate agent interactions.

• The protocol is used to restrict the next move of the agents, and the strategy of the agents

was implemented as AgentSpeak plans. The strategy for the agents can be rewritten or

replaced easily.

Others AgentSpeak üles are used to define the specific rules of the domain (which repre-

sent inferences based on the application domain) and plans that are specific for the application.

8.3 Solution for Scenarío Case 1

As described above, Pedro either puts a new appointment in his Calendar, or remains at

school when he should have left to go home. The application recognises the failure in routine and,

following the decision-making process described in Section 7.4.1, starts the argumentation-based

dialogue. The process is the following;

Following the decision-making process the Pedro's agent checks the ontology to verify if

the task can be postponed using the artifact which returns false, because the task to keep João

company cannot be postponed.

After checking if the task can be postponed and in case the result is FALSE, Pedro's agent

checks which users can execute the task (described in Section 7.2). In our example, the users that

can execute the task are "Pedro" and "Maria". Then, Pedro's agent starts a dialogue with Maria's

agent using the assert move, suggesting that Maria executes the task. Maria's agent receives

the assert message and accepts it, because it does not have an acceptable argument against.

Maria's agent queries if Maria really can execute (in this case Maria says yes) and the users are

informed. If Maria's agent had an argument against, the agent would perform a question move

and the process would continue until Maria's agent accepts to execute the task, or Pedro's agent is

convinced that Maria cannot execute the task either.

8.4 Solution for Scenarío Case 2

In Case 2, Paulo has a new commitment and he will not be able to take João to physio-

therapy (as described above). Then Paulo's agent will try to reallocate the task. First Paulo's agent

checks if the task can be postponed, in this case the task belongs to the concept ReallocatableTime

in the ontology. With this information Paulo's agent initiates a dialogue with João agent, asserting

85

that Paulo cannot execute the task. João's agent receives the message and executes a question

move, because the agent has an argument against, with Information that João is in severe pain,

and this implies that someone needs to take João to the physiotherapy.

Paulo's agent receives the question message and provides the justiíication using the

justify move with the argument which allowed the initial assert, more speciíically: that a phys-

iotherapy appointment can be transferred. João's agent receives this message, but this information

does not change its conclusion, thenJoão's agent executes the justify move with the strict mie

that João is in severe pain, and this implies that someone needs to take João to the physiother-

apy. Paulo's agent receives this new information and concludes that someone needs to take João

to physiotherapy. Paulo's agent closes the dialogue and checks in the ontology (using the same

artifact operation described in the previous case) to get the information of who can execute the

task. In this case "Paulo", 'Jane" and "Stefano" can execute this task (because it is a task that

only adults can do). Paulo's agent starts a new dialogue with Jane's agent using the assert move,

suggesting that Jane executes the task.

Jane's agent receives the assert message and executes a question move, because it

knows that the task can be postponed. Paulo's agent sends the justification (argument) that Jane

needs to execute the task because João is in pain. Jane's agent receives this new information and

accepts to execute the task1.

8.5 Solution for Scenarío Case 3

In Case 3, Paulo gets stuck in traffic on his way home from work and cannot cook dinner

for João at the usual time. Paulo's agent checks if the task can be postponed, in this case it cannot,

then Paulo's agent checks who can execute the task, in this case "Paulo", 'Jane" and "Stefano"

can execute. Paulo's agent starts a dialogue with Jane's agent using the assert move, suggesting

that Jane executes the task. Jane's agent has an argument against, because Jane has another

appointment at that time, and executes the question move. Paulo's agent executes the justify

move, stating that Paulo will be home late. The new information does not change the conclusion

of Jane's agent, and it executes the justify move, arguing that Jane has a meeting and the two

tasks overlap.

The new information does not change the conclusion of Paulo's agent, but the agent does

not have any further arguments, so the agent closes the dialogue and starts a new dialogue with

Stefano's agent (the next in the list) using the assert move, suggesting Stefano to prepare João's

dinner. Stefano's agent receives this message and accepts to execute the task, because it does not

have an argument against2.

'Jane^ agent, as always, quedes Jane to have the confirmation.
2Stefano's agent, as always, quedes Stefano to have the confirmation.

86

8.6 Final Remarks About the Solutions

Ali the solutions follow the decision-making process and the protocol presented in the

previous Chapter. As the implementation refers to an application, we have some interactions with

the users of the application before the agent makes some decisions. For example, (i) when an agent

perceives that the user will not be able to execute the task (the user has another appointment or is

late) the agent always queries the user if they want to try to reallocate the task; (ii) when an agent

accepts an argument for its user execute a task, the agent queries the user, if the user objects to

the reallocation, the agent that is trying to reallocate the task starts a dialogue with the next agent

of the list of agents that can execute the task. If the list is empty, the agent informs its user that it

cannot do anything else to help reallocate the task and that the users need to solve the problem

by themselves.

87

9. CONCLUSION

In this dissertation we presented our research on argumentation in multi-agent systems.

We have contributed in the direction of practical argumentation frameworks in an agent-oriented

programming language. Our work has been implemented in the SeaTeaMS Project, as described

before.

The main contributions of our work are:

1. the adaptation of defeasible-Prolog (d-Proiog) for the Jason Platform as a reasoning mecha-

nism, which allows argumentation-based reasoning in agents developed in this language (this

work has been published in [56]);

2. the operational semantics formalisation and implementation of performatives/speech-acts in

an agent-oriented programming language, which can be used to implement argumentation-

based dialogues for other agent-oriented languages based on the BDI architecture (this work

has been partially published in AAMAS conference [55]); and

3. the definition and formalisation of an argumentation-based protocol as a dialogue game,

considering the agents' strategy.

Further, we have demonstrated these techniques in the practical implementations of real scenarios.

Towards the practical use of the techniques developed in this work, we have participated in the

implementation of an ontology artifact to access information from a domain-specific ontology and

a decision-making process, which uses the result of queries in this ontology.

As future work we intend to define a more general protocol for argumentation-based

dialogues, allowing more complex interactions. We also intend to explore the argumentation

schemes íield, which has been claimed as a promising field of research [91], Our intention in

exploring argumentation schemes follows the formalisation of argumentation schemes related to

the organisation in a multi-agent system, where agents can use these pattern of reasoning in

argumentation-based reasoning and argumentation-based dialogue (as in this work).

89

BIBLIOGRAPHY

tli
[1] Amgoud, L. "A formal framework for handling conflicting desires." In: 7 European

Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Nielsen,

T. D.; Zhang, N. L. (Editors), 2003, pp. 552-563.

[2] Amgoud, L.; Cayrol, C. "A reasoning model based on the production of acceptable arguments",

Annals of Mathematics and Artificial Intelligence, vol. 34-1-3, Maio 2002, pp. 197-215.

[3] Amgoud, L.; Dimopoulos, Y.; Moraitis, R "A uniíied and general framework for
tV»

argumentation-based negotiation". In: 6 international joint conference on Autonomous

agents and multiagent systems, 2007, pp. 158:1-158:8.

[4] Amgoud, L.; Kaci, S. "On the generation of bipolar goals in argumentation-based negotiation."

In: 1 International Workshop on Argumentation in Multi-Agent Systems (ArgMAS), Rahwan,

L; Moraitis, R; Reed, C. (Editors), 2004, pp. 192-207.

tVi
[5] Amgoud, L.; Maudet, N.; Parsons, S. "Modeling dialogues using argumentation." In: 4

International Conference on MultiAgent Systems, 2000, pp. 31-38.

[6] Amgoud, L.; Maudet, N.; Parsons, S. "An argumentation-based semantics for agent
tVi

communication languages". In; 15 European Conference on Artificial Intelligence (ECAI),

2002, pp. 38-42.

th
[7] Amgoud, L.; Parsons, S.; Maudet, N. "Arguments, dialogue, and negotiation". In: 14

European Conference on Artificial Intelligence (ECAI), 2000, pp. 338-342.

[8] Amgoud, L.; Prade, H. "Generation and evaluation of different types of arguments
tVi

in negotiation." In: 10 International Workshop on Non-Monotonic Reasoning (NMR),

Delgrande, J. R; Schaub, T. (Editors), 2004, pp. 10-15.

[9] Amgoud, L.; Prade, H. "Formal handling of threats and rewards in a negotiation dialogue." In;
tVi

2 International Workshop on Argumentation in Multi-Agent Systems (ArgMAS), Parsons, S.;

Maudet, N.; Moraitis, R; Rahwan, I. (Editors), 2005, pp. 88-103.

[10] Amgoud, L.; Vesic, S. "A formal analysis of the role of argumentation in negotiation dialogues",

Journal of Logic and Computation, vol. 22-5, Out 2012, pp. 957-978.

[11] Atkinson, K.; Bench-Capon, T. "Practical reasoning as presumptive argumentation using

action based alternating transition systems", Artif. Intell., vol. 171-10-15, jul 2007, pp. 855-

874.

[12] Bechhofer, S.; van Harmelen, E; Hendler, J.; Horrocks, L; McGuinness, D. L.; Patel-Schneider,

P. E; Stein, L. A. "OWL Web Ontology Language Reference", Technical Report, W3C, 2004,

62p.

90

[13] Bedi, R; Vashisth, P. "Extending speech-act based communication to enable argumentation

in cognitive agents". In: Advances in Computing, Communication and Control, Berlin: Springer,

2011, pp. 25-40.

[14] Bentahar, J.; Alam, R.; Maamar, Z. "An argumentation-based protocol for conílict resolution".

In: Workshop on Knowledge Representation for Agents and MultiAgent Systems (KRAMAS

2008), 2008, pp. 19-35.

[15] Berariu, T. "An argumentation framework for bdi agents". In: Intelligent Distributed Computing

VII, Zavoral, F.; Jung, J. J.; Badica, C. (Editors), Springer International Publishing, 2014, Studies

in Computational Intelligence, vol. 511, pp. 343-354.

[16] Bondarenko, A.; Dung, P. M.; Kowalski, R. A.; Toni, F. "An abstract, argumentation-theoretic

approach to default reasoning.", Artif. Intell., vol. 93, Nov 1997, pp. 63-101.

[17] Bordini, R. H.; Dastani, M.; Dix, J.; Seghrouchni, A. E. F. "Multi-Agent Programming;

Languages, Tools and Applications". Springer Publishing Company, Incorporated, 2009, Ist

ed., 389p.

[18] Bordini, R. H.; Hübner, J. E; Wooldridge, M. "Programming Multi-Agent Systems in

AgentSpeak usingjason (Wiley Series in Agent Technology)". John Wiley & Sons, 2007, 292p.

[19] Bordini, R. H.; Moreira, A. F. "Proving BDI properties of agent-oriented programming

languages: The asymmetry thesis principies in AgentSpeak(L)", Annals of Mathematics and

Artificial Intelligence, vol. 42-1-3, Maio 2004, pp. 197-226.

[20] Bracciali, A.; Mancarella, R; Stathis, K.; Toni, F. "On modelling declaratively multiagent

systems". In: Declarative Agent Languages and Technologies (DALT 2004), 2005, pp. 53-68.

[21] Caminada, M. "On the issue of reinstatement in argumentation". In; Logics in artificial

intelligence, Springer, 2006, pp. 111-123.

[22] Costantini, S.; Tocchio, A. "A dialogue games framework for the operational semantics of
tVi

logic agent-oriented languages". In: 11 International Conference on Computational Logic in

Multi-agent Systems, 2010, pp. 238-255.

[23] Dignum, F; Dunin-Keplicz, B.; Verbrugge, R. "Agent theory for team formation by dialogue".

In: Intelligent Agents VII Agent Theories Architectures and Languages, Springer, 2001, pp. 150-

166.

[24] Dignum, F; Dunin-Keplicz, B.; Verbrugge, R. "Creating collective intention through dialogue",

LogicJournal ofIGPL, vol. 9-2, Jun 2001, pp. 289-304.

[25] Dimopoulos, Y.; Moraitis, P. "Advances in argumentation based negotiation". Bentham Science

Publishers, 2014, chap. 4, Negotiation and Argumentation in Multi-Agent Systems, pp. 82-125.

91

[26] Dimopoulos, Y.; Moraitis, R; Amgoud, L. "Characterizing the outcomes of argumentation-

based integrative negotiation", IEEE/ WIC/ACM InternationalConference on Web Intelligence and

Intelligent Agent Technology, vol. 2, Dez 2008, pp. 456-460.

[27] Dung, P. M. "On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games", Artificial Intelligence, vol. 77, Nov 1995,

pp. 321-357.

[28] FIRA, T. "Fipa communicative act library specification", Foundation for Intelligent Physical

Agents, http://www.fipa.org, 2008.

[29] Governatori, G.; Maher, M. J.; Antoniou, G.; Billington, D. "Argumentation semantics for

defeasible logic.",/. Log. Comput., vol. 14-5, Jul 2004, pp. 675-702.

[30] Hamblin, C. L. "Fallacies". Methuen, London, UK, 1970, 326p.

[31] Horridge, M.; Bechhofer, S. "The OWL ARI: A Java ARI for OWL ontologies", Semantic Web,

vol. 2-1, jan 2011, pp. 11-21.

[32] Hulstijn, J.; van der Torre, L. "Combining goal generation and planning in an argumentation
tV»

framework". In: 10 International Workshop on Non-Monotonic Reasoning (NMR), 2004, pp.

212-218.

[33] Hussain, A.; Toni, F. "On the benefits of argumentation for negotiation-preliminary version".

In: 6^ European workshop on multi-agent systems (EUMAS-2008), 2008, pp. 1-21.

[34] Jennings, N. R.; Faratin, R; Lomuscio, A. R.; Parsons, S.; Wooldridge, M. J.; Sierra, C.

"Automated negotiation; prospects, methods and challenges", Group Decision and Negotiation,

vol. 10-2, Mar 2001, pp. 199-215.

[35] Jennings, N. R.; Parsons, S.; Noriega, R; Sierra, C. "On argumentation-based negotiation". In:

Int. Workshop on Multi-Agent Systems, 1998, pp. 1-8.

[36] Jennings, N. R.; Wooldridge, M. "On agent-based software engineering", Artificial Intelligence,

vol. 117, Nov 2000, pp. 277-296.

[37] Kakas, A.; Moraitis, P. "Argumentation based decision making for autonomous agents". In;
tVi

2 International Joint Conference on Autonomous Agents and Multiagent Systems, 2003, pp.

883-890.

tll
[38] Kakas, A.; Moraitis, P. "Adaptive agent negotiation via argumentation". In: 5 International

Joint Conference on Autonomous Agents and Multiagent Systems, 2006, pp. 384-391.

[39] Kakas, A. C.; Moraitis, P. "Argumentative agent deliberation, roles and context.", Electr. Notes

Theor. Comput. Sei., vol. 70-5, Jun 2002, pp. 39-53.

92

[40] Kaufman, M. "Local decision-making in multi-agent systems", Ph.D. Thesis, Oxford

University, 2010, 185p.

[41] Kraus, S.; Sycara, K.; Evenchik, A. "Reaching agreements through argumentation; A logical

model and implementation", Artificial Intelligence, vol. 104, Nov 1998, pp. 1-69.

[42] Maudet, N.; Parsons, S.; Rahwan, 1. "Argumentation in multi-agent systems; Context and
tVi

recent developments." In; 3 International Workshop on Argumentation in Multi-Agent

Systems, Maudet, N.; Parsons, S.; Rahwan, 1. (Editors), 2006, pp. 1-16.

[43] Mayfield, J.; Labrou, Y.; Finin, T. W. "Evaluation of kqml as an agent communication

language." In: Agent Theories, Architectures, and Languages (ATAL), Wooldridge, M.; Müller,

J. P; Tambe, M. (Editors), 1995, pp. 347-360.

[44] Mcburney, R; Parsons, S. "Games that agents play: A formal framework for dialogues between

autonomous agents", yoMrwa/ of Logic, Language and Information, vol. 11, Maio 2001, pp. 1-22.

[45] Mcburney, R; Parsons, S. "Dialogue games in multi-agent systems", Informal Logic, vol. 22,

Jan 2002, pp. 1-8.

[46] McBurney, R; Parsons, S. "Dialogue game protocols". In; Communication in Multiagent Systems,

Springer, 2003, pp. 269-283.

[47] McBurney, P; Parsons, S. "Locutions for argumentation in agent interaction protocols." In:

Agent Communication, van Eijk, R. M.; Huget, M.-R; Dignum, F. (Editors), 2004, pp. 209-

225.

[48] McBurney, R; Parsons, S. "Syntax and semantics of the fatio argumentation protocol". In: 3

International Joint Conference on Autonomous Agents and Multi-agent Systems, 2004, pp.

1-10.

[49] Mcburney, R; Van Eijk, R. M.; Parsons, S.; Amgoud, L. "A dialogue game protocol for agent

purchase negotiations", Autonomous Agents and Multi-Agent Systems, vol. 7-3, Fev 2003, pp.

235-273.

[50] Nute, D. "Defeasible Prolog". Artificial Intelligence Programs, University of Geórgia, 1993, 9p.

[51] Nute, D. "Handbook of logic in artificial intelligence and logic programming". In: Handbook

oflogic in artificial intelligence and logic programming, Gabbay, D. M.; Hogger, C. J.; Robinson,

J. A. (Editors), New York, NY, USA; Oxford University Press, Inc., 1994, chap. Defeasible logic,

pp. 353-395.

[52] Nute, D. "Defeasible logic". In; Handbook of Logic in Artificial Intelligence and Logic

Programming, 2001, pp. 353-395.

93

[53] Pan, S.; Larson, K.; Rahwan, I. "Argumentation mechanism design for preferred semantics."
tVi

In: 3 International Conference on Computational Models of Argument, Baroni, R; Cerutti,

F.; Giacomin, M.; Simari, G. R. (Editors), 2010, pp. 403-414.

[54] Panisson, A. R.; Farias, G.; Freitas, A.; Meneguzzi, R; Vieira, R.; Bordini, R. H. "Planning
th

Interactions for Agents in Argumentation-Based Negotiation". In: 11 International Workshop

on Argumentation in Multiagent Systems (ArgMAS), 2014, pp. 1-15.

[55] Panisson, A. R.; Meneguzzi, R; Fagundes, M.; Vieira, R.; Bordini, R. H. "Formal semantics of

speech acts for argumentative dialogues". In: 13^ International Conference on Autonomous

Agents and Multiagent Systems (AAMAS), 2014, pp. 1437-1438.

[56] Panisson, A. R.; Meneguzzi, F; Vieira, R.; Bordini, R. H. "An Approach for Argumentation-
th

based Reasoning Using Defeasible Logic in Multi-Agent Programming Languages". In: 11

International Workshop on Argumentation in Multiagent Systems (ArgMAS), 2014, pp. 1-15.

[57] Parsons, S.; McBurney, P. "Argumentation-based dialogues for agent co-ordination", Group

Decision and Negotiation, vol. 12-5, 2003, pp. 415-439.

[58] Parsons, S.; Sierra, C.; Jennings, N. "Agents that reason and negotiate by arguing", Journal of

Logic and Computation, vol. 8, Jun 1998, pp. 261-292.

[59] Parsons, S.; Sklar, E. "How agents alter their beliefs after an argumentation-based dialogue."
th

In: 2 International Workshop on Argumentation in Multiagent Systems (ArgMAS), Parsons,

S.; Maudet, N.; Moraitis, R; Rahwan, I. (Editors), 2005, pp. 297-312.

[60] Parsons, S.; Wooldridge, M.; Amgoud, L. "An analysis of formal inter-agent dialogues". In:
th

1 International Conference on Autonomous Agents and Multi-Agent Systems, 2002, pp.

394-401.

[61] Pilotti, R; Casali, A.; Chesnevar, C. "A belief revision approach for argumentation-based
th

negotiation with cooperativo agents". In: 9 International Workshop on Argumentation in

Multi-Agent Systems (ArgMAS 2012), Valencia, Spain, 2012, pp. 1-18.

[62] Plotkin, G. D. "A structural approach to operational semantics", y. Log. Algebr. Program., vol.

60-61, Fev 2004, pp. 17-139.

[63] Pollock, J. L. "Defeasible reasoning", Cognitive science, vol. 11-4, Abr 1987, pp. 481-518.

[64] Prakken, H. "On dialogue systems with speech acts, arguments, and counterarguments". In:

Logics in Artificial Intelligence, Springer, 2000, pp. 224-238.

[65] Prakken, H. "An abstract framework for argumentation with structured arguments", Argument

and Computation, vol. 1-2, Set 2011, pp. 93-124.

94

[66] Rahwan, L; Amgoud, L. "An argumentation based approach for practical reasoning." In;
<1

5 International joint conference on Autonomous agents and multiagent systems (AAMAS),

Nakashima, H.; Wellman, M. R; Weiss, G.; Stone, P. (Editors), 2006, pp. 347-354.

tVi
[67] Rahwan, L; Larson, K. "Mechanism design for abstract argumentation". In: 7 Int. Joint

Conference on Autonomous Agents and Multiagent Systems, 2008, pp. 1031-1038.

tVi
[68] Rahwan, L; Larson, K. "Pareto optimality in abstract argumentation." In: 23 Conference on

Artificial Intelligence, Fox, D.; Gomes, C. P. (Editors), 2008, pp. 150-155.

[69] Rahwan, I.; Larson, K.; Tohmé, F. "A characterisation of strategy-proofness for grounded
tVx

argumentation semantics". In: 21 International Jont Conference on Artifical Intelligence,

2009, pp. 251-256.

[70] Rahwan, L; Pasquier, R; Sonenberg, L.; Dignum, F. "On the benefits of exploiting underlying
th

goals in argument-based negotiation." In: 22 Conference on Artificial Intelligence, 2007, pp.

116-121.

[71] Rahwan, L; Pasquier, R; Sonenberg, L.; Dignum, F. "A formal analysis of interest-based

negotiation", Annals of Mathematics and Artificial Intelligence, vol. 55-3-4, Fev 2009, pp. 253-

276.

[72] Rahwan, L; Ramchurn, S. D.; Jennings, N. R.; Mcburney, P; Parsons, S.; Sonenberg, L.

"Argumentation-based negotiation", The Knowledge Engineering Review, vol. 18-04, Nov 2003,

pp. 343-375.

th
[73] Rao, A. S. "AgentSpeak(L): BDI agents speak out in a logical computable language". In; 7

European workshop on Modelling autonomous agents in a multi-agent world : agents breaking

away: agents breaking away, 1996, pp. 42-55.

[74] Ricci, A.; Piunti, M.; Viroli, M. "Environment programming in multi-agent systems: An

artifact-based perspective", Autonomous Agents and Multi-Agent Systems, vol. 23-2, 2011, pp.

158-192.

[75] Ricci, A.; Viroli, M.; Omicini, A. "CArtAgO: an infrastructure for engineering computational
th

environments in MAS". In: 3 International Workshop "Environments for Multi-Agent

Systems" (E4MAS), Weyns, D.; Parunak, H. V. D.; Michel, F. (Editors), 2006, pp. 102-119.

[76] Rosenschein, J. S.; Zlotkin, G. "Rules of Encounter: Designing Conventions for Automated

Negotiation Among Computers". Cambridge, Massachusetts: MIT Press, 1994, 253p.

[77] Rueda, S. V.; Martínez, M. V. "Interaction among bdi argumentative agents: a dialogue games

approach". In: XI Congreso Argentino de Ciências de la Computación, 2005, pp. 1-12.

[78] Sadri, F; Toni, F; Torroni, P. "Logic agents, dialogues and negotiation: An abductive

approach". In: Symposium on Information Agents for E-Commerce (AISB), 2001, pp. 1-8.

95

[79] Schmidt, D. "Ontologias para representação de tarefas colaborativas em sistemas multi-

agentes", Master's Thesis, Pontificai Catholic University of Rio Grande do Sul, 2015, 72p.

[80] Searle, J. R. "Speech Acts: An Essay in the Philosophy of Language". Cambridge University

Press, 1969, 203p.

[81] Sierra, C.; Jennings, N. R.; Noriega, R; Parsons, S. "A framework for argumentation-based
tVi

negotiation". In: 4 International Workshop on Intelligent Agents IV, Agent Theories,

Architectures, and Languages, 1998, pp. 177-192.

[82] Singh, M. P. "Agent communication languages: Rethinking the principies", IEEE Computer,

vol. 31-12,1998, pp. 40-47.

[83] Singh, M. P. "A social semantics for agent communication languages". In: Issues in agent

communication, Springer, 2000, pp. 31-45.

[84] Sycara, K. P. "Persuasive argumentation in negotiation", Theory and Decision, vol. 28-3,

Maio 1990, pp. 203-242.

[85] Toniolo, A.; Norman, T. J.; Sycara, K. P. "Argumentation schemes for collaborative planning."

In: Agents in Principie, Agents in Practice, Kinny, D.; jen Hsu, J. Y.; Governatori, G.; Ghose,

A. K. (Editors), 2011, pp. 323-335.

[86] Toniolo, A.; Norman, T. J.; Sycara, K. P. "On the beneíits of argumentation schemes
tVi

in deliberative dialogue." In: 11 International Conference on Autonomous Agents and

Multiagent Systems, van der Hoek, W.; Padgham, L.; Conitzer, V.; Winikoff, M. (Editors),

2012, pp. 1409-1410.

[87] Vieira, R.; Moreira, A.; Wooldridge, M.; Bordini, R. H. "On the formal semantics of speech-act

based communication in an agent-oriented programming language",/. Artif. Int. Res., vol. 29-

1, Jun 2007, pp. 221-267.

[88] Von Neumann, J.; Morgenstern, O. "Theory of games and economic behavior". Princeton

university press, 1944, 776p.

[89] Vreeswijk, G. A. "Abstract argumentation systems", Artificial intelligence, vol. 90-1, Nov 1997,

pp. 225-279.

[90] Walton, D.; Krabbe, E. "Commitment in Dialogue: Basic concept of interpersonal reasoning".

Albany NY: State University of New York Press, 1995, 235p.

[91] Walton, D.; Reed, C.; Macagno, E "Argumentation Schemes". Cambridge University Press,

2008, 456p.

[92] Wooldridge, M. "Properties and complexity of some formal inter-agent dialogues",/rarraa/ of

Logic and Computation, vol. 13, Jun 2003, pp. 347-376.

