
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

COMPUTER SCIENCE GRADUATE PROGRAM

FAST RECOVERY IN PARALLEL
STATE MACHINE REPLICATION

ODORICO MACHADO MENDIZABAL

Dissertation submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fullfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Fernando Luís Dotti
Co-Advisor: Prof. Fernando Pedone

Porto Alegre
2016

REPLACE THIS PAGE WITH
THE LIBRARY CATALOG

PAGE

REPLACE THIS PAGE WITH
THE COMMITTEE FORMS

Dedico este trabalho à minha familia.

“The art of simplicity is a puzzle of complexity.”
(Douglas Horton)

ACKNOWLEDGMENTS

This thesis is the product of an interesting, albeit long and challenging, journey. It
would not be possible without the help of many people. I am extremely grateful to all of them.

First and foremost, I want to thank my advisors, Fernando Dotti and Fernando
Pedone. Professor Dotti helped me whenever I needed and offered guidance and encour-
agement at critical points in time. I am truly thankful for his selfless dedication to both my
personal and academic development. His attention to detail taught me the importance of clear
thinking and rigor in science. Professor Pedone showed strong commitment and readiness
to help despite the distance. His intuition and knowledge in systems building is remarkable,
and I learned much from our collaboration. Pedone has also been a source of productive
inspiration and instruction for me. I am very fortunate to have worked with them.

The other members of the thesis committee (Avelino Francisco Zorzo, Eduardo
Adilio Pelinson Alchieri, Elias Procópio Duarte Jr., and during the qualification exam, Joni da
Silva Fraga) have provided detailed feedback. Their insights and comments on the work have
been greatly appreciated and improved the quality of this document.

I have also enjoyed the collaboration with Leila Ribeiro. She always had something
to say about my work, and I appreciated this very much. For the elaboration of this thesis,
she shared important ideas and helped improving the quality of correctness proofs.

I would like to emphasize my gratitude to colleagues at FURG, they supported me
greatly and allowed me to keep the focus exclusively in this thesis during the last years. I
would like to thank my fellow graduate students from PUCRS, who were a constant source of
help, comfort, and knowledge. By risking leaving someone out, I want to acknowledge Carlos
Morateli, Thiago Paes, Dalvan Griebler, Rasha Hasan, Alan dos Santos, Joaquin Assunção,
Rômulo Reis, Leandro Costa, Maicon Bernardino, Aline Zanin, Kassiano Matteussi, Walter
Ritzel, Túlio Baségio, Ricardo Moreira, Thiago Sarturi, Rudá de Moura, Daniel Menzen,
Felipe Kuentzer, Henrique Chamorra, and Bruno Ferreira. I am also grateful to PUCRS staff,
who made my life less stressful, mainly by taking care of everything when I was living abroad.
Thanks to Régis Escobal, Diego Cintrão, Vanessa Torres and Thiago Lingener. I cannot
forget to thank Beatriz Franciosi, who demonstrated very supportive, and always had some
positive words to share.

I like to thank Pedone’s research group for their hospitality and friendship during my
visit to USI, Lugano. Special thanks go to Tu Dang, Daniele Sciascia, Paulo Coelho, Edson

Tavares, Samuel Benz, Long Hoang Le, Leandro Pacheco, Eduardo Bezerra, Daniel Cason,
and Parisa Marandi, for spending many unforgettable moments together, and for making
my stay so pleasurable and productive. Samuel and Parisa had an important influence on
this work. They did not hesitate in sharing their Paxos implementation and gave a lot of
very helpful advices. I have learned tremendously from them and I highly appreciate these
contributions. It is also worth noting that USI infrastructure was always available for me to run
experiments. Thanks, Pedone, Leandro, Paulo and Tu, for the kindness and team spirit.

While living in Lugano, some friends exceeded their obligations and played the role
of the family in some very special cases. That is something I will never forget. Thanks, Paulo
Butzen, Raquel Silveira, Jônata Carvalho, Lara Carvalho, Giuseppe Bellanti, Monica Santos,
and Greta Lemos.

I would like to thank my wonderful wife. Cristina was co-author in my first works in
the university, and now she is my co-author in life. During the last years, she employing an
extraordinary amount of patience, understanding, and love. Accomplishing this thesis would
be much harder without her support.

I am profoundly grateful to my family for encouraging me and give unconditional
support throughout my whole life. Especially for my parents, who always gave me good
advices, believing in me and pushing me forward. Their example has always been the
motivating force behind all my academic and professional accomplishments. This thesis is
dedicated to them.

Last, but not least, I would like to acknowledge and thank the institutions that
provided financial support for this thesis, including the HP Inc under grant HP-PROFACC,
and the Swiss Federal Commission for Scholarships for Foreign Students under grant Swiss
Government Excellence Scholarship.

FAST RECOVERY IN PARALLEL STATE MACHINE REPLICATION

RESUMO

A replicação máquina de estados é uma técnica bem estabelecida para desen-
volvimento de sistemas tolerantes a faltas. Em parte, isso é explicado pela simplicidade
da abordagem e sua garantia de consistência forte. O modelo de replicação máquina de
estados tradicional baseia-se na execução sequencial de requisições para garantir consis-
tência forte entre as réplicas. A sequencialidade da execução, no entanto, compromete
a escalabilidade. Recentemente, algumas propostas sugeriram paralelizar a execução de
algumas requisições visando um aumento na vazão. Apesar do sucesso da replicação
máquina de estados paralela em obter alto desempenho, as implicações deste modelo em
procedimentos de recuperação são desprezadas. Mesmo para a abordagem de replicação
máquina de estados tradicional, poucos estudos têm considerado as questões envolvidas
na recuperação de réplicas defeituosas. A motivação desta tese é elucidar os desafios e
implicações no desempenho decorrentes de mecanismos de pontos de verificação e recupe-
ração em replicação máquina de estados paralela. A tese também avança no estado-da-arte,
propondo novos algoritmos para pontos de verificação e recuperação no contexto de re-
plicação máquina de estados paralela. Criar pontos de verificação de forma eficiente em
tais modelos é mais desafiador do que na replicação máquina de estados clássica porque
deve-se considerar a execução concorrente de comandos. Nesta tese, nós revisitamos as
técnicas para pontos de verificação em abordagens paralelas de replicação máquina de
estados e comparamos o impacto destas no desempenho através de simulação. Além disso,
nós propomos duas técnicas de ponto de verificação para um destes modelos paralelos.
Recuperar uma réplica requer: (a) obter e instalar o estado de um ponto de verificação de
uma réplica atualizada, e (b) recuperar e re-executar os comandos não refletidos no ponto
de verificação. Técnicas paralelas para replicação máquina de estado tornam a recuperação
de réplicas particularmente difícil uma vez que a vazão de processamento durante a exe-
cução normal (isto é, na ausência de falhas) é muito alta. Consequentemente, o registo de

comandos que precisa ser re-executado é tipicamente grande, o que atrasa a recuperação.
Nós apresentamos duas novas técnicas para otimizar a recuperação em replicação máquina
de estados paralela. A primeira técnica permite que novos comandos sejam executados em
paralelo com a re-execução dos comandos não refletidos no ponto de verificação. Isto ocorre
antes da réplica estar completamente atualizada. A segunda técnica introduz recuperação
de estado sob-demanda, permitindo que segmentos de um ponto de verificação possam
ser recuperados apenas quando necessários, ou ainda, concorrentemente. Nós avaliamos
o desempenho de nossas técnicas de recuperação usando um protótipo completo para
replicação máquina de estados paralela e comparamos o desempenho destas técnicas com
mecanismos tradicionais de recuperação em diferentes cenários.

Palavras-Chave: Replicação Máquina de Estados, pontos de verificação, recuperação, alta
disponibilidade.

FAST RECOVERY IN PARALLEL STATE MACHINE REPLICATION

ABSTRACT

A well-established technique used to design fault-tolerant systems is state machine
replication. In part, this is explained by the simplicity of the approach and its strong consistency
guarantees. The traditional state machine replication model builds on the sequential execution
of requests to ensure consistency among the replicas. Sequentiality of execution, however,
threatens the scalability of replicas. Recently, some proposals have suggested parallelizing
the execution of replicas to achieve higher performance. Despite the success of parallel state
machine replication in accomplishing high performance, the implication of such models on
the recovery is mostly left unaddressed. Even for the traditional state machine replication
approach, relatively few studies have considered the issues involved in recovering faulty
replicas. The motivation of this thesis is clarifying the challenges and performance implications
involved in checkpointing and recovery for parallel state machine replication. The thesis
also aims to advance the state-of-the-art by proposing novel algorithms for checkpointing
and recovery in the context of parallel state machine replication. Performing checkpoints
efficiently in such parallel models is more challenging than in classic state machine replication
because the checkpoint operation must account for the execution of concurrent commands.
In this thesis, we review checkpointing techniques for parallel approaches to state machine
replication and compare their impact on performance through simulation. Furthermore, we
propose two checkpoint techniques for one of these parallel models. Recovering a replica
requires (a) retrieving and installing an up-to-date replica checkpoint, and (b) restoring and
re-executing the log of commands not reflected in the checkpoint. Parallel state machine
replication render recovery particularly challenging since throughput under normal execution
(i.e., in the absence of failures) is very high. Consequently, the log of commands that need
to be applied until the replica is available is typically large, which delays the recovery. We
present two novel techniques to optimize recovery in parallel state machine replication. The
first technique allows new commands to execute concurrently with the execution of logged

commands, before replicas are completely updated. The second technique introduces on-
demand state recovery, which allows segments of a checkpoint to be recovered concurrently.
We experimentally assess the performance of our recovery techniques using a full-fledged
parallel state machine replication prototype and compare the performance of these techniques
to traditional recovery mechanisms under different scenarios.

Keywords: State machine replication, checkpointing, recovery, high availability.

LIST OF FIGURES

Figure 1.1 – Log size estimation. 26

Figure 3.1 – Classical versus parallel state machine replication 36

Figure 3.2 – CBASE scheduling example. 38

Figure 3.3 – “Execute-then-verify” design. 39

Figure 3.4 – Eve execution example. 39

Figure 4.1 – Throughput of a replica with the number of threads for different
commands execution duration workloads and the ratio of the two techniques
with the number of threads. 50

Figure 4.2 – Throughput and latency of a replica executing commands with an
exponentially distributed execution time (average of 0.5 time units). 51

Figure 4.3 – Throughput and latency of a replica executing commands with an
exponentially distributed execution time (average of 0.5 time units) and
checkpoint duration of 5 time units. 51

Figure 4.4 – Throughput and response time of coordinated and uncoordinated
checkpointing with asynchronous and synchronous disk writes. 52

Figure 4.5 – Maximum normalized throughput with instantaneous checkpoints (top)
and 5-time unit checkpoints (bottom). Checkpoint interval of 400 commands
and command execution duration exponentially distributed with average 0.5. 54

Figure 4.6 – Throughput (top) and latency (bottom) of various techniques. Replicas
configured with 16 threads, commands execution exponentially distributed
with average commands of 0.5 and checkpoint duration of 5 time units. 56

Figure 5.1 – Four representations of a dependency graph with six commands.
(a) The original dependency graph, where edge x → y means that com-
mands x and y are dependent and x was delivered before y . (b) The original
graph grouped in batches of two commands. (c) The abridged dependency
graph; notice that commands b and c are serialized in the abridged graph.
(d) The stored dependency graph; batches B1 and B2 are assigned to worker
thread t1 and batch B3 is assigned to worker thread t2; b(B) is a digest of
the variables accessed by commands in B, used to track dependencies
between command batches. The stored dependency graph preserves all
dependencies defined in the original dependency graph. 60

Figure 5.2 – Resulting bitmap for a batch of commands. The bitmap size is m and
it encodes 2 keys. 65

Figure 5.3 – Maximum throughput versus number of threads. 67

Figure 5.4 – Throughput versus latency of 1k-byte commands. 67

Figure 5.5 – Throughput (top) and latency (bottom) according to the batch size. . . 68

Figure 5.6 – Throughput variation according to dependency probability. 69

Figure 5.7 – Throughput variation according to the checkpoint interval. 69

Figure 5.8 – Checkpoint duration according to the checkpoint size. 70

Figure 5.9 – Log size increase over time. 70

Figure 6.1 – Resulting bitmap item for a group of batches. The bitmap item
contains encoded information for batches i to j . 77

Figure 6.2 – Dependency log structure. 77

Figure 6.3 – Throughput and latency for crash-recovery trace using: (a) clas-
sical recovery; (b) speedy recovery; (c) speedy recovery combined with
on-demand state transfer . 80

Figure 6.4 – Throughput using speedy recovery and on-demand state transfer with
0% of dependency probability. 81

Figure 6.5 – Throughput using speedy recovery and on-demand state transfer with
5% of dependency probability. 82

Figure 6.6 – Time taken during recovery for workloads with dependency probability
0% (top) and 5% (bottom) . 84

Figure 6.7 – Throughput using speedy recovery and on-demand state transfer with
real dependency probability. 85

Figure 6.8 – Pending requests structures: (a) a list of batches combined with a
consolidated bitmap; (b) a vector pointing to lists tuples containing batches
and their bitmaps. 85

Figure 6.9 – Access to pending requests stored in v_seq. 86

Figure 6.10 – Throughput using speedy recovery and on-demand state transfer with
real dependency probability and rescheduling of pending requests enabled. 87

Figure 6.11 – Throughput using speedy recovery and on-demand state transfer with
real dependency probability and rescheduling of pending requests enabled
(commands size is 1024 bytes). 88

Figure A.1 – Simulation execution example . 100

Figure A.2 – CBASE simulation model . 101

Figure A.3 – P-SMR simulation model . 102

LIST OF TABLES

Table 4.1 – Maximum throughput with instantaneous checkpoints 54

Table 5.1 – Smallest log size estimation according to the checkpoint size 71

Table 6.1 – Recovery time and service downtime . 80

Table 6.2 – Recovery techniques comparison . 83

Table 6.3 – Recovery techniques comparison for workload with real dependency
probability . 88

LIST OF ALGORITHMS

3.1 P-SMR . 41

4.1 Coordinated checkpoint . 46

4.2 Uncoordinated checkpoint . 48

5.1 Efficient Parallel SMR . 63

6.1 Recovery . 75

A.1 CBASE – execution . 103

A.2 CBASE – parallelizer . 104

A.3 P-SMR – execution . 105

CONTENTS

1 INTRODUCTION . 25

1.1 CONTRIBUTIONS . 27

1.2 ROADMAP . 29

2 SYSTEM MODEL . 31

2.1 PROCESSES AND COMMUNICATION . 31

2.2 MULTICAST AND BROADCAST . 32

2.3 CONSISTENCY . 33

3 BACKGROUND . 35

3.1 STATE MACHINE REPLICATION . 35

3.2 PARALLEL STATE MACHINE REPLICATION . 36

3.2.1 CBASE . 36

3.2.2 THE EXECUTION-VERIFY APPROACH (EVE) . 37

3.2.3 P-SMR . 40

4 CHECKPOINTING IN PARALLEL STATE MACHINE REPLICATION 43

4.1 CHECKPOINTING IN CBASE . 43

4.2 CHECKPOINTING IN EVE . 44

4.3 CHECKPOINTING IN P-SMR . 44

4.3.1 COORDINATED CHECKPOINTING . 45

4.3.2 UNCOORDINATED CHECKPOINTING . 45

4.3.3 COORDINATED VERSUS UNCOORDINATED CHECKPOINTING 47

4.3.4 PERFORMANCE ANALYSIS . 49

4.4 PERFORMANCE EVALUATION OF CHECKPOINTING FOR PARALLEL SMR
MODELS . 52

4.5 RELATED WORK . 57

5 EFFICIENT PARALLEL STATE MACHINE REPLICATION 59

5.1 OVERALL IDEA . 59

5.2 ALGORITHM IN DETAIL . 62

5.3 EVALUATION . 64

5.3.1 IMPLEMENTATION . 64

5.3.2 ENVIRONMENT AND CONFIGURATION . 66

5.3.3 PERFORMANCE ANALYSIS . 66

6 FAST RECOVERY IN PARALLEL STATE MACHINE REPLICATION 73

6.1 SPEEDY RECOVERY OF LARGE LOGS . 73

6.2 ON-DEMAND STATE RECOVERY . 75

6.3 EVALUATION . 76

6.3.1 IMPLEMENTATION . 76

6.3.2 GOALS AND METHODOLOGY . 77

6.3.3 PERFORMANCE ANALYSIS . 78

6.4 RELATED WORK . 88

6.4.1 RECOVERY IN CLASSICAL STATE MACHINE REPLICATION 89

6.4.2 RECOVERY IN PARALLEL STATE MACHINE REPLICATION 89

6.4.3 RECOVERY IN TRANSACTIONAL SYSTEMS . 90

7 CONCLUSION . 91

7.1 CONTRIBUTIONS . 91

7.2 FUTURE WORK . 92

REFERENCES . 95

APPENDIX A – Simulation Tool . 99

A.1 SIMULATION OF PARALLEL SMR MODELS . 100

A.1.1 LOAD GENERATION . 101

A.1.2 CBASE MODEL . 102

A.1.3 P-SMR MODEL . 104

APPENDIX B – Correctness of Proposed Algorithms . 107

B.1 CORRECTNESS OF P-SMR (ALGORITHM 3.1) . 107

B.2 CORRECTNESS DISCUSSION OF COORDINATED CHECKPOINT (ALGO-
RITHM 4.1) . 109

B.3 CORRECTNESS DISCUSSION OF UNCOORDINATED CHECKPOINT (ALGO-
RITHM 4.2) . 109

B.4 CORRECTNESS DISCUSSION OF THE PROPOSED PARALLEL SMR (AL-
GORITHM 5.1) . 110

B.5 CORRECTNESS DISCUSSION OF SPEEDY RECOVERY (ALGORITHM 6.1) . 113

25

1. INTRODUCTION

Many Internet services have strict availability and performance requirements. High
availability requires tolerating component failures and can be achieved with replication. State
machine replication (SMR) is a classical approach to managing replicated servers [Lam78,
Sch90]. In state machine replication replicas start in the same initial state and deterministically
execute an identical sequence of client commands. Consequently, replicas traverse the same
states and produce the same responses. To boost the performance of the service, one can
deploy replicas in high-end servers (scale up). Since modern servers increase processing
power by aggregating multiple processors (e.g., multi-core architectures), to benefit from
these architectures, replicas need to parallelize the execution of commands. Despite the
fact that concurrent execution of commands seems at odds with SMR’s requirement of
deterministic execution, some proposals have revisited the classical approach to introduce
parallelism (e.g., [KD04, KWQ+12, MBP14]).

Parallel state machine replication techniques exploit service semantics and are
based on the observation that independent commands can execute concurrently while only
dependent commands must be serialized and executed in the same order by the replicas.
Two commands are dependent directly if they access any common variable v and one of
them changes v or indirectly, through transitivity (i.e., if commands ci and cj , and cj and ck are
pairwise dependent then ci and ck are dependent). Otherwise, commands are independent.
Executing dependent commands concurrently may result in unpredictable and inconsistent
states across replicas. Although the performance of parallel state machine replication
techniques depend on specifics of the technique, available hardware resources, and the
workload mix of independent and dependent commands, studies report large improvements
in performance (e.g., [KWQ+12, MP14]).

This thesis takes a close look at parallel state machine replication, focusing specially
on recovery, a topic that has received little attention in the literature. Although one could use
recovery techniques designed for classical state machine replication (e.g., [BSF+13, CL99,
CKL+09]), these are not optimized for parallel state machine replication. To understand why,
we must review the basics of recovery in state machine replication. During normal operation
(i.e., in the absence of failures), replicas log the commands they execute and periodically
checkpoint the service state against stable storage. When a replica creates a new checkpoint,
it can trim the log, removing commands that are already reflected in the checkpoint. Upon
recovery, the recovering replica retrieves a current checkpoint and the log of “old commands”,
that is, commands that were already executed by the other replicas but are not included in the
retrieved checkpoint. The recovering replica is available and can execute “new commands”
after it has installed the checkpoint and executed the retrieved log of old commands. This

26

procedure can be optimized in many ways, as we discuss later, but existing optimizations are
orthogonal to the techniques we propose.

To speed up recovery, replicas can periodically checkpoint their state against stable
storage so that upon recovering, a replica can start with a state not too far behind the other
replicas, after reading its local checkpoint from stable storage or retrieving a checkpoint from
a remote operational replica. Performing checkpoints efficiently in parallel state machine
replication is more challenging than in classic state machine replication because the check-
point operation must account for the execution of concurrent commands. In this thesis we
review checkpointing techniques for parallel state machine replication and compare their
impact on performance by means of simulation. Furthermore, we propose two checkpoint
techniques for P-SMR [MBP14]: coordinated and uncoordinated. Coordinated checkpoints
incur system-wide synchronization, while uncoordinated checkpoints are local to a replica.

During normal operation, checkpoints hurt performance since they introduce inherent
overheads (e.g., execution stalls). This calls for sparse checkpoints, a strategy adopted by
some existing systems (e.g., [CL99, KBC+12]). Sparse checkpoints, however, result in large
logs of old commands, which slows down recovery. Even though some techniques can reduce
the overhead of checkpoint creation (e.g., copy-on-write), the frequency of checkpoints is also
impacted by practical concerns. A replica typically performs checkpoints sequentially, only
starting one checkpoint after the previous one has finished. Thus, checkpoint frequency is
ultimately limited by how quickly a single checkpoint can be performed. Figure 1.1 illustrates
a replica performing checkpoints every cpinterval and checkpoints take cpdur time units to be
completely saved. The dark gray area indicates the minimum number of requests in a log, i.e.,
the smallest possible log. The longest log includes the requests processed during checkpoint
creation plus the requests processed in the last checkpoint interval (i.e., the light gray area
plus the dark gray area).

cpdur

cpicpi-1 cpi+1

throughput
number of requests logged
every checkpoint interval

t0 t1 t2 t3

cpinterval cpinterval cpinterval

time

number of requests logged
during checkpoint creation

Figure 1.1 – Log size estimation.

27

Even when considering the smallest possible logs, the high throughput achieved
by parallel approaches to state machine replication incur an expressive number of logged
requests. In our analysis (details in Chapter 5), it takes about 15 seconds to perform a
512M-byte checkpoint, including serialization of the state. At this checkpoint frequency, under
peak load, our parallel state machine replication prototype can execute nearly one million
commands between two checkpoints, amounting to almost 1G-byte worth of logged old
commands.

While one may attempt to resort to techniques to increase the frequency of check-
points (e.g., copy-on-write) and reduce the size of the log of old commands, we approach
recovery from a different perspective. Instead of attempting to increase the frequency of
checkpoints to reduce the log of old commands and lower the downtime of a recovering
replica, we rethink recovery in state machine replication and propose a more fundamental
approach. We introduce two optimizations tailored to parallel state machine replication.
The first optimization allows new commands to execute before old commands have been
processed. This is based on the observation that a new command does not need to wait
for an old command to be executed if the two commands are independent. The second
optimization is inspired by the fact that a considerable amount of recovery time is due to
state transfer and installation. We propose to divide a checkpoint into segments, and retrieve
and install each segment only when it is needed for the execution of a command. We also
allow a segment to be concurrently retrieved and installed with other segments. Therefore,
checkpoint segments are handled on demand and possibly concurrently. To integrate these
two optimizations in parallel state machine replication, we introduce a protocol that handles
command dependencies effectively (details in Chapter 5). Our protocol encodes command
dependencies in batches, using a data structure that trades the overhead involved in pro-
cessing commands individually for concurrency in the execution of these commands, and
minimizes synchronization among worker threads at a replica. We have assessed these
techniques experimentally and observed that they can reduce recovery duration by more than
10 times when compared to traditional recovery techniques.

1.1 Contributions

The thesis makes the following contributions:

• We propose two checkpoint techniques for P-SMR [MBP14], coordinated and uncoordi-
nated. In P-SMR, replicas alternate between the execution of concurrent commands
(i.e., those mutually independent) and the execution of sequential commands. Our
coordinated algorithm executes checkpoints when replicas are in sequential mode.
The uncoordinated algorithm is more complex but can checkpoint a replica’s state
during both sequential and concurrent execution modes. The fundamental differences

28

between the two approaches are three-fold: (a) With the coordinated mechanism, any
two replicas save the same sequence of checkpoints throughout the execution; with un-
coordinated checkpoints, replicas may save different states. Saving the same sequence
of checkpoints has performance implications during recovery, as we explain in Chapter
4; (b) Since an uncoordinated checkpoint can be started while a replica is executing
commands concurrently, faster threads will be idle for shorter periods when waiting
for slow threads in the uncoordinated technique than in the coordinated approach;
(c) Coordinated checkpoints incur system-wide synchronization, while uncoordinated
checkpoints are local to a replica. We discuss the implications of each technique using
simulation models and an in-memory database service.

• We review variations of parallel state machine replication and checkpointing strategies
for each variation, discuss how checkpointing affects the performance of these models,
and assess by means of simulations the impact of checkpointing on performance.
We study the effects of the number of threads and the frequency of checkpoints on
performance. Our results show that while checkpoints impact the performance of all
techniques, techniques are not affected equally.

• We present a new parallel state machine replication protocol that schedules commands
for execution efficiently. When assessing dependencies among commands, our protocol
considers batches of commands, instead of commands individually. While batching
reduces the overhead of command handling, it decreases concurrency among inde-
pendent commands, since dependencies are tracked at the unit of batches. This is
inspired by the fact that some serialization must be introduced in the execution path of
commands anyway since the number of threads that execute commands is bounded
(i.e., typically a multiple of the number of physical cores). Moreover, calculating the
dependency among batches requires a fixed-size number of comparisons, determined
by the number of worker threads.

• We propose high performance recovery techniques tailored to parallel state machine
replication. These techniques allow speedy recovery of large logs and on-demand state
recovery (i.e., checkpoint). The first technique aims at overlapping the execution of
new commands with old commands, albeit respecting their dependencies. The second
technique quickly brings needed state to a recovering replica and allows concurrent
retrieval of checkpoint segments. On-demand recovery could be combined with existing
optimizations described in the literature, such as collaborative state transfer [BSF+13].
Both speedy and on-demand state recovery aim to minimize replica downtime.

• We experimentally assess the performance of our recovery techniques using a full-
fledged parallel state machine replication prototype and compare the performance
of these techniques to traditional recovery mechanisms under different scenarios. In
particular, we exercise the system in contention-free workloads (i.e., independent

29

commands only), to understand inherent limitations, and in contention-prone workloads
(i.e., mix of independent and dependent commands).

1.2 Roadmap

The rest of this thesis is organized as follow. In Chapter 2 we present our system
model and assumptions. In Chapter 3 we refer to the classic and parallel versions of state
machine replication. A comparative analysis of checkpointing overhead on parallel versions of
state machine replication appears in Chapter 4. In Chapter 5 we propose an efficient parallel
state machine replication. A new recovery protocol for parallel state machine replication is
the topic of Chapter 6. The thesis concludes in Chapter 7 that summarizes main findings
and identifies areas for future research. Appendix A provides detailed information about
the simulator designed to evaluate checkpointing techniques, and Appendix B presents the
correctness discussion for algorithms proposed in this thesis.1

1We would like to thank Leila Ribeiro for the support and insightful ideas that helped formulate correctness
proofs of Section B.4 in Appendix B.

30

31

2. SYSTEM MODEL

In this chapter, we present our system model. Except where explicitly mentioned,
the rest of the text relies on the assumptions here stated.

2.1 Processes and Communication

We assume a distributed system composed of interconnected processes Π =
{p1, p2, ...}. More precisely, there is an unbounded set C = {c1, c2, ...} of client processes
and a bounded set S = {s1, s2, ..., sn} of server processes. Server processes in S behave as
active replicas by implementing the state machine replication approach. For this reason, we
use the terms server process and replica with the same meaning.

We assume the crash-recovery failure model and exclude malicious and arbitrary
behavior (e.g., no Byzantine failures). A process can be either up or down, and it switches
between these two modes when it fails (i.e., from up to down) and when it recovers (i.e., from
down to up). Replicas are equipped with volatile memory and stable storage. Upon a crash,
a replica loses the content of its volatile memory, but the content of its stable storage survives
crashes. Processes may crash and recover, although they are not obligated to recover once
they failed.

Processes do not have access to shared memory. They communicate uniquely
by message passing, using either one-to-one or one-to-many communication. One-to-
one communication is through primitives send(m) and receive(m), where m is a message.
Messages can be lost but not corrupted. If a sender sends a message enough times, a
correct receiver will eventually receive the message. One-to-many communication is based
on atomic multicast or atomic broadcast primitives, both defined next using the abstraction of
the consensus problem [CT96].

Protocols proposed in this thesis ensure safety under both asynchronous and
synchronous execution periods. However, since the FLP impossibility result proved that
consensus cannot be solved deterministically in asynchronous systems where at least one
process may crash [FLP85], we assume that the system is partially synchronous. The time
when the system becomes synchronous is called the Global Stabilization Time (GST) [DLS88]
and it is unknown to the processes. Before GST, there are no bounds on process execution
speed or message delivery delays. After GST, such bounds exist but they are unknown. In
order to prove liveness, we assume that there is a time (e.g., after GST) when a quorum of
processes is correct. A process is correct if it eventually remains up. Otherwise, the process
is faulty. We assume f faulty servers, out of n = 2f + 1 servers.

32

2.2 Multicast and Broadcast

One-to-many communication adopts the consensus abstraction [CT96] to implement
atomic multicast or atomic broadcast. The consensus problem can be described in terms
of processes that propose values and processes that must agree upon a decided value.
Consensus is defined by the primitives propose(v) and decide(v), where v is an arbitrary
value. A consensus protocol ensures the following safety requirements:

i. any value decided must have been proposed (non-triviality);

ii. a process can decide at most one value (i.e., a learner cannot change its mind about
what value it has learned) (stability);

iii. two different processes cannot decide different values (consistency).

iv. provided that some of consensus participants are non-faulty (e.g., f + 1), some proposed
value is eventually decided (progress).

The consensus abstraction is suitable to discuss crash-recovery because although
a faulty process possibly has not participated on some consensus instances, it is allowed to
participate on newer instances once it has recovered (becomes up).

The atomic broadcast protocol ensures the following safety properties:

i. a process delivers a message m only if m was previously broadcast by some process;

ii. if both processes p and q deliver messages m and m′, then p delivers m before m′, if and
only if q delivers m before m′.

While the first property is derived directly from consensus properties, the second
one results from the total order notion expressed by the execution of successive instances of
consensus. Depending on the failure pattern, a set of processes would crash and recover
infinitely many times and, as a consequence, processes would not make progress. Therefore,
in order to provide liveness, we assume that eventually a set of up processes remains up
long enough to reach consensus.

We define atomic broadcast by the primitives broadcast(m) and deliver (i , m), where
i refers to the consensus instance in which message m was decided upon. This definition
implicitly assumes that atomic broadcast is implemented with a sequence of consensus
instances identified by natural numbers 1, 2, 3, ... (e.g., [CT96, Lam98]). This definition
of atomic broadcast differs from more common definitions (e.g., [DSU04]), but allows a
recovering server to retrieve messages that the server delivered before the failure. By
introducing the consensus instance in the delivery event, a server can easily determine the
messages it needs to retrieve upon recovering from a failure.

33

Atomic multicast is defined by the primitives multicast(γ, m) and deliver (m), where γ
is a group of destinations. Atomic multicast ensures that:

i. a process that belongs to γ delivers a message m only if m was previously multicast by
some process from γ;

ii. if both processes p and q deliver messages m and m′, then p delivers m before m′, if and
only if q delivers m before m′.

It is worth noting that both atomic broadcast and atomic multicast do not obligate
all replicas to deliver every broadcast message. Once there is a quorum of up replicas
participating in consensus involving message m, they may decide to deliver m despite some
other replicas are down.

2.3 Consistency

Our consistency criterion is linearizability [HW90]. A system is linearizable if there
is a way to reorder the client commands in a sequence that [AW04]:

i. respects the semantics of the commands, as defined in their sequential specifications;

ii. respects the real-time ordering of commands across all clients.

Linearizability can be achieved by ensuring that each replica executes commands
in the same order, for instance. That is the case of the traditional state machine replication
approach. As we discuss in Appendix B, the parallel state machine replication approach
adopted in this thesis also ensures linearizability.

34

35

3. BACKGROUND

This chapter introduces the state machine replication (SMR) approach and its con-
current variations. We start by presenting the traditional SMR approach and its characteristics.
Finally, we discuss how recent work has increased throughput of SMR by allowing execution
of independent commands in parallel.1

3.1 State Machine Replication

State machine replication is a general approach to implementing fault-tolerant
services by replicating servers and coordinating client interactions with server replicas [Lam78,
Sch90]. The service is defined by a state machine and consists of state variables that encode
the state machine’s state and a set of commands that change the state (i.e., the input).
The execution of a command may (i) read state variables, (ii) modify state variables, and
(iii) produce a response for the command (i.e., the output).

SMR provides clients with the abstraction of a highly available service while hiding
the existence of multiple replicas. This last aspect is captured by linearizability [AW04, HW90].
In classical SMR, linearizability can be achieved by having clients atomically broadcast
commands and replicas execute commands sequentially in the same order. In order to
ensure that the execution of a command will result in the same state changes and results at
different replicas, commands must be deterministic: the changes to the state and response of
a command are a function of the state variables the command reads and the command itself.
Therefore, if servers start from the same state and execute commands in the same order,
they will produce the same state changes and results after the execution of each command.

Figure 3.1(b) illustrates a classical SMR, where commands issued by clients are
handled by the client proxy, which broadcasts the commands to all replicas and waits for
the response from one replica. Client proxies translate client invocations into requests that
include a command identifier and its parameters. Requests are delivered by the server
proxies, which issue them against the local service. The agreement layer is responsible for
ordering requests in the same total order across replicas (e.g., using the Paxos protocol
[Lam98]).

1Part of the contribution of this chapter appears in [MMDP14, MDP16].

36

Server

(a)hnon-replicated

Application

Proxy

Proxy

Serviceh
Execution

RequestResponse

Client

AgreementAgreement

Proxy

Replica

(b)hClassicalhSMR

Agreement

Serviceh
Execution

Application

Proxy

Proxy

Client

Proxy

AgreementAgreementAgreement

Scheduler

Replica

(c)hhCBASE

Serviceh
Execution

Application

Proxy

Proxy

Client

Agreementhandh
Verification

Agreementhandh
Verification

Proxy

Application

Agreementhandh
Verification

Proxy

(d)hEve

Mixer

Replica

Serviceh
Execution

Proxy

Client

Proxy

AgreementAgreement

Application

Agreement

Replica

Serviceh
Execution

Proxy

(e)hP-SMR

Proxy

Client

Figure 3.1 – Classical versus parallel state machine replication

3.2 Parallel State Machine Replication

Classical SMR makes poor use of multi-processor architectures since deterministic
execution normally translates into (single-processor) sequential execution of commands.
Although (multi-processor) concurrent command execution may result in non-determinism,
it has been observed that “independent commands” (i.e., those that are neither directly nor
indirectly dependent) can be executed concurrently without violating consistency [Sch90].

A few approaches have been suggested in the literature to execute independent
commands concurrently with the goal of improving SMR performance (e.g., [KD04, KWQ+12,
MBP14]). In this section, we describe these proposals. One of these approaches, CBASE
[KD04], motivated us to implement an efficient parallel state machine replication protocol
described in Chapter 5.

3.2.1 CBASE

To parallelize the execution of independent commands, CBASE [KD04] adds a
deterministic scheduler, also known as parallelizer, to each replica (see Figure 3.1(c)). Clients
atomically broadcast commands and the parallelizer at each replica delivers commands in
total order, examines command dependencies, and distributes them among a pool of worker
threads for execution.

To understand the interdependencies between commands, assume commands
Ci and Cj , where Wi and Wj indicate the commands’ writeset and Ri and Rj indicate their

37

readset. According to [KD04], Ci and Cj are dependent if any of the following conditions hold:
Wi ∩Wj 6= ∅; Wi ∩Rj 6= ∅; or Ri ∩Wj 6= ∅. In other words, if the writeset of a command intersects
with the readset or the writeset of another command, the two commands are dependent. Two
commands are independent if they are not dependent.

The parallelizer uses a dependency graph to maintain a partial order across all
pending commands, where vertices represent commands and directed edges represent
dependencies. While dependent commands are ordered according to their delivery order,
independent commands are not directly connected in the graph.2

The parallelizer follows a “producer-consumer model”. When a worker thread asks
for a command to be processed, the parallelizer searches for a delivered command C that
has not been assigned to any worker thread yet and is independent of all commands currently
in execution. If C exists, the parallelizer assigns it to the worker thread; otherwise, it blocks
the thread until a command satisfies the requirements described.

Worker threads receive independent commands from the parallelizer (i.e., vertices
with no incoming edges) to be concurrently executed. When a worker thread completes the
execution of a command, it removes the command from the graph and responds to the client
that submitted the command.

Figure 3.2 shows an illustrative dependency graph created by the parallelizer. In
this example, six commands are delivered in the order a, b, ..., f . Commands a, c and e
are independent, so they can be scheduled to execute concurrently. Threads t1 and t2 start
processing independent commands a and b in parallel (Figure 3.2 (a)). Next, t1 and t2 process
commands b and f (Figure 3.2 (b)). Command c is executed by thread t1 while t2 is waiting for
an independent command to be available (Figure 3.2 (c)). Notice that d cannot be scheduled
while c has not been completed (c and d are dependent but c was delivered first, so, c must
execute before d). Finally, d becomes the only command pending execution and is scheduled
to thread t2 (Figure 3.2 (d)).

3.2.2 The Execution-Verify approach (Eve)

Another approach that allows SMR to scale to multi-core servers is Eve (Execution–
Verify) [KWQ+12]. Different from other SMR approaches, Eve replicas first execute commands
and then verify the equality of their states through a verification stage (see Figure 3.1(d)).

In Eve, clients send their requests to a primary execution replica. Before execution,
the primary replica groups client commands into batches and transmits the batched com-
mands to all replicas. Then, replicas speculatively execute batched commands in parallel.
After the execution of a batch, the verification stage checks the validity of replicas’ state, as

2Notice that dependent commands may induce an order on independent commands in the dependency
graph. For example, if C1 and C2 are independent but C1 and C3, and C2 and C3 are dependent.

38

a b

c

d

e f

t1

t2

a

e

b

c

d

f

t1

t2

a

e

b

f

(a) Independent commands a and e are scheduled
and executed by threads t1 and t2, respectively.

(b) Independent commands d and f are scheduled
and executed by threads t1 and t2, respectively.

c

d

t1

t2

a

e

b

f

c

d

t1

t2

a

e

b

f

c

d

(c) Independent commands c are scheduled and
executed by thread t1.

(d) Independent commands d are scheduled and
executed by thread t2.

Figure 3.2 – CBASE scheduling example.

defined by the common state reached by a majority of replicas. If a few replicas diverge
in their state and output, a correct state agreed by a majority of replicas is transferred and
installed on those divergent replicas. If too many replicas diverge, replicas roll back to the last
verified state and re-execute the commands sequentially and deterministically. After reaching
a verified state, the execution replicas send the responses for that batch to the clients.

Figure 3.3 represents the “Execute–verify” design. Replicas r1 to rn receive the
same batches in the same order (illustrated by batches i to k). Every replica executes a
batch of commands (execution stage) and then verify their state validity (verification stage).
While batch execution does not require replica synchronization, the verification stage runs an
agreement protocol to determine the final state and outputs of all correct replicas after each
batch of requests.

Figure 3.4 shows an illustrative sequence of batches being processed by a replica r .
In this example, commands a, b, and c belong to batch B1, and d , e, and f belong to batch
B2. Replica’s threads, t1 and t2, start processing commands in B1 in parallel (the order of

39

rn

V
e
ri

fy

E
xe

cu
te

r1

V
e
ri

fy

E
xe

cu
te

V
e
ri

fy

E
xe

cu
te

V
e
ri

fy

E
xe

cu
te

Agreement
protocol

batch i batch k

...

Figure 3.3 – “Execute-then-verify” design.

execution may diverge across replicas). After processing B1, r verifies the validity of replica’s
state. This procedure is repeated for the execution of each successive batch. Figure 3.4(b)
shows the execution of batch B2.

t1

t2

a

a b c

B1

b

c

d e f

B2

r Execute

Ve
ri
fy

t1

t2

a

b

c

d e f

B2

e f

d

r Execute

Ve
ri
fy

Execute

Ve
ri
fy

(a) Batch B1 is scheduled by replica r and executed
by threads t1 and t2.

(b) Batch B2 is scheduled by replica r and executed
by threads t1 and t2.

Figure 3.4 – Eve execution example.

In order to avoid costly rollbacks, the frequency in which replicas need to reconcile
must be reduced. Eve minimizes divergence through a mixer stage that applies application-
specific criteria to produce batches of commands that are unlikely to interfere with each
other [KWQ+12] (e.g., independent commands). If conflicting commands a and b both modify
object x , the mixer will place them in different batches. The mixer and the parallelizer

40

presented in [KD04] play a similar role. However, even if the mixer may unintentionally include
dependent commands in the same batch and cause replicas to produce different states, the
verification stage ensures that such divergences cannot affect safety (although they may
hamper performance).

3.2.3 P-SMR

In [MBP14], the authors propose P-SMR, a variation of parallel state machine
replication where the execution and the delivery of commands occur in parallel. Instead of
using a single sequence of consensus rounds to order commands, the approach in [MBP14]
uses multiple sequences of consensus (see Figure 3.1(e)). More precisely, if there are n + 1
threads at each replica, t0, ..., tn, P-SMR requires n +1 consensus sequences, γ0, ..., γn, where
thread t0 (at each replica) participates in consensus sequence γ0 only, and thread ti , 0 < i ≤ n,
participates in consensus sequences γ0 and γi . To ensure that ti handles commands in the
same order across replicas, despite participating in two consensus sequences, ti orders
messages from its two consensus sequences using a deterministic merge procedure (e.g.,
handling decisions for the sequences in round-robin fashion). To ensure progress, every
consensus sequence must have a never-ending stream of consensus rounds, which can
be achieved by having one or more processes proposing nil values if no value is proposed
in a consensus sequence after some time [MPP12]. Obviously, replicas discard nil values
decided in a consensus round.

P-SMR ensures two important invariants. First, commands decided in consensus
sequence γ0 are serialized with any other commands at a replica and executed by thread
t0 in the same order across replicas (sequential execution mode). Second, commands
decided in the same round in consensus sequences γ1, ..., γn are executed by threads t1, ..., tn
concurrently at a replica (concurrent execution mode).

Clients propose a command by choosing the consensus sequence that guarantees
ordered execution of dependent commands while maximizing parallelism of independent
commands. The mapping of commands onto consensus sequences is application dependent.
In the following, we illustrate two such mappings.

• (Concurrent reads and sequential writes.) Commands that read the replica’s state are
proposed in any arbitrary consensus sequence γi , 0 < i ≤ n; commands that modify
the replica’s state are proposed in sequence γ0.

• (Concurrent reads and writes.) Divide the service’s state into disjoint partitions P1, ..., Pn

so that commands that access partition Pi only are proposed in γi and commands that
access multiple partitions are proposed in γ0.

41

Clients must be aware of the mapping of commands onto consensus sequences
and must be able to identify commands that read the service’s state only or modify the state,
in the first case above, or to identify commands that access a single partition (and which
partition) or multiple partitions, in the second case.

Algorithm 3.1, extracted from [MMDP14], adapts the original P-SMR algorithm
proposed in [MBP14]. For each thread ti , round [i] (line 3) indicates the number of the next
consensus round to be handled (or being handled) by ti , for all consensus sequences involving
ti . Threads use semaphores S[0..n] (line 4) to alternate between sequential and concurrent
modes and, as shown in the next chapter, to create a checkpoint. Variable next [i] (line 5)
determines whether ti is in sequential or concurrent mode.

Algorithm 3.1 P-SMR
1: Initialization:
2: for i : 0..n do {for each thread ti :}
3: round [i]← 1 {all threads start in the same round}
4: S[i]← 0 {semaphore used to implement barriers}
5: next [i]← SQ {start in sequential mode}
6: start threads t0, ..., tn

7: Thread t0 at a replica executes as follows:
8: upon decided [γ0](r , 〈cid , cmd〉) and r = round [0]
9: if cmd 6= nil then {if cmd is a real command...}

10: for i : 1..n do wait(S[0]) {barrier: wait for threads t1, .., tn}
11: execute cmd and reply to cid {execute command and reply to client}
12: for i : 1..n do signal(S[i]) {let threads t1, .., tn continue}
13: round [0]← round [0] + 1 {pass to the next round}

14: Thread ti in t1, ..., tn at a replica executes as follows:
15: upon decided [γ0](r , 〈cid , cmd〉) and r = round [i] and next [i] = SQ
16: if cmd 6= nil then {if decided on a real command...}
17: signal(S[0]) {barrier: signal semaphore S[0] (see line 10)}
18: wait(S[i]) {...and wait to continue (see line 12)}
19: next [i]← CC {set execution mode as concurrent}

20: upon decided [γi](r , 〈cid , cmd〉) and r = round [i] and next [i] = CC
21: if cmd 6= nil then {if decided on a command...}
22: execute cmd and reply to cid {execute command and reply to client}
23: next [i]← SQ {set execution mode as sequential}
24: round [i]← round [i] + 1 {pass to the next round}

Thread t0 tracks decisions in consensus sequence γ0 only (line 8). The “decided
[γ0](r , 〈−〉) and r = round [0]” condition holds when there is a decision in consensus sequence
γ0 that matches round [0]. If the value decided in round [0] is a command (line 9), t0 waits for
every other thread ti (line 10) and then handles the request (line 11). After the command is
executed, t0 signals the other threads to continue their execution (line 12). Whatever value is

42

decided in the round, round [0] is incremented (line 13). Note that a nil decision in consensus
sequence γ0 does not cause threads to synchronize.

Each thread ti , 0 < i ≤ n, alternates between executing in sequential and concurrent
modes (lines 15 and 20). If ti decides a value in consensus sequence γ0 for its current round
and the current execution mode is sequential (line 15), ti checks whether the command is
not nil (line 16) and in such a case ti signals thread t0 (line 17) and waits for t0 to continue
(line 18). Thread ti then sets next [i] to CC (line 19), meaning that it is in concurrent mode
now. When ti decides a value in consensus sequence γi for round round [i] and next [i] = CC

(line 20), ti executes the command if it is not nil (lines 21–22), sets the execution mode as
sequential (line 23), and passes to the next round (line 24).

The correctness of Algorithm 3.1 is discussed in detail in Appendix B.

43

4. CHECKPOINTING IN PARALLEL STATE MACHINE
REPLICATION

In order to improve fault-tolerance, the SMR approach can be enhanced by support-
ing recovery. Recovery protocols ensure durability of the data managed by SMR services. In
case of replica failures, the recovery service enables a recovering replica to re-establish a
consistent state and catch up with the other replicas [BM93, EAWJ02].

Recovery can be achieved in many ways. In this work, we focus on transparent
techniques, i.e., the recovery happens without intervention of application or programmer.
Recovering a failed replica in classic SMR requires retrieving the commands the replica
executed but “forgot” due to the failure and the commands the replica missed while it was
down. To speed up recovery, replicas can periodically checkpoint their state against stable
storage so that upon recovering, a replica can start with a state not too far behind the other
replicas, after reading its local checkpoint from stable storage or retrieving a checkpoint from
a remote operational replica.

Performing checkpoints efficiently in parallel SMR is more challenging than in
classic SMR because the checkpoint operation must account for the execution of concurrent
commands. Although checkpoints are expected to reduce the throughput of replicas, it is
not clear how they impact the existent parallel SMR protocols. In this chapter, we describe
checkpointing strategies for CBASE and Eve, and propose two checkpointing approaches for
P-SMR. Moreover, we discuss how checkpointing affects the performance of these models,
and assess by means of simulations the impact of checkpointing on performance.

4.1 Checkpointing in CBASE

To recapitulate, in [KD04] replicas are augmented with a parallelizer that bridges
the delivery and execution of commands. Based on application semantics, the parallelizer
serializes the execution of dependent commands and ensures that their execution order
adheres to the delivery order. Independent commands are dispatched to be processed in
parallel by a set of worker threads.

The parallelizer approach built for CBASE relies on the totally ordered delivery
of commands, that is also used to generate checkpoints. After an agreed number k of
commands are delivered at a replica, the parallelizer stops assigning commands to worker
threads. Once all commands in execution are finished, the replica takes a checkpoint and
then resumes normal execution [KD04]. Replicas will produce identical checkpoints since
any two replicas take checkpoints at fixed and deterministic intervals (e.g., whenever the k -th
command is executed since the last checkpoint).

44

Besides the costs inherent to the checkpointing itself, such as state serialization
and maintenance of checkpoint structures, checkpoints in the parallelizer approach induce
additional overhead caused by thread synchronization. This overhead originates from the fact
that at the moment a checkpoint is invoked, new incoming commands cannot be executed
and, as a consequence, worker threads may be idle until all threads finish their work and the
checkpoint is taken.

4.2 Checkpointing in Eve

Even though checkpointing and recovery are not explicitly described in [KWQ+12],
taking checkpoints along a sequence of bounded batches is straightforward. After the
execution of a batch, replicas check the equality of their states and diverging replicas assume
the state reached by the majority of the replicas. The verification stage causes replicas to
reach identical states. For this purpose, every replica should periodically create a checkpoint
right after the n-th batch since the last checkpoint has been created and verified.

This checkpointing strategy is similar to that presented in Section 4.1, but instead of
taking checkpoints after every k commands have been processed, in Eve checkpoints are
taken after commands in n batches have been executed and the effects of these commands
on the replica’s state verified. Although there exists a synchronization cost associated to
checkpoints in Eve, this cost is part of the verification stage, i.e., right after executing batched
commands, worker threads may sit idle until the verification stage terminates.

4.3 Checkpointing in P-SMR

Checkpointing solutions for CBASE [KWQ+12] and Eve [KD04] rely on a single
stream of totally ordered messages being delivered to the replicas. However, in P-SMR
[MBP14] not only the execution, but also the delivery of messages occurs in parallel. There-
fore, solutions analogous to the ones described previously are not possible in P-SMR.

We propose next two novel checkpointing algorithms for P-SMR.1 In the first algo-
rithm, coordinated checkpointing, replicas must converge to a common state before taking a
checkpoint; in the second algorithm, uncoordinated checkpointing, replicas take checkpoints
independently and may not be in an identical state when the checkpoint takes place. The
correctness discussion for both algorithms appears in Appendix B.

1These results also appear in [MMDP14].

45

4.3.1 Coordinated checkpointing

The idea behind our coordinated checkpointing algorithm is to force replicas to
undergo the same sequence of checkpointed states. To this end, we define a checkpoint
command CHK that depends on all other commands. Therefore, CHK is executed in
sequential mode in P-SMR and ordered by consensus sequence γ0. Since replicas implement
a deterministic strategy to merge consensus sequences, command CHK is guaranteed to be
executed after each replica reaches a certain common state.

Algorithm 4.1 presents the coordinated checkpoint algorithm in detail. When a
replica recovers from a failure (line 1), it first retrieves the latest checkpoint stored at the
replica or requests one from a remote replica (line 2). Tuple 〈last_rnd [0]〉 identifies the
retrieved checkpoint. (Every replica stores an initialization checkpoint, empty and identified
by 〈1〉.) The replica then initializes variables S, round and next (lines 3–10) and starts all
threads (line 11).

Thread t0’s only difference with respect to Algorithm 3.1 is that it must check whether
a decided command is a checkpoint request (line 16), in which case t0 stores the replica’s
state on stable storage and identifies the checkpoint as 〈round [0]〉 (line 17). Threads t1, ..., tn
execute the same pseudocode in Algorithms 3.1 and 4.1.

4.3.2 Uncoordinated checkpointing

We now present an alternative algorithm that does not coordinate checkpoints
across replicas: each replica decides locally when checkpoints will happen. Unlike the
coordinated checkpointing algorithm, where all replicas record identical checkpoints, with the
uncoordinated algorithm the checkpoints vary across the replicas.

The main difficulty with uncoordinated checkpoints is that a checkpoint request may
be received any time during a thread’s execution. Thus, one thread may receive a checkpoint
request when in sequential execution mode while another thread receives the same request
when in concurrent execution mode. Essentially, this happens because we do not order
checkpoint requests with consensus decisions, as in the coordinated version of the algorithm.

In brief, our algorithm works as follows. First, thread t0 requests a checkpoint by
sending a local message to the other threads. Second, the handling of a checkpoint request
at a replica does not change the sequence of commands executed by threads ti , 0 < i ≤ n,
which still alternate between sequential and concurrent execution modes in each round.
To guarantee this property, when t0 requests a checkpoint it tracks the signal it receives
from ti : If ti signals t0 upon receiving the checkpoint request, then after the checkpoint, t0
releases ti so that ti can proceed with the next command. If ti signals t0 because it started the

46

Algorithm 4.1 Coordinated checkpoint
1: upon starting or recovering from a failure
2: retrieve latest/remote checkpoint, which has id 〈last_rnd [0]〉
3: for i : 0..n do {for each thread ti ...}
4: S[i]← 0 {semaphore used to implement barriers}
5: if i = 0 then {thread t0...}
6: round [i]← last_rnd [0] + 1 {goes to the next round in...}
7: next [i]← SQ {...sequential mode}
8: else {threads t1, ..., tn...}
9: round [i]← last_rnd [0] {stay in this round in...}

10: next [i]← CC {...concurrent mode}
11: start threads t0, ..., tn

12: Thread t0 at a replica executes as follows:
13: upon decided [γ0](r , 〈cid , cmd〉) and r = round [0]
14: if cmd 6= nil then {if cmd is a command/checkpoint request...}
15: for i : 1..n do wait(S[0]) {barrier: wait n times on semaphore}
16: if cmd = CHK then {if cmd is a checkpoint request...}
17: store checkpoint with id 〈round [0]〉 {take checkpoint}
18: else {else...}
19: execute cmd and reply to cid {execute command and reply to client}
20: for i : 1..n do signal(S[i]) {let each thread ti continue}
21: round [0]← round [0] + 1 {one more handled decision}

22: each ∆ time units do {ideally done by a single replica only:}
23: propose[γ0](〈t0, CHK 〉) {request a system-wide checkpoint}

24: Thread ti in t1, ..., tn at a replica executes as follows:
25: upon decided [γ0](r , 〈cid , cmd〉) and r = round [i] and next [i] = SQ

26: if cmd 6= nil then {if cmd is a command/checkpoint request...}
27: signal(S[0]) {implement barrier (see line 15)}
28: wait(S[i]) {...and wait to continue (see line 20)}
29: next [i]← CC {set execution mode as concurrent}

30: upon decided [γi](r , 〈cid , cmd〉) and r = round [i] and next [i] = CC

31: if cmd 6= nil then {if cmd is an actual command...}
32: execute cmd and reply to cid {execute command and reply to client}
33: next [i]← SQ {set execution mode as sequential}
34: round [i]← round [i] + 1 {one more handled decision}

sequential execution mode, after the checkpoint t0 keeps ti waiting until t0 also goes through
the sequential execution of commands. In this case, when ti later receives the checkpoint
request, it simply discards it.

Algorithm 4.2 presents the uncoordinated checkpointing algorithm in detail. When a
replica recovers from a failure, it retrieves the last saved checkpoint from its local storage or
from a remote replica (line 2). This checkpoint identifies the round and the execution mode
the thread must be in, after the checkpoint is installed (lines 4–5). (A replica is initialized with
an empty checkpoint, identified as 〈2, SQ[, 1, CC]×n〉.) Variable last_sync[i] contains the last
round when ti started in sequential mode and signaled t0 (line 8); waiting[i] tells whether upon
executing a command t0 must wait for ti (line 9).

47

The execution of a sequential command by t0 is similar in both the coordinated and
uncoordinated algorithms, with the exception that t0 only waits for ti if it is not already in
waiting mode (line 14); this happens if ti signals t0 because it started sequential execution
mode but t0 started a checkpoint. After the execution of the sequential command, all threads
are released (lines 17–18). To execute a checkpoint, t0 sends a message to all threads and
waits for them (lines 21–23). If ti signaled t0 because it entered sequential mode in t0’s current
round or some round ahead (line 26), which happens if the value decided in t0’s current round
is nil , t0 keeps track that ti is waiting (line 27); otherwise t0 signals ti to continue (line 29).

The execution of commands for threads t1, ..., tn is similar in both checkpoint algo-
rithms, with the exception that before signaling the start of sequential execution mode, ti sets
last_sync[i] with its round number (line 33). Upon receiving a checkpoint request 〈r , CHK 〉
that satisfies condition last_sync[i] < r ≤ round [i] (line 42), ti signals t0 and waits for t0’s
signal (lines 43–44). If last_sync[i] ≥ r , then it means that ti has already signaled t0 when
entering sequential execution mode; thus, it does not do it again. If r > round [i], then the
checkpoint request is for a round ahead of ti ’s current round. This request will be considered
when ti reaches round r .

4.3.3 Coordinated versus uncoordinated checkpointing

With coordinated checkpoints, a checkpoint only happens after each thread receives
a CHK request and finishes executing all the commands decided before the request. With
uncoordinated checkpoints, a checkpoint is triggered within a replica and is not ordered with
commands. These mechanisms have important differences, as we discuss next.

First, with coordinated checkpoints every replica saves the same state upon taking
the k -th checkpoint. Saving the same state across replicas is important for collaborative state
transfer [BSF+13], a technique that improves performance by involving multiple operational
replicas in the transferring of a saved checkpoint to the recovering replica, each replica
sending part of the checkpointed state. Collaborative state transfer is not possible with
uncoordinated checkpoints.

Second, coordinated checkpoints take place when replicas are in sequential exe-
cution mode; hence, no checkpoint contains a subset of commands executed concurrently.
Uncoordinated checkpoints, however, can save states of a replica during concurrent execu-
tion mode. The implication on performance is that threads that execute commands more
quickly when in concurrent mode do not have to wait for slower threads to catch up so that a
checkpoint can be taken.

Third, the interval between the time when a checkpoint is triggered at a replica and
the time when it takes place in the replica in the uncoordinated technique is lower than in
the coordinated technique. In addition to requiring a consensus execution, which introduces

48

Algorithm 4.2 Uncoordinated checkpoint
1: upon recovering from a failure
2: retrieve checkpoint, which has id 〈rnd [0], nxt [0], ..., rnd [n], nxt [n]〉
3: for i : 0..n do {for each thread ti , 0 ≤ i ≤ n:}
4: round [i]← rnd [i] {ti ’s round and...}
5: next [i]← nxt [i] {... execution mode when checkpoint taken}
6: S[i]← 0 {semaphore used to implement barriers}
7: for i : 1..n do {for each thread ti , 1 ≤ i ≤ n:}
8: last_sync[i]← 0 {last round ti entered sequential mode}
9: waiting[i]← false {initially ti isn’t waiting}

10: start threads t0, ..., tn

11: Thread t0 at a replica executes as follows:
12: upon decided [γ0](r , 〈cid , cmd〉) and r = round [0]
13: if cmd 6= nil then {if decided on a command...}
14: for i : 1..n do if ¬waiting[i] then wait(S[0]) {wait for each active ti }
15: execute cmd and reply cid {execute command and reply to client}
16: for i : 1..n do
17: waiting[i]← false {after sequential mode no thread waits}
18: signal(S[i]) {ditto!}
19: round [0]← round [0] + 1 {t0 passes to the next round}

20: each ∆ time units do {t0 periodically triggers a local checkpoint}
21: for i : 1..n do
22: send 〈round [0], CHK 〉 to ti {send checkpoint request to ti }
23: if ¬waiting[i] then wait(S[0]) {wait for each active thread ti }
24: store checkpoint with id 〈round [0], next [0], round [1], ...〉 {take checkpoint}
25: for i : 1..n do {for each ti }
26: if last_sync[i] ≥ round [0] then {if ti entered sequential mode...}
27: waiting[i]← true {keep ti waiting until t0 catches up}
28: else {else...}
29: signal(S[i]) {let ti proceed}

30: Thread ti in t1, ..., tn at a server executes as follows:
31: upon decided [γ0](r , 〈cid , cmd〉) and r = round [i] and next [i] = SQ

32: if cmd 6= nil then {if decided on a real command...}
33: last_sync[i]← round [i] {take note that entered sequential mode}
34: signal(S[0]) {implement barrier}
35: wait(S[i]) {...and wait to continue}
36: next [i]← CC {set execution mode as concurrent}

37: upon decided [γi](r , 〈cid , cmd〉) and r = round [i] and next [i] = CC

38: if cmd 6= nil then {if cmd is an actual command...}
39: execute cmd and reply to cid {execute command and reply to client}
40: next [i]← SQ {set execution mode as sequential}
41: round [i]← round [i] + 1 {pass to the next round}

42: upon receive 〈r , CHK 〉 from t0 and last_sync[i] < r ≤ round [i]
43: signal(S[0]) {checkpoints are done in mutual exclusion}
44: wait(S[i]) {ditto!}

49

some latency, a checkpoint request in the coordinated technique can only be handled after
previously decided commands are executed at the replicas.

4.3.4 Performance Analysis

In this section, we assess the impact of the proposed approaches on the system
performance by means of a simulation model and a prototype. Our simulations focus mostly
on the cost of synchronization due to checkpointing. Aspects inherent to recovery (e.g., state
transferring) are highly dependent on the application and sensitive to the data structures used
by the service, the workload, and the size of checkpoints. We consider such aspects with
a prototype, which implements an in-memory database with operations to read and write
database entries. In our experiments, we generate workloads with independent commands
only. With this strategy we maximize the use of threads to execute commands, removing the
possibility of thread idleness due to the synchronization needed by dependent commands.

Simulations

We implemented a discrete-event simulation model2 in C++ and configured each
experiment to run until a confidence interval of 98% is reached. We evaluated replicas without
checkpointing enabled and with the two proposed checkpoint algorithms, and considered
different classes of workload in terms of request execution time: (i) fixed-duration commands
(i.e., all commands take the same time to execute), (ii) uniformly distributed command duration,
and (iii) exponentially distributed command duration. In the last case, a majority of commands
have low execution times, while a small number of commands take long to execute.

We start by evaluating the scalability of both techniques. Figure 4.1 shows the
maximum throughput achieved by a replica according to the number of threads, where each
thread is associated with a processing unit (i.e., core). In these experiments, we used
workloads (i), (ii), and (iii), mentioned above, with average command execution time of 0.5
units. Checkpoints are taken every 200 time units, and the checkpoint duration is 0. By not
considering the time taken to create a checkpoint, the results reveal the overhead caused
exclusively by checkpoint synchronization. The throughput of P-SMR without checkpoints
scales proportionally to the number of threads. The overhead of uncoordinated checkpointing
is lower than the overhead of the coordinated technique and the difference between the two
increases with the number of threads.

The bottom right graph of Figure 4.1 depicts the throughput ratio between the
uncoordinated and the coordinated techniques under different workloads, as we increase
the number of threads. Two facts stand out: First, uncoordinated checkpointing outperforms

2More details about our simulation tool are discussed in Appendix A.

50

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t

Number of threads

Fixed-duration commands

no checkpoints
coordinated

uncoordinated

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t

Number of threads

Uniformly distributed commands duration

no checkpoints
coordinated

uncoordinated

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t

Number of threads

Exponentialy distributed commands duration

no checkpoints
coordinated

uncoordinated

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t

ra
ti

o
:

u
n
co

o
rd

./
co

o
rd

.

Number of threads

Throughput ratio uncoordinated/coordinated techniques

Fixed req. duration (0.5)
Uniform req. duration (avg. 0.5)

Exponential req. duration (avg. 0.5)

Figure 4.1 – Throughput of a replica with the number of threads for different commands
execution duration workloads and the ratio of the two techniques with the number of threads.

coordinated checkpointing in all scenarios and the difference increases with the number of
threads. Second, the difference between the two techniques is more important when there is
more variation in the command execution time. This happens because “faster threads” (i.e.,
those executing shorter commands) wait longer for “slow threads” during a checkpoint in the
coordinated technique than in the uncoordinated approach.

Next, we evaluate the impact caused by the checkpoint frequency. Figure 4.2 shows
the throughput and latency of replicas with 16 threads. In this experiment, the command
duration follows the exponential distribution. The checkpointing interval varies from 12 to 1600
time units and the checkpointing duration is 0. The workload generated for this experiment
reaches a throughput equivalent to 75% of the maximum. Although the uncoordinated
checkpointing algorithm outperforms the coordinated algorithm in most of the configurations,
the difference between the two decreases as checkpoints become more infrequent.

Figure 4.3 depicts the throughput and latency results for scenarios in which check-
points take 5 time units to execute. The overhead introduced by a checkpoint has the effect
of decreasing the throughput and increasing the average response time of commands. How-
ever, the checkpoint overhead did not change the trend seen in the previous experiments:
uncoordinated checkpointing consistently performs better than coordinated checkpointing,
and the difference between the two reduces as checkpoints are taken less often.

51

 0

 5

 10

 15

 20

 25

 30

12 25 50 100 200 400 800 1600

T
h
ro

u
g
h
p
u
t

Checkpoint interval

no checkpoints
coordinated

uncoordinated

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

12 25 50 100 200 400 800 1600

La
te

n
cy

 (
R

e
q
.
R

e
sp

o
n
se

 T
im

e
)

Checkpoint interval

no checkpoints
coordinated

uncoordinated

Figure 4.2 – Throughput and latency of a replica executing commands with an exponentially
distributed execution time (average of 0.5 time units).

 0

 5

 10

 15

 20

 25

 30

12 25 50 100 200 400 800 1600

T
h
ro

u
g
h
p
u
t

Checkpoint interval

no checkpoints
coordinated

uncoordinated

 0

 1

 2

 3

 4

 5

 6

 7

 8

12 25 50 100 200 400 800 1600

La
te

n
cy

 (
R

e
q
.
R

e
sp

o
n
se

 T
im

e
)

Checkpoint interval

no checkpoints
coordinated

uncoordinated

Figure 4.3 – Throughput and latency of a replica executing commands with an exponentially
distributed execution time (average of 0.5 time units) and checkpoint duration of 5 time units.

Implementation

We implemented consensus using Multi-Ring Paxos [MPP12], where each con-
sensus sequence is mapped to one Paxos instance. To achieve high performance, each
thread ti decides several times on consensus sequence γi before deciding on sequence
γ0. Moreover, multiple commands proposed to a consensus sequence are batched by the
group’s coordinator (i.e., the coordinator in the corresponding Paxos instance) and order is
established on batches of commands. Each batch has a maximum size of 8 Kbytes. The
system was configured so that each Paxos instance uses 3 acceptors and can tolerate the
failure of one acceptor.

The service is a simple in-memory database, implemented as a hash table, with
operations to create, read, write, and remove entries. Each entry has an 8-byte key and
an 8-byte value. A checkpoint duplicates the hash table in memory (using copy-on-write)
and writes the duplicated structure to disk, either synchronously or asynchronously. We ran
our experiment on a cluster with Dell PowerEdge R815 nodes equipped with four octa-core
AMD Opteron processors and 128 GB of main memory (replicas), and Dell SC1435 nodes

52

equipped with two dual-core AMD Opteron processors and 4 GB of main memory (Paxos’s
acceptors and clients). Each node is equipped with one 1Gb network interface. The nodes
ran CentOS Linux 6.2 64-bit with kernel 2.6.32.

Figure 4.4 shows the throughput and the corresponding 90% percentile of the
response time of both techniques. Checkpoints are taken once every 5 seconds and each
one takes approximately 3.2 seconds to complete. When a checkpoint happens the database
has approximately 10 million entries. The results show that uncoordinated checkpointing
has a slight advantage over coordinated checkpoint in some of the configurations. Given the
high rate of commands executed per second and the frequency of checkpoints, these results
corroborate those presented in the previous section.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 4 8

T
h
ro

u
g
h
p
u
t

(K
ilo

 c
o
m

m
a
n
d
s/

se
c)

Number of threads

coordinated async.
uncoordinated async.

coordinated sync.
uncoordinated sync.

no checkpoints

 0

 2

 4

 6

 8

 10

1 2 4 8

La
te

n
cy

 (
R

e
q
.
R

e
sp

o
n
se

 T
im

e
 i
n
 m

se
c)

Number of threads

coordinated async.
uncoordinated async.

coordinated sync.
uncoordinated sync.

no checkpoints

Figure 4.4 – Throughput and response time of coordinated and uncoordinated checkpointing
with asynchronous and synchronous disk writes.

4.4 Performance Evaluation of Checkpointing for Parallel SMR Models

In this section, we evaluate the impact of checkpointing in every parallel approaches
to SMR discussed in this chapter. As observed, checkpoints introduce an overhead in the
normal execution of parallel SMR approaches. Our analysis aims to quantify the cost of
synchronization due to checkpoints through simulation.

Setup

We implemented a discrete-event simulation model in C++ and configured each
experiment to run until a confidence interval of 98% is reached. We built simulation models for
CBASE [KD04], Eve [KWQ+12], and P-SMR [MBP14]. The classical SMR model is a special
case of parallel SMR where just one thread executes commands. The behavior of classical
SMR corresponds to executions of the CBASE and P-SMR with a single executing thread.3

3This holds for the CBASE since we do not consider the overhead of the scheduler in our simulations.

53

We ran simulations with and without checkpointing enabled, and considered different
classes of workload in terms of requests execution time: (i) fixed-duration commands (i.e.,
all commands take the same time to execute), (ii) uniformly distributed command duration,
and (iii) exponentially distributed command duration. In the following, we report results using
an exponentially distributed command duration only. Our conclusions about the relative
performance of each technique also apply to experiments using the other distributions.

Analogously to the previous experiments, we generate workloads with independent
commands only. With this strategy we maximize the use of threads to execute commands,
removing the possibility of thread idleness due to the synchronization caused by dependent
commands. In doing so, our analysis focuses on the impact of synchronization due to
checkpointing.

The effects of the number of threads

Figure 4.5 exhibits the maximum normalized throughput achieved by replicas as
the number of threads varies. The normalized throughput for x threads, norm_tput(x), was
calculated as the ratio between the value measured with x threads, measured_tput(x), and
the ideal throughput in a perfectly scalable system, as stated in Equation 4.1.

norm_tput(x) = measured_tput(x)/(norm_tput(1)× x) (4.1)

In the graphs, command durations follow an exponential distribution with an average
command execution time of 0.5. For all three techniques, we show performance of executions
without and with checkpoints, in which case checkpoints are taken every 400 commands.
The throughput values measured for each technique are presented in Table 4.1.

The graph on the top of Figure 4.5 considers executions with “instantaneous” check-
points (i.e., no execution time) and the graph on the bottom of the figure shows results when
checkpoints take 5 time units. Note that differently from executions without checkpoints,
instantaneous checkpoints require threads to synchronize.

We first consider executions where, if enabled, checkpoints are instantaneous.
By ignoring the time taken to create a checkpoint, the results reveal the overhead caused
exclusively by checkpointing synchronization. As can be seen in Figure 4.5 (top), the
synchronization overhead increases with the number of threads. When replicas are configured
with one single thread there is no synchronization costs, a behavior that corresponds to
classical SMR.

When checkpoints are disabled (i.e., “no cp” in the graphs), the throughput of
CBASE and P-SMR scale proportionally to the number of threads (not seen in the graphs
due to normalization). Eve presents lower throughput than the other techniques due to
its verification stage, which periodically forces thread synchronization. When checkpoints

54

CBASE (no cp)
CBASE w cp

EVE (no cp)
EVE w cp

P-SMR (no cp)
P-SMR w coord. cp

P-SMR w uncoord. cp

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 4 8 16 32 64

N
o
rm

.
th

ro
u
g

h
p

u
t

(c
p

=
0

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 4 8 16 32 64

N
o
rm

.
th

ro
u
g

h
p

u
t

(c
p

=
5

)

Number of threads

Figure 4.5 – Maximum normalized throughput with instantaneous checkpoints (top) and 5-time
unit checkpoints (bottom). Checkpoint interval of 400 commands and command execution
duration exponentially distributed with average 0.5.

Table 4.1 – Maximum throughput with instantaneous checkpoints

threads CBASE Eve P-SMR
no cp w cp no cp w cp no cp coord cp uncoord cp

1 2 2 1.98 1.98 2 2 2
2 4 3.97 3.89 3.89 3.9 3.79 3.9
4 8 7.89 7.61 7.61 7.81 6.92 7.73
8 16 15.6 14.43 14.43 15.92 12.22 15.09

16 31.94 30.35 25.57 25.57 31.94 20.39 28.08
32 63.95 56.93 39.27 39.27 63.68 31.59 48.08
64 127.86 97 39.43 39.43 126.77 45.67 73

are enabled, the overhead added by P-SMR coordinated checkpointing and Eve are the
most impacting among the evaluated approaches. Moreover, the overhead grows as the
number of threads increases. The overhead caused by checkpoints in CBASE is smaller
than in P-SMR uncoordinated because the scheduler in the CBASE can perform a more
efficient scheduling of commands than P-SMR, where clients must decide which thread
should execute a command when the command is broadcast. P-SMR is more advantageous

55

than CBASE in executions where the scheduler becomes the bottleneck, and the technique
cannot scale with additional threads [MBP14].

Figure 4.5 (bottom) depicts the maximum throughput for scenarios in which check-
points take 5 time units. As observed before with instantaneous checkpoints, performance
degrades with the number of threads. In CBASE, the most efficient technique, with 64 threads,
replicas spend 65% of the time executing commands and 35% executing checkpoints. In
Eve, with configurations with 64 threads, replicas spend 75% and 25% with command and
checkpoint execution, respectively. This is a consequence of the fact that checkpoints happen
more often with CBASE since it has higher throughput than Eve. Practical implementations
can consider the tradeoff between checkpoint duration and checkpoint frequency (i.e., number
of commands processed per checkpoint) to tune the use of resources with command and
checkpoint execution.

The effects of the checkpoint frequency

The following experiments evaluate the impact caused by the frequency in which
checkpoints are taken by replicas in configurations with 16 cores. Figure 4.6 shows the
throughput and latency for workloads where request duration follows an exponential distribu-
tion with average 0.5. We configured the workload in this experiment to reach 75% of the
maximum throughput reachable by each model. Checkpoint interval varies from 400 to 6400
requests and checkpoints take 5 time units.

Checkpoints have an impact on the throughput and response time of replicas (top
and bottom of Figure 4.6, respectively), although the overhead caused by checkpoints
decreases as checkpoints become more infrequent, independently of the parallel SMR
approach under analysis.

From the results, CBASE and uncoordinated P-SMR present the higher throughput
rates. Regarding latency, CBASE outperforms P-SMR, presenting lower response time. This
happens due to thread scheduling. While in the CBASE approach incoming commands
can be dispatched to any free worker thread, in P-SMR clients send commands directly
to a given thread. This way, a command may end up enqueued if the thread assigned to
execute the command is busy executing another command, even if some other thread is
available. Although CBASE and Eve schedule commands more efficiently within replicas,
they are subject to a single point of contention, the scheduler in CBASE and the mixer in Eve.
By relying on clients to distribute commands across threads, P-SMR avoids this potential
bottleneck, although it becomes exposed to sub-optimal scheduling, with its performance
consequences. In our simulation we do not associate scheduling costs to any of the models.

56

CBASE (no cp)
CBASE w cp

EVE (no cp)
EVE w cp

P-SMR (no cp)
P-SMR w coord. cp

P-SMR w uncoord. cp

 0

 5

 10

 15

 20

 25

 30

400 800 1600 3200 6400

T
h
ro

u
g

h
p

u
t

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

400 800 1600 3200 6400

La
te

n
cy

Checkpoint Interval

Figure 4.6 – Throughput (top) and latency (bottom) of various techniques. Replicas configured
with 16 threads, commands execution exponentially distributed with average commands of
0.5 and checkpoint duration of 5 time units.

Summary

In the following, we summarize our findings.

• Checkpoints reduce the performance of all considered techniques and the overhead
due to checkpoints increases with the number of threads, even though techniques are
not affected equally.

– Both CBASE and P-SMR experience a reduction in performance with checkpoints,
but P-SMR is more vulnerable to checkpoints.

– Since Eve requires coordination even in the absence of checkpoints, instantaneous
checkpoints do not affect its performance, although real checkpoints do reduce its
throughput.

• The frequency of checkpoints has a bigger impact on the latency of the various ap-
proaches than on their throughput.

– When the checkpoint frequency varies from 400 to 800 commands, CBASE expe-
riences a throughput improvement from 18.79 to 21.04 commands per time unit,
while latency is reduced from 3.86 to 2.36 time units.

57

– P-SMR’s latency is particularly vulnerable to checkpoint overhead due to its sub-
optimal scheduling of commands.

In this section, we reviewed and evaluated the performance of checkpointing in
existing parallel state machine replication approaches. Our analysis focused mostly on
the checkpointing synchronization overhead. The proposed simulation models capture
the inherent differences among existing approaches and allowed us to measure the way
checkpoints affect performance in each case.

4.5 Related Work

While there is a rich body of research on the algorithmic aspects and implementa-
tion of SMR addressing crash faults [Bur06, CWO+11, CGR07, CDE+12, HKJR10, RST11],
Byzantine faults [CL99, KAD+07, CKL+09, CWA+09, KBC+12], reports on checkpointing and
recovery procedures for SMR are relatively scarce. In a recent work, Bessani et al. [BSF+13]
reviewed the literature and pointed out weaknesses of the common durability techniques (log-
ging, checkpointing and state transfer) applied to the SMR model. Further, in [AK08, CGR07]
authors discuss challenges and performance limitations of checkpointing in practical SMR
implementations. With regard to checkpointing to parallel state machine replication, the
only works addressing the topic are [MMDP14, MDP16] (the contribution of both works is
essentially the subject of this chapter).

Our research focuses in the challenges involved to correctly take checkpoints de-
spite the concurrency inherent to parallel state machine replication models. We proposed
checkpointing mechanisms and evaluated the impact on performance caused by extra syn-
chronization required by these techniques. A complementary discussion about checkpointing
concerns the way as replica’s state is converted into a checkpoint image, and how a replica
state is restored from a checkpoint. In this sense, some works propose optimizations for
logging, checkpointing and state transferring.

General optimizations on durability techniques can minimize checkpointing and
recovery overhead, improving the overall system’s performance. For instance, instead of
logging single operations, some works log batches of operations [BSF+13, CWA+09, CL99,
SFK+09, KAD+07]. This strategy explores the fact that disks are block-devices, so it is
preferable to write a batch of operations in the same block instead of writing multiple operations
in several blocks. Another logging improvement proposed in [BSF+13] is the processing and
logging of batches in parallel. This technique benefits mainly those applications in which
the time of processing batches is equal to or higher than the logging time. In [RST11], the
authors demonstrate that the logging overhead can be dramatically reduced by the use of
solid-state disks (SSD) instead of magnetic disks.

58

The generation of checkpoints may degrade the performance of the service. Taking
a snapshot after processing a certain number of requests, as proposed in most works in SMR
(e.g. [CL99, Lam98, SFK+09, KAD+07, RST11]), can delay the system momentarily. This
happens because requests are no longer processed while replicas save their state. Even
when replicas are not fully synchronized, delays may also occur because the necessary
agreement quorum might not be available. In [BSF+13] the authors force replicas to take
checkpoints at different times. Since the system makes progress as long as a quorum of
n − f replicas is available,4 there are f spare replicas in fault-free executions. Thus, n − f
replicas can continue processing client requests and up to f replicas could be taking state
snapshots. The use of a helper process for taking checkpoints asynchronously is proposed
in [CKL+09]. Two similar threads, the primary and the helper, execute in parallel. While
the primary continuously processes requests and sends replies to the clients, the helper
periodically take checkpoints. The helper thread pauses the incoming requests so that it is
quiescent while it is producing a checkpoint.

During a state transfer, at least one replica has to spend resources to send its own
state to another replica. Extra delays can occur due to the transmission of the state through
the network and because of the disk accesses. One way to avoid performance degradation is
to ignore state transfer requests until the workload is low enough to process both the state
transfer and regular messages [HKJR10]. Other way to minimize this overhead is through
the reduction of the amount of information transferred. State can be efficiently represented
by data structures based on hierarchical state partitions, as proposed in [CL99], incremental
checkpoints[CKL+09, CRL03], or compression techniques. In [BSF+13], the authors present
a collaborative state transfer protocol, so the burden imposed on replicas is evenly distributed
among them.

A comprehensive survey covering checkpointing and recovery techniques for general
message-passing applications is presented in [EAWJ02]. Although some concepts and
terminology discussed in [EAWJ02] are common to this work, authors do not address state
machine replication directly.

4n is the number of all replicas in the system and f is the number of replicas allowed to crash.

59

5. EFFICIENT PARALLEL STATE MACHINE REPLICATION

In this chapter, we introduce a protocol to efficiently handle command dependencies
and schedule independent commands to execute concurrently. The main goal of this protocol
is to reduce the overhead needed to keep tracking of dependencies and assign commands to
worker threads. Our design is motivated not only to speed up the execution in the absence of
failures, but also to boost the recovery of replicas (detailed in Chapter 6).

Before diving into details of our protocol, we first describe the basic operation of
CBASE scheduling [KD04]. In CBASE, the parallelizer uses a directed acyclic graph to
form a dependency graph. The dependency graph tracks dependencies among all pending
commands, where vertices represent commands and directed edges represent dependencies.
Independent commands do not need to be connected in the graph. Dependent commands
are ordered according to their delivery order (i.e., edges connecting dependent commands in
the dependency graph). Worker threads receive independent commands from the parallelizer
(i.e., vertices with no incoming edges) to be concurrently executed.

In CBASE approach, the number of disconnected components in the dependency
graph determines how many commands can be executed concurrently at any given time.
Figure 5.1 (a) depicts an illustrative dependency graph with six commands, delivered in the
order a, b, ..., f . Commands a, c and e are the next ones to be scheduled for execution
and can execute concurrently. Commands a and b are dependent but a was delivered first,
so, a must execute before b. Intuitively, fewer interdependencies between commands in
the dependency graph favor concurrency. However, the cost of adding a new command
in the dependency graph is proportional to the number of commands in the graph that are
independent of the new command. For example, a new command g will be first compared to
commands d and f ; if g is independent of d , it will be compared to c and b, and so on. If g is
independent of every command in the graph, it will be compared against all vertices.

As illustrated by this example, the dependency analysis cost increases with the
dependency graph size. In order to reduce the scheduling cost, our proposed scheme
penalizes concurrency in the execution of independent commands for reduced overhead
when tracking command dependencies.

5.1 Overall idea

In summary, our scheme combines the following strategies:

• The scheduler assigns batch of commands to the worker threads, as opposed to
individual commands.1

1Batching to SMR was originally proposed by [FVR97].

60

c

fe

a b d

(a)

c

fe

a b d

B1

B2

B3

B1 B2

B3

(b) (c)

B1; B2

c_seq
b(B1)+b(B2)

c_map

b(B3)

. . .

(d)

1

2

N

B3

Figure 5.1 – Four representations of a dependency graph with six commands. (a) The original
dependency graph, where edge x → y means that commands x and y are dependent and x
was delivered before y . (b) The original graph grouped in batches of two commands. (c) The
abridged dependency graph; notice that commands b and c are serialized in the abridged
graph. (d) The stored dependency graph; batches B1 and B2 are assigned to worker thread
t1 and batch B3 is assigned to worker thread t2; b(B) is a digest of the variables accessed
by commands in B, used to track dependencies between command batches. The stored
dependency graph preserves all dependencies defined in the original dependency graph.

• The dependency graph is stored as sequences of command batches, with one sequence
per worker thread.

• The scheduler minimizes synchronization with worker threads when scheduling com-
mand batches.

Batched commands. Clients submit commands through a client proxy, which groups com-
mands from different clients and broadcasts the commands for execution as batches. When
the proxy receives responses for all commands in a batch, it can submit a new batch of
commands. There can be any number of client proxies, each one handling a group of clients.

The abridged dependency graph. The parallelizer delivers batches of commands and
builds an abridged dependency graph, where vertices are command batches and edges
are dependencies induced by the commands in the batches. More precisely, there is an
edge from batch Bi to Bj in the graph if Bi is delivered before Bj and Bj contains a command
that depends on a command in Bi (see Figure 5.1 (b) and (c)). Moreover, each batch of
commands contains a bitmap with a digest of the variables read and written by the commands
in the batch. The idea is that given two bitmaps, b(Bi) and b(Bj), we want to be able to
determine whether there is a command in batch Bi that depends on some command in batch
Bj by comparing their bitmaps. The way bitmaps are encoded to satisfy this property is
application dependent and can be achieved in different ways. In our prototype, we consider
write commands in a database, where each operation includes the key of the entry written in
the database. Therefore, we create bitmaps by hashing the key provided in the command; the
hashed value corresponds to a bit set in the bitmap. Checking whether two batches contain
dependent commands boils down to a bit-wise comparison of their bitmaps.

61

The overhead versus concurrency tradeoff. The abridged dependency graph establishes
a tradeoff. On the one hand, batching reduces the overhead needed to handle commands
(e.g., fewer system calls to deliver commands, fewer edges to store the graph, fewer com-
parisons to determine dependencies), which improves performance. On the other hand, the
abridged dependency graph reduces concurrency since it may induce dependencies among
independent commands. In Figure 5.1(b), independent commands a and c are serialized
since commands in B1 must execute before commands in B2 because b is in B1, d is in B2

and b precedes d .

The stored dependency graph. We now describe how the abridged dependency graph is
stored at each replica. It introduces an optimization that allows new command batches to be
added to the graph in O(tb), where t is the number of worker threads, and b is the bitmap
size. The parallelizer and the worker threads share two data structures, each one with one
entry per worker thread (see Figure 5.1 (d)). For each worker thread ti , c_seq[i] contains
the sequence of command batches the parallelizer assigned to ti and c_map[i] contains a
bitmap that encodes all commands in c_seq[i]. When the parallelizer delivers a new batch B,
it checks B’s bitmap, b(B), against each c_map[i] to determine which worker threads need to
coordinate in order for commands in B to be executed. If no interdependencies are detected,
the parallelizer chooses one worker thread ti (e.g., the least loaded one), assigns B to ti
by appending B to c_seq[i], and updates ti ’s bitmap b_map[i]. Otherwise, the parallelizer
determines all worker threads that have been scheduled commands on which B depends,
adds B to the end of c_seq of such threads and updates their bitmaps.

The execution of commands. Each worker thread ti executes commands following their
order in c_seq[i], where commands in the same batch are handled in the order they appear
in the batch. When a worker reaches a command batch B that requires coordination among
workers, all involved workers coordinate so that a single worker executes the commands in
B. After the thread executes all commands in B, it signals the other worker threads involved
to proceed. When thread ti is finished with B, ti removes B from c_seq[i] and recomputes
c_map[i] based on the batches currently in c_seq[i]. As a consequence of this procedure,
the parallelizer and the worker threads must access structures c_seq and c_map in mutual
exclusion.

Concurrent access of shared structures. Our final optimization aims to reduce the syn-
chronization needed between the parallelizer and the worker threads to access c_map. In
order to achieve this, the parallelizer maintains a “shadow copy” of c_map, s_map, which
it uses to detect dependencies between a delivered batch B and the commands previously
assigned to worker threads. Structure s_map is only accessed by the parallelizer. Each entry
s_map[i] contains a superset of the commands in c_seq[i]. This is because when worker

62

thread ti executes a batch of commands, it updates c_map[i] but not s_map[i]. Therefore, the
parallelizer may detect false positives when determining B’s dependencies and the worker
threads that need to coordinate to execute commands in B. Once these worker threads are
determined, for each such a thread ti , the parallelizer requests exclusive access to c_map[i]
and c_seq[i]. The parallelizer then appends B to c_seq[i], updates c_map[i] with b(B), and
copies the value of c_map[i] into s_map[i].

5.2 Algorithm in detail

Algorithm 5.1 details the behavior of the parallelizer and the worker threads, re-
spectively. Data structures c_seq[i] and c_map[i] are accessed in mutual exclusion by the
parallelizer and worker thread ti . When the parallelizer delivers a new batch of commands
B (line 26), it compares B’s bitmap, b(B), against each entry in s_map, the shadow copy
of c_map (lines 12–15). If b(B) and s_map[i] intersect (line 14), then worker thread ti has
been scheduled to execute a batch of commands that depend on commands in B and is
added to set dep_list (line 15). If no dependencies are found (line 16), the parallelizer can
choose any of the worker threads to execute commands in B (lines 17–18). If there are
dependencies, they are all in dep_list , and one worker thread among the ones in dep_list
will execute the commands in B (lines 19–20). For each worker thread ti involved in the
execution of B (line 21), the parallelizer appends 〈dep_list , B〉 to ti ’s sequence of command
batches (line 22), updates c_map[i], ti ’s bitmap (line 23), and stores a fresh copy of c_map[i]
in s_map[i] (line 24).

Every worker thread tid iterates through its list of assigned commands (line 30).
For each entry 〈dep_list , B〉 in tid ’s sequence c_seq[id] (line 31), tid deterministically selects
one worker thread exec_t to execute B (line 32). The selected thread executes B (line 36)
and then signals the other threads in dep_list (lines 37–40), which simply wait for the signal
(line 41). After handling B, every involved thread recomputes its bitmap with the command
batches in c_seq (lines 42–44).

Why it works. Correctness is discussed in detail in the Appendix B. Here we highlight the
main intuition. From the total delivery order of batches <B and knowing the dependency
between commands in different batches it is possible to obtain a batch sequence dependency
relation ≺B, an irreflexive partial order which is transitive, antisymmetric and acyclic.

Replica consistency. This holds since (i) all batches are enqueued at some thread;
(ii) queues of working threads are compatible with <B, that is, the batches enqueued at a
working thread appear in the queue coherently with <B; (iii) when batches appear in more
than one queue then they depend on previous batches in those queues, in which case the

63

Algorithm 5.1 Efficient Parallel SMR
1: Main data structures:
2: c_map[1..N] {bitmap vector, shared by parallelizer and worker threads, accessed in mutual exclusion}
3: c_seq[1..N] {vector of sequence of command batches, shared by parallelizer and worker threads,

accessed in mutual exclusion}
4: s_map[1..N] {shadow copy of bitmap vector, accessed by parallelizer only}

5: procedure Initialization()
6: for i = 1..N do {for each worker thread...}
7: c_seq[i]← ∅ {set command set for thread i}
8: c_map[i]← 0 {set bitmap for thread i}
9: s_map[i]← 0 {shadow of the bitmap}

10: k ← 1

11: procedure schedule(B)
12: dep_list ← ∅ {workers that depend on B}
13: for i = 1..N do {for each worker}
14: if b(B) ∩ s_map[i] then {check dependencies and}
15: dep_list ← dep_list ∪ {i} {keep track of dependency}
16: if dep_list = ∅ then {if no dependencies...}
17: choose next_t in 1..N {select one worker}
18: workers ← {next_t} {ditto!}
19: else {if there are dependencies...}
20: workers ← dep_list {request workers to sync}
21: for all i ∈ workers do {for each concerned worker}
22: c_seq[i]← c_seq[i]⊕〈dep_list , B〉 {append B to sequence}
23: c_map[i]← c_map[i] ∨ b(B) {logic OR of bitmaps}
24: s_map[i]← c_map[i] {update shadow copy}

25: The parallelizer executes as follows:
26: when deliver(k , B) {when deliver new batch of commands}
27: schedule(B)
28: k ← k + 1

29: Each worker thread tid executes as follows:
30: when c_seq[id] 6= ∅ {while there are commands to execute}
31: 〈dep_list , B〉 ← remove first element in c_seq[id]
32: exec_t ← smallest i in dep_list {worker to execute command}
33: if id = exec_t then {if tid was selected}
34: for all i ∈ dep_list ∧ i 6= id do {involved workers...}
35: wait for signal from ti {...use barrier before command}
36: execute commands in B {execute commands}
37: for all i ∈ dep_list ∧ i 6= id do {involved workers...}
38: signal ti {...use barrier after command}
39: else {else, if tid wasn’t selected...}
40: signal texec_t {first barrier}
41: wait for signal from texec_t {second barrier}
42: c_map[id]← 0 {recompute worker’s bmap}
43: for all 〈dep_list , B〉 in c_seq[id] do {for each batch}
44: c_map[id]← c_map[id] ∨ b(B) {logic OR of bitmaps}

64

involved threads synchronize to solve all dependencies of a common batch before processing
the batch, that is, a batch is only processed after its dependencies were solved. A batch
that appears in a subset of thread queues (possibly in only one queue) is independent of
batches in all other queues it does not appear. Moreover, replica progress is granted. A first
observation is that the queues of working threads with commands that need synchronization
will not deadlock because <B is an irreflexive total order, and thus acyclic. Since the queues
of working threads are coherent with <B, there is no inversion in their elements to provoke a
cycle. A second related observation is that it is always possible to remove a batch B of the
queue of a working thread because their queues are coherent with <B and thus the lowest
element is well-defined (this is argued in Appendix B).

Consistency across replicas. As batches arrive at different replicas respecting <B, it
is possible to calculate dependencies from previous batches still enqueued (i.e., calculate ≺B

for the previous delivered batches still enqueued). Different replicas may progress at different
speeds and thus may have different sets of enqueued batches. Consider independent batches
Bi and Bj such that Bi <B Bj . While a replica R1 could have processed Bj concurrently with
Bi and finish Bj before Bi , leading to Bj • Bi , in another replica R2, Bi could already have
been processed when Bj is delivered, leading to Bi • Bj . However this is not harmful since
it is possible only for independent batches. If batches were dependent, R1 would enforce
<B which is naturally followed by R2 since it already processed Bi in the appropriate order,
respecting the total order of dependent batches.

5.3 Evaluation

In this section, we describe our prototype, present the experimental environment,
identify the parameter space, and discuss the results of our performance study.

5.3.1 Implementation

In order to evaluate our parallel implementation of state machine replication, we
developed a key-value store service. The service implements commands to create, read,
update and remove keys from an in-memory database. Atomic broadcast is provided by the
primitives broadcast and deliver implemented in Ring Paxos [MPSP10], a high-throughput
atomic broadcast protocol. In our prototype, we used the URingPaxos2 library, a Multi-Ring
Paxos implementation in Java [BMPG14, BPP15].

Bitmaps are used to encode the keys of every command batched in a request. A
hash function maps the keys into bitmap positions. Figure 5.2 illustrates a batch B and its

2https://github.com/sambenz/URingPaxos

65

respective bitmap representation. Batch B contains 2 commands and commands’ keys are
mapped into a bitmap of size m, b(B). The second and the last but one b(B) bits are set to 1,
indicating that keys x and y belong to this bitmap.

x y
h(x)

1 1m
 ..

h h(y)B=[put(x,10), get(y)]

b(B) =
Figure 5.2 – Resulting bitmap for a batch of commands. The bitmap size is m and it encodes
2 keys.

The number of bits in a bitmap does not necessarily represent the number n of
commands encoded in that batch. Since any two commands may access the same key, the
same bit can map more than one command key. In addition, depending on the size of n and
m, there is a certain probability that the hash function maps two different keys to the same
bitmap position. The probability of two encoded keys occupying the same bit increases as
n increases and m decreases. While this approach is subject to false positives (i.e., it may
detect a conflict when none exists), it is not prone to false negatives (i.e., it does not miss real
conflicts).

Client commands are forwarded to a client proxy, which is responsible for batching
those commands in a single request. To alleviate the burden on the parallelizer, the bitmaps
for a batch are computed by the client proxy and encapsulated in the request message. Client
proxies broadcast a request to the replicas and wait for the first reply from a replica for every
command in the batch before broadcasting another batch.

With the aim of shrinking batches and reducing message size, the values retrieved
from our key-value store service are compressed before being transferred through the network.
Towards this end, we use primitives compress(byte[] value) and decompress(byte[]
value) on the client side. For instance, update and read operations should be in the form
db.put(x, compress(“Hello world!”)) and result = decompress(db.get(x)),
respectively. In this example, db is a reference to the key-value store, x is a key, and put(key
x,byte[] value) and get(key x) are update and read operations, respectively.

Upon receipt of a batch, the replica proceeds as in Algorithm 5.1. To execute
commands (line 32), each worker thread decompresses and extracts command values from
received batches before executing them. In the experiments, we opted for using only update
commands.

66

To reduce the overhead of checkpointing, two main optimizations are implemented:
copy-on-write [LNP90, EJZ92, Rod08], and sequential checkpointing [BSF+13]. In the copy-
on-write technique, all key-value store objects are write-protected during checkpointing. If
the replica attempts to modify one of these objects while it is still protected, the object is
duplicated and the protection is removed, allowing modifications on it. The newly allocated
object is accessible only by the checkpoint procedure to write the original content to stable
storage. After writing each object to stable storage, the write-protection is removed and
duplicate objects deallocated. The copy-on-write technique permits the checkpoint procedure
to run in parallel with the execution of commands. In sequential checkpointing, the intuition is
to make replicas store their state at different times, to ensure that a quorum of replicas can
continue processing without suffering from the checkpointing overhead. Although replicas
checkpoint their state at different points of the execution, the checkpointing interval is the
same for all of them. This means that every checkpoint interval only f of the correct replicas
take a checkpoint.

5.3.2 Environment and configuration

All experiments were executed on a cluster with two types of nodes: HP SE1102
nodes equipped with two quad-core Intel Xeon L5420 processors running at 2.5 GHz and
8 GB of main memory; and Dell PowerEdge R815 nodes equipped with four 16-core AMD
Opteron 6366HE processors running at 1,8 GHz and 128 GB of main memory. The HP
nodes were connected to an HP ProCurve switch 2920–48G gigabit network switch, and
the Dell nodes were connected to another, identical network switch. The switches were
interconnected by a 20 Gbps link. All nodes ran CentOS Linux 6.5 and had the Oracle Java
SE Runtime Environment 8. Paxos proposer, acceptors, and clients were deployed on HP
nodes, while replicas were deployed on Dell nodes. Our prototype was set up to tolerate one
failure, requiring three acceptors and two replicas.

5.3.3 Performance Analysis

Our parallel state machine replication is a complex system, whose performance
is determined by application characteristics (e.g., command size, mix of read and write
commands, percentage of dependent and independent commands) and configuration pa-
rameters (e.g., number of worker threads, batch size, bitmap size, checkpoint frequency).
Consequently, assessing performance under the complete space of configuration parameters
is impractical. Our approach is to start with a series of experiments covering a range of
scenarios helpful to identify meaningful indicatives of performance.

67

Our prototype limits client requests size to 64k bytes. The message size is calculated
by the sum of the bitmap size plus the sum of key and value sizes for each batched command
(i.e., command’s key and value size are multiplied by the number of commands in a batch). In
our experiments, the bitmap size varies from 1024 to 20480 bits. We used keys of 8 bytes
and values sizes vary from 8 bytes to 4096 bytes.

Our first set of experiments aims to understand how normal execution in parallel
state machine replication is affected by the number of worker threads and message size.
From Figure 5.3, both 1k- and 4k-byte commands replicas reach best performance with 8
threads. With fewer than 8 threads, the bottleneck is on the execution of commands; with
more than 8 threads the bottleneck is on the scheduling of commands (parallelizer). As we
could expect, performance is higher with smaller values. Based on these results, hereafter
we consider experiments with 8 worker threads and commands’ value of 1k-byte. Figure 5.4
depicts the throughput versus latency graph for this configuration. For the experiments that
follow, we consider an operational load (i.e., number of clients) that corresponds to 70% of
peak performance, approximately 43k commands per second.

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 16 32 64

T
h
ro

u
g

h
p
u
t

(k
C

m
d

s/
s)

Number of threads

Cmds 1kB
Cmds 4kB

Figure 5.3 – Maximum throughput versus number of threads.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

La
te

n
cy

 (
m

s)

Throughput (kCmds/s)

70% of the maximum load

8 threads

Figure 5.4 – Throughput versus latency of 1k-byte commands.

The experiments above assume batches with 50 commands, independent com-
mands only (i.e., 0% dependency probability), and no checkpoints. We now proceed to

68

understand how each one of these parameters impacts performance. From Figure 5.5, as
expected, both throughput and latency increase with batch size. Throughput increases with
batch size since there is less scheduling overhead per command executed, while latency
increases with batch size since clients receive responses when all commands in a batch have
completed. We notice an important throughput gain with batch size 50 if compared to smaller
batches, while presenting reasonable latency; therefore we continue the experiments with a
fixed batch size of 50 commands.

 0

 10

 20

 30

 40

 50

 60

 70

10 20 50 75 100

T
h
ro

u
g
h
p

u
t

(k
C

m
d

s/
s)

Batch size (Cmds)

8 threads

 0

 5

 10

 15

 20

 25

 30

 35

 40

10 20 50 75 100

La
te

n
cy

 (
m

s)

Batch size (Cmds)

8 threads

Figure 5.5 – Throughput (top) and latency (bottom) according to the batch size.

Further aspects that impact throughput in our parallel state machine replication
approach are dependency probabilities and checkpoint interval. Two batches of commands
are dependent if there are at least two commands, one in each batch, that are dependent;
conversely, the batches are independent if no command in one batch depends on commands
in the other batch. We denote dependency probability the probability that two batches are
dependent. As it can be observed in Figure 5.6, throughput decreases as the dependency
probability increases. Lower dependency probabilities show little effect on the throughput
while, after 10% dependency probability throughput drops considerably until it reaches
another plateau, approaching sequential batch processing throughput. When the dependency
probability is 100%, all batches are sequentially executed leading to throughput coherent with
the plot of Figure 5.3 for 1 thread, both around 18K commands per second.

The checkpoint interval also affects performance, as observed in Figure 5.7. In our
prototype, checkpoint intervals are measured in number of batches executed between two

69

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

0 1 10 25 50 75 100

T
h
ro

u
g
h
p

u
t

(k
C

m
d
s/

s)

Conflict rate (%)

8 threads

Figure 5.6 – Throughput variation according to dependency probability.

consecutive checkpoints. The bigger the intervals, the higher the throughput, but also the
longer the log of old commands during recovery. The configuration with checkpoint interval of
20k batches has provided a throughput around 36k commands per second. Although higher
checkpoint intervals achieve higher throughput, they may incur long logs.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

10000 20000 50000 100000 no chk

T
h
ro

u
g

h
p
u
t

(k
C

m
d

s/
s)

Checkpoint interval (batches)

8 threads

Figure 5.7 – Throughput variation according to the checkpoint interval.

In previous experiments, we set the space of generated keys in a way that checkpoint
size was around 512M bytes. In our prototype, replicas store their checkpoints in a remote
stable storage. The checkpoint duration is the time taken to serialize the entire service tables
into a checkpoint image plus the time to transfer the checkpoint image to the stable storage
through FTP.

Next, we evaluate how checkpoint size affects performance. Towards this end, we
measure the time taken for saving checkpoints with different sizes and analyze how the
checkpoint duration affects the log growth.

Figure 5.8 shows the checkpoint duration according to the checkpoint size. As
observed, creating a checkpoint of 512M-bytes takes approximately 15 seconds, while a
checkpoint of 1G-byte takes 30 seconds. We observe a processing rate around 35M-bytes
per second while generating checkpoints.

70

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500

C
h
e
ck

p
o
in

t
d
u
ra

ti
o
n
 (

s)

Checkpoint size (MB)

checkpoint (copy-on-write)

Figure 5.8 – Checkpoint duration according to the checkpoint size.

Our prototype implements copy-on-write [LNP90, EJZ92, Rod08] and sequential
checkpointing [BSF+13] to minimize the effects of checkpointing. While the first technique
allows the processing of new commands in parallel with checkpoint creation, the second
one reduces throughput hiccups caused by checkpointing. Because of that, we expect little
reduction in the overall throughput when checkpoints are in progress.

Figure 5.9 shows the growth of log over time for executions with 1, 2, 4, and 8
worker threads. These results consider an operational load that corresponds to the peak
performance for each threads’ configuration scenario (see Figure 5.3 for a baseline). From
Figure 5.8, performing a 512M-byte checkpoint takes about 15 seconds. During this interval,
for the 8 threads configuration, our prototype can execute nearly one million of commands,
amounting to almost 1G-byte worth of logged old commands. For the same set up (8 threads),
while performing a 2G-byte checkpoint (which takes about 60 seconds), our prototype can
execute more than 3.5 millions of commands, amounting to more than 3.5G-byte worth of
logged commands.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60

Lo
g
 s

iz
e
 (

kC
m

d
s)

Time (s)

1 thread
2 threads
4 threads
8 threads

Figure 5.9 – Log size increase over time.

71

Table 5.1 presents the smallest log size expected for several combinations of check-
points size and number of worker threads. As the checkpoint size increases, the checkpoint
procedure takes longer to finish. The number of commands processed during checkpoint
duration indicates the minimum number of requests in a log, i.e., the smallest possible log
(see Figure 1.1). The throughput varies with the number of worker threads in execution, as
does the log size. In the table, the log size given in M-byte refers to commands with keys of
8-bytes and values of 1k-byte.

Table 5.1 – Smallest log size estimation according to the checkpoint size

Checkpoint
size (MB)

Checkpoint
duration (s)

Log size (kCmds) Log size (MB)
1 thread 2 threads 4 threads 8 threads 1 thread 2 threads 4 threads 8 threads

128 3.77 69 112 168 236 68 110 166 233
256 7.55 138 225 337 473 136 221 332 466
512 15.09 276 449 674 946 271 442 663 931

1024 30.19 551 899 1349 1893 543 884 1327 1863
2048 60.38 1103 1797 2697 3785 1086 1769 2655 3725

72

73

6. FAST RECOVERY IN PARALLEL STATE MACHINE REPLICATION

Recovering a crashed server boils down to fetching and installing a service check-
point and retrieving and (re-)executing commands that are not included in the checkpoint.
With standard recovery techniques, a recovering replica can only execute “new commands”
after it has fetched and installed a checkpoint and retrieved and executed “old commands”,
that is, commands that were already ordered and perhaps even executed but are not included
in the installed checkpoint. In this chapter, we introduce techniques to reduce recovery time.

6.1 Speedy recovery of large logs

Recovery typically faces the following tradeoff. In order to minimize the number
of old commands a recovering replica needs to retrieve and execute, checkpoints must be
frequent. Checkpoints, however, may degrade performance during normal execution; thus,
for performance checkpoints should be infrequent. Even though some techniques strive to
reduce the impact of checkpointing on normal execution (e.g., in our prototype we use a
copy-on-write data structure [LNP90, EJZ92, Rod08] and sequential checkpointing [BSF+13]
to minimize the effects of checkpointing), checkpoint frequency is limited by other factors.
Since concurrent checkpoints may overload the system and further complicate the design,
checkpoints are typically configured to happen sequentially, that is, one checkpoint only starts
after the previous one has finished. Therefore, checkpoint frequency is ultimately limited by
how quickly a single checkpoint can be performed.

In systems designed for high performance, such as parallel state machine replication,
a practical consequence of the recovery tradeoff mentioned above is that a recovering replica
needs to handle a large sequence of old commands before it can execute new commands.
This situation renders the replicated system more vulnerable to failures since a recovering
replica is only available once it can process new client commands. Instead of trying to reduce
the sequence of old commands (e.g., by increasing checkpoint frequency), we approach the
recovery tradeoff from a different perspective: we allow new commands to execute before old
commands have been processed. In brief, our strategy is based on the observation that a
new command does not need to wait for an old command to be executed if the two commands
are independent. In the rest of this chapter, we explain how we integrate this strategy in the
parallel state machine replication scheme described in Chapter 5.

During normal operation, replicas create a dependency log, which contains bitmaps
of command batches the replica executed since its last checkpoint. When a replica creates
a new checkpoint, it trims its dependency log. To recover from a failure, a replica retrieves
a recent checkpoint and the dependency log from an operational replica (or from remote

74

storage). Old commands not included in the restored checkpoint will be delivered with atomic
broadcast. But since the dependency log contains a digest of the old commands, it can be
retrieved much more efficiently than the actual commands.

With the dependency log, the recovering replica can execute new commands before
processing all old commands. The replica splits the delivery of commands into two flows: one
flow with new commands and one flow with old commands. Old commands are scheduled
for execution as during normal execution. A new command is scheduled for execution if it is
independent of every old command that has not been scheduled yet. The replica uses the
dependency log to check whether a new command is independent of pending old commands.

Algorithm 6.1 complements Algorithm 5.1 and introduces the recovery of parallel
state machine replication. This algorithm presents the steps of a starting replica (lines 2–10)
and redefines the steps of the parallelizer (lines 12–25 in Algorithm 6.1 replace lines 26–28
in Algorithm 5.1). When a replica starts its execution, it first retrieves a checkpoint and the
checkpoint identifier (line 2). The checkpoint identifier is the largest delivery instance of a
command in the checkpoint. The replica then installs the checkpoint (line 3).

After the checkpoint is installed, the replica calls the initialization procedure defined
in Algorithm 5.1 (line 5), queries the atomic broadcast module to determine the latest instance
of a delivery event (line 5), retrieves the dependency log with bitmaps of batches containing
old commands, that is, commands in batches delivered before the latest instance (line 6),
initializes variables i and k , which will keep track of delivery events for old and new commands,
respectively (lines 7 and 8), and variables n_seq and n_map, which contain the sequence
of batches of new commands that cannot yet be executed and their bitmap representation
(lines 9 and 10).

The parallelizer handles two flows of delivery events, one for old commands and
one for new commands. When the parallelizer delivers a batch B of old commands (line 13),
it schedules B for execution and gets ready for the next batch (lines 14 and 15). If there are
no more batches of old commands, the parallelizer schedules all batches of new commands
that have been delivered but could not yet be scheduled because they contain commands
that depended on old commands, either directly or indirectly (lines 16–18).

When the parallelizer delivers a batch B of new commands, it checks whether
B’s bitmap intersects with the bitmaps of batches with old commands that have not been
scheduled yet (i.e., d_map structure) and with new commands that precede b (i.e., n_map
structure). If there is no intersection, B is scheduled for execution (lines 20–21); otherwise, B
is appended to n_seq to be executed later (line 23) and its related bitmap n_map is updated
(line 24). Finally, the parallelizer is ready to deliver the next batch of new commands (line 25).

Why it works. Correctness of our recovery technique is discussed in Appendix B. We
regard the total delivery order <B as being a concatenation of <Bc , <Bo and <Bn , respectively
the batches processed in the checkpoint, the batches received while the replica was not

75

Algorithm 6.1 Recovery
1: Upon starting execute as follows:
2: (chk , i)← lastCheckpoint() {retrieve checkpoint and its identifier}
3: install chk {install checkpoint}
4: initialization() {initialize structures in Algorithm 5.1}
5: j ← currentDeliveryInstance() {instance of last delivered message}
6: d_map[i ..j]←dependencyLog(i , j) {bitmaps of delivered batches}
7: i ← i + 1 {instance of next batch of old commands}
8: k ← j + 1 {instance of next batch of new commands}
9: n_seq ← ∅ {sequence of batches with new commands}

10: n_map ← 0 {bitmap associated with sequence above}

11: The parallelizer executes as follows:
12: when (deliver(i , B) and i ≤ j) or deliver(k , B)
13: if delivered (i , B) then {if delivered batch of old commands}
14: schedule(B) {schedule batch for execution}
15: i ← i + 1 {set next old batch to be retrieved}
16: if i > j then {if done with batches of old commands}
17: for each B ∈ n_seq, in order do {pending batches of...}
18: schedule(B) {...new commands are scheduled now}
19: else {if delivered batch B of new commands}
20: if b(B) ∩ (d_map[i] ∨ ... ∨ d_map[j] ∨ n_map) = ∅ then
21: schedule(B) {schedule B for execution if possible}
22: else {if B depends on batches that precede B}
23: n_seq ← n_seq ⊕ 〈B〉 {add B to pending sequence}
24: n_map ← n_map ∨ b(B) {update related bitmap}
25: k ← k + 1 {set next new batch}

available and have to be processed to catch up with the current state, and new batches being
received by the replica as soon as they are available again. To allow new batches to execute
concurrently with old batches, we ensure that any batch in <Bn , which is independent of other
batches in <Bn , can be executed concurrently with batches in <Bo only if they are independent,
otherwise they wait for batches in <Bo to be completed. This ensures that all batches, both
old and new, respect ≺B, the dependency relation.

6.2 On-demand state recovery

Although processing new commands concurrently with old commands improves
the availability of the system by bringing a recovering replica back up more quickly, old and
new commands can only execute after the recovering replica has transferred and installed a
checkpoint. On-demand state recovery addresses this shortcoming. The overall idea is to
divide the service state (i.e., checkpoint) into segments, and retrieve and install each segment
only when it is needed for the execution of a command, be it a new or an old command.

In order to implement on-demand state recovery, we have moved the logic involved
in the retrieval and installation of a checkpoint to the worker threads, instead of performing it

76

as the first action of a recovering replica. As soon as a recovering replica has retrieved the
dependency log, it can schedule commands, as described in the previous section. Before
a worker thread executes a command, it checks whether the needed segment is already
installed or not. If the segment is not installed, the worker thread retrieves the segment
from an operational replica (or remote storage), installs the segment, and then executes the
command. If the segment is being installed by another thread, then the worker thread blocks
until the segment has been completely installed. When finalizing the installation, the segment
is marked as installed and each blocked thread is notified to resume its execution.

This scheme improves performance in two aspects. First, it defers the transferring
and installation of segments to when they are needed. Second, it allows to parallelize these
operations on different worker threads.

6.3 Evaluation

In this section, we describe our prototype, explain our assessment goals and
methodology, and present the results of our performance study.

6.3.1 Implementation

In order to evaluate our recovery technique, we improved the prototype presented
in Chapter 5 by implementing speedy recovery and on-demand recovery techniques. The
implementation of these features is discussed in more detail below.

The dependency log is implemented as a list of consolidated bitmaps for groups of
delivered batches. Instead of keeping one bitmap per batch, several batches are grouped
and associated to a single bitmap that is computed as the union of the bitmaps of batches in
the group. We call this consolidated bitmap log bitmap item.

Figure 6.1 illustrates batch bitmaps i to j being added to a log bitmap item. A log
bitmap item is composed of the cumulative result of OR operations for batch bitmaps i to j .

For performance reasons, after every j batches have been received and added to a
log bitmap item, replicas create a new log bitmap item that will be used to store information
about the next j batches. The list of log bitmap items constitutes the dependency log, as
depicted in Figure 6.2. The first element in the list contains a consolidated bitmap for the first
j batches, the second element is a consolidated bitmap for the next j subsequent items, and
so on. In order to check dependencies between an incoming request and the batches already
processed, a replica tests whether the incoming bitmap intersects with any of the log bitmap
items in the log bitmap list.

77

1 1m
 .. 1 1m

 .. 11 m
 ..

bitmap i bitmap i+1 bitmap j...

1 1m
 .. log bitmap item

OR
1

Figure 6.1 – Resulting bitmap item for a group of batches. The bitmap item contains encoded
information for batches i to j .

m

1 1 ..

log bitmap list:

1

1 1 .. bitmap i

...

1 1 .. bitmap j

OR

1 1 .. 1 ...

1 1 .. bitmap j+1

...

1 1 .. bitmap 2j

...

OR

m

Figure 6.2 – Dependency log structure.

When a checkpoint is created, the replica uses the identifier of the last batch present
in that checkpoint to trim unnecessary log bitmap items from the dependency log. Every log
bitmap item that contains only batch instances lower than that identifier can be removed. As
a consequence, the dependency log contains only information about requests that are not
included in the replica’s most recent checkpoint.

We divide the state of our key-value store service in partitions such that each
partition is responsible for a range of keys. Key ranges are of the same size and workloads
generated in our experiments choose keys uniformly distributed among the partitions. While
checkpointing, a replica serializes each of the partitioned tables into a checkpoint segment
(using copy-on-write). Since the partitioned tables are independent, checkpoint segments
can be created concurrently by multiple threads.

6.3.2 Goals and methodology

The high performance recovery techniques introduced in this thesis aim to speed up
recovery of large logs and reduce state transfer. Ultimately, both techniques are designed
to increase a replica’s availability and introduce modifications whose impact on server and

78

client sides have to be observed. We wish to quantify the effects of these optimizations with
emphasis on the following goals.

• Recovery time. A replica is recovered as soon as it can process new commands. We
assess the time it takes for a replica to recover using the techniques introduced in this
work and compare them to classical recovery.

• Throughput during recovery. Speedy recovery allows new commands to be pro-
cessed before recovery is finished, differently from classical recovery techniques. We
determine the throughput of new commands during the restart of a replica.

• Recovery breakdown. We investigate the interplay of the steps involved in speedy
recovery and on-demand state transfer and how each step contributes to recovery
duration.

We focus our recovery study on three strategies: (a) classical SMR recovery,
(b) speedy recovery, and (c) speedy recovery combined with on-demand state transfer.
All experiments were executed on the same cluster described in Chapter 5.

6.3.3 Performance Analysis

Once we surveyed the performance of our prototype for several important param-
eters (see Chapter 5), we fix the system with 8 threads, operational load at 70% of peak
throughput, batch size of 50 commands, checkpoint interval at 20k batches and investigate
the behavior of recovery for 0% and 5% dependency probabilities. The reason for choosing
dependency probability of 0% is to understand the potential of the technique (i.e., it results
in the best performance), while 5% is more than one should expect in a typical application,
according to the literature. Moraru et al. [MAK13] state that from the available evidence,
dependency probabilities between 0% and 2% are the most realistic. For instance, in Chubby,
for traces with 10 minutes of observation, fewer than 1% of all commands could possibly
generate conflicts [Bur06]. In Google’s advertising back-end, F1, fewer than 0.3% of all
operations may generate conflicts [CDE+12].

Keeping the dependency probability rate in a controlled range is very challenging
or even impractical, since it is highly dependent on systems parameters and susceptible to
workload fluctuations. In order to allow greater control over dependencies observed in our
experiments, we extended our prototype to induce dependencies according to synthetic rates.
By doing so, although our prototype performs all bitmaps comparisons resulting from a regular
execution, dependencies are detected according to a probabilistic rate configured in advance.
The following experiments adopt synthetic rates. Experiments with real dependencies are left
to the end of this section.

79

We start by analyzing the effects on replica’s downtime due to the anticipation of
new requests processing. To facilitate our analysis, only one replica is active during the
executions. Thus, service unavailability will be perceptible to the clients as requests timeout.
In our scenario, a replica executes for 3 minutes, fails and, as soon as possible, it starts
recovering. By starting the recovery procedure immediately after a failure, and running a
single replica, we reduce unpredictable effects that could be caused by failure detection or
reconfiguration mechanisms. In order to avoid execution stalls, we disable the generation of
checkpoints throughout the execution. Consequently, the whole log of old commands has to
be processed by the recovering replica.

Figure 6.3 depicts excerpts of execution traces for (a) classical recovery, (b) speedy
recovery, and (c) speedy recovery combined with on-demand state transfer. The execution
interval shown in the graphs has 3 minutes of duration and it starts in the last minute before
replica failure. Graphs on the left show replica throughput and graphs on the right show the
response time measured at one of the client proxies. The dependency probability was set
to 0%. For all execution traces, the recovery log contains around 80.000 batches, i.e., four
millions of commands.

Replica crashes at the instant 1 minute and starts recovering immediately. The
processing of requests is resumed at the point where throughput returns to growth. Between
these two points in time, the replica downloads and installs a checkpoint image. The higher
throughput observed when the replica recovers is explained by the large log of commands
that have to be processed and by the fact that the replica can handle load levels higher than
that experienced before failure. After the recovery log has been completely executed, the
throughput falls to the same level observed during normal operation. This is not clear in
scenarios (b) and (c) because we trimmed the execution trace to fit in a 3 minutes interval,
however in scenario (b) this happens around 3 minutes and (c) around 2 minutes and 49
seconds. As expected, the time to resume processing of requests is smaller when on-demand
state transfer is enabled. This happens because downloading a checkpoint segment takes
just a fraction of the time to download the whole image, and some requests can be processed
right after the segment is installed.

After sending a request, client proxies wait for 1 second to receive a reply. If no reply
is received, a timeout expires and the request is resent. Measurements around 1000ms in
the latency graphs identify client requests that expired. As expected, speedy recovery and
speedy recovery combined with on-demand state transfer are faster than classical recovery.
This can be clearly observed by the longer recovery time for the classical recovery. While
in the classical recovery new commands are processed after approximately 63 seconds,
with our recovery strategies the recovery time is less than 15 seconds. Table 6.1 shows the
recovery time (measured at replica) and service downtime (measured at client proxy) for each
technique. The service downtime is the period in which client proxy requests are expired.

80

 0

 20

 40

 60

 80

 100

 120

 140

00 01 02 03

T
h
ro

u
g

h
p

u
t

(k
C

m
d

s/
s)

Time (minutes)

Recovering replica

 0

 200

 400

 600

 800

 1000

00 01 02 03

La
te

n
cy

 (
m

s)

Time (minutes)

Client 1

(a) Classical recovery

 0

 20

 40

 60

 80

 100

 120

 140

00 01 02 03

T
h
ro

u
g

h
p

u
t

(k
C

m
d

s/
s)

Time (minutes)

Recovering replica

 0

 200

 400

 600

 800

 1000

00 01 02 03

La
te

n
cy

 (
m

s)

Time (minutes)

Client 1

(b) Speedy recovery

 0

 20

 40

 60

 80

 100

 120

 140

00 01 02 03

T
h
ro

u
g

h
p

u
t

(k
C

m
d

s/
s)

Time (minutes)

Recovering replica

 0

 200

 400

 600

 800

 1000

00 01 02 03

La
te

n
cy

 (
m

s)

Time (minutes)

Client 1

(c) Speedy recovery combined with on-demand state transfer

Figure 6.3 – Throughput and latency for crash-recovery trace using: (a) classical recovery;
(b) speedy recovery; (c) speedy recovery combined with on-demand state transfer

Table 6.1 – Recovery time and service downtime

Recovery time (s) Service downtime (s)
Classical recovery 63.43 69.72
Speedy recovery 14.89 28.66
Speedy + on-demand state recovery 10.46 24.71

81

To better understand how the proposed recovery strategies perform, we drill down
into the throughput analysis. The next results depict the flows of delivery instances for both
new and old commands (commands in the log). Moreover, we mark the timestamps for
important steps during recovery. The next experiments consider scenarios with one correct
replica and one recovering replica. Just like the previous experiments, the recovering replica
crashes and recovers immediately after failure. Replicas are configured to take checkpoints
at intervals of 20.000 batches.

Figure 6.4 shows the execution of a recovering replica combining speedy recovery
with on-demand state transfer. We set the space of generated keys in a way that checkpoint
size was around 512M bytes and the dependency probability was 0%. The recovering replica
takes about 7 seconds to recover, a period that corresponds to the time to download and install
at least one checkpoint segment. Right after that, the replica can process new commands
in the installed segment while downloading and installing other checkpoint segments on-
demand. Once the first checkpoint segment is installed, the replica starts processing new
and old commands assigned to that segment. The total throughput is given by the sum of the
black and gray areas, representing the throughput of old and new commands, respectively.

 0

 20

 40

 60

 80

 100

 120

 140

 160

00:00 00:30 01:00 01:30 02:00 02:30

T
h
ro

u
g
h
p
u
t

(K
cm

d
s/

s)

Time (minutes)

old commands
new commands
start recovery
start old commands execution
finish old commands execution

Figure 6.4 – Throughput using speedy recovery and on-demand state transfer with 0% of
dependency probability.

Figure 6.5 shows a similar execution, but with dependency probability of 5%. The
recovering replica also takes about 7 seconds to recover, but the throughput of new commands
processed during recovery is lower. As expected, as the dependency probability increases,
fewer new commands can be scheduled for execution in parallel with old commands. In the
worst case, when all new commands conflict with commands in the dependency log, only
old commands would be processed during recovery. This behavior resembles the classic
recovery.

82

 0

 20

 40

 60

 80

 100

 120

00:00 00:30 01:00 01:30 02:00 02:30

T
h
ro

u
g
h
p

u
t

(K
cm

d
s/

s)

Time (minutes)

old commands
new commands
start recovery
start old commands execution
finish old commands execution

Figure 6.5 – Throughput using speedy recovery and on-demand state transfer with 5% of
dependency probability.

Table 6.2 quantifies the recovery behavior for workloads with dependency probability
of 0% and 5%. The time to download and install a checkpoint in both classical and speedy
recovery techniques is similar. However, when using the on-demand state transfer technique,
these times can be considerably reduced. For instance, checkpoint segment P3 takes less
than half of the time taken by other techniques. When the dependency probability increases,
we expect lower throughput of new commands after replica restart. This can be observed
in the row “New command throughput (recovery)”. Nonetheless, the average throughput of
new commands during recovery was around 10k when dependency probability was set to
5% for both speedy recovery and speedy recovery combined to on-demand state transfer
techniques.

Since our techniques aim at minimizing the unavailability of a replica, we further
investigate the behavior in time when we apply our techniques, accounting for the time needed
to transfer the checkpoint, to install the checkpoint, to process the log, and the moment when
the first new command is serviced, denoting that the service is available for new requests.
Figure 6.6 provides a graphical representation of the recovery cost breakdown.

An important metric is the time to execute the first new command, since the replica
is able to process new commands from that moment on. Obviously, in the classical approach,
the replica processes the first new command after processing the whole log. Thus, the
time to execute the last old command and the first new command are practically the same.
Depending on the dependency probability, speedy recovery can drastically reduce the time to
execute the first new command. Regarding the time to execute the first new command, our
experiments demonstrated that speedy recovery is three times faster than classical recovery

83

Table 6.2 – Recovery techniques comparison

Dependency probability = 0% Dependency probability = 5%
Classical
recovery

Speedy
recovery

Speedy + on-demand state
recovery

Classical
recovery

Speedy
recovery

Speedy + on-demand state
recovery

P1 P2 P3 P4 P1 P2 P3 P4
Checkpoint down-
load duration (s)

5.17 5.24 5.44 4.16 2.91 5.23 4.99 5.63 4.27 1.72 2.24 3.98

Checkpoint installa-
tion duration (s)

4.57 4.60 1.08 1.10 1.49 1.07 4.74 4.68 1.07 1.05 1.56 1.11

Old command exe-
cution duration (s)

22.25 35.53 32.97 34.22 35.36 33.55 22.65 40.19 27.12 25.96 28.73 33.21

Time for last old
command execution

33.41 45.37 39.49 39.48 39.76 39.85 32.37 50.50 32.46 28.73 32.53 38.30

Time for first new
command execution

33.41 10.43 6.54 5.26 4.40 6.30 32.37 11.38 5.44 2.89 3.80 5.10

Recovery speedup 1 3.2 7.6 1 2.8 11.2
Throughput during
normal execution

34742 34705 36000 34446 34138 36100

New command
throughput (recov-
ery)

0 26242 19702 0 11930 9546

in contention-free workloads. When on-demand state transfer is combined, recovery becomes
more than 7 times faster.

The throughput of new commands during recovery is impacted by the dependency
probability and the incoming rate of old commands. Higher rates increase the number of old
commands competing with new ones to be processed. In the extreme case, that behavior
approximates classic recovery, where old commands are processed first. By reducing the
incoming rate of old commands, the system slows down processing of old commands and
consequently increases the throughput of new commands. In previous experiments, we set
the incoming rate of old commands to 200 batches every 0.2 seconds.

After assessing the performance of the proposed techniques under controlled
dependency probabilities, we consider real dependency probability in our analysis. Figure
6.7 shows the throughput of old and new commands in a scenario with real dependency
probability. In this experiment, we set the relearning of old commands to 100 batches every
0.2 seconds, bitmap size of 20k bits, keys of 8 bytes, values size of 128 bytes, batches of 50
commands, and checkpoint interval at 8000 batches. The operational load for this experiment
results in an average throughput of 9k commands per second during normal execution.

When considering real dependency probability and long recovery logs, we noticed
that only a small number of new requests are executed concurrently with old requests (see
the tiny spike of new commands processed around 3:10 minutes). The inability to execute
new requests in parallel with old requests in such scenarios is caused by a high dependency
probability induced by the list of pending requests. As presented in Algorithm 6.1, every new
request that depends on old or pending requests is added to a list of pending requests, n_seq
(line 23), and a bitmap encoding dependencies of pending requests, n_map, is updated with
the new request bitmap. Notice that as more requests are added to n_map, more bits are set

84

 0

 10

 20

 30

 40

 50

 60

D
u
ra

ti
o
n
(s

)

first new command

P1 P2 P3 P4
Classical Speedy Speedy + on-demand

chk download
chk install

log processing

 0

 10

 20

 30

 40

 50

 60

D
u
ra

ti
o
n
(s

)

first new command

P1 P2 P3 P4
Classical Speedy Speedy + on-demand

chk download
chk install

log processing

Figure 6.6 – Time taken during recovery for workloads with dependency probability 0% (top)
and 5% (bottom)

and the dependency probability increases. Possibly there is an instant in which n_map has
all bits set to 1, which will make any new request dependent (see Algorithm 6.1, line 20).

The adoption of a single bitmap structure to encode dependency information for all
pending requests has demonstrated to be inefficient. To circumvent this issue, we devised
a rescheduling mechanism that allows pending requests to be reevaluated and possibly
scheduled before the whole log has been processed. We replaced the list of pending
requests and its dependency annotation (respectively n_seq and n_map, as presented in
Algorithm 6.1) by a structure we call v_seq. The new structure splits a single list of pending
requests into smaller lists, while the dependency information is kept in the level of batches,
instead of using a single consolidated bitmap.

85

 0

 5

 10

 15

 20

 25

 30

 35

 40

00:00 01:00 02:00 03:00 04:00 05:00

T
h
ro

u
g
h
p

u
t

(K
cm

d
s/

s)

Time (minutes)

old commands
new commands
start recovery
start new commands execution
finish old commands execution

Figure 6.7 – Throughput using speedy recovery and on-demand state transfer with real
dependency probability.

Figure 6.8 depicts (a) n_seq and n_map structures, and (b) v_seq. In the former
proposal, for each new batch B that cannot be processed, B is appended to n_seq and
its bitmap, b(B), is merged into n_map. v_seq is a vector of pointers to lists which contain
pending batches and their bitmaps. Two pairs [Bx , b(Bx)] and [By , b(By)] in v_seq respect the
total delivery ordering. Thus, if Bx is delivered before By , then: (i) [Bx , b(Bx)] and [By , b(By)]
belong to the same list in v_seq, such that [Bx , b(Bx)] precedes [By , b(By)]; or (ii) [Bx , b(Bx)]
belongs to list lx and [By , b(By)] belongs to list ly , such that v_seq position pointing to lx
precedes the position pointing to ly .

Bi ; Bi+1 ; ... ; Bjn_seq:
b(Bi)+b(Bi+1)+...+b(Bj)n_map:

v_seq: ..

[Bi ,b(Bi)]; [Bi+1,b(Bi+1)]; ... [Bk,b(Bk)]

[Bk+1,b(Bk+1)]; [Bk+2,b(Bk+2)]; ... [Bj,b(Bj)]

lx ly

(a) n_seq (b) v_seq

Figure 6.8 – Pending requests structures: (a) a list of batches combined with a consolidated
bitmap; (b) a vector pointing to lists tuples containing batches and their bitmaps.

Before diving into details of the proposed rescheduling approach, we recap the
strategy adopted on the implementation of the dependency log. Our prototype implements the
dependency log as a list of bitmap items. Every item in the list consolidates the information of j
successive request bitmaps (see Figure 6.1). Let o represent the total number of old requests
to be processed, then the number of bitmap items bi in the list is given by n = do/je, and a
dependency log DL can be represented as DL = 〈bi1, ... , bin〉. During recovery, whenever

86

j successive old requests are processed, the head of DL is removed. Pending requests
that depend on the bitmap removed from DL may have the chance to be reevaluated and
rescheduled provided they do not depend on the remaining requests encoded by DL. For this
reason, we optimized our protocol to reschedule pending requests whenever DL is trimmed.

The rescheduling approach works as follow. For each list lj in v_seq, for each
batch By in lj , if b(By) does not intersects with log bitmaps items in DL, and b(By) does
not intersects with b(Bx), where b(Bx) belongs to li and li precedes lj in v_seq, then By

is scheduled for execution and removed from lj . Scheduling By for execution consists in
executing the procedure schedule(By) (see Algorithm 5.1).

Since the rescheduling procedure runs in parallel with the recovery, new requests
could be added to v_seq lists while batches in v_seq lists are under evaluation for reschedul-
ing.

In order to provide mutual exclusion on access to v_seq without incurring syn-
chronization, rescheduling and recovery procedures access distinct parts of v_seq. The
rescheduling procedure evaluates all except the last list pointed by v_seq. The last list in
v_seq is accessed exclusively by the recovery procedure. After adding a certain number
of requests to the list, the recovery procedure creates a new list and updates v_seq with a
reference to the new list given by the pointer in the last v_seq position. Figure 6.9 illustrates
v_seq and highlights which lists contain requests candidate to be rescheduled. The first two
bits of the vector point to empty lists. This means that pending requests on those lists were
already rescheduled. Except by the last list (indicated as “current” in Figure 6.9), requests in
all other lists pointed by v_seq are candidates for rescheduling.

v_seq: ..

rescheduled

candidates

pending

current

Figure 6.9 – Access to pending requests stored in v_seq.

Figure 6.10 shows the throughput of old and new commands for the same workload
observed in Figure 6.7. The only difference is that the rescheduling mechanism is enabled.
As expected, rescheduling of pending requests allowed new requests to be processed in
parallel to the old requests. It is worth noting that the throughput of new commands during
recovery stays very close to the throughput during normal operation.

In order to have results comparable with our previous experiments, we changed
the command size from 128 to 1024 bytes. Furthermore, we evaluated what is the peak
throughput for the adopted workload (i.e., relearning 100 old batches every 0.2 seconds,
bitmap size of 20k bits, keys of 8 bytes, values size of 1024 bytes, batches of 50 commands,
and checkpoint interval at 8000 batches). In the setup with 8 worker threads, the peak

87

 0

 5

 10

 15

 20

 25

 30

 35

 40

00:00 01:00 02:00 03:00 04:00 05:00

T
h
ro

u
g
h
p

u
t

(K
cm

d
s/

s)

Time (minutes)

old commands
new commands
start recovery
start new commands execution
finish old commands execution

Figure 6.10 – Throughput using speedy recovery and on-demand state transfer with real
dependency probability and rescheduling of pending requests enabled.

throughput measured is around 37k commands per second. For the next experiment, we
applied approximately 25% of the maximum load.

Figure 6.11 shows the throughput of old and new commands for the aforementioned
scenario. As observed, the rescheduling allows parallel execution of old and new commands
during recovery. Differently from the scenario with commands size of 128 bytes (see Figure
6.10), where the throughput of new commands during recovery approximates the optimum,
workloads with larger commands incur higher processing cost. As a consequence, worker
threads queues become higher as well as the dependency probability. Although the through-
put of new commands is lower than the throughput of old commands during recovery, the
processing of new commands is constant and it allows replicas to recover fast.

Table 6.3 compares recovery techniques for workloads with real dependency proba-
bility. The time to download and install a checkpoint in both classical and speedy recovery
techniques is similar, although classical recovery has shown a slight advantage. When
using on-demand state transfer technique, these times drop considerably. Downloading and
installing the segment P4 takes a little more than 3 seconds while downloading and installing
a checkpoint in traditional recovery takes around 8 seconds. As expected, speedy recovery
and speedy recovery combined with on-demand state transfer improve availability by reducing
the recovery time. While new commands are processed after 1 minute and 15 seconds in the
classical recovery, speedy recovery starts processing new commands after 40 seconds and
this time is reduced to 30 seconds when on-demand state transfer is enabled. Finally, it is
possible to observe the average throughput of new command processed during recovery for
the proposed techniques. Although speedy recovery demonstrated a superior throughput,
around 4.5k commands per second against 2.2k, the processing of new commands during

88

 0

 5

 10

 15

 20

 25

 30

 35

 40

00:00 01:00 02:00 03:00 04:00 05:00

T
h
ro

u
g
h
p

u
t

(K
cm

d
s/

s)

Time (minutes)

old commands
new commands
start recovery
start new commands execution
finish old commands execution

Figure 6.11 – Throughput using speedy recovery and on-demand state transfer with real
dependency probability and rescheduling of pending requests enabled (commands size is
1024 bytes).

recovery in speedy recovery approach had a shorter duration. The cumulative number of
new commands processed during recovery for speedy recovery was 37392 and for speedy
recovery combined with on-demand state transfer was 93023.

Table 6.3 – Recovery techniques comparison for workload with real dependency probability

Real dependency probability
Classical
recovery

Speedy
recovery

Speedy + on-demand
state recovery

P1 P2 P3 P4
Checkpoint download duration (s) 3.97 4.20 2.98 3.04 2.85 2.03
Checkpoint installation duration (s) 4.10 4.27 1.23 1.12 1.33 1.06
Old command execution duration (s) 66.25 79.27 68.33 68.34 68.35 67.94
Time for last old command execution 74.32 87.74 72.54 72.50 72.53 71.03
Time for first new command execution 74.32 40.92 31.84 31.77 31.79 30.62
Recovery speedup 1 1.82 2.43
Throughput during normal execution 8987 8900 8941
New command throughput (recovery) 0 4540 2253

6.4 Related Work

In this section, we review existing approaches to recovery in classical and parallel
state machine replication. We conclude with a brief account of recovery in replicated database
systems based on group communication. We first focus on existing approaches to recovery in

89

classical state machine replication and then consider recovery techniques adapted to parallel
models of state machine replication.

6.4.1 Recovery in classical state machine replication

In Chapter 4, we presented the basics of recovery in state machine replication. More
advanced techniques have been proposed to improve the efficiency of logging, checkpointing
and recovery in SMR (details in Section 4.5). In [BSF+13] three techniques are proposed:
parallel logging, sequential checkpointing and collaborative state transfer. The key ideas of
parallel logging are to log group operations instead of individual operations, and process
operations in parallel with their storage. Grouping operations is conceptually similar to our
batched commands. Taking advantage of replication in SMR, sequential checkpointing
coordinates replicas such that they do not checkpoint their states at the same time to avoid
hiccups during normal execution. While one replica is taking a checkpoint, other replicas
continue to process requests. Instead of the traditional state transfer from one single replica,
collaborative state transfer proposes that several replicas may send part of their checkpointed
state to a recovering replica. These ideas are orthogonal to the ones we propose and
could be used in parallel state machine replication. Some works have also discussed how
replica recovery can be integrated with group communication primitives [BMPG14] and how
to minimize the effects of a recovering replica on normal execution [BPP15].

6.4.2 Recovery in parallel state machine replication

Although the recovery techniques described in the previous section could be used
in parallel approaches to state machine replication, some proposals leverage specifics of the
protocol to perform checkpoints and recovery efficiently. None of these proposals allow new
commands to execute concurrently with old commands or implements on-demand checkpoint
transferring.

We have already described CBASE’s normal operation in Chapter 3. Checkpointing
is briefly discussed in [KD04] and recovery is not mentioned. To ensure that all replicas
build the same sequence of checkpoints, a synchronization primitive executed at the replicas,
but invoked by the agreement layer, is used to select a sequence number for checkpoints.
Each replica blocks the execution of all the requests delivered after this sequence number
until the checkpoint is completed. As we argued in Chapter 4, checkpointing in Eve seems
straightforward, but is not discussed in [KWQ+12]. Two checkpointing mechanisms to P-SMR
[MBP14] were presented in Chapter 4 (they also appear in [MMDP14]). Notice, though, that
recovery has not been addressed in the literature regarding parallel state machine replication.

90

In Rex [GHY+14], a single server receives requests and processes them in parallel.
While executing, the server logs a trace of dependencies among requests based on the
shared variables accessed (locked) by each request. The server periodically proposes the
trace for agreement to the pool of replicas. Together it also periodically proposes cuts in
the computation, whose corresponding states are saved in a secondary replica. The other
replicas receive the traces and replay the execution respecting the partial order of commands.
If a cut is provided, a secondary replica, when achieving that cut, creates a snapshot of
the state and propagates it to all other replicas. Recovery is performed with the installation
of a recent snapshot followed by the replay of the logged commands according to their
dependencies. During recovery of a replica, the throughput experienced is around 20% of
normal operation and takes around 25 seconds to complete. Strictly, Rex does not implement
state machine replication since only one replica executes commands, while the others follow
its execution.

6.4.3 Recovery in transactional systems

The problem of efficiently recovering a failed replica has been largely considered in
the context of database systems. Replication protocols based on group communication are
the closest to our approach in that transactions are ordered before they can be committed.
Some of these protocols explicitly address recovery. In [KBB01] the authors discuss how to
recover a crashed replica (or start a new one) without stopping transaction processing. The
recovered replica only accepts new transactions once recovery has finished. In [JPPMA02]
crashed replicas can recover in parallel and at the same time several active replicas can serve
them the needed data. The protocol in [LK08] proposes an adaptive approach which allows a
recovering replica to catch up with operational replicas by transferring either the recent values
of data items or the sequence of missed updates. In these works, transactions can only
be processed once old transactions have been recovered. One exception is the approach
proposed in [CPPW10] in which new transactions can be executed before recovery has
completed. The solution proposed in [CPPW10] builds a data structure that resembles the
dependency graph, which is inappropriate in environments subject to very large performance.

91

7. CONCLUSION

A well-established approach to providing a highly available service is state machine
replication (SMR). By replicating a service on multiple servers, clients are guaranteed that
even if some replica fails, the service is still available. However, a performance limitation of
this approach is the total ordering requirement, which imposes replicas to execute requests
in the same order to ensure consistency. To take advantage of multi-core architectures
and increase overall throughput, parallel approaches to state machine replication relax the
ordering requirement to allow independent commands to be processed in parallel.

This thesis delves into the problem of recovering replicas in the context of parallel
state machine replication. Recovering failed replicas quickly is important for availability. If
failed replicas recover quickly, their down-time can be substantially reduced. Research on
parallel SMR is relatively recent and recovery is rarely addressed in the literature. This thesis
reviews parallel variations of state machine replication and discusses how checkpointing
and recovery procedures apply to existent proposals. Furthermore, we presented novel
checkpointing techniques for P-SMR, an efficient protocol for parallel state machine replication,
and the fast recovery approach.

In the following sections, we briefly summary the contributions of this thesis and
give some research directions for future work.

7.1 Contributions

We started looking at P-SMR [MBP14], a parallel state machine replication model,
whose scalability stems from the absence of a centralized component in the execution path
of independent commands (e.g., no local scheduler [KD04]). We proposed two checkpoint
techniques for P-SMR: coordinated and uncoordinated. While in the coordinated mechanism
any two replicas save identical checkpoints throughout the execution, with uncoordinated
checkpoints, replicas do not need to agree upon the same state represented by checkpoints.
As showed in our results, by preventing replicas from taking checkpoints under a common
and deterministic state, the uncoordinated approach reduces the synchronization cost of
checkpointing mechanisms.

We then extended our experiments to evaluate the cost of checkpointing in other
parallel SMR approaches. By means of simulation we compare the impact of checkpointing
in CBASE [KD04], Eve [KWQ+12], and P-SMR [MBP14]. Our analysis focuses mostly on the
synchronization overhead. Although the checkpointing overhead increases with the number
of worker threads in all considered techniques, techniques are not affected equally. Both
CBASE and P-SMR experience a reduction in performance with checkpoints, but P-SMR

92

is more vulnerable to checkpoint synchronization. Since Eve requires coordination even
in the absence of checkpoints, checkpoint synchronization does not affect its performance.
Although the system’s performance can be negatively affected by frequent checkpoints, the
checkpointing synchronization overhead is sensitive to the checkpointing interval and it can
approach the optimal when checkpoints are not so frequent.

A drawback of adopting infrequent checkpoints in parallel state machine replica-
tion is the sharp increase in the number of commands logged between two consecutive
checkpoints. Large logs may slow down recovery and affect system availability. To address
this shortcoming, we propose fast recovery in parallel state machine replication, a set of
coordinated techniques to reduce a crashed replica’s unavailability period. Speedy recovery
is a technique that naturally benefits from command dependencies, allowing new commands
to be processed concurrently with old commands, if they are independent. On-demand
state recovery enables to recover segments of the state when they are needed instead of
recovering the whole state at once. Both techniques have proved to considerably reduce
recovery time, when compared to traditional recovery in SMR.

In order to evaluate the fast recovery protocol, we implemented a new parallel state
machine replication protocol. Our protocol introduces mechanisms to efficiently represent
and calculate dependency among commands, complemented by an efficient scheduling
mechanism that considers both dependencies and resource availability (number of working
threads) and thus computes dependencies only when useful to parallelize command execution.
The computational complexity for scheduling commands with our approach is bounded by the
fixed number of worker threads and by the size of bitmaps. Providing low complexity comes
at the cost of non-minimal dependency detection, i.e., some requests may be considered
dependent although they are not.

7.2 Future Work

With support of bitmaps, we have proposed mechanisms to efficiently represent and
calculate dependency among commands. Such mechanisms demonstrated advantages over
existent scheduling mechanisms. For instance, updating scheduler dependency information
with new command information requires a fixed-size number of comparisons. This constant
overhead is not achieved by other schedulers. Although the high throughput achieved by our
parallel state machine replication prototype confirms the mechanism efficiency, there are still
room for improvements.

While encoding commands into bitmaps, there is no distinction between read and
write commands. This means that two read commands accessing the same key are evaluated
as dependent. Although this conservative approach does not violate safety, it introduces
additional ordering constraints on requests.

93

As one of the directions for optimizing mechanisms proposed in this thesis, an
enhanced approach should distinguish updating from read-only requests while encoding and
calculating dependencies. By doing this, read intensive workloads (e.g., name services)
would benefit greatly by improving throughput of read-only requests. Moreover, read-only
requests do not need to be re-executed during recovery. Hence, the dependency log should
keep only information about updating requests.

Another opportunity for improving performance of recovery mechanism is to create
a controller mechanism that bounds the load in worker threads queues. In our prototype, the
number of batches dispatched to workers queues might be very elevated, especially during
recovery. Notice that the dependency probability increases with the number of enqueued
requests, and since requests in a thread queue cannot be designated to another thread, then
one optimization is to limit the maximum number of requests in a thread queue. The idea is
to slow down the parallelizer when threads queues approximate to a threshold. By doing this,
worker threads would be kept busy without causing unnecessary dependencies.

94

95

REFERENCES

[AK08] Amir, Y.; Kirsch, J. “Paxos for system builders: An overview”. In: Proceedings of
the 2nd Workshop on Large-Scale Distributed Systems and Middleware, 2008,
pp. 1–6.

[AW04] Attiya, H.; Welch, J. “Distributed Computing: Fundamentals, Simulations, and
Advanced Topics”. Wiley-Interscience, 2004.

[BM93] Babaoğlu, O.; Marzullo, K. “Distributed systems (2nd ed.)”. , ACM Press/Addison-
Wesley Publishing Co., 1993.

[BMPG14] Benz, S.; Marandi, P. J.; Pedone, F.; Garbinato, B. “Building global and scalable
systems with atomic multicast”. In: Proceedings of the 15th International
Middleware Conference, 2014, pp. 169–180.

[BPP15] Benz, S.; Pacheco, L.; Pedone, F. “Stretching multi-ring paxos”. In: Proceedings
of the 31st Annual ACM Symposium on Applied Computing, 2015, pp. 492–499.

[BSF+13] Bessani, A.; Santos, M.; Felix, J.; Neves, N. F.; Correia, M. “On the efficiency of
durable state machine replication.” In: Proceedings of the 24th Conference on
Annual Technical Conference, 2013, pp. 169–180.

[Bur06] Burrows, M. “The chubby lock service for loosely-coupled distributed systems”.
In: Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, 2006, pp. 335–350.

[CDE+12] Corbett, J. C.; Dean, J.; Epstein, M.; Fikes, A.; Frost, C.; Furman, J.; Ghemawat,
S.; Gubarev, A.; Heiser, C.; Hochschild, P.; et al.. “Spanner: Google’s globally-
distributed database”. In: Proceedings of the 10th Symposium on Operating
Systems Design and Implementation, 2012, pp. 251–264.

[CGR07] Chandra, T.; Griesemer, R.; Redstone, J. “Paxos made live: An engineering
perspective”. In: Proceedings of the 26th Symposium on Principles of Distributed
Computing, 2007, pp. 398–407.

[CKL+09] Clement, A.; Kapritsos, M.; Lee, S.; Wang, Y.; Alvisi, L.; Dahlin, M.; Riche, T.
“UpRight cluster services”. In: Proceedings of the 22nd Symposium on Operating
Systems Principles, 2009, pp. 277–290.

[CL99] Castro, M.; Liskov, B. “Practical byzantine fault tolerance”. In: Proceedings of the
3rd Symposium on Operating Systems Design and Implementation, 1999, pp.
173–186.

96

[CPPW10] Camargos, L.; Pedone, F.; Pilchin, A.; Wieloch, M. “On-demand recovery in
middleware storage systems”. In: Proceedings of the 29th Symposium on
Reliable Distributed Systems, 2010, pp. 204–213.

[CRL03] Castro, M.; Rodrigues, R.; Liskov, B. “BASE: Using abstraction to improve
fault tolerance”, ACM Transactions on Computer Systems, vol. 21–3, 2003, pp.
236–269.

[CT96] Chandra, T. D.; Toueg, S. “Unreliable failure detectors for reliable distributed
systems”, Journal of the ACM, vol. 43–2, 1996, pp. 225–267.

[CWA+09] Clement, A.; Wong, E. L.; Alvisi, L.; Dahlin, M.; Marchetti, M. “Making byzantine
fault tolerant systems tolerate byzantine faults.” In: Proceedings of the 6th
Symposium on Networked Systems Design and Implementation, 2009, pp. 153–
168.

[CWO+11] Calder, B.; Wang, J.; Ogus, A.; Nilakantan, N.; Skjolsvold, A.; McKelvie, S.; Xu,
Y.; Srivastav, S.; Wu, J.; Simitci, H.; et al.. “Windows Azure storage: a highly
available cloud storage service with strong consistency”. In: Proceedings of the
23rd Symposium on Operating Systems Principles, 2011, pp. 143–157.

[DLS88] Dwork, C.; Lynch, N.; Stockmeyer, L. “Consensus in the presence of partial
synchrony”, Journal of the ACM, vol. 35–2, 1988, pp. 288–323.

[DSU04] Défago, X.; Schiper, A.; Urbán, P. “Total order broadcast and multicast algorithms:
Taxonomy and survey”, ACM Computing Surveys, vol. 36–4, 2004, pp. 372–421.

[EAWJ02] Elnozahy, E. N. M.; Alvisi, L.; Wang, Y.-M.; Johnson, D. B. “A survey of rollback-
recovery protocols in message-passing systems”, ACM Computing Surveys,
vol. 34–3, 2002, pp. 375–408.

[EJZ92] Elnozahy, E. N.; Johnson, D. B.; Zwaenepoel, W. “The performance of consistent
checkpointing”. In: Proceedings of the 11th Symposium on Reliable Distributed
Systems, 1992, pp. 39–47.

[FLP85] Fischer, M. J.; Lynch, N. A.; Paterson, M. S. “Impossibility of distributed
consensus with one faulty process”, Journal of the ACM, vol. 32–2, 1985, pp.
374–382.

[FVR97] Friedman, R.; Van Renesse, R. “Packing messages as a tool for boosting the
performance of total ordering protocols”. In: Proceedings of the 6th International
Symposium on High Performance Distributed Computing, 1997, pp. 233–242.

[GHY+14] Guo, Z.; Hong, C.; Yang, M.; Zhou, L.; Zhuang, L.; Zhou, D. “Rex: Replication at
the speed of multi-core”. In: Proceedings of the 9th European Conference on
Computer Systems, 2014, pp. 1–14.

97

[HKJR10] Hunt, P.; Konar, M.; Junqueira, F. P.; Reed, B. “ZooKeeper: wait-free coordination
for internet-scale systems”. In: Proceedings of the 21st Conference on Annual
Technical Conference, 2010, pp. 1–14.

[HW90] Herlihy, M. P.; Wing, J. M. “Linearizability: A correctness condition for concurrent
objects”, ACM Transactions on Programming Languages and Systems, vol. 12–3,
1990, pp. 463–492.

[JPPMA02] Jimenez-Peris, R.; Patino-Martinez, M.; Alonso, G. “Non-intrusive, parallel
recovery of replicated data”. In: Proceedings of the 21st Symposium on Reliable
Distributed Systems, 2002, pp. 150–159.

[KAD+07] Kotla, R.; Alvisi, L.; Dahlin, M.; Clement, A.; Wong, E. “Zyzzyva: speculative
byzantine fault tolerance”, ACM SIGOPS Operating Systems Review, vol. 41–6,
2007, pp. 45–58.

[KBB01] Kemme, B.; Bartoli, A.; Babaoğlu, O. “Online reconfiguration in replicated
databases based on group communication”. In: Proceedings of the 31st
International Conference on Dependable Systems and Networks, 2001, pp.
117–126.

[KBC+12] Kapitza, R.; Behl, J.; Cachin, C.; Distler, T.; Kuhnle, S.; Mohammadi, S. V.;
Schröder-Preikschat, W.; Stengel, K. “CheapBFT: resource-efficient byzantine
fault tolerance”. In: Proceedings of the 7th European Conference on Computer
Systems, 2012, pp. 295–308.

[KD04] Kotla, R.; Dahlin, M. “High throughput byzantine fault tolerance”. In: Proceedings
of the 34th International Conference on Dependable Systems and Networks,
2004, pp. 575–584.

[KWQ+12] Kapritsos, M.; Wang, Y.; Quema, V.; Clement, A.; Alvisi, L.; Dahlin, M. “All about
Eve: execute-verify replication for multi-core servers”. In: Proceedings of the
10th Symposium on Operating Systems Design and Implementation, 2012, pp.
237–250.

[Lam78] Lamport, L. “Time, clocks, and the ordering of events in a distributed system”,
Communications of the ACM, vol. 21–7, 1978, pp. 558–565.

[Lam98] Lamport, L. “The part-time parliament”, ACM Transactions on Computer Systems,
vol. 16–2, 1998, pp. 133–169.

[LK08] Liang, W.; Kemme, B. “Online recovery in cluster databases”. In: Proceedings of
the 11th International Conference on Extending Database Technology: Advances
in Database Technology, 2008, pp. 121–132.

98

[LNP90] Li, K.; Naughton, J. F.; Plank, J. S. “Real-time, concurrent checkpoint for parallel
programs”. In: Symposium on Principles and Practice of Parallel Programming,
1990, pp. 79–88.

[MAK13] Moraru, I.; Andersen, D. G.; Kaminsky, M. “There is more consensus in
egalitarian parliaments”. In: Proceedings of the 24th Symposium on Operating
Systems Principles, 2013, pp. 358–372.

[MBP14] Marandi, P. J.; Bezerra, C. E. B.; Pedone, F. “Rethinking state-machine replication
for parallelism”. In: Proceedings of the 34th International Conference on
Distributed Computing Systems, 2014, pp. 368–377.

[MDP16] Mendizabal, O. M.; Dotti, F. L.; Pedone, F. “Analysis of checkpointing overhead
in parallel state machine replication”. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, 2016, pp. 534–537.

[MMDP14] Mendizabal, O. M.; Marandi, P. J.; Dotti, F. L.; Pedone, F. “Checkpointing in
parallel state-machine replication”. In: Proceedings of the 18th International
Conference on Principles of Distributed Systems, 2014, pp. 123–138.

[MP14] Marandi, P. J.; Pedone, F. “Optimistic parallel state-machine replication”. In:
Proceedings of the 33rd International Symposium on Reliable Distributed
Systems, 2014, pp. 57–66.

[MPP12] Marandi, P. J.; Primi, M.; Pedone, F. “Multi-Ring Paxos”. In: Proceedings of the
42nd International Conference on Dependable Systems and Networks, 2012, pp.
1–12.

[MPSP10] Marandi, P. J.; Primi, M.; Schiper, N.; Pedone, F. “Ring paxos: A high-throughput
atomic broadcast protocol”. In: Proceedings of the 40th International Conference
on Dependable Systems and Networks, 2010, pp. 527–536.

[Rod08] Rodeh, O. “B-trees, shadowing, and clones”, ACM Transactions on Storage,
vol. 3–4, 2008, pp. 2:1–2:27.

[RST11] Rao, J.; Shekita, E. J.; Tata, S. “Using paxos to build a scalable, consistent, and
highly available datastore”, VLDB Endowment, vol. 4–4, 2011, pp. 243–254.

[Sch90] Schneider, F. B. “Implementing fault-tolerant services using the state machine
approach: A tutorial”, ACM Computing Surveys, vol. 22–4, 1990, pp. 299–319.

[SFK+09] Singh, A.; Fonseca, P.; Kuznetsov, P.; Rodrigues, R.; Maniatis, P.; et al.. “Zeno:
Eventually consistent byzantine-fault tolerance”. In: Proceedings of the 6th
Symposium on Networked Systems Design and Implementation, 2009, pp. 169–
184.

99

APPENDIX A – SIMULATION TOOL

We implemented a discrete-event, process-oriented simulation model in C++. The
basic elements of our simulation are processes and resources. Processes are active entities
that interact with other processes and manipulate structures of our model. They interact
with other processes through shared memory or mailboxes, and they may use resources.
Resources represent system’s components, such as processing units, storage, etc. Although
resources can be shared among different processes, only one process access a resource at
a time.

Our model maintains a simulation clock whose value represents the current time
in the model. The simulation time is virtual, i.e., there is no relation between the simulation
time and the hardware CPU time elapsed during the simulation execution. Simulation time
starts at zero and advances unevenly, according to the times at which the state of the model
changes. Processes may retrieve the current time for their own purposes (e.g. to collect
statistics), but it is not possible for a model to directly assign a value to the simulation clock.

The simulation clock advances exclusively as a consequence of the function hold

being executed. The function hold(t) delays a process for t unit times. For example,
when a process executes hold(1.0), if there are other processes waiting to run, the calling
process will be suspended. Otherwise, time will immediately advance by the specified amount.
A process can delay until a specified point in simulated time by calling hold with a parameter
value equal to the specified time minus the current time.

Similarly to real processes, a simulation process can be in one of four states: active,
ready to run, holding (allowing simulated time to pass), waiting for an event to happen or a
resource to become available. Processes in ready state are restarted when the time specified
in a hold statement passes. While a process is active, no simulated time passes.

Resources represent a service or resource that can be used by processes. Every
resource consists of a server and a single queue (for processes waiting to gain access to the
server). Processes access resources in mutual exclusion. All of the waiting processes are
placed in the queue until the server becomes available.

Through reserve(r) function, processes reserve a given resource r. When a
process executes a reserve, it either gets use of the server immediately or it is suspended (if
the server is busy) and placed in a queue of processes waiting to get use of the server. When
a process executes a release(r) function, it releases r. If there is at least one process in
r queue, the process at the head of the queue is given access to the server and that process
is then reactivated and will proceed by executing statements following its reserve statement.

Figure A.1 exemplifies a simulation of two processes, p1 and p2. Process p1 executes
a statement st1, holds for 0.7 time units, executes another statement (st2), and attempts to use
a resource r . The time when r is allocated by p1 is represented by the function hold(1.2).

100

Process p2 waits 1.0 time units before executes a statement sta. Since the resource r was
not being used at the moment p1 reserve it, the resource is set as busy and serves process
p1. The diagram illustrates the usage of time during the simulation.

p1

p2

st1
st2

sta

hold(0.7)
reserve(r)

t=0 t=0.7 t=1.0

r

hold(1.2) release(r)

busy

hold(1.0)

t=1.9
time

P1: P2:
st1 hold(1.0)
hold(0.7) sta
st2
reserve(r)
hold(1.2)
release(r)

Figure A.1 – Simulation execution example

The communication among processes is given by two distinct mechanisms: shared
memory and message passing. The first mechanism allows processes to write and read
global variables and it is useful to represent multiple threads or processes accessing some
resource at a same node. The second approach mimics the sending and reception of
messages by distributed processes. By using a mailbox, the sender process posts a message
to be read by the receiver process. A mailbox is a list of messages and it follows a FIFO (First
In, First Out) order.

In addition to the aforementioned components, events can be used to synchronize
processes operations. Through the primitive set(e) processes can signal the occurrence of
an event e. The primitive wait(e) keeps a process blocked until the occurrence of event e.

Finally, queuing statistics, such as queue length, utilization, throughput, and re-
sponse time are used in order to analyze resources usage.

A.1 Simulation of parallel SMR models

This chapter introduces the simulation model developed with the aim of analyzing the
impact of checkpointing overhead in parallel approaches to SMR. We represented CBASE
and P-SMR models by simulating the approaches proposed by Kotla et al. [KD04] and
Marandi et al. [MBP14], respectively. Checkpointing mechanisms behave as described in
Chapter 4. Since the traditional SMR model lies in a special case of CBASE and P-SMR
where just one thread is available, we did not implement a dedicated model for it.

101

A.1.1 Load Generation

The load generator module simulates application’s clients. Throughout the simulation
execution, every client periodically creates and sends new requests to the replicas. Every
request contains a command and the client waits the reception of the command output before
generate a new request.

Through simulation settings, it is possible to define the total number of clients, a
workload ramp up (it is the time between the generation of new clients), and the thinking time
(the time taken between the reception of a command output and the generation of a new
request by the same client).

Commands are defined as a structure and they contain: an unique identifier, used
to differentiate every command; a client id, used to identify the sender of the command; a
buffer, that contains the command data; and an execution time, that informs the execution
time of the command. The command execution time is set up by the load generator and it
can be fixed, uniformly distributed, or exponentially distributed.

The sending of requests by the load generator is performed by the mailbox’s primitive
send. As it is explained later, in the CBASE model, only one mailbox is used by every replica,
since incoming requests are decided by a single sequence of consensus. Every client
randomly selects one among the mailboxes available before sending a request. As can
be seen in Figure A.2, the client side is composed by a load generator, a set of clients
and requests. The workload characterization changes according to the load generator and
requests settings.

SMR ReplicaClient side

Load
Generator

Requests
- fixed
- uniformly distributed
- exponentially distributed

Delivery
(Total Order)

Execution

ParallelizerM
a
ilb

oxsend(r) recv(r)- num. of clients
- pacing

Clients
- thinking time

Figure A.2 – CBASE simulation model

In the P-SMR model, incoming requests can be decided by multiple sequences
of consensus. Figure A.3 exhibits a P-SMR model, where multiple mailboxes are used to
represent the different sequences of consensus. Since messages are added to a mailbox
according to a FIFO order, the consensus’ agreement requirement is satisfied.

102

SMR ReplicaClient side

Requests
-gfixed
-guniformlygdistributed
-gexponentiallygdistributed

Delivery
(Total Order)

Execution

M
ai

lb
oxsend(r) recv(r)

Clients
-gthinkinggtime

M
ai

lb
ox

M
ai

lb
ox

Loadg
Generator
-gnum.gofgclients
-gpacing

Delivery
(Total Order)

Delivery
(Total Order)

Figure A.3 – P-SMR simulation model

A.1.2 CBASE Model

The CBASE is composed by the delivery module, responsible for reading messages
from a single mailbox; a parallelizer, responsible for the dependence analysis and dispatching
of requests; and the execution module, composed by multiple threads and responsible for
executing requests.

Upon receiving a request, the parallelizer checks if the request depends on other
request waiting for processing. For the sake of simplicity, in our simulation model, we did not
use a dependency graph as proposed in [KD04] to differentiate dependent and independent
commands. Instead, we keep commands in a table.

The parallelizer implements two main primitives: add_cmd(t_queue *t, int

cmd_type, command cmd) and command next_cmd(t_queue *t, int cmd_type).
The first primitive inserts a command cmd to a table t. The command type cmd_type

indicates whether a command is independent or depends on other commands. In our
experiments, all commands are set up as independent. A table of type t_queue is used to
store requests delivered by the agreement module. Table’s entries have a flag that indicates
if their respective commands are being executed by some thread or if they are eligible for
dispatching. Commands from different rows are independent, whereas commands in the
same row depend each other, i.e., they have to be processed in a sequential order. Therefore,
only the first command of each row can be executed.

The primitive command next_cmd(t_queue *t, int cmd_type) randomly
selects one among all independent commands eligible for dispatching. If none command
matches this condition, or table is empty, the primitive returns a nil command.

The execution module is composed by a set of working threads, which are respon-
sible for processing client requests (see Algorithm A.1). Every working thread asks the
parallelizer for incoming requests to be processed (line 3). Upon getting a command, a
working thread first set a flag indicating that the command is being processed. By setting
the command as busy in the table, the thread guarantees that the command will not be
dispatched to another thread. Next, the command is executed (lines 7). Then, the work-

103

ing thread returns the command’s output to the client. This is done by setting and event
req_done[cmd .client_id]. The client is waiting for this event and as soon as it is set, the client
proceeds its execution. Finally, the thread removes the executed command from the table.

Algorithm A.1 CBASE – execution
1: working_thread(thread_id):
2: while ¬finish_simulation do
3: index ← parallel .next_cmd(cmd)
4: if cmd .is_null() then
5: hold(busy_waiting)
6: else
7: set(t , index , busy)
8: exec_command(cmd , thread_id)
9: set(req_done[cmd .client_id])

10: remove(t , index)

11: exec_command(cmd , thread_id):
12: reserve(core[thread_id])
13: hold(cmd .execution_time)
14: total_requests + +
15: release(core[thread_id])

The execution of a command is represented by procedure exec_command(Command
cmd, int thread_id) in Algorithm A.1. It basically reserves the processing unit mapped to the
working thread with thread_id , keeps the processing unit reserved for cmd .execution_time
time units, increases the number of requests processed, and releases the processing unit.

The checkpointing coordination is managed by the parallelizer. Algorithm A.2 shows
the parallelizer procedure. The parallelizer remains blocked waiting for client requests (line
4). Upon receiving a client requests from mailbox, the parallelizer extracts the command
carried by the client request, add this command to the table of commands and increment the
command counter (lines 5 to 8). When checkpointing is enabled, the parallelizer checks if
the last command received is a multiple of cp_interval , i.e., if cp_interval commands were
delivered since the last checkpoint (line 10). In this case, to guarantee that all replicas will
take identical checkpoints, the parallelizer waits until all commands in the command table
have been executed before taking a checkpoint (line 12). Only the time taken for creation of
a checkpoint is represented. The command hold(cp_duration) blocks the process for
cp_duration time units, i.e., the time taken by creation of a checkpoint. Metrics for the number
of checkpoints, time elapsed for taking a checkpoint and the number of commands processed
per checkpoint are calculated by the parallelizer (lines 15 to 17).

Through a configuration file, it is possible to set up the checkpointing interval
(cp_interval), checkpoint duration (cp_duration), besides informing whether checkpointing is
enabled or disabled.

104

Algorithm A.2 CBASE – parallelizer
1: Initialization:
2: cmd_counter ← 0

3: parallelizer :
4: while ¬finish_simulation do
5: receive(mailbox , msg)
6: cmd ← get_cmd(msg)
7: insert(t , cmd)
8: cmd_counter + +
9: if cp_enabled then

10: if cmd_counter = (cp_interval × (num_cp + 1) then
11: measured_cp_duration = clock
12: while ¬table_is_empty (t) do
13: hold(busy_waiting)
14: hold(cp_duration)
15: num_cp + +
16: measured_cp_duration← clock −measured_cp_duration
17: num_reqs_until_last_cp ← total_requests

A.1.3 P-SMR Model

P-SMR parallelizes the agreement and the execution of commands. Instead of using
a single mailbox, P-SMR uses multiple mailboxes. More precisely, there are n mailboxes and
n threads at each replica, where thread t0 (at each replica) receives messages from mailbox0

only.

Commands from different mailbox are independent, whereas commands enqueued
in the same mailbox depend each other, i.e., they have to be processed in a sequential order.
Since mailbox’ receive primitive follows a FIFO order, all replicas process commands from
different mailboxes in a same order.

Algorithm A.3 describes P-SMR worker threads executing commands when check-
pointing is disabled. Basically, threads receive requests from its mailboxes, extract the
request’s command, and execute the command. Finally, the worker thread returns the com-
mand output to the client. This is done by setting the event req_done[thread_id]. The client
is waiting for this event and, as soon as it is set, the client resumes its execution.

In P-SMR, two types of checkpointing are allowed: coordinated and uncoordinated.
In the coordinated checkpointing, replicas must converge to a common state before taking a
checkpoint; in the uncoordinated checkpointing, replicas take checkpoints independently and
may not be in an identical state when the checkpoint takes place. For a detailed presentation
of P-SMR checkpointing algorithms, see Chapter 4.

The simulator is set up through a configuration file. The parameter sim_duration
specifies a duration threshold to the simulation execution. Workload characterization is de-

105

Algorithm A.3 P-SMR – execution
1: working_thread(thread_id):
2: while ¬finish_simulation do
3: receive(mailbox [thread_id], msg)
4: cmd ← get_cmd(msg)
5: exec_command(cmd , thread_id)
6: set(req_done[cmd .client_id])

7: exec_command(cmd , thread_id):
8: reserve(core[thread_id])
9: hold(cmd .execution_time)

10: total_requests + +
11: release(core[thread_id])

fined through the parameters num_clients, think_time, req_exec_distribution, and req_duration.
The number of threads in a replica is given by num_cores. The checkpointing strategy is
configured through the parameters checkpoint , cp_interval , and cp_duration. Next, we
present a sample of configuration file.

sim_duration 100000

num_clients 270

think_time 5.0

req_exec_distribution uniform

req_duration 0.05,0.95

num_cores 16

checkpoint uncoordinated

cp_interval 6400

cp_duration 5

verbose 0

logging all

save_file scenario270_uncoord.out

106

107

APPENDIX B – CORRECTNESS OF PROPOSED ALGORITHMS

This discussion of correctness is made adapting the one of [HW90].

B.1 Correctness of P-SMR (Algorithm 3.1)

In the following, we argue that every execution E of P-SMR including command
invocations and responses is linearizable.

Definition 1 (Command Conflict). Let ci and cj be commands, Wi and Wj , Ri and Rj their write-
and read-sets, the conflict relation #C ⊆ C × C among commands is given by: (ci , cj) ∈ #C if
(Wi ∩Wj 6= ∅) ∨ (Wi ∩ Rj 6= ∅) ∨ (Ri ∩Wj 6= ∅).

Definition 2 (History and Subhistory). The execution of a P-SMR is modeled by a history
which is a finite sequence of command events delivery(γ, c) and reply(γ, c), respectively
representing command request and response, where the arguments represent the consensus
sequence and the command, respectively. A subhistory of a history H |γ, or Hγ, is the
subsequence of all events in H for a consensus sequence γ.

Well-formedness: we restrict our discussion to histories where exactly one event
reply comes after (possibly not immediately) the matching delivery event. The match is given
by events having same arguments. An event follows immediately another event in H if there
is no other event between them in H.

Definition 3 (Sequential and Concurrent histories). A history is sequential if each delivery
event is immediately followed by its matching reply. A history that is not sequential is
concurrent.

Proposition 1. Given a P-SMR replica with history H, the subhistories Hγi of the worker
threads ti , i : 0..n are sequential.

Proof: as can be seen in lines 8 and 11, for every decide (deliver) of valid command
there is an immediate reply in the history of t0; the same is valid for all other threads
analogously from lines 20 and 22.

Proposition 2. Given a P-SMR replica with history H, and subhistories Hγi of the worker
threads ti , i : 0..n, events from t0 interleave with events from ti , i : 1..n at the granularity of
complete commands, i.e. a subsequence [delivery(γ0, c) · reply(γ0, c)] appears in H only if
the last event of every other thread was a reply.

Proof: as can be seen in the algorithm, threads ti , i : 1..n alternate between SQ
and CC modes. When they switch to SQ mode it means that each thread has finished a
command, and while in SQ mode each thread ti , i : 1..n synchronizes according to lines
10-12 and 17-18 with t0 for t0’s isolated execution of a complete command.

108

Theorem 1. A P-SMR replica generates linearizable histories.

Proof sketch: from the definition of linearizability, we must show that there is a se-
quential history S of commands from H that respects: (i) the real-time ordering of commands
across all clients, and (ii) the semantics of the commands.

(i) To address the real-time ordering of commands, we introduce the relation ≺H⊆ C × C,
an irreflexive partial order on commands of a history H where, ∀ci , cj ∈ H · ci ≺H cj ⇐⇒
reply (_, ci) precedes delivery (_, cj) in H. A sequential history S, a linearization of H, is
a total order <S compatible with ≺H . Since it is always possible to obtain a total order
compatible with a partial order, H is linearizable and S obtainable w.r.t. this aspect. In a
more concrete level, if reply(_, ci) precedes delivery(_, cj) in H then ci and cj are not
concurrent and their order is fixed in S.

(ii) The sequential history S, a linearization of H, must also respect the semantics of the
commands. Commands may either conflict according to #C or not.

[a.] To respect command semantics, conflicting commands must be sequentially
executed. According to our algorithm, conflicting commands are executed exclusively in
t0 and by Proposition 1 each thread has a sequential subhistory. Thus, the sequential
history S keeps these commands in the same order as in the sequential subhistory.

[b.] Non-conflicting commands can be executed in different orders without violating
their semantics. Threads ti , i : 1..n, when in CC mode, execute each one a non-
conflicting command. Due to their independency, any linearization of these n commands
is semantically acceptable in S.

As discussed in Proposition 2, thread t0 only executes a conflicting command after
all other threads finished their ongoing non-conflicting commands (CC mode). Therefore H is
naturally composed of a sequence of conflicting commands that execute exclusively at the
replica, where between any two conflicting commands up to n concurrent commands may
execute in threads 1..n. The execution of a batch of (up to) n independent commands can be
linearized in S in any possibly way provided they stay between two consecutive conflicting
commands in H.

Proposition 3. Given a set of P-SMR replicas, all replicas in the set generate a partial order
compatible with ≺H .

Proof sketch: All replicas start in identical states and have the same inputs in all
consensus sequences. It remains to argue that the replicas take deterministic decisions to
order delivery events across consensus sequences. By using a deterministic scheduling
procedure, the sequence of delivery events per thread will be the same to all replicas.
Note that for every replica there is a succession of same delivery events bounded by two
consecutive transitions to SQ mode. A SQ mode starts with the execution of a sequential

109

command by thread t0 and it is followed by every thread ti , i : 1..n processing a command
in CC and increasing its round [i] counter by 1. Threads ti , i : 0..n synchronize for the
execution of the next sequential command. This behavior is repeated, ensuring that the set of
commands delivered by each replica every two consecutive SQ transitions is the same. Since
all variables are deterministically updated, and since any update is triggered by a decision
which is homogeneous to all replicas, with the same inputs, they generate the same result.

B.2 Correctness discussion of Coordinated Checkpoint (Algorithm 4.1)

Assuming Algorithm 3.1 is correct, in Algorithm 4.1 we have that in δ time intervals
instead of executing sequential command, a checkpoint is generated. Since the CHK msg is
decided in consensus sequence γ0, every replica will take the checkpoint at the same relative
moment. Since in t0 commands are executed sequentially, no other execution will take place
during the checkpoint. When the checkpoint finishes the replica resumes the same execution.

B.3 Correctness discussion of Uncoordinated Checkpoint (Algorithm 4.2)

Algorithm 4.2 eliminates synchronization among replicas avoiding a checkpoint to
be taken at the same consensus instance. Thus, heterogeneous checkpoints may be taken
by different replica. It remains to argue that replicas take valid checkpoints and that this
operation does not interfere with the execution model.

Thread t0 either executes a sequential command or takes a checkpoint. The check-
point procedure assures that other threads ti are not executing any command during a
checkpoint. If a thread is not executing any command, lines 42-44 define that they block
for the execution of a checkpoint (coordinated by t0). If a thread is executing a CC or a SQ
command, it finishes its execution atomically to process any other signal or decision. Thus
the checkpoint is taken between any two complete commands of each thread.

Since a thread executing in SQ blocks for t0’s execution, and since t0 may decide to
execute a sequential command or to take a checkpoint, to avoid deadlock t0 manages the
other threads blocking: if t0 decides to execute a sequential command, other threads are
signaled to unblock as in Algorithm 3.1; if t0 decides to execute a checkpoint then blocked
threads (awaiting t0 to execute a SQ command) are not signaled, t0 takes the checkpoint and
let those threads remain blocked until it executes the next sequential command and unblocks
all threads. In any case, this is transparent to other threads and the checkpoint is completely
taken before the sequential command execution.

Checkpoints are valid since they are taken without concurrent execution and between
any two commands of a thread.

110

The procedure does not interfere with the execution model since it keeps the
original synchronization among threads provided by the consensus sequences and alternated
execution of CC and SQ commands.

B.4 Correctness discussion of the proposed parallel SMR (Algorithm 5.1)

Definition 4 (Batch). A batch is a sequence of commands. Two batches non-overlap if their
command sets are disjoint.

Definition 5 (Batch sequence). A batch sequence is a pair (B,<B) where B is a set of
non-overlapping batches and <B⊆ B × B is an irreflexive total order. Given a batch sequence
and the conflict relation #C ⊆ C × C among commands of batches in B, the derived batch
sequence conflict relation #B is obtained by lifting the conflicts over C to conflicts between
batches involving those commands. The batch sequence dependency relation ≺B is the
transitive closure of <B ∩#B. An execution of ≺B is any total order that is compatible with ≺B.

Proposition 4. ≺B is an irreflexive partial order.

Proof. By construction ≺B⊆<B is transitive. Since <B is irreflexive, and antisymmetric, so
must be ≺B.

Definition 6 (Replica). Given a batch sequence (B,<B), a replica R is a finite set of worker
threads that execute this batch sequence, that is R = {WTi |1 ≤ i ≤ n, n ∈ N, WTi = (Bi ,<Bi

) is a batch sequence} such that:

(i) all batches in B are enqueued to some worker thread:
⋃

1≤i≤n Bi = B;

(ii) the queues of worker threads are compatible with the batch sequence order:
<Bi =<B |Bi ;

(iii) a batch is in multiple threads if and only if it depends on items on these threads:
b ∈ Bi and b ∈ Bj with i 6= j ⇔ (∃bi ∈ Bi , bj ∈ Bj .bi ≺B b and bj ≺B b).

Note that since <Bi is an image of <B, the dependency relation on batches of Bi

must be ≺B restricted to the items in Bi .

Discussion of the Implementation. Take Algorithm 5.1. <B is represented by the
total delivery order, as stated in lines 22 to 24. The total order of <Bi is represented by
having worker threads processing commands in sequence (lines 26 to 28) and the scheduler
appending commands to threads (lines 16 to 20), building a FIFO with commands already
enqueued for the thread.

Condition (i), all batches are enqueued to some thread, is granted since every
delivered batch (line 22) is scheduled (line 23) and when enqueueing it (lines 16 to 20),

111

workers is necessarily non empty due to (lines 12 to 16). That is, a delivered batch is certainly
enqueued.

Condition (ii) states that the batch sequence of a thread is compatible with the
delivery order. Since schedule is performed sequentially in the total order of batches delivery,
by scheduling each batch to one or more queues of corresponding threads the processing in
each thread is compatible with the total delivery order.

Condition (iii), states that a batch is enqueued to multiple threads whenever the
batch depends on items in the input queue of those threads. This is ensured by schedule. In
lines 13 to 15 it checks for all N threads if any already enqueued batches conflict with the
current one. In lines 21 to 24 it enqueues B to all threads where dependency is identified. In
lines 21 to 24 the s_map[i] is updated to represent dependency of future batches w.r.t. the
current one being enqueued.

Based on the above, Algorithm 5.1 implements the conditions stated. Now we
discuss the replica execution model.

Definition 7 (Replica run). Given a replica R with n worker threads WT over a batch sequence
(B,<B), a (complete) run π of replica R is a list defined inductively as follows (• denotes the
inclusion of an element in front of a list):

(i) π is the empty list if all worker threads are empty;

(ii) π = b • π′ if b is the first batch of a set of m worker threads of R. π′ is the replica
run of the replica R′ obtained by removing b from all worker threads in which it appeared.

Discussion of the Implementation.

The basic step is trivial. In the induction step we have that b must be the next batch
to be processed in all m threads where it appears. And once it is processed, all m threads
remove b and process the next batch. This behavior is implemented in Algorithm 5.1, lines
30 to 44. Every involved worker thread eventually dequeues b and enters a barrier with other
threads in dep_list (lines 31 and 34–35), only the thread with smallest id executes b and all
other threads wait for it to complete (lines 36, and 35 and 41). This ensures that the above
described execution model is followed.

The next proposition guarantees that a replica run is well-formed, that is, it always
possible to obtain a replica run (i.e., a sequence involving all batches) for any replica.

Proposition 5. Replica run is well-defined (Liveness– it is always possible to obtain a replica
run).

Proof. First, note that if any two batches are in two different worker threads, they must be
in the same order, which is the order given in the underlying batch sequence <B, because
the orders in all WTs are restrictions of <B (by Definition 6, item (ii)). This implies that the
union of all orders of all worker threads cannot have cycles (because <B is an irreflexive total

112

order). Now, since the run is constructed inductively by removing the first batch of one or
more worker threads, we have to assure that, if there are non-empty worker threads, it is
always possible to remove the first batch of some worker thread. Let b be the batch appearing
in some WT (or WTs) of replica R such that b is the lower element according to the batch
sequence order <B that appears in some WT (this element exists since <B is a total order
and B is finite). Then b must be the first batch in all WTs that contain this batch because the
local orders of worker threads must be compatible with <B. Therefore this element can be
removed according to item (ii) in Definition 7.

Now, we prove that a replica run is an execution compatible with the partial order
describing the dependency relation of a batch sequence.

Theorem 2. Let R be a replica with n worker threads WT over a batch sequence (B,<B).
Then a run of replica R is an execution compatible with ≺B (Safety).

Proof. Let π be a run of replica R. The proof will be done by induction on π:

(i) π is the empty list: since item (i) of Definition 6, the execution is the empty total
order when B is the empty set.

(ii) π = b • π′: This is the case in which we add a batch b in front of a list π′.
By induction hypothesis, π′ is an execution compatible with the partial order involving the
remaining batches. Since b is the first batch of a non-empty set of WTs and does not appear
in any other WT, there cannot be a batch b′ in any WT such that b′ ≺B b: if this would be the
case either b′ would precede b in some of the WTs containing b, which is absurd because b
is the first batch in these WTs, or b is not present in a WT containing b′, which is ruled out by
item (iii) in Definition 6 (a batch must follow any other batch it is dependent on). This means
that b precedes all batches currently in all WTs wrt ≺B and thus putting it in front of any
execution of the rest of the batches will lead to an execution that is compatible with ≺B.

So far we have discussed that the implementation of one replica R executes a
possible executions compatible with the partial order given by the dependency relation of a
batch sequence.

Proposition 6. Consistency Across Replicas.

Two replicas are consistent if, having processed a batch sequence, they converge
to identical states.

Proof. Given any two replicas Ri and Rj that process a batch sequence (B,<B) respectively
with runs ri and rj , according to Theorem 2 both runs are executions compatible with the
batch sequence dependency relation ≺B. Therefore these runs respect the total order of
dependent batches while independent batches may be processed concurrently, which leads
to identical states.

113

Complementary discussion Consistency across replicas is ensured if, given any
set of command batches, all dependent batches in this set are executed in the same order in
all replicas. Independent batches may be processed in different orders. This stems from the
fact that, by definition, commands from independent batches do not interfere with each other.
Thus, we focus on how the algorithm ensures that dependent batches are processed in the
same order at any two replicas R1 and R2. When a command batch Bi is delivered at these
replicas, two cases can arise: (1) both replicas have the same set of delivered batches to be
executed; and (2) replicas have different sets of batches to be executed, meaning that one
replica, say R1, has already executed some batches before the other replica, R2. In the first
case, Bi will be checked for dependencies against the same set of batches in both replicas,
which arrive to the same result and process Bi in the same relative order. In the second
case, R1 has processed some batches that R2 still holds in its internal queues. Let Bj be one
such a batch at R2. When R1 delivers Bi , it has already processed Bj . Given that replicas
deliver batches in total order, when Bi is delivered at R2, it is checked against Bj . Here, two
possibilities exist: either Bi depends on Bj and then Bi will execute after Bj ; or Bi and Bj are
independent and can be executed in any order. Thus, replicas process dependent batches in
the same order, regardless of the different replicas internal queue states.

B.5 Correctness discussion of Speedy Recovery (Algorithm 6.1)

When discussing classical recovery, the recovering replica has to ensure that it
installs the checkpoint, processes missing (old) commands delivered after the checkpoint and
before it received the first message; and then processes the new commands (see Chapter 6
for the meaning of old and new commands). To assure that the replica is correct, it has to
process these commands in this order, which is the total delivery order. With speedy recovery
we take the advantage introduced in the efficient scheduling technique we presented and
offer the possibility of concurrently processing new batches if they are independent.

Proposition 7. Let R be a replica that crashed and recovered during execution over a batch
sequence (B,<B), a run of replica R is an execution compatible with ≺B (Recovery safety).

Proof: Taking (B,<B), assume three consecutive, disjoint segments of (B,<B):
(Bc,<Bc), (Bo,<Bo) and (Bn,<Bn) where Bc ∪ Bo ∪ Bn = B. Bc contains up to the i th batch
according to <B, meaning the checkpoint contents. Bo has the i + 1th to the j th batch in
<B, meaning old batches. Bn contains the j + 1th to the zth batch meaning new commands.
Assuming a correct checkpoint, ≺B is respected for the segment <Bc . In Algorithm 6.1,
after restoring a checkpoint (lines 2 to 3), the last delivered instance j is obtained (line 5);
d_map[i ..j] obtains dependency log for batches i to j , i.e. batches in Bo. In line 12, either the
next batch according to <Bo or to <Bn is delivered. Regarding <Bo , its batches come naturally
after the checkpoint and can be scheduled (line 14), respecting ≺B. If the batch is the next

114

one in Bn it’s delivery follows the order in <Bn but not <B, since some old batches may be
missing. Therefore this batch is checked for dependency with old batches (line 20) and if
it is independent from old batches it is scheduled (line 21) as discussed before. If it does
depend then it waits for processing in n_seq (lines 22 to 24). After all old batches have been
processed (line 16) then, according to <B, all new batches waiting in n_seq can be scheduled
(lines 16 to 18). Therefore, the recovery algorithm follows ≺B on all batches of a run including
crash and recovery.

Proposition 8. A replica’s execution is consistent with the linearizability criterion.

Proof. linearizability states that:

(i) it respects the real-time ordering of commands across all clients. Suppose non
overlapping commands ci and cj , one command, say ci is submitted by a client and responded
by the service before cj is submitted by another client. In this case ci is executed before cj

which only exists in the system after ci and thus it is not possible to disrespect this order. If
ci and cj overlap in time, then there is a moment in which both commands were submitted
and none of them responded. That is, both commands exist in the system. In such case the
ordering protocol decides any (total) order among the commands, which is followed by all
replicas. In our specific case, we may choose to further change the order of independent
commands but in any case this decision is restricted to the batches not yet responded, and
thus possible.

(ii) it respects the semantics of the commands as defined in their sequential spec-
ifications. This holds since: (a) non overlapping commands are naturally submitted and
responded sequentially; (b) overlapping in time, dependent commands are executed at all
replicas in a same order fixed by the ordering protocol; (c) overlapping in time, independent
commands can be executed in different moments in different replicas, but leading to the same
result since they are independent on the current batches being processed.

