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ESTIMATION OF DISTRIBUTION ALGORITHMS FOR CLUSTERING AND

CLASSIFICATION

RESUMO

Extrair informações relevantes a partir de dados não é uma tarefa fácil. Tais dados podem vir a partir

de lotes ou em fluxos contínuos, podem ser completos ou possuir partes faltantes, podem ser dupli-

cados, e também podem ser ruidosos. Ademais, existem diversos algoritmos que realizam tarefas de

mineração de dados e, segundo o teorema do "Almoço Grátis", não existe apenas um algoritmo que

venha a solucionar satisfatoriamente todos os possíveis problemas. Como um obstáculo final, algo-

ritmos geralmente necessitam que hiper-parâmetros sejam definidos, o que não surpreendentemente

demanda um mínimo de conhecimento sobre o domínio da aplicação para que tais parâmetros sejam

corretamente definidos. Já que vários algoritmos tradicionais empregam estratégias de busca local

gulosas, realizar um ajuste fino sobre estes hiper-parâmetros se torna uma etapa crucial a fim de obter

modelos preditivos de qualidade superior. Por outro lado, Algoritmos de Estimativa de Distribuição

realizam uma busca global, geralmente mais eficiente que realizar uma buscam exaustiva sobre todas

as possíveis soluções para um determinado problema. Valendo-se de uma função de aptidão, algo-

ritmos de estimativa de distribuição irão iterativamente procurar por melhores soluções durante seu

processo evolutivo. Baseado nos benefícios que o emprego de algoritmos de estimativa de distribui-

ção podem oferecer para as tarefas de agrupamento e indução de árvores de decisão, duas tarefas

de mineração de dados consideradas NP-difícil e NP-difícil/completo respectivamente, este trabalho

visa desenvolver novos algoritmos de estimativa de distribuição a fim de obter melhores resultados

em relação a métodos tradicionais que empregam estratégias de busca local gulosas, e também sobre

outros algoritmos evolutivos.

Palavras Chave: algoritmos de estimativa de distribuição, indução de árvores de decisão, agrupa-

mento, otimização.
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CLASSIFICATION

ABSTRACT

Extracting meaningful information from data is not an easy task. Data can come in batches or through

a continuous stream, and can be incomplete or complete, duplicated, or noisy. Moreover, there are

several algorithms to perform data mining tasks, and the no-free lunch theorem states that there

is not a single best algorithm for all problems. As a final obstacle, algorithms usually require hyper-

parameters to be set in order to operate, which not surprisingly often demand a minimum knowledge

of the application domain to be fine-tuned. Since many traditional data mining algorithms employ a

greedy local search strategy, fine-tuning is a crucial step towards achieving better predictive models.

On the other hand, Estimation of Distribution Algorithms perform a global search, which often is

more efficient than performing a wide search through the set of possible parameters. By using a

quality function, estimation of distribution algorithms will iteratively seek better solutions throughout

its evolutionary process. Based on the benefits that estimation of distribution algorithms may offer

to clustering and decision tree-induction, two data mining tasks considered to be NP-hard and NP-

hard/complete, respectively, this works aims at developing novel algorithms in order to obtain better

results than traditional, greedy algorithms and baseline evolutionary approaches.

Keywords: estimation of distribution algorithm, decision-tree induction, clustering, optimization.





LIST OF ACRONYMS

EDA – Estimation of Distribution Algorithm

GM – Probabilistic Graphical Model

DGM – Directed Probabilistic Graphical Model

UGM – Undirected Probabilistic Graphical Model

GA – Genetic Algorithm

EA – Evolutionary Algorithm





LIST OF SYMBOLS

N – number of instances/records/observations in a dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 19

M – number of attributes in a dataset (i.e, number of dimensions) . . . . . . . . . . . . . . . . . . . . 19

X – set of predictive attributes from all objects within a dataset . . . . . . . . . . . . . . . . . . . . . . 19

Xi – set of predictive attributes from the i-th object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xi,j – j-th predictive attribute of the i-th object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Y – Set of class attributes from all objects within a dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 19

yi – class from the i-th object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A – set of predictive attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ai – i-th predictive attribute from a dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C – set of all class categories, targets or groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ci – i-th class value, target or group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

S – set of individuals (i.e, population) from an evolutionary algorithm . . . . . . . . . . . . . . . . . . 23

si – i-th individual from a population S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ψ – quality/fitness of an individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

G – maximum number of generations/iterations that an EDA is allowed to run . . . . . . . . . . . 23

gi – i-th generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Φgi – set of fittest individuals from a generation gi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

φjgi – j-th fittest individual from the i-th generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

V – set of all variables from a probabilistic graphical model . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Vi – set of possible values for the i-th variable from V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

|S| – Number of individuals in a population S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

|Φ| – Number of fittest individuals in a sub-population Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

|V| – number of variables of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi,k – k-th value from variable Vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Xπ – The π-th subset/cluster of instances of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 ESTIMATION OF DISTRIBUTION ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 PROBABILISTIC GRAPHICAL MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 DIRECTED ARCHITECTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 CLUSTERING ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 SILHOUETTE WIDTH CRITERION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 SIMPLIFIED SILHOUETTE WIDTH CRITERION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 DUNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 DENSITY-BASED CLUSTERING VALIDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.5 ADJUSTED RAND INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 BASELINE ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 K -MEANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 HIERARCHICAL CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.4 EDAS FOR CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 CLUS-EDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 INDIVIDUAL ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 FITNESS FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 PASCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 INDIVIDUAL ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 FITNESS FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 TIME COMPLEXITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.4 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.5 EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



3.4.6 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.7 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 DECISION-TREES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 TOP-DOWN INDUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 SPLITTING CRITERIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 EVALUATION CRITERIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 EVALUATION METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 HOLDOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 CROSS-VALIDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 ARDENNES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 INDIVIDUAL ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 GM UPDATING PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.3 FITNESS FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.4 COMPLEXITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.5 EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.6 PARAMETERS AND BASELINE ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.7 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.8 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.9 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 LIMITATIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



19

1. INTRODUCTION

Data mining is a field which seeks to extract meaningful information from data in a way that

such information will help in the process of decision-making in the future [TSK05, c. 1, p 2]. With

regard to information retrieval, both of them differ in the way that retrieving the number of goals for

each player from the Brazilian National Football Team does not help predicting the probability that

Brazil will win the next World Cup. It is also different from machine learning, since their aims are

intrinsically different. Machine learning algorithms seeks to "change their behavior in a way that makes

them perform better in the future" [WF05, c. 1, p. 8]. More formally, "A computer program is said

to learn from experience E with respect to some class of tasks T and performance measure P if its

performance at tasks in T , as measured by P , improves with experience E" [Mit97, chap. 1, p. 2].

The existence of machine learning algorithms that seek to analyze, process, learn, and make

predictions for data mining tasks is what bring those areas together. With the ever increasing amount

of available data [WF05, Mur12, TSK05], it is unlikely that a single algorithm will always perform bet-

ter for all application domains; hence, new machine learning algorithms for data mining tasks are

constantly being developed.

Data mining performs its information extracting process by working with datasets. Datasets

may describe a wide range of situations: satellite imagery, characteristics of cancerous cells, data of

customers from a bank, and so on. Datasets may be available either as batches or streams of data.

Since in this work we only use batches, we will use those terms interchangeably. Batch datasets

are roughly M × N tables. Its N rows are commonly referred as instances (X), records, or objects,

and are observations of some or all of its M columns, which in turn are also referred as attributes

or features (A). Attributes are subdivided into two categories: predictive attributes (X) and class

attribute (Y ). Predictive attributes provide some information about an aspect xi,j of the data – for

satellite imagery, it can be information such as localization, altitude, etc. A class attribute denotes

the category, target, or group for respectively classification, regression, and clustering tasks. The

categorical dataset presented in Table 1.1 was presented in [WF05] and describes several aspects of

the weather, which may or may not collaborate in the process of deciding whether to play tennis or

not. Table 1.2 describes the same dataset in math notation.

Machine learning performs roughly four kinds of learning: supervised, semi-supervised, unsu-

pervised, and by reinforcement, with several algorithms available for each one of those tasks. Popular

algorithms perform a greedy local-search through the search space. Take for exampleK -means [M+67],

an unsupervised algorithm for clustering unknown objects into groups. It progressively optimizes the

sum of squared errors (SSE) in the hope that such heuristic will lead to groups with high intra-cluster

similarity and high inter-cluster dissimilarity [XW05].

Regarding classification, decision trees – one of the most popular methods for both classi-

fication and regression, due to its innate comprehensibility feature [BBdC+09] – are often induced

through a greedy top-down induction strategy such as Hunt’s algorithm [TSK05, c. 4, p.152]. Based

on one characteristic of the data, it subdivides it into two or more subsets that present a "purer"
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Outcome Temperature Humidity Wind Play

sunny hot high no no
sunny hot high yes no
cloudy hot high no yes
rainy mild high no yes
rainy cold regular no yes
rainy cold regular yes no

cloudy cold regular yes yes
sunny mild high no no
sunny cold regular no yes
rainy mild regular no yes
sunny mild regular yes yes
cloudy mild high yes yes
cloudy hot regular no yes
rainy mild high yes no︷ ︸︸ ︷

Predictive Attributes
︷ ︸︸ ︷

Class Attribute

Table 1.1 – An example of a dataset with the class attribute (play) available. Each row is an instance,
describing a day, and each column a characteristic of that day. Adapted from [WF05].

a1 a2 a3 a4 Y

X1 x1,1 x1,2 x1,3 x1,4 y1
X2 x2,1 x2,2 x2,3 x2,4 y2

. . .

Xn xn,m−4 xn,m−3 xn,m−2 xn,m−1 yn

Table 1.2 – Math notation for the weather dataset, displayed in Table 1.1. The set of all categories is
{yes, no} ∈ C . Adapted from [WF05].

distribution over the class attribute. It repeats that procedure until a stopping criterion is reached.

Generating optimal trees is a NP-hard [BdCF15] problem, whereas inducing a minimal binary tree is

NP-complete [TSK05]. Algorithms that employ a greedy strategy tend to be faster than global-search

procedures. Albeit comprehensible, considering only a portion of the data at a given split does not cap-

ture the whole data distribution. Hence, greedy top-down induction algorithms also employ a pruning

procedure in order to avoid overfitting the training data [TSK05, c. 4, p. 172].

Instead of performing a local search, one may employ a meta-heuristic to perform a robust

global search through the solution space. In this sense, Estimation of Distribution Algorithms (EDAs)

seem to be a natural choice, capable of achieving near-optimal solutions within a reasonable time

window [HP11]. In a nutshell, an EDA starts by generating random solutions to the given problem. It

then verifies the quality of each solution through a user-defined function. Once it identifies the set

of most promising solutions, it then propagates their characteristics to the following generations. It

repeats this procedure until either a sufficient number of iterations or a convergence in the quality of

solutions is reached.

EDAs belong to the field of evolutionary computation, and as such have some overlapping

with data mining tasks. Several evolutionary algorithms have already been proposed for dealing with
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both clustering [XW05, HCFDC09], or with decision-tree induction[BBDCF12]. However very few

EDAs have been proposed for tackling such tasks, even though EDAs surpasses other evolutionary

algorithms in both performance and comprehensibility of the evolutionary process [HP11].

With that in mind, this work aims at developing estimation of distribution algorithms for

both decision tree induction and data clustering in order to achieve better results than traditional

greedy strategies and also other baseline evolutionary algorithms.

1.1 Contributions

The contributions of this work are the development of EDAs for the aforementioned tasks:

Clus-EDA (Section 3.3) and PASCAL (Section 3.4) are effective clustering algorithms based on medoid

and density paradigms; Ardennes (Section 4.4) is a decision-tree induction algorithm which surpasses

its evolutionary baseline and achieves competitive results regarding its traditional greedy baseline.

1.2 Outline

The rest of this work is organized as follows. Chapter 2 presents in further detail the as-

pects of Estimation of Distribution Algorithms. Chapter 3 describes clustering, the data mining task

of grouping objects into similar groups, whereas Chapter 4 explains classification and reviews why

decision-trees are popular methods for performing this task. Finally, the final remarks are in Chapter 5.
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2. ESTIMATION OF DISTRIBUTION ALGORITHMS

According to Hauschild and Pelikan, "Estimation of Distribution Algorithms (EDAs) are

stochastic optimization techniques that explore the space of potential solutions by building and sam-

pling explicit probabilistic models of promising candidate solutions" [HP11]. EDAs are explore the

complete set of solutions available to a given problem, and are employed in searches where perform-

ing a stressful verification through all possible solutions is infeasible due to time constraints. EDAs

rely on solution sampling, probabilistic graphical model updating and quality evaluation in order to

achieve satisfactory results within a predefined time window [HP11].

In EDAs, solutions are also called individuals (s), and a set of individuals comprises a pop-

ulation (S). The quality of an individual is called fitness (ψ) and is a problem-specific metric: it can

only be asserted by testing each individual in the proposed problem. Fitness may present any range

of values, but are often normalized for ranges [0, 1], [0,+∞] or [−1, 1], with higher values as better

ones. EDAs perform their search through a predefined amount of time, such as number of iterations

or generations (G). From a given generation to another, a set of most promising individuals (Φ) is

selected to update the probabilistic graphical model’s variables (V).

As a meta-heuristic, user-defined parameters in EDAs are more likely to be related to the

search procedure rather than directly to the problem being solved. EDAs do not present a canonical

way of updating their probabilistic graphical models, replacing and storing individuals across genera-

tions nor how to evaluate individuals. However, the pseudo-code of Figure 2.1 succinctly summarizes

the overall process of an EDA.

1: function EDA(population_size, problem)
2: model← initializes probabilistic graphical model (GM) with a uniform distribution
3: while stopping criteria not met do
4: population← sample individuals from GM
5: fittest← individuals in the population which better solve the problem
6: model← update model from the fittest individuals in a way that is more likely to generate

them in following generations

7: return the best individual found so far

Figure 2.1 – Generic pseudo-code for EDAs.

In order to better explain how an EDA work, let’s assume a hypothetical optimization prob-

lem. It consists in assigning colors to several nodes. Those nodes reside within a graph structure,

which connects nodes through a set of edges. Two connected nodes are considered to be neighbors.

The quality of an individual is given by the number of neighboring edges that do not present the same

color. Figure 2.2 shows two possible color sets.

An hypothetical EDA assigned to solve this problem could start by sampling individuals from

a uniform distribution – that is, all color sets are equally likely to occur in the population – encapsu-

lated in a Probabilistic Graphical Model (GM). This is a particular optimization problem, where GMs’

variables are coincident with the individual’s structure – that is, each node in the graph is also a variable
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(a) (b)

Figure 2.2 – Two possible color sets (individuals) for the graph: (a) is a high-quality configuration,
since no node has a neighbor with the same color; (b) is a low-quality configuration. Best viewed in
colors.

in the GM. Each variable comprises a Probabilistic Mass Function, since a node can only be instantiated

with discrete colors, and not a set of them.

Once the EDA samples |S| individuals from the GM, it is necessary to measure their quality. In

this case, its simply the number of nodes connected with different colors, normalized by the number of

total edges. Once this is done, it is interesting to propagate the characteristics of the fittest individuals

to the following generations. This is done by updating the variables’ probabilities. In Figure 2.3, the

univariate inference of probabilities is showed based on two individuals.

32

41

32

41
P(red | 2) = 2/2

P(yellow | 2) = 0/2
P(green | 2) = 0/2

P(red | 1) = 1/2
P(yellow | 1) = 1/2

P(green | 1) = 0/2

P(red | 4) = 0/2
P(yellow | 4) = 0/2

P(green | 4) = 2/2

P(red | 3) = 1/2
P(yellow | 3) = 1/2

P(green | 3) = 0/2

Figure 2.3 – Based on two individuals (left colored graphs), the EDA’s GM updating step will update its
variables’ probabilities in a way that is more likely to generate those individuals. Best viewed in colors.

The EDA will repeat this process of sampling, fitness evaluation and GM updating until a

stopping criteria is reached: often a sufficient amount of time has passed (which may be measured by

the number of iterations) or the lack of diversity in the population (all individuals have the same fitness,

or the probabilities in the GM are locked into either 0 or 1 for all possible selections). Since probabilistic

graphical models play an important role in the EDAs process, the following sections further explains

their concepts, variants and procedures.
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2.1 Probabilistic Graphical Models

Imagine an environment composed of several variables; it may be, as pointed by Murphy

[Mur12, c. 10, p. 310], pixels in an image, words in a document or genes in a microarray. One way

to represent the interactions of all variables is to use the chain rule, which states that one variable V1

is independent, the subsequent variable V2 is dependent on V1, V3 on V1 and V2, and so on until the

|V|-th variable, where |V| the number of variables in the system. It may also be expressed as

P (V|V|−1) = P (V1)P (V2|V1)P (V3|V1, V2)...P (V|V|−1|V1, V2, ..., V|V|−2) (2.1)

However, the computational cost of representing this chain grows with the number of variables, even-

tually requiring an unfeasible amount of processing power to compute a single variable probability. A

Probabilistic Graphical Model (or GM) is a way to represent interaction between variables of a given

environment without the need of writing the full chain of relationships. In a GM, variables are repre-

sented by nodes and edges connect two interacting variables.

GMs may be either directed or undirected. A directed probabilistic graphical model (DGM) is

sometimes referred as a Bayesian network, belief network or causal network [Mur12, c. 10, p. 310].

In DGMs, a variable Vi may have one or more parents – a parent is a variable Vj which influences the

outcome value of Vi, but is not influenced by Vi – and one or more children – when Vi is the parent

of another variable Vk. Another characteristic of a DGM is that it must not have cycles in its layout,

thus requiring independent variables. Figure 2.4 represents a possible DGM layout.

Figure 2.4 – Layout of a DGM. V1 and V2 are parents of V3, which in turn is parent of V5. V4 does not
interact with any other variable, thus being independent.

An undirected probabilistic graphical model (UGM), on the other hand, is a GM where a

variable Vi may influence and be influenced by any other node connected to it. This GM project is

required since not all domains can be represented by a DGM. Murphy [Mur12, p. 663, chap. 19] gives

the example of an image: it makes no sense to think that a pixel may influence its neighboring pixels

but is not influenced by them.

Using a DGM or UGM depends directly on the domain’s data distribution. Some distributions

may be represented perfectly by both DGMs and UGMs, and are called chordals. In Figure 2.5 an UGM
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and two failed attempts to represent it as a DGM are presented; Figure 2.6 presents a Venn diagram

of the representational possibilities of distributions. Since it is most common to find EDAs based on

DGMs than UGMs [HP11], the following section describes possible Directed Architectures proposed

in literature for EDAs.

Figure 2.5 – An UGM (left) and two failed attempts to model it as a DGM, since they do not capture
all conditional dependencies. Adapted from [Mur12, c. 19, p. 667].

Probabilistic models

ChordalDirected Undirected

Graphical Models

Figure 2.6 – All representational possibilities over distributions. Adapted from [Mur12, c. 19, p. 666].

2.1.1 Directed Architectures

Independently from the GM used, EDAs have to model the relationship of variables. EDAs

do this by correlating variables with one another. Since GMs represent variables as nodes in their

structure, from now on the terms node and variable will be used interchangeably to refer to the same

concept. Also, since this work does not develop EDAs based on UGMs, its architectures will not be

presented, and whenever referring to graphical models in other chapters we will refer to DGMs. The

next sections present some DGM architectures previously used in conceptual EDAs. For the interested

reader, more DGM architectures can be found in [HP11].

Univariate Models

Univariate models [HP11] assume that the generation of values for a given variable Vi is

independent from the generating process of any other variable Vj , j 6= i and i, j ∈ {1, . . . , |V|}. A
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representative example of an EDAs using this approach is the Univariate Marginal Distribution Algo-

rithm, or UMDA [MP96]. Figure 2.7 presents its GM layout.

...

Figure 2.7 – The architecture of a univariate distribution.

The updating of probabilities associated with each variable is done as follows. The UMDA

selects the best-quality individuals from a given generation. Since it does not assume dependence

between variables, its updating process can be done in parallel: for each variable Vi it verifies the

sampled value for each individual in the fittest population, groups them by value and uses this relative

frequency as the new probabilities of sampling those values. The previously showed Figure 2.3 depicts

this procedure.

Due to its parallel nature, UMDAs tend to perform faster than EDAs that assume depen-

dence between variables or even infer their relationship. However, univariate EDAs may fall in local

optima since they do not capture the underlying interactions between variables. Since modelling the

full relationship between variables is prohibitive due to processing costs, other strategies must be ex-

plored. One of such strategies is the one of rearranging GMs in a way that to resemble the structure

of trees.

Tree-based Models

Tree-based models are constructed so the DGM resembles a tree, containing root, leaf nodes

and inner nodes. A particularity of those models is that each variable may have at most one parent.

The number of children, however, may vary depending on the algorithm.

The first algorithm presented here is MIMIC [DBIJV96]. It starts with a univariate GM. Once

it samples its initial population, it works by finding the variable Vi with lowest entropy in the Φ sub-

population to be the tree root:

H(Vi) = −
∑
vi,k∈Vi

P (vi,k) logP (vi,k) (2.2)

where vi,k is a possible value for Vi. Once the lowest entropy variable Vi is found, it then calculates

the mutual information between Vi and Vj , j 6= i and i, j ∈ {1, . . . , |V|}:

I(Vi, Vj) =
∑
vi,k∈Vi

∑
vj,l∈Vj

P (vi,k, vj,l)
P (vi,k, vj,l)

P (vi,k)P (vj,l)
(2.3)

where P (vi,k, vj,l) is the joint probability of variables Vi and Vj defined as P (Vi = vi,k, Vj = vj,l) =

P (Vi = vi,k|Vj = vj,l)P (Vj = vj,l). It chooses the variable Vj with highest mutual information with
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Vi to be the next variable in the chain. It then repeats this process with Vj and so on, until no variable

is left outside. The resulting probability to generate a set of variables is

P̂π = P (Vk1|Vk2)P (Vk2|Vk3)...P (Vk|V|−1
|Vk|V|) (2.4)

where k1, k2, . . . kM are the indexes of variables, and π the order of such indexes. Once the tree is

built, the algorithm then samples individuals from this tree and repeat the aforementioned GM building

process until a stopping criteria is met. Figure 2.8 presents the DGM layout of MIMIC.

...

Figure 2.8 – DGM layout of MIMIC.

Another tree-based EDA is the one proposed by Baluja and Davies in [BD97]. In their work

the authors do not name their method, but for clarity purposes we will dub it as TreeMIMIC. TreeMIMIC

performs an inference process similar to MIMIC in the way it correlates variables: using entropy to find

the root and mutual information to establish links between them. It also forces each variable to have

at most one parent (except for the root), but contrarily to MIMIC does not restrict the number of

children. Figure 2.9 exemplifies a hypothetical DGM generated by TreeMIMIC.

...

...
...

...

Figure 2.9 – Hypothetical DGM generated by TreeMIMIC.

Finally, the last tree-based EDA covered in this section is BEDA – Bivariate Marginal Distribu-

tion Algorithm, proposed by Pelikan and Mühlenbein [PM99]. BEDA analyzes bivariate and univariate

distributions to determine whether two variables are correlated or not. This is done by using Pearson’s

chi-square statistics, which can be defined as

χ2 =
∑ (observed− expected)2

expected
(2.5)

This can be interpreted as follows: given Υ observations of random variables V1, V2, ..., V|V|, we want

to find out whether two arbitrary variablesVi andVj are correlated or not. When a set of instantiations

of variables occurs, the probability of the combination is
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P (Vi = vi,k, Vj = vj,l) = P (Vi = vi,k|Vj = vj,l)P (Vj = vj,l) (2.6)

The probability that Vi will assume values independently from Vj can be written as

P (Vi = vi,k)P (Vj = vj,l) (2.7)

if we interpret the observed value as the conditional probability of Vi given Vj and the expected

value as the unconditional probability of Vi and Vj , we can merge equations 2.5, 2.6 and 2.7, obtaining

χ2
i,j =

∑
vi,k∈Vi

∑
vj,l∈Vj

(Υ · P (vi,k, vj,l)−Υ · P (vi,k)P (vj,l))
2

Υ · P (vi,k)P (vj,l)
(2.8)

χ2
i,j will result in a value in the chi-squared distribution. If χ2

i,j < 3.84, then the two variables are

independent for 95% of the observed occurrences and will not be linked in the GM.

It is important to note that, because of the nature of the DGM building strategy used by

BEDA, the resulting DGM layout may be composed by several trees which are not necessarily corre-

lated. BEDA also restricts variables to have at most one parent. Figure 2.10 shows a possible layout

of the DGM generated by BEDA.

... ...

...

...

...

Figure 2.10 – A possible DGM layout generated by BEDA.
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3. CLUSTERING

Imagine that you work for a big, colorful tech company that provides a web search engine.

As the years pass by and more Internet users perform searches using your service, you know more

what the users are searching: "cake recipe", "how to surf", etc. Then, one day you are asked to draw

several profiles of users that used the tool: How do you start?

Clustering is a field where data mining and machine learning crosses its paths: to group data

is to cluster, and it can be done by unsupervised machine learning algorithms. Technically, datasets

used in clustering have only predictive attributes, and is up to the data scientist to define a group

for each instance, since no prior information about the number or type of groups is known [KR90].

Examples of real-world applications that benefit from data clustering include image segmentation

[CTC+06] and bioinformatics [HCdC06, BCFdC13].

It is important to stress that clustering does not mainly attempts to assign a class to un-

known data, but rather a group; it is up to the data scientist to whether treat it as a class or not.

Take for example the problem of grouping tumor cells into similar groups [SBL11]. Tumor cells may

present similar characteristics and thus belong to the same group; however similar characteristics do

not guarantee that a treatment is appropriate to same-group tumors.

The set of group assignments for each instance is called partition. The objective of clus-

tering is to obtain groups with high intra-group similarity and low inter-group similarity. There is no

consensus in the way of measuring this concept, as viewed by the several quality criteria currently

available [VCH10]. More formally, clustering is a two-step task, where it is first necessary to estab-

lish the desired number of groups, and then assign instances to each of of those groups. However,

the number of groups K1 ranges between 1 (the trivial partition, where every object belong to the

same group) to N (one object per group, i.e a singleton). Once it is selected, the number of possible

partitions is 1
K!

∑K
i=0(−1)i

(
K
i

)
(K − i)N [TSK05].

From an optimisation viewpoint, clustering is a particular kind of NP-hard problem. Tradi-

tional clustering algorithms perform a greedy, local-search through the space of possible partitions.

However, many works also approach it by using evolutionary strategies [XW05, HCFDC09], general-

purpose meta-heuristics believed to be effective in tackling NP-hard problems, although few works

employ EDAs for this task.

The rest of this chapter is organized as follows. Section 3.1 presents the criteria used

to evaluate quality of partitions, whereas Section 3.2 reviews some popular clustering algorithms.

Section 3.3 presents Clus-EDA, our first EDA for tackling clustering using medoids, and Section 3.4

presents PASCAL, the EDA for performing density-based clustering.

1Due to its popularity, this chapter will use K to define the number of groups that objects within a dataset may be
assigned. However, other chapters may use K as a generic indexer.
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3.1 Clustering analysis

According to Tan, Steinbach and Kumar [TSK05, chap. 8, p. 487], cluster analysis is the task

of dividing data into clusters that are meaningful, useful or both. Cluster analysis may be used for two

purposes: utility and understandability.

When clusters are required to be understandable, they must try their best to represent a pos-

sible class. This translates to a high similarity between objects, in a way that each one of them present

a characteristic common to all. Some tasks which require understandability are biology taxonomy,

consumer’s profile clustering and illness grouping.

On the other hand, utility requires that a cluster provides a representative prototype. Some

of those tasks are data summarization, compression and nearest neighbor localization. Prototypes

come in two forms: centroids and medoids. A centroid is a hypothetical object which better represents

the instances within a group. It may or may not be placed above an actual instance, in which case it

becomes a medoid. Some partitional algorithms restrict cluster prototypes to use only medoids, since

they diminish the impact of outliers in the dataset. Figure 3.1 demonstrates how a cluster with several

outliers can be prejudiced from using a centroid-based clustering algorithm.

(a) (b)

Figure 3.1 – (a) A set of 5 objects (circles) belonging to the same group, due to the use of centroids
(cross) as group prototypes. (b) The same 5 objects from (a), but grouped in 3 different groups, due
to the use of medoids (cross inside circles) as cluster prototypes. Best viewed in colors.

The general idea of clustering is to produce partitions which maximize the intra-cluster sim-

ilarity and reduce the inter-cluster similarity. However, this notion may be difficult, since a cluster may

be partitioned into smaller clusters while still keeping the previous metrics. Figure 3.2 is based on the

figure presented in [TSK05, chap. 8, p. 491] and exemplifies this concept.

Clusters may be evaluated using different validity criteria, each one measuring a desirable

aspect of clusters. Validation of clustering structures is said to be most difficult and frustrating part

of cluster analysis, to the point in which it is compared to a "black art" [JD88]. We refer the interested

reader to a thorough survey on clustering validity criteria by Vendramin et al. [VCH10]. Most of these

criteria, however, are computationally costly. The next sections present some of those measures that

will be used in this work.
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(a) (b)

Figure 3.2 – A three-dimensional dataset with 12 instances, described with both (a) 2 clusters and (b)
4 clusters. Best viewed in colors.

3.1.1 Silhouette Width Criterion

According to [VCH10], the Silhouette Width Criterion (SWC) [Rou87] is a measure based

on separate and compact clusters, defined as

SWC =
1

N

N∑
i=1

b(i)− a(i)

max(b(i), a(i))
(3.1)

where a(i) is the mean distance between an object i and all other objects belonging to the same

cluster, and b(i) the mean distance between the object i and all objects of the closest cluster but its

own. For singletons, the ratio is not computed, being replaced by zero.

SWC values range from [−1, 1], where −1 describes overlapping clusters with sparse ob-

jects, and 1 are well separated and compact clusters. Although SWC provides a value which can be

compared between several partitions, it is not guaranteed that the clustering with the best SWC pro-

vides a reasonable understandability or utility. Since one needs, for each object i, the distance between

it and all other objects in the dataset, the computational cost of SWC is O(M ·N2).

3.1.2 Simplified Silhouette Width Criterion

In order to reduce the computational cost of SWC, the Simplified Silhouette Width Criterion

(SSWC) [VCH10] makes two replacements: a(i) becomes the distance between an object and the

prototype of the cluster it belongs, and b(i) the distance to the prototype of the closest cluster but its

own. As inferred in the work of Vendramin et al. [VCH10], the overall cost of SSWC is O(M ·N ·K).

Note that SSWC can become costly for K ≈ N , though in practice K << N .
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3.1.3 Dunn

Dunn Index [Dun74], similarly to SWC and SSWC, is a measure based on cluster’s separation

and compactness. It is defined as

DN = min
i,j∈{1,...,K}

i 6=j

{
δi,j

max
l∈{1,...,K}∆l

}
(3.2)

where ∆l is the diameter of the lth cluster or, in other words, the maximum distance between two

objects that belong to the same cluster, and δi,j is the distance between clusters i and j.

Since δi,j is the mean distance between two clusters, it is required the computation of the

distance between all objects of the dataset, thus being of same complexity of SWC, O(M ·N2).

3.1.4 Density-Based Clustering Validation

As pointed out by Moulavi et al. [MJC+14], previously developed density-based criterion

fail in several aspects such as correctly analysing arbitrarily-shaped clusters due to the use of the

euclidean distance – which, as previously said, favors the generation of spherical groups – or requiring

a parameter such as the number of nearest neighbors to calculate the density of a neighborhood.

Density-Based Clustering Validation (DBCV) [MJC+14], on the other hand, is a parameterless criterion

which defines a new distance to calculate such density.

The calculation of the DBCV starts by taking as input a partition. It then computes Γ(Xi),

which is the inverse of density of the object Xi in its cluster:

Γ(Xi) =

(∑ni
j=2

(
1

d(Xi,Xj)

)M
|Xπ| − 1

)− 1
M

(3.3)

where M is the dimensionality of the data, |Xπ| the number of objects in the π-th cluster and

d(Xi, Xj) the distance between objects Xi and the j-th closest neighbor of Xi in Xπ. Note that

j starts at 2 (i.e, the first closest neighbor), since it makes no sense in calculating the inverse density

between an object and itself. PASCAL uses the squared euclidean distance for d, i.e d2(Xi, Xj).

Once all objects have their Γ computed, it builds a mutual reachability matrix of the Xπ

cluster objects using the definition of mutual reachability distance:

dmreach(Xi, Xj) = max(Γ(Xi),Γ(Xj), d(Xi, Xj)) (3.4)

From themreachmatrix of each cluster, aMSTMRD is built, which captures the underlying structure

of the data. Using each MSTMRD it is possible to calculate the Density Sparseness of a Cluster,

DSC(Xπ), which is the edge with maximum weight in MSTMRD, and Density Separation of a Pair
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of Clusters, DSPC(Xπ,Xε), which is the minimum mutual reachability distance that separates the

inner nodes (e.g nodes with degree 2 or above) of two MSTMRD.

The validity of a cluster is calculated using both DSC and DSPC values:

V C(Xπ) =
min1≤ε≤K,ε6=π(DSPC(Xπ,Xε))−DSC(Xπ)

max
(

min1≤ε≤K,ε6=π(DSPC(Xπ,Xε)), DSC(Xπ)
) (3.5)

Finally, the index can be calculated as the weighted average of each V C(Xπ):

DBCV (C) =
K∑
r=1

|Xπ|
|X|

V C(Xπ) (3.6)

where K is the number of clusters, |X| is the total number of data objects, and V C(Xπ) the validity

of clusterXπ. DBCV ranges from−1 to +1, going from partitions with sparse and overlapping clusters

to partitions with dense and well-separated groups, respectively.

3.1.5 Adjusted Rand Index

The Adjusted Rand Index (ARI) [HA85] analyses the conformation of a partition Q to the

original data distributionR (ground truth). It takes into account the probability that the partition has

been generated from a random distribution of objects into clusters rather than by any intelligent mech-

anism. The unadjusted index ranges from 0 to 1, with larger values meaning better conformations, but

ARI may yield negative values if the found partition is less attractive than the random expected parti-

tion:

ARI =
a− (a+c)(a+b)

E
(a+c)+(a+b)

2
− (a+c)(a+b)

E

(3.7)

where:

• a: number of pairs of data objects from the same class in R and same cluster in Q;

• b: number of pairs of data objects from the same class in R and different clusters in Q;

• c: number of pairs of data objects from different classes in R and to the same cluster in Q;

• d: number of pairs of data objects from different classes in R and to different clusters in Q;

• E = a+ b+ c+ d
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3.2 Baseline Algorithms

When referring to algorithms, David Wolpert once said [Mur12] that "there is no free lunch",

which roughly captures the nature of machine learning algorithms: albeit one may be the best per-

former for a given application domain, it is very unlikely that it will be the best one for any domain.

Based on this, data scientists come with new machine learning algorithms from time to time.

3.2.1 K -means

K -means [For65, M+67] is a partitional algorithm that iteratively optimises the sum of

squared errors (SSE) in an expectation-maximisation procedure. In its simplest form, it takes two pa-

rameters as input: the number ofK groups (which is up to the user to specify) and a similarity measure,

such as the euclidean distance2. It then randomly placesK prototypes in the data space. Objects will

be assigned to their closest prototype, and prototypes will be moved to match the center of the objects

assigned to them. Since their positions change, other objects may become within range of a prototype,

thus repeating the assigning-moving process until no object changes from group. The pseudo-code for

K -means may be viewed in Figure 3.3, whereas Figure 3.4b details a single expectation-maximization

step over the dataset of Figure 3.4a.

1: function K -means(K)
2: randomly initializes K prototypes
3: while prototypes changing do
4: form K clusters by assigning each point to its closest prototype
5: recalculate the centroid of each cluster
6: return partition

Figure 3.3 – Pseudo-code forK -means (omitting the similarity function for clarity purposes). Adapted
from [TSK05].

3.2.2 DBSCAN

As the name suggests, Density Based Spatial Clustering of Applications with Noise (or DB-

SCAN for short) [EKS+96] tends to analyze the neighborhood of an object before assigning it to a

group. DBSCAN requires two user-defined parameters: a radius eps, which determines the maximum

distance of a neighborhood, and a minimum number of neighbors to configure a group. If an object

does not have a sufficient number of neighbors in its neighborhood, then it is considered noise.

The authors propose [EKS+96] the following strategy to set DBSCAN parameters. The mini-

mum number of objects in a neighborhood is up to the user to be defined (in the user profile example
2When using the euclidean distance, K -means tends to favour hyper-spherical groups.
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Figure 3.4 – (a) A dataset of 12 objects. (b) A single run of expectation-maximization of K -means on
the dataset of Figure 3.4a. Squares and circles are data objects, whereas crosses denote the group
centroids (prototypes). Best viewed in colors.

of the beginning of this chapter, is it useful to have a profile with only 4 users?), and eps is set using

the following procedure:

1. find the j-th closest neighbor for each object in the dataset;

2. store the j-th closest neighbor distance in a unidimensional array with length N ;

3. sort the array in crescent order;

4. uses the distance before the biggest relative increase in distance required to set a neighborhood.

The idea is that the value before the biggest relative leap is the maximum value which can be used be-

fore having to increase the radius too much in order to obtain different partitions. Figure 3.5 illustrates

the unidimensional array of distances, as well as the distance before the biggest relative increase.

0 200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

biggest leap

Figure 3.5 – For every object in a dataset, this graph describes the distance to its closest j neighbor,
sorted in ascending order.
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3.2.3 Hierarchical Clustering

Hierarchical algorithms perform the task of clustering by iteratively building hierarchic struc-

tures that correlate all objects within a dataset. At the end of the building procedure, this structure

can yieldN −2 possible partitions (excluding the partition in which all objects are singletons, clusters

of only one object, and the trivial partition). For this reason, those algorithms present an advantage

of not requiring setting the number of groups a priori [MC12, XW05].

There are two kinds of hierarchical clustering approaches: agglomerative and divisive. An

agglomerative algorithm starts by treating each object in the dataset as a singleton. It then proceeds

to merge clusters into bigger ones based on their similarity. A popular measure for similarity is the

euclidean distance. In the process of merging clusters, a dendrogram records all merging performed

so far. Between a merging and another, their similarity is then recomputed. This process is repeated

until all objects belong to the same, trivial cluster. Divisive algorithms take the exact opposite pro-

cedure, but are unpopular due to its O(2N) computational cost – as opposed to O(N2 logN) of

agglomerative algorithms [BYL+15].

Agglomerative algorithms are further defined by the way that they recompute the similarity

between groups. Single linkage [Sne57] selects the minimum distance between two clusters; com-

plete linkage [Sør48], the maximum; average and median compute respectively the average and me-

dian distances, and so on.

UnlikeK -means, hierarchical algorithms do not require the definition of the number of clus-

ters beforehand; it is assigned later by analyzing the dendrogram and cutting it where the vertical

distance is the largest, which very likely indicates a significant dissimilarity between two clusters. By

analyzing the dendrogram of Figure 3.6, it is apparent that the dataset contains two groups, since

the distance between clusters {f, e, d, b, a, c} and {g, i, l, h, j, k} is larger than any other inter-cluster

distance. However, when a dendrogram presents several dissimilar clusters at more than one height,

the task of selecting the correct the number of groups becomes more difficult.

f e d b a g i l h j kc

Figure 3.6 – A dendrogram made for the dataset of Figure 3.4a by complete linkage. The height of the
vertical edges are the distances between the horizontally linked clusters.
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3.2.4 EDAs for clustering

To the best of our knowledge, there is only one other strategy to perform clustering with

EDAs, proposed by Santana et al. [SBL11]. The authors use three architectures of GM – a univari-

ate marginal distribution, a tree-based distribution and a bayesian distribution – to initialize a matrix

of similarities between objects. This matrix is then fed to affinity propagation [FD07], a clustering

algorithm based on message exchange which aims to detect meaningful cluster representatives (i.e

medoids). The authors apply this strategy to group human cancerous cells, which will be later used in

a classification task.

The authors do not directly measure quality of clusters, but rather employ a penalized

exemplar-based accuracy (Eacc), which measures the accuracy of the classification procedure by using

clusters found by EDA-enhanced affinity propagation algorithm. The authors also assume that groups

are classes. We seek to perform a comparison between our methods and the one of Santana et al.

in future work, although we acknowledge that their EDA do not directly performs clustering, nor its

paradigm (message-passing) is similar to the ones employed by our EDAs – medoid-based and density-

based.
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3.3 Clus-EDA

Clus-EDA is the first of our proposed algorithms for performing clustering through EDAs. It’s

name is an acronym for "Clustering with Estimation of Distribution Algorithms". It was submitted and

accepted for presentation in the 31st ACM/SIGAPP Symposium on Applied Computing (SAC 2016),

from April 4 to 8 in Pisa, Italy [CBQB16].

Clus-EDA is an EA for data clustering following the medoid-based approach with a variable

number of clusters. It makes use of a univariate estimation of distribution algorithm (EDA) for evolving

clustering partitions following the binary string encoding. Our hypothesis is that a medoid-based EDA

is capable of achieving better results than traditional data clustering algorithms such as K -means

[M+67] and hierarchical agglomerative clustering [KR90]. Furthermore, we believe our approach is

capable of outperforming a label-based EA called F-EAC [HCdC06], without the knowledge of number

of clusters prior to its execution.

3.3.1 Individual Encoding

In Clus-EDA, any object may be sampled to become a medoid. The graphical model for Clus-

EDA has N variables, with N as the number of objects in the dataset. The probability of an object

Xi becoming a medoid is pi, following a distribution [0, 1] ∈ R. The variables in the GM do not

interact with one another – that is, the probability that an object becomes a medoid does not affect

the probability of neighboring objects.

For initialising the variables’ probabilities, we runK -means [M+67] multiple times varyingK

from 2 to
√
N and select the number of clustersK∗ from the partition that optimises a given clustering

validity index. This heuristic is a thumb rule for defining the optimal value ofK for methods that require

this definition a priori. Even though Clus-EDA does not require setting a fixed number of clusters prior

to its execution, we set pi = K∗/N , ∀i ∈ {1, 2, ..., N}. By doing so, we potentially reduce the

search-space of Clus-EDA, even though it will automatically adjust the probability vector throughout

evolution, being capable of discovering partitions with any number of clusters. The clustering validity

criterion used to define K∗ is the Silhouette Width Criterion [Rou87], a widely-used index to validate

data clustering partitions described in Section 3.1.1.

An individual is a binary string ofN positions. An 1 in a given i position denotes that the i-th

object in the dataset is a medoid for this individual. Non-medoid objects are assigned to the closest

(using the euclidean distance) medoid object, thus forming clusters. In this encoding, the number of

medoids for a given individual denotes the number its groups. Figure 3.7 demonstrates the encoding

adopted by Clus-EDA.

The binary encoding adopted by Clus-EDA has several advantages over other typical encod-

ings in evolutionary clustering problems. For instance, let us consider the case of the integer encoding
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Figure 3.7 – Mapping of individuals adopted by Clus-EDA. Each individual is an array of lengthN . If an
object is sampled to be a medoid, all non-medoid objects are assigned to the closest medoid object.

in which each gene (object) has a value over the alphabet {1, 2, ..., K}. Such an encoding is natu-

rally redundant (1-to-many), since there are k! different genotypes that represent the same solution

[HCFDC09]. Furthermore, it assumes the number of clusters k is previously known, which is often not

the case in real world applications.

3.3.2 Fitness function

Once all individuals are sampled, its fitness shall be asserted. The fitness function in Clus-

EDA should be capable of evaluating the quality of the data clustering partition. LetN be the number

of objects andM the number of attributes in the dataset. The cost of most validity criteria is quadratic

in the number of objects – e.g., Dunn’s (O(M ·N2)), Silhouette Width Criterion (O(M ·N2)), Gamma

(O(M ·N2 +N4/k)), McClain-Rao (O(M ·N2)), just to name a few. Hence, we decided to choose as

fitness function a validity criterion whose complexity is linear in N , namely the Simplified Silhouette

Width Criterion (SSWC) [HCdC06]. It is an efficient implementation of the traditional Silhouette

Width Criterion (SWC) [Rou87], and is presented in further detail in Section 3.1.2.

For updating the probabilities, we pick the Φ% fittest individuals (i.e, highest SSWC) from

the current generation, where the size of Φ is defined by the user. Thus, the probability of an ob-

ject becoming a medoid in the next iteration of Clus-EDA is 1/|Φ|, with |Φ| as the number of fittest

individuals from the current generation. Once all probabilities are updated, we resample the whole

population. This procedure is repeated until a maximum number of iterations is reached.



42

3.3.3 Experimental Setup

In this section we detail the datasets that are employed in the experiments, as well as the

clustering algorithms that participate in the analysis, the parameters used in Clus-EDA and in the base-

line algorithms, and the evaluation measures to validate the results.

Datasets

For validating our results, we make use of a total of 9 datasets. The first 4 of them, namely

s1, s2, s3, and s4, are artificial datasets proposed by Fränti and Virmajoki [FV06]. These datasets are

2-d data with N = 5000 and K = 15 Gaussian clusters with different degrees of cluster overlapping.

The advantage of using artificial data is that we possess the “golden truth", i.e., the partition with the

correct cluster assignments, so we can evaluate the clustering algorithms more objectively. Those

datasets are presented in Figure 3.8.
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Figure 3.8 – "S" datasets: s1 (a), s2 (b), s3 (c) and s4 (d). Best viewed in colors.

The second set of datasets we make use were created by Yeung et al. [YMB03], which simu-

late data from microarray. The 5 synthetic microarray datasets, namely sin1, sin2, sin3, sin4, and sin5,

are formed by N = 400 genes and M = 20 measurements (attributes). There are approximately 6

clusters with equal size in each of these dataset.
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Baseline Algorithms

For comparison purposes in the empirical analysis, we make use of well-known clustering

algorithms, namely K -means [M+67] and UPGMA [KR90], as well as F-EAC [NCHdC11], which is a

mutation-based EA (no crossover is performed whatsoever), with specialised mutation operators for

the clustering task.

Parameters

Both K -means and UPGMA have a single parameter: the final number of clusters K . For

deciding which value of K to use, we executed both algorithms for each dataset varying the number

of clusters within [2,
√
N ], selecting the value of K from the partition that optimised the SWC . This

thumb rule is often used for defining the number of clusters in algorithms such as K -means.

Regarding F-EAC and Clus-EDA, we executed both within a cycle of 500 individuals and 500

generations. We kept the remaining default parameters from EAC [NCHdC11]. For Clus-EDA, the only

parameters are the value of the truncation selection, which we set to t = 50%, and the value of the

initial probability for each gene in the probabilistic vector (for generating a uniform distribution). As

detailed in Section 3.3.1, we defined the initial probability as K∗/N , where k∗ is the same value of

K found by K -means in the thumb rule. Hence, the values of initial probability for Clus-EDA in the 9

datasets are presented in Table 3.1.

Table 3.1 – Characteristics of datasets used in this work along the initial probability of an object be-
coming a medoid in Clus-EDA.

Dataset # objects # attributes # groups
Initial probability
pi∀i, i ∈ [1, N ]

s1 5000 2 15 0.0032
s2 5000 2 15 0.0028
s3 5000 2 15 0.0028
s4 5000 2 15 0.0034

sin1 400 20 6 0.0125
sin2 400 20 6 0.0150
sin3 400 20 6 0.0100
sin4 400 20 6 0.0150
sin5 400 20 6 0.0150

Evaluation Measures

Considering that all datasets that are used during the empirical analysis are synthetic, one

of the evaluation measures we compute is the Adjusted Rand Index (ARI). ARI verifies the compatibility

between the generated partition (henceforth called "clusters") and the reference partition (henceforth

called "classes"). It is a measure adjusted for chance, i.e., when comparing two random partitions it

yields a value close to zero. We also evaluate the results according to other two criteria, namely SWC
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andDB. SWC is the original Silhouette Width Criterion [Rou87] without the prototype simplification

for speeding it up, the latter being used in Clus-EDA’s fitness function. Criterion DB is the Davies-

Bouldin index [DB79], which is also an internal validity criterion that analyses the data alone. All

measures are discussed in further detail in Section 3.1.

3.3.4 Experimental Results

We executed Clus-EDA and F-EAC 30 times by varying the seed of each execution, since they

are evolutionary non-deterministic approaches. UPGMA andK -means were executed once per number

of clusters, which was varied within [2,
√
N ]. Then, we selected the partition that optimised the SWC

validity index [Rou87] for each one of them. Table 3.2 presents a summary with the experimental

results.

Table 3.2 – Results summary. Values for the real number of clusters (K), the estimated number of
clusters (K∗), Simplified Silhouette Width Criterion, Davies-Bouldin index, and Adjusted Rand Index for
K -means, UPGMA, F-EAC, and Clus-EDA. Values for Clus-EDA and F-EAC are averages of 30 executions.

K -means UPGMA F-EAC Clus-EDA

Dataset K K∗ SWC DB ARI K∗ SWC DB ARI K∗ SWC DB ARI K∗ SWC DB ARI

s1 15 16.00 0.63 0.61 0.90 19.00 0.51 0.63 0.85 15.00 0.71 0.46 0.87 15.07 0.71 0.42 0.99

s2 15 14.00 0.61 0.48 0.89 15.00 0.52 0.68 0.91 15.00 0.63 0.57 0.87 15.07 0.62 0.53 0.93

s3 15 14.00 0.41 0.69 0.62 15.00 0.19 0.91 0.69 15.00 0.49 0.76 0.86 14.73 0.49 0.70 0.73

s4 15 17.00 0.47 0.68 0.64 18.00 0.10 0.98 0.61 15.00 0.48 0.77 0.85 15.20 0.47 0.73 0.65

sin1 6 5.00 0.63 0.53 0.67 6.00 0.65 0.71 0.84 6.00 0.65 0.60 0.67 6.00 0.65 0.52 0.84

sin2 6 6.00 0.54 1.11 0.43 5.00 0.69 0.62 0.67 5.00 0.69 0.48 0.55 5.00 0.69 0.43 0.67

sin3 6 4.00 0.45 0.89 0.44 5.00 0.73 0.47 0.54 4.00 0.72 0.44 0.44 4.00 0.72 0.43 0.54

sin4 6 6.00 0.51 1.06 0.64 8.00 0.70 0.91 0.83 6.93 0.69 0.62 0.67 6.00 0.69 0.43 0.84

sin5 6 6.00 0.55 0.78 0.65 5.00 0.64 0.70 0.67 8.00 0.64 0.57 0.67 6.00 0.63 0.56 0.83

Our first analysis in this round of experiments was regarding the number of clusters found

by each method. Clus-EDA presents the lowest average absolute error (0.40) regarding the estimated

number of clusters, followed by F-EAC (0.66), K -means (0.89) and UPGMA (1.33). In other words,

Clus-EDA is the algorithm that best estimates the number of clusters, though we are aware that sim-

ply estimating the proper number of clusters is not enough for a clustering algorithm to be deemed

effective.

Therefore, our second analysis is regarding the Adjusted Rand Index (ARI). Note once again

that Clus-EDA seems to be the best option among the algorithms that were executed. It provides the

largest ARI value in 7 of the 9 datasets, even though it ties with UPGMA in three of them. By presenting

the best ARI values, Clus-EDA demonstrates it has the greatest potential to approximate the golden

truth provided by each of these datasets.

Our next analysis was regarding the internal validity criteriaSWC and DB. RegardingSWC ,

Clus-EDA together with F-EAC and UPGMA shared wins, with a small advantage to F-EAC overall. In

terms of the DB index, Clus-EDA once again has shown to be the best option, winning in 6 out of 9
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datasets (withK -means winning in the remaining three datasets). Hence, we have showed that Clus-

EDA is not only the best clustering algorithm in estimating the correct number of clusters, but that it

also is the best algorithm regarding both external and internal clustering validity criteria.

3.3.5 Final Remarks

This section described Clus-EDA, an estimation of distribution algorithm for medoid-based

clustering. As previously said in Section 3.3, Clus-EDA was submitted and accepted for presentation

in the 31st ACM/SIGAPP Symposium on Applied Computing (SAC 2016), from April 4 to 8 in Pisa,

Italy [CBQB16].

The proposed approach employs a simple but efficient and effective evolutionary framework

that estimates a univariate marginal distribution model to define cluster prototypes. To guide the

iterative refinement of the probabilistic model, Clus-EDA employs a clustering internal validity criterion

that has complexity O(M ·N), i.e., linear in the number of objects and attributes.

We compared Clus-EDA with k-means [M+67], an hierarchical agglomerative clustering

[KR90], and also with an evolutionary algorithm F-EAC [NCHdC11]. For comparison purposes, we em-

ployed 9 clustering datasets: 4 of them were artificially generated based on Gaussian clusters [FV06],

and 5 of them simulate microarray gene expression data [YMB03]. Results show that Clus-EDA can

generate data partitions that provide a greater agreement regarding the reference partitions, out-

performing the baseline clustering algorithms in both external and internal clustering validity criteria.

As future work, we intend to verify whether more sophisticated probabilistic models would wield im-

proved results for medoid-based clustering.
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3.4 PASCAL

PASCAL is the second of our proposed algorithms for performing clustering through the

use of EDAs. Its name stands for "Parameterless Shape-Independent Clustering Algorithm". It was

submitted and accepted for presentation at the 2016 IEEE Congress on Evolutionary Computation,

held at Vancouver, Canada from 24 to 29 july [CB16]. PASCAL relies on the assumption that, although

clustering is a task done without prior knowledge on the data, geometrical aspects of it may give a

hint into how to assimilate objects into groups.

Let us assume that all objects are connected to each other throughE edges. An edge weight

is given by the distance between a pair of objects (say the Euclidean distance, without loss of gener-

ality). Hence, we have a dense graph with objects representing the vertices. If we now consider that

each edge links two objects that belong to the same cluster, the task of finding clusters is reduced to

the one of removing unnecessary edges from the graph. This is a decrease in the search space from
1
K!

∑K
i=0(−1)i

(
K
i

)
(K−i)N possibilities [TSK05] toN !/(N−K)!, for a given set ofN M -dimensional

points and K number of partitions.

3.4.1 Individual encoding

Besides considering that geometrical aspects, other assumption which can be made is that

far-away objects are much less likely to belong to the same cluster than closer ones. In fact, this

assumption may be expanded to consider the closest neighbor only. If the closest neighbor for a given

object does not belong to the same cluster than it, why would farther objects be more likely to do? This

obviously holds true for scenarios where minimizing distance is equivalent to maximising similarity.

Hence, instead of building a fully dense graph, PASCAL builds a minimum spanning tree

(MST), which connects the set of N vertices with a subset Eπ of N − 1 edges from E that minimise

the overall weight of the tree while preventing cycles. The distance measure used for calculating the

weight of edges can be any one which satisfies the symmetry (d(Xi, Xj) = d(Xj, Xi)), positivity

(d(Xi, Xj) ≥ 0 ∀i, j ∈ [0, . . . , N ]), and reflexivity (d(Xi, Xj) = 0 iff Xi = Xj) properties, with i 6= j

[XW05]. A well-known distance measure that satisfies all these properties plus the triangle inequality

(d(Xi, Xj) ≤ D(Xi, Xl) + D(Xl, Xj) for all Xi, Xj , and Xl, i 6= j, j 6= l, i 6= l) is the Euclidean

distance, which is used as the default distance measure in PASCAL.

PASCAL employs the Kruskal’s algorithm [CLRS09] for generating the MST based on a pre-

computed distance matrix. Kruskal’s algorithm starts by considering each vertex as a candidate sub-

tree, and also all possible edges in the graph. It then iteratively removes an edge with minimum weight

from the set of edges, and if that edge connects different trees it combines them into a single tree.

At the end of the process, since the graph is connected the single resulting tree is an MST containing
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all N vertices (i.e., objects) and N − 1 edges. Figure 3.9 shows the output of Kruskal’s algorithm at

every iteration for a dataset with 3 objects.

(A) (B)

0.1

0.4

0.2

(C) (D)

Figure 3.9 – (A) A bidimensional dataset with 3 objects. (B) The fully-connected graph that links all
objects and the respective distances. (C) Forest of subtrees in the first iteration of Kruskal’s algorithm.
(D) Final subtree found in the second iteration of the Kruskal’s algorithm, which is also a MST.

PASCAL approaches the problem of generating clusters from this MST as the one of remov-

ing its edges in a way that disconnected subtrees represent different groups. As previously said, there

are 2(N−1) − 2 valid clustering partitions to be found, meaning that the number of solutions grows

exponentially with the number of objects. Nonetheless, considering that each individual is the set of

removed edges presents an advantage over the label-based approach, usually employed in evolution-

ary clustering algorithms (e.g., [HCdC06]), which assigns the group label to each one of the objects,

as depicted in Figure 3.10. Note that this approach allows the encoding of multiple genotypes (i.e

sets of labels) which, in fact, represent the same phenotype (i.e partition).

1 2 3

3 1 2

2 3 1

Figure 3.10 – Three individuals (s1, s2 and s3) with different label assignments for objectsX1, X2, X3,
but with the same phenotype.

Once the MST is built, it is mapped into a probabilistic graphical model (GM) [Mur12]. A

GM is a resource used by EDAs to sample new individuals for comprising the population of candidate

solutions. GMs may come in two types, directed and undirected graphical models (DGM and UGM,

respectively) [Mur12]. In a directed graphical model, a parent variable may influence the outcome of

a child variable, but otherwise is impossible; this behavior is allowed when using UGMs. Nonetheless,

the type of GM dictates how variables should interact between themselves, but does not explicitly

group variables into interaction groups (i.e, it does not say that the outcome of variable Vi affects

the outcome of Vj). PASCAL uses a DGM as its mechanism for sampling values of variables; however,

there is no interdependence between variables.

In PASCAL, we convert MSTs undirected nature to a directed one, assigning a random node

in the tree to its root. We then assign a variable to each one of the edges of the MST. The initial

probability of connected objects Xi and Xj belonging to the same cluster Cl is given by
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p({Xi, Xj} ∈ Cl) = 1− d(Xi, Xj)∑
e∈Eπ

we
(3.8)

where d(Xi, Xj) is the distance between objects Xi and Xj and we is the weight of edge e that

belongs to the set of edges Eπ of the MST. Hence, closer objects have a higher initial probability to

be in the same cluster than farther ones. In this way, we have N − 1 variables, with N as the number

of objects in the dataset. Figure 3.11 depicts the arrangement of variables.

(A) (B) (C)

Figure 3.11 – (A) MST with objects and euclidean distance between neighboring objects. (B) Encoding
of variables in PASCAL’s DGM. Distances are converted to probabilities following Equation 3.8. Note
that each variable encodes the probability that two neighboring objects belong to the same group.
Also note that the outcome of a variables does not affect the outcome of other variables (i.e, group
of other pairs of objects), configuring a univariate distribution. (C) Superposition of MST and GM.

Once the MST is converted to a GM, it is possible to sample individuals from each variables’

distribution. Since the outcome of each variable is a boolean value denoting a must-link or cannot-link

condition, an individual is encoded as a list of boolean values. This gives PASCAL enhanced agility and

speed when sampling from and updating the distribution. Note that chains of linked objects translate

to larger groups, whereas pairs of objects translates to smaller – and possibly outlier – groups.

PASCAL does not accept any parameter regarding the clustering process, such as number

of groups K , minimum distance between objects to be considered from the same group (as opposed

to DBSCAN [EKS+96]), etc. Its only parameters are related to the search procedure, which are hyper-

parameters in relation to clustering: maximum number of individuals to keep in memory at the same

time; maximum time of search (i.e iterations/generations); amount of individuals to use for updating

the GM; and individuals to be replaced in the next generation. No attempt was made to tune these

parameters during the experimental analysis, presented in Section 3.4.6. In fact, PASCAL is robust and

insensitive to these parameter choices in terms of cluster quality, and that well-established common-

sense values for these search parameters are rather sufficient for performing high-quality clustering

with PASCAL. Its pseudocode is presented in Figure 3.12.
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1: function PASCAL(data, iter, frac_induce, frac_replace)
2: compute the distance matrix from data
3: build MST from data
4: initialise GM with objects as variables, edges from MST as relationships, and edge weights as probabilities
5: sample an entire population with GM
6: evaluate population
7: while g < G and GM has not converged yet do
8: update GM based on frac_induce individuals with best fitness
9: remove frac_replace of worst individuals from the population

10: sample frac_replace individuals from GM and add to the population
11: evaluate population
12: g ← g + 1

13: return best individual from the population

Figure 3.12 – Pseudo-code of PASCAL.

3.4.2 Fitness function

For evaluating the quality of generated partitions, PASCAL uses density-based clustering vali-

dation (DBCV) [MJC+14] as its fitness function, as described in Section 3.1.4. By using a density-based

criterion, PASCAL is capable of detecting arbitrarily-shaped clusters, since its assumption regarding

what a cluster is will be based on the concept of finding dense areas separated by sparse regions.

3.4.3 Time complexity

PASCAL’s time complexity is computed as follows. The calculation of the distance matrix

between N objects takes O(N2). Finding the MST through Kruskal’s algorithm takes O(N logN).

The main loop of the EDA runs in the worst case forG times, whereG is the number of max iterations.

The number of individuals to have its fitness calculated is proportional to the fraction used as input

for the EDA, |S|. Since the whole population must be sampled in the first iteration, it has a complexity

ofO(|S|(1 +G)). The worst case for calculating DBCV is when all objects belong to the same cluster,

since γ will be calculated using all N − 1 objects as neighbours and at most N − 2 objects will be an

inner node for finding the MST. Hence, it has a complexity ofO((N−2)2+(N−2) log (N − 2)+N+1),

which corresponds respectively for calculating γ, finding the MST of the trivial cluster, finding DSC ,

and calculating the DBCV index itself. Updating the GM based on fittest function takesO(|Φ|), where

|Φ| is the number of fittest individuals. Hence, our algorithm has a complexity of O(N(1 + logN) +

I(1 +G)((N − 2)2 + (N − 2)2 log (N − 2)2 +N + 1 + |Φ|), which is≈ O(N2) for large values ofN .

3.4.4 Related Work

Using minimum spanning trees for clustering is not a novel approach. For instance, the

dendrogram produced by single linkage (introduced in Section 3.2.3) is in fact a MST. The difference
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between PASCAL and single linkage is two-fold. First, PASCAL does not require setting the value of K

(or, in other words, a horizontal cut in the dendrogram) in order to assign objects to clusters. Second,

PASCAL allows the "regretting" from a cluster assignment for a given object. In the dendrogram, there

is only one partition which yieldsK clusters. In order to obtain different partitions for the same number

of groups, the user must run other hierarchical agglomerative clustering algorithms such as complete

linkage. PASCAL, on the other hand, hasN !/(N −K)! possible partitions for each value ofK ranging

in [2, N − 1].

The work of Zhou et al. [ZGH11] propose two procedural algorithms for performing clus-

tering with minimum spanning trees, one K -constrained and the other unconstrained. Since PASCAL

automatically detects the number of clusters, we describe here the unconstrained algorithm. It starts

by building a MST from the dataset, and then it iteratively removes edges from the MST. By removing

an edge, it produces two clusters of data objects. The approach used for removing edges is to remove

those that contribute the most for increasing the weighted standard deviation of all edges in the set

of subtrees. It then performs a 6-th order regression analysis with the information of how much is

reduced in terms of standard deviation with the number of removed edges. When removing an edge

ceases to decrease the standard deviation of the partition, the corresponding value of K is chosen

and the subtrees generated from that configuration is returned.

Regarding evolutionary algorithms for clustering, Alves et al. [ACH06, HCdC06] propose a

Fast Evolutionary Algorithm for Clustering (F-EAC), a mutation-based algorithm which further improves

the EAC [HdCC04]. F-EAC encodes all N objects of the dataset in one array of N positions. For

each position, it randomly assigns a value in the range [1, K] during the first generation, where K is

the number of partitions. The initial value of K is a starting point, since it is constantly changed by

the algorithm within its procedure. F-EAC proceeds to mutate individuals in order to update cluster

assignments for each object, either by splitting or merging clusters. Two functions are used for fitness

evaluation across the several variations of F-EAC presented in the work: Simplified Silhouette Width

Criterion (SSWC), which is a simplification over the original silhouette; and Rand Index, the original

unadjusted version. The authors develop a set of F-EAC variants, which can accurately predict the

correct number of clusters and are faster than the original EAC implementation. As mentioned before,

F-EAC requires an initial value of K to initiate the clustering process. Furthermore, since it uses the

SSWC as fitness function, it tends to favour spherical clusters. The variation in which it uses the Rand

Index is not realistic since in most domains there is no known ground truth.

3.4.5 Experimental Setup

The following sections are an excerpt of the text found in [CBQB16], which describes our

first experiments with PASCAL. In this work, we use the following hyper-parameters for running PAS-

CAL: 500 individuals, maximum of 100 iterations, updating the GM based on 10% of the fittest individ-

uals and full replacement of the population. We did not attempt to tune these parameters. We run
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PASCAL 10 times on each dataset, varying the random seed that controls evolution. In the following

sections, we comment on the datasets, algorithms, and evaluation criteria that were used during the

empirical analysis of this work.

Baseline Algorithms

For validating the performance of PASCAL, we compare it with 4 well-known clustering al-

gorithms: K -means [Llo06], DBSCAN [EKS+96], single and complete linkage [JD88, MC12]. All those

algorithms are further explained in Section 3.2.

For parametrising the baseline algorithms, we employed two different strategies. For DB-

SCAN, we set a neighbourhood of 4 objects and follow the strategy described in Section 3.2.2. For

K -means, single linkage and complete linkage, we executed them selecting K from 2 to
√
N . The K

used for generating the partition with the best DBCV index is used as input for the algorithms. We de-

cided to use DBCV as the validity criterion for choosing the best partition since it is the same criterion

optimised by PASCAL during its evolutionary search. K -means was executed 10 times by varying the

random seed for defining the initial prototypes for each possible value of K in the interval [2,
√
N].

Datasets

During the empirical analysis, we verify the performance of the algorithms in 10 datasets:

9 of them were artificially generated and one is a real-world labeled dataset. For the real dataset,

we make the further (probably naïve) assumption that the classes are equivalent to clusters. The

real dataset in question is the well-known Fischer’s Iris data, which contains information about petal

length and width, and sepal length and width of three specimens of flowers [Lic13]. The artificial

datasets blobs2, circles0 and moons0 were generated using the Scikit Learn toolkit for the Python

programming language [PVG+11]. The rest of the datasets were generated in Octave [JWEW15]

using the code made available by Kools [Koo16]. All artificial datasets are two-dimensional for the

sake of visualisation. Table 3.3 presents the characteristics of all datasets, and the 9 artificial datasets

can be seen in the first column of Figure 3.13.

Table 3.3 – Artificial and real datasets used in the empirical analysis.
dataset # features # objects # clusters

Real Iris 4 150 3

blobs2 2 1,000 2

circles0 2 1,000 2

moons0 2 1,000 2

outlier 2 1,000 2

Artificial clusterincluster (cinc) 2 1,012 2

corners 2 1,000 4

crescentfullmoon (cfm) 2 1,000 2

halfkernel 2 1,000 2

twospirals 2 1,000 2
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Evaluation Measures

Unlike classification, clustering is a subjective task and the quality of the result may vary

according to the prior assumptions of the validity criterion that is used for evaluating the partitions.

For analysing the clustering results, we decided to employ 2 clustering validity criteria: DBCV, which

is the criterion optimised by PASCAL during evolution, and the Adjusted Rand Index. Note that DBCV

is an internal validity index, which means it takes into account only the data itself to compute the

partition’s quality. The Adjusted Rand Index, on the other hand, is an external validity criterion, which

compares the resulting partition with the ground truth, i.e., an external partition that is allegedly the

expected result. Since we are using 9 artificial datasets and one labeled real-world dataset, we do have

the external partitions to properly evaluate the clustering quality, and thus the internal validity index

is just presented for the sake of completeness. DBCV and ARI are further explained in Section 3.1.4.

3.4.6 Experimental Results

We present all results of this experimental analysis in Table 3.4, and in Figure 3.13 we show

the comparison between the ground truth and the partitions provided by each algorithm. Note that

PASCAL and all baseline algorithms are capable of correctly choosing the number of clusters in 8 out of

the 10 datasets. Recall that we had to execute a multiple-runs procedure followed by the evaluation of

an internal validity criterion to define the number of clusters forK -means and complete/single linkage,

since they require the user to set the value of K . We can infer that using DBCV as an internal validity

criterion for estimating the number of clusters for algorithms that need to set that parameter is indeed

a good alternative. Yet, we should give emphasis to the fact that neither DBSCAN nor PASCAL require

any sophisticated procedure to properly estimate the number of clusters. Moreover, note that PASCAL

is, in fact, the only algorithm that does not require any procedure at all to define a set of parameters

so it can be successfully executed.

The main evaluation criterion in this experimental analysis is ARI, which indicates the level

of conformity between the provided partitions and the real distribution of the data. Note that both

PASCAL and DBSCAN can perfectly reproduce the ground truth in 8 out of the 9 artificial datasets,

substantially outperforming both hierarchical agglomerative methods andK -means. Given the variety

of shapes present in the artificial datasets, it was expected thatK -means would fail in reproducing the

ground truth, since it is only capable of generating hyper-spherical clusters. In terms of functioning,

the most similar algorithm to PASCAL is Single Linkage, but note that it fails in providing the ground

truth for the outlier dataset – whereas PASCAL can reproduce it correctly. This dataset has two "real"

groups and two outlier groups – very compact clusters where all objects have the same characteristics,

which is a strong evidence towards treating them as noise. We employ the following methodology to

evaluate algorithms in this dataset: if the algorithm finds either the two "real" groups or all the four

groups, we deem it to be correct (note, for instance, the difference in ARI values between K -means
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and DBSCAN for a further insight in Table 3.4). From the Figure 3.13, it is evident that Single Linkage

detects an outlier group and puts all other instances in another group, which is obviously incorrect.

Table 3.4 – Results for all baseline algorithms and PASCAL. Bold numbers indicate the best results for
the given dataset.

Dataset
Complete Linkage Single Linkage K -means DBSCAN PASCAL

ARI DBCV K ARI DBCV K ARI DBCV K ARI DBCV K ARI DBCV K

blobs2 1.00 -0.23 2 1.00 -0.23 2 1.00±0.00 -0.23±0.00 2±0 1.00 -0.09 2 1.00±0.00 -0.09±0.00 2±0

moons0 0.59 -0.81 2 1.00 0.74 2 0.53±0.00 -0.82±0.00 2±0 1.00 0.74 2 1.00±0.00 0.74±0.00 2±0

circles0 0.00 -0.39 2 1.00 0.30 2 0.00±0.00 -0.40±0.00 2±0 1.00 0.30 2 1.00±0.00 0.30±0.00 2±0

outlier 1.00 0.09 2 0.00 -0.33 2 0.99±0.00 -0.37±0.00 2±0 1.00 0.54 2 1.00±0.00 0.54±0.00 2±0

cinc 0.53 -0.25 2 1.00 0.38 2 0.00±0.00 -0.93±0.02 2±0 1.00 0.38 2 1.00±0.00 0.38±0.00 2±0

corners 0.37 -0.73 4 1.00 0.28 4 0.70±0.30 -0.23±0.55 4±0 1.00 0.28 4 1.00±0.00 0.28±0.00 4±0

cfm 0.65 -0.75 2 1.00 0.03 2 0.21±0.01 -0.67±0.04 2±0 1.00 0.03 2 1.00±0.00 0.03±0.00 2±0

halfkernel 0.02 -0.97 2 1.00 0.35 2 0.09±0.13 -0.88±0.00 2±0 0.68 0.13 5 1.00±0.00 0.35±0.00 2±0

twospirals 0.03 -0.58 24 0.31 -0.33 24 0.05±0.00 -0.47±0.04 24±0 1.00 -0.57 2 0.46±0.06 -0.25±0.04 5±1

iris 0.22 -0.65 2 0.57 0.22 2 0.57±0.00 0.22±0.00 2±0 0.57 -0.05 2 0.57±0.00 0.22±0.00 2±0

Victories 2 0 8 8 7 8 2 1 8 9 7 8 9 10 8

It was also expected that PASCAL would outperform all baseline algorithms in terms of

DBCV, since it is the very own criterion optimised during its evolution. Indeed, the values of DBCV

for the partitions provided by PASCAL were the best for all 10 datasets. Both DBSCAN and Single

Linkage had the best DBCV values in 7 datasets, substantially better thanK -means (one dataset) and

Complete Linkage (0 datasets). It seems safe to affirm that the choice of a density-based validity crite-

rion such as DBCV proved to be a good option for looking for partitions in arbitrarily-shaped datasets,

specially considering the correlation between ARI and DBCV values.

Another point worth mentioning in the experimental analysis is regarding the halfkernel

dataset, which is formed by two semi-circle structures. Even though it can be hard to visualise on

image, there are changes in density across the structure of each semi-circle. That is probably the rea-

son for DBSCAN failing to detect these two semi-circles, considering that it detects the lower-density

regions as inter-cluster areas, and thus ends up generating more clusters than necessary. PASCAL, on

the other hand, is perfectly capable of detecting the two clusters thus yielding the best ARI value.

Notwithstanding, PASCAL did fail to properly detect the two spirals in the twospirals dataset,

whereas DBSCAN was the only algorithm to correctly detect the groups. More interestingly, the

twospirals dataset was the only one in which PASCAL had a variety of behaviour in its 10 runs, finding

partitions ranging from 4 to 6 clusters, instead of the real value of 2. We believe that happened be-

cause of a particularity with the DBCV criterion, as follows. The centre of the dataset is a low-density

area with objects from the two spirals. By following the course of the spirals, the objects condense

into a high-density distribution, misleading DBCV to understand that clustering the whole centre is

a good idea. Indeed, PASCAL achieves the largest DBCV value for this dataset, clearly indicating that

DBCV is not particularly suited for this problem. We are already studying new strategies for modifying

DBCV so it can cope with this scenario while keeping the good results achieved so far.

Finally, it is worth mentioning that PASCAL is quite stable across multiple runs. Only for

the twospirals dataset, which seems to deceive the behaviour of DBCV, PASCAL ended up generating

different results. Perhaps this is a particular case in which tuning the search parameters of the EDA
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Ground Truth PASCAL DBSCAN K -means Single Linkage
Complete
Linkage
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Figure 3.13 – Ground truth and partitions found by each algorithm. Each cluster is identified by a given
color. Best viewed in colors.
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would yield more interesting results. For instance, we assume that perhaps with a larger number of

individuals (and perhaps a larger budget) PASCAL would be capable of identifying more interesting

conformations that could lead to larger DBCV values. Nevertheless, since the whole point of PASCAL

is to be parameterless, suggesting to tune the search parameters may not be the right solution for the

problem, so we prefer to investigate modifications of DBCV or perhaps the inclusion of multiple validity

criterion within the fitness function so the final user does not need to worry with setting parameters

for PASCAL at all.

3.4.7 Final Remarks

This section described PASCAL, a novel and effective EDA for performing data clustering that

is capable of addressing arbitrarily-shaped clusters without the need of setting specific and decisive

parameters such as the number of clusters, minimum density, radius, etc. PASCAL makes use of a

MST to identify possible constraints of must-link/cannot link between pairs of objects, and it opti-

mises a density-based validity criterion during its search for the best partition. As previously said in

Section 3.4, it was submitted and accepted for presentation at the 2016 IEEE Congress on Evolutionary

Computation, held at Vancouver, Canada from 24 to 29 july [CB16].

PASCAL is compared to well-known clustering algorithms that employ different strategies

to perform clustering, such as K -means [Llo06], Single Linkage [JD88], Complete Linkage [JD88],

and DBSCAN [EKS+96]. By performing an empirical analysis with 10 datasets whose ground truth

partitions were previously known, we show that PASCAL is capable of not only correctly identifying

the number of clusters but also of presenting the largest possible conformation between the predicted

partitions and the real ones in 8 out of the 10 datasets. Indeed, PASCAL seems to perform as strongly

as DBSCAN, though with the further advantage of not requiring any critical clustering parameters,

whereas DBSCAN requires two of them. As future work, we aim to investigate which modifications

are required in PASCAL’s density-based fitness function so it can successfully deal with scenarios that

PASCAL failed to identify the ground truth. Moreover, we intend to verify whether a multi-objective

fitness function would be well-suited for addressing this issue.
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4. CLASSIFICATION

Classification is the data mining task of assigning a category to unknown data. One way

of performing it is by using supervised machine learning algorithms. Those algorithms will build a

predictive model based on known data in order to predict the class of unknown data. Thus, there

must exist available labeled training data.

The difference between classification and regression, a similar task, lies in the domain of the

class attribute. When one seeks to assign a class to an instance, the task is classification; when the

objective is to estimate a real value (for example, based on land size and number of floors, how much

costs a house) the task is regression.

There are several algorithms within machine learning to perform classification. Decision

trees are among the most popular due to its easiness of comprehension, robustness to noise, speed

regarding both training and prediction and ability to deal with redundant attributes [BBDCF12]. Al-

though some algorithms achieve state-of-the-art results (Support Vector Machines [VC95, Vap99]

and Deep neural networks [GBC16], just to name a few), most of them perform a black-box predictive

process: it is unknown how the data is being treated. Decision trees, on the other hand, provide a

transparent, white-box predictive process. Consider for example the case of a medical doctor (MD)

who needs to analyze symptoms from a patient in order to make a diagnosis. It is unadvised for the

MD to simply rely on the prediction of an algorithm, as it may be incorrect; it is rather more useful to

analyze the predictive process, correct it if wrong or, if right, incorporate this knowledge into his or

her experience.

There are exponential many decision trees that can be built from the same data, with dif-

ferent levels of predictive quality and compactness. Generating the optimal decision tree regarding a

given quality criterion is a combinatorial optimization problem. For instance, the problem of inducing

an optimal decision-tree from decision tables is NP-hard, whereas evolving a minimum binary tree is

NP-complete. In practice, current decision-tree induction algorithms are heuristic-driven, employing a

greedy local-search for generating reasonably-accurate albeit suboptimal decision trees [BdCF15].

There are at least two major problems related to the greedy local-search employed by tra-

ditional decision-tree induction algorithms [BBdC+09]: (i) the greedy strategy often produces locally

(rather than globally) optimal solutions, (ii) recursive partitioning iteratively degrades the quality of

the dataset for the purpose of statistical inference, contributing to the problem of data overfitting. To

address these problems, distinct strategies have been proposed in the last decade or so, in particular

focusing on meta-heuristics based on global search [BBdC+09, BBDCF12].

The rest of this chapter is organized as follows. Section 4.1 reviews the concepts of decision-

trees. Section 4.2 reviews how classification algorithms are evaluated, whereas Section 4.3 describes

the data preparation for this task. Ardennes, the EDA for decision-tree induction, is presented in Sec-

tion 4.4.
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4.1 Decision-trees

Decision trees are predictive models capable of performing both classification and regres-

sion tasks. A decision tree may be viewed as a directed acyclic graph (DAG) [BdCF15] with inner and

leaf nodes and edges. Inner nodes split data according to a test over a single predictive attribute into

two or more subsets. The edges in this DAG are the possible test outcomes, i.e the value which the in-

stance must have to follow one of the outgoing edges. Finally, a leaf node encodes one of the possible

values for the class attribute. A decision tree which classifies instances into one of the two categories

of the dataset of Table 1.1 is presented in Figure 4.1.

Outcome

Humidity WindYes

No Yes Yes No

sunny
cloudy

rainy

high regular no yes

Figure 4.1 – A top-down induced decision-tree which classifies unknown records of the dataset pre-
sented in Table 1.1 into one of the two possibles classes: whether to play or not tennis. Generated
using the J48 algorithm under the Weka Toolkit [WF05].

Besides the aforementioned benefit of a transparent classification process, decision trees

are also fast: one object does not have to travel more than H levels (with H as the maximum height

of a given tree) in order to receive a prediction. Decision trees are also robust to noise when anti-

overfitting measures are employed [BA97], and do not present disadvantages when two attributes

are strongly correlated [TSK05, chap. 4, p. 169].

4.1.1 Top-down induction

Decision trees may be generated by either top-down or bottom-up approaches. Top-down

induction is based on, given a set of heterogeneous data arriving at the root of a decision-tree, evolve

the tree’s branches (i.e nodes) until a stopping criterion is met. Bottom-up goes the other way around:

from a set of homogeneous data at the bottom of the tree, build branches in order to reach a single,

heterogeneous root node.

Top-down induction is by far the most popular decision-tree induction method [BdCF15],

and is better translated by the Hunt’s Algorithm [HMS66], which acts as a "core" strategy to several

deterministic top-down induction strategies. In order to understand its procedure, let us consider

a dataset of only numerical predictive attributes and a categorical class attribute. Hunt’s algorithm

proceeds as following:
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1. Given the set of data which reaches the current node (starting by the root), see if all instances

belong to the same class. If they do, assign this class to the current node and halt the process; if

not, see which attribute, when selecting a threshold value, maximizes a given splitting criterion;

2. select such attribute for the current node;

3. generate two children nodes, where the edges contain the condition that an instance must have

to follow such path (commonly < and ≥ when dealing with numerical attributes, followed by

the threshold value: < 5 and≥ 5, for example);

4. repeat 1 through 3 for each one of the children and so on, until a stopping criterion is met.

The following sections will describe in further details the splitting criteria used to split sets

of data into more pure subsets, as well as evaluation methodology to measure how good a decision

tree performs when dealing with unknown data.

4.1.2 Splitting Criteria

In order to split sets of data into more pure subsets, a decision-tree induction algorithm

may make use of one out of several information theory methods [TSK05, chap. 4, p. 158]. Those

methods vary in range of values, methodology and advantages, but all of them describe data in terms

of homogeneous (i.e, pure) and heterogeneous (i.e, impure) distributions.

Entropy

Entropy [Sha01] is not a splitting criterion per se, but a function which measures impurity

in sets used in other splitting criteria. It is defined as

H(Xπ) = −
∑
c∈C

p(c|Xπ) log2 p(c|Xπ) (4.1)

where C is the set of class values and Xπ the set of instances at the current node. A set of homo-

geneous instances (that is, evenly distributed across all classes) achieves minimum entropy, whereas

pure subsets yield maximum entropy. Since Equation 4.1 is not normalized by the number of instances,

the upper bound varies according to the number of classes, but the lower bond is at 0.

Information Gain

Information gain [Bar13] aims to measure the decrease in impurity (or, in other words, the

gain in information) before and after splitting the data at a given threshold. It is defined as
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IG(Xπ) = H(Xπ)−
∑

Xε∈Xπ

|Xε ∈ Xπ|
|Xπ|

H(Xε) (4.2)

where Xε is a subset of Xπ.

Information Gain Ratio

In order to mitigate the issue presented by Information Gain, Information Gain Ratio [Qui93]

was proposed. It compensates the decrease in entropy in multiple partitions by dividing the informa-

tion gain by the entropy of subset Xπ [Bar13]:

IGR(Xπ) =
IG(Xπ)

SI(Xπ)
(4.3)

where SI(Xπ) is the entropy of subsets generated by splitting Xπ:

SI(Xπ) = −
∑

Xε∈Xπ

|Xε|
|Xπ|

log2

|Xε|
|Xπ|

(4.4)

where Xε is a subset of Xπ.

4.2 Evaluation Criteria

A evaluation criterion aims to capture an aspect of the classifier: be it the capability to

correctly predict the class of instances (accuracy), the capability to differentiate between different

classes (sensitivity and specificity), etc. Most of these criteria are derived from a confusion matrix (e.g

Table 4.1), which depicts the number of correctly classified instances for each class. The interested

reader can refer to a list of such criteria in [WF05, chap. 5.7, p. 161].

Predicted label

virginica setosa versicolor
∑

True label

virginica 33 10 7 50

setosa 21 17 12 50

versicolor 5 24 21 50∑
59 51 40 150

Table 4.1 – Confusion matrix for a classifier trained on the Iris dataset [TSK05, chap. 3, p. 98]. Numbers
in the main diagonal are correctly classified instances. For each row, the last column

∑
shows the real

distribution of data among the classes. For each column, the last row
∑

shows the predicted classes
by the classifier. This classifier has 47.33% of accuracy (33+17+21

150
). Best viewed in colors.
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4.3 Evaluation Methodology

Independently from the category of model used for performing predictions, its quality is as-

sured through a common methodology: based on known data, it must perform well also on unknown

data. In a real-world scenario, one would not hide a portion of the data from the model; take for ex-

ample the prediction of a disease based on its symptoms. It is not interesting to train a model over

only 80% of the data and then use it in a hospital. However, when validating the model’s quality, this

strategy is necessary, since known data hidden from the model for estimating the generalization error.

Two of such strategies are holdout and cross-validation.

4.3.1 Holdout

Holdout [TSK05, WF05, chap. 4, p. 186; chap. 5 p. 144] is a technique which splits the

whole dataset into two disjoint sets: training and test. The percentage of data which goes to each

one of the sets is up to the user to define, but some common values are 1
2
-1
2

or 2
3

for training and 1
3

for

test. Holdout is more commonly used when making several tests is unpractical due to the extent of

the dataset. However, it presents several flaws. First, the quality of the model is measured in terms of

data available at the training set, making crucial that training and test sets are configured in a way that

the distribution of classes between they are similar. Secondly, the amount of data going to training

and test sets has a large impact in the predictions: the more data in the training set, the less reliable

the test predictions are; the more data in the test, the less reliable is the model, since it is trained on

a subsample.

4.3.2 Cross-validation

A more robust strategy is cross-validation [TSK05, WF05, chap. 4, p. 187; chap. 5 p. 149],

which splits the dataset into several equal-size subsets: for example, when performing a 10-fold cross-

validation procedure, the dataset will be split into 10 folds, each one containing 1
10

of the data. Each

fold is used once for test and the rest of the time for training. As well as it is recommended for holdout,

when generating the folds it is important that the distribution of classes follows a similar pattern as the

one presented for the whole dataset, preventing that predictions made for a fold to be too different

from predictions for the other folds (for example, ≈ 50% of accuracy in one fold and ≈ 95% for the

other 2 folds in a three-fold cross-validation).
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4.4 Ardennes

Ardennes is our proposed EDA for induction of decision-trees for the task of classification.

It deals with numerical predictive attributes with no missing values. There are several ways of dealing

with missing data [TSK05], and we leave to the user to find the one which best fits the problem.

Ardennes achieves competitive results for 10 datasets, and to the best of our knowledge it is the first

EDA for this task. In this section we describe how it was developed, which algorithms are compared to

it and the results found for the 10 evaluated datasets. It was submitted and accepted for publication

in the 2017 IEEE Congress on Evolutionary Computation, to be held in San Sebastián, Spain, between

5 and 8 of june, 2017 [CBB17].

4.4.1 Individual Encoding

In Ardennes individuals are binary trees of at most H height, which may or may not be

complete. They are sampled from a graphical model (GM) which resembles a complete binary tree

with H levels, modelled as following. Each one of the GM variables is a probabilistic mass function

(PMF) over the attributes (both predictive A and class C) of the dataset. The number of variables

at a given level h is 2h−1, and the total number of variables in the GM are 2H − 1. Since we assume

there’s no interdependence between variables (i.e, the probability of an attribute being chosen for a

given node does not affect neighboring probabilities), the GM does not present edges between them,

although we acknowledge that such encoding may be naïve.

We start the probabilities for the predictive attributes uniformly across all variables. The

probability of selecting the class attribute, however, is zero from the root to levelH−1; atH it assumes

100%. Although we adopt this approach, the probability of selecting the class may be increased in

further generations by the updating procedure. Figure 4.2 depicts the initial GM.

The sampling of nodes is done in a on-demand fashion: the root is sampled first, then its left

child, the left child of this child and so on. If the class attribute is sampled, the current node is turned

into a leaf and its label is the most frequent class found in Xπ, the subset of instances reaching that

node. If instead a predictive attribute is selected, we perform a binary split on the instances reaching

that node. We use information gain ratio as splitting criterion, which is the same criterion used by

J48 [Qui93] and is explained in further detail in Section 4.1.2.

The sampling goes on until one of the following leaf-turning conditions are met: (1) The class

attribute is sampled; (2) None of the possible threshold values for the sampled attribute provides a

gain in information, which occurs when all instances have the same value (a scenario possible due to

the stochastic nature of the induction process); or (3) the current node is already pure. Since the

probability of sampling the class at level H is always 100%, we can assume that either one of those

conditions will be met.
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...

...

Figure 4.2 – An initial GM with H = 3 and 7 variables. Note that the probability of sampling the class
attribute C is 100% at the last level and 0% in the other levels.

4.4.2 GM updating process

We employ a lexicographic approach [BBDCF12, BBdC+09] for updating GM’s variables. We

sort individuals based on three criteria: fitness (descending), tree height (ascending) and number of

nodes (ascending). If individuals present the same fitness, then the tree height is used to break the

tie; if a tie persists, then the individual with least nodes in its tree is prioritized. After sorting we select

the first |Φ| fittest individuals (with |Φ| provided by the user) for updating GM’s variables and resample

the |S| − |Φ| remaining individuals using the updated GM.

For each variable in the GM, we count how many times its node appeared in the fittest pop-

ulation Φ and group the sampled attributes. We complement the remaining attributes (since not

all fittest individuals may present this node in their structure) by sampling attributes from a uniform

distribution U over A. Then, we update the variable probability as following:

P (Vi) =

∑
φ∈Φ(∃φVi → 1) ∨ (@φVi → U(A))

|Φ|
(4.5)

where Vi is the i-th variable in the GM and φVi the corresponding node in individual φ. If a variable is

not sampled in all of the fittest population, then by Equation 4.5 its probabilities will be updated to a

uniform distribution.

By using a lexicographic approach plus the uniform component we can simulate a

exploration-exploitation behavior. In the first generations fitness equality is expected to be small, with

the EDA performing an exploration. When individuals start to present similar fitness, the exploratory

procedure is replaced by a exploitation one, since smaller individuals are benefited. The EDA ends

by refining equal-fitness and equal-sized trees to its more compact form, which may be viewed as a
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pruning step. There is a chance that this process of exploration-exploitation-pruning may repeat itself

several times throughout evolution, as explained in Section 4.4.7.

The evolutionary process is stopped when either the whole population is practically equal

(i.e same fitness, tree height and number of nodes) or when a maximum number of G generations

is reached, with G provided by the user. From the fittest population of the last generation we then

select the individual which presents the best validation accuracy, explained in Section 4.4.3.

4.4.3 Fitness Function

Ardennes receives as input two sets: a training set used for threshold setting, and a valida-

tion set used for verifying how well the tree is performing on unseen data. The fitness of an individual

until the last generation is given by

fitness(si) = accsi(training) (4.6)

with si as the i-th individual for a given generation g and accsi(training) the accuracy for the training

set, with acc = (TP + TN)/(TP + TN + FP + FN)1. Fitness ranges from 0 to 1, with higher

values as better ones.

After the evolutionary process is completed, the quality of an individual is given by

quality(si) =
accsi(training) + accsi(validation)

2
(4.7)

with accsi(validation) as the accuracy in the validation set. The individual which maximizes the quality

index is then deemed to be the solution for the problem.

4.4.4 Complexity Analysis

We analyze Ardennes’ complexity as follows. Since all variables are updated independently

of the fittest subpopulation configuration, the cost of updating the GM is at most G · (2H − 1) · |Φ|.
Sampling the rest of population at each generation is (|S| − |Φ|) · 2H − 1, in the worst case of always

generating complete trees. Let τ be the cost of calculating thresholds for each node and γ the cost

of calculating the fitness function. Hence, the cost of Ardennes is given by

G ·
[
(τ · (2H − 1) · γ · (|S| − |Φ|)) + |Φ| · (2H − 1)

]
(4.8)

1TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.
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4.4.5 Experimental Setup

In this section we describe the datasets, algorithms and criteria used to evaluate Ardennes.

Datasets

We use 10 datasets available at the UCI Machine Learning Repository [Lic13]. All datasets

contain only numerical predictive attributes and a categorical class. Those datasets describe a wide va-

riety of scenarios: from characteristics of a collection of flowers to heart diagnosis. The characteristics

of the datasets are presented in Table 4.2.

Table 4.2 – Datasets from the UCI Machine Learning Repository [Lic13].

name # instances # attributes # classes

column-2c 310 6 2

column-3c 310 6 3

ionosphere 351 33 2

iris 150 4 3

liver-disorders 345 6 2

sonar 208 60 2

tep-fea 3572 7 3

transfusion 748 4 2

vehicle 846 18 2

wine 178 13 3

4.4.6 Parameters and Baseline Algorithms

For generating Ardennes’ results we use |S| = 200, |Φ| = 100 (i.e 50%), G = 100 and

H = 9. We do not make any attempt at optimizing those parameters, leaving this task for future

work. We perform a stratified 10-fold cross-validation on each of the datasets, using one fold for test,

one for validation and 8 for setting thresholds per round of the cross-validation. Since Ardennes is

a stochastic algorithm, we run it 10 times for each fold. We compare Ardennes with two distinct

approaches, J48 [WF05] and LEGAL-Tree [BBdC+09].

J48 is the Java version of the C4.5 algorithm [Qui93]. It performs deterministic top-down

inference of decision-trees, and is available at the Weka Toolkit2[WF05]. We run it using its default

parameters. Since J48 does not make use of a validation set, it uses both training and validation sets

for threshold setting, and because it is a deterministic algorithm, we run it only once for each fold.

LEGAL-Tree [BBdC+09] is a genetic algorithm for performing lexicographic induction of de-

cision trees; that is, it can use more than one criterion for evaluating how good solutions are, prioritiz-

ing one over another when a tie is found. Since LEGAL-Tree is a GA, a strategy for pre-setting splitting

2Available at http://www.cs.waikato.ac.nz/ml/weka/downloading.html. Accessed in 2016-12-06.
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thresholds must be defined prior to the evolutionary process. In order to achieve this, for each at-

tribute, the authors divide the training set into 10 smaller subsets and run a decision stump algorithm

for each one of the subsets. In this way, the initial population is made of several binary trees of three

nodes (one internal and two leaves), which will be combined and perturbed by respectively crossover

and mutation operators. The authors use accuracy as fitness function, with tree height (smaller trees

are preferred) for breaking ties. LEGAL-Tree also makes use of two distinct sets during its training

process (a training set and a validation set), which are the same as the ones used by Ardennes. Since

LEGAL-Tree is a stochastic algorithm, we use the same framework from Ardennes to test it – 10 runs for

each fold – with the same parameters as the ones proposed by the authors in their work [BBdC+09].

4.4.7 Experimental Results

Evolution Analysis

In order to evaluate the assumptions made in Section 4.4.2 about the exploration-

exploitation-pruning capability of Ardennes, we conduct an analysis over a run of Ardennes in the

Iris dataset. The progression of probabilities within the GM is showed in Figure 4.3. Colder colors (i.e

blue-ish) are closer to a uniform distribution, whereas hotter (i.e red-ish) describe a perturbation. From

the first generation (a) all variables are initialized uniformly. By the 9-th generation (b) most of the in-

dividuals within the fittest population present the same structure, as denoted by a preponderance of

hotter colors for some nodes. This is corroborated by Figure 4.5, where at the 9-th generation most of

the individuals present a tree of height 6. However, since the fitness stalls at this point, in the 13-th

generation (c) smaller same-fitness trees are prioritized. However, in the last generation (d), possibly

another set of predictive attributes are arranged in the same structure of the 9-th generation (b), thus

halting the evolutionary process. As expected, the fittest individual from the last generation – showed

in Figure 4.4 – presents the same structure as the one present in (d). It achieves 93.33% accuracy

in the test fold and 100% accuracy in both training and validation sets, confirming that Ardennes is

properly optimizing the inputted data.

By the analysis of Figure 4.5 (b) it is evident that Ardennes is overfitting the training set.

For this particular case, however, there is a significant correlation between this set and the test set,

so this behavior is actually beneficial to the evolutionary process. Observe in Figure 4.5 (a) that, from

the second to the last generation, the mean test accuracy (showed here only for analysis purposes,

since Ardennes does not use it during evolution) is 100%. this was confirmed when we verified individ-

uals’ test accuracy in the last generation: 196 individuals had 100% in the test set, whereas the rest

presented 93.33%. However, this seems misleading, since the reported test accuracy was 93.33%. In

order to solve this we selected the individuals which presented maximum fitness in the last genera-

tion and show them in Table 4.3. It is evident that, at this point in the evolutionary process, Ardennes

doesn’t have any other criterion to discern individuals from one another, so the choice for a best indi-

vidual to report the results becomes random.
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(a) first generation (b) 9-th generation

(c) 13-th generation (d) 17-th generation

Figure 4.3 – Evolution of GM’s probabilities throughout first (a), 9-th (b), 13-th (c) and last (d) genera-
tion for a given run of Ardennes in dataset Iris. Hot colors mean that one of the attributes is becoming
more frequent than others. Best viewed in colors.
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Figure 4.4 – Best individual found in the last generation of Ardennes for a given run in Iris dataset.
Note that its structure is in conformity with the one presented in the last generation (d) of Figure 4.3.

Table 4.3 – Best performing individuals from the last iteration of Ardennes for the Iris dataset.

Individual Fitness Tree Height Number of Nodes Validation Accuracy Test Accuracy

6 1.0 7 19 1.000 0.933

17 1.0 7 19 1.000 1.000

44 1.0 7 19 1.000 1.000

Results

Our first analysis is regarding LEGAL-Tree. Table 4.4 shows that Ardennes is capable of out-

performing it in 8 datasets and tying in iris and tep_fea. Such results contribute to our vision that
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Figure 4.5 – Test accuracy, fitness and tree height across 17 iterations of Ardennes when optimizing
the Iris dataset. Best viewed in colors.
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EDAs are better suited for decision-tree induction than genetic algorithms, since both Ardennes and

LEGAL-Tree induce it using the same (lexicographic) approach. In order to consolidate this view it is

necessary to perform tests with more evolutionary approaches.

Table 4.4 – J48, LEGAL-Tree and Ardennes results for all evaluated algorithms. Best accuracy results
are shown underlined and in bold, whereas ties are shown only in bold.

J48 Legal-tree Ardennes

Dataset
Test
Accuracy Tree Height Nodes Test accuracy Tree Height Nodes Test Accuracy Tree Height Nodes

column_2c 0.82 7.10± 1.73 17.60± 6.76 0.79± 0.05 10.66± 0.47 83.98± 4.81 0.83± 0.01 8.59± 0.17 28.10± 1.77

column_3c 0.80 7.70± 0.95 22.60± 5.64 0.79± 0.03 11.25± 0.54 86.18± 3.8 0.82± 0.01 8.66± 0.15 40.54± 3.28

ionosphere 0.87 9.70± 1.16 27.00± 3.69 0.88± 0.04 11.54± 0.79 55.36± 5.36 0.92± 0.01 7.93± 0.34 18.42± 1.06

iris 0.95 4.70± 0.48 8.40± 0.92 0.95± 0.03 4.71± 0.44 13.7± 1.84 0.95± 0.01 5.14± 0.32 10.92± 1.34

liver-disorders 0.63 9.60± 0.97 44.40± 8.58 0.6± 0.03 12.91± 0.47 190.74± 5.45 0.62± 0.02 8.98± 0.04 39.00± 1.61

sonar 0.74 8.00± 0.67 28.00± 3.00 0.67± 0.05 9.76± 0.28 82.78± 3.36 0.73± 0.02 7.79± 0.17 34.60± 1.64

tep_fea 0.65 4.40± 0.97 7.80± 1.83 0.65± 0.03 2.95± 0.48 7.04± 1.11 0.65± 0.00 2.00± 0.00 3.00± 0.00

transfusion 0.78 6.70± 2.16 12.80± 4.51 0.75± 0.03 12.32± 1.13 138.28± 26.72 0.78± 0.01 8.21± 0.32 20.64± 3.08

vehicle 0.74 14.60± 1.78 137.80± 26.35 0.66± 0.02 17.14± 0.67 422.8± 11.29 0.73± 0.01 8.85± 0.07 67.92± 2.64

wine 0.91 4.10± 0.32 9.80± 0.98 0.93± 0.04 5.48± 0.54 19.98± 2.61 0.95± 0.01 4.27± 0.24 8.96± 0.64

Average rank 1.85 1.6 1.6 2.6 2.8 2.9 1.55 1.6 1.5

We continue by comparing Ardennes to J48. From the results we can assume that it is

the strongest baseline, since Ardennes is capable of outperforming it in 4 datasets, tying in another

3 and losing in 3 within a margin of 1%. However, in two of the losing datasets (vehicle and liver-

disorders) Ardennes is producing smaller trees than J48, which may be viewed as an exchange between

accuracy and comprehensibility. Also note that for some of the winning datasets (ionosphere and

wine) Ardennes presents an advantage up to 5%. This can be viewed as an evidence that Ardennes

performs an effective global-search procedure in a solution-space larger than the one presented by

J48.

4.4.8 Related Work

Deterministic top-down inference is largely one of the most popular approaches for evolving

decision trees [BdCF15]. Under Hunt’s algorithm [TSK05] one seeks to maximize purity of generate

nodes by splitting instances into purer subsets. Although maximizing purity is a desirable feature of a

decision tree, it presents two flaws. First, partitioning towards purer subsets is a greedy heuristic, and

as such performs a local optimization rather than a global one [BBdC+09]. Secondly, it may lead to

overfitting, since iteratively partitioning the training set reduces the significance of subsets in relation

to the complete distribution. For instance, leaves with only one object achieve maximum purity for

any measure. C4.5, a popular decision-tree induction algorithm proposed by Quinlan [Qui93], uses

tree pruning to reduce complexity and avoid overfitting.

An active field for evolving decision-trees is evolutionary computation [BBDCF12], most no-

tably by the use of genetic algorithms. The behavior of a genetic algorithms (GA) may be summarized

as follows: by randomly sampling S individuals in the first iteration, the GA will rely on operators such

as mutation and crossover in order to generate novel individuals in following iterations. Although
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EDAs and GAs share a fair amount of similarities in their evolutionary processes, their differences

are evident in the way that novel individuals are generated. Whereas EDAs use explicit evolution-

ary operators [BD97, HP11], which are easy to keep track and less prone to yield irrelevant individu-

als [DBIJV96, PM99], GAs use crossover and mutation. Hence, GAs need more iterations in order to

overcome the random nature of its operators [BD97].

To the best of our knowledge, the use of EDAs for decision-tree induction is a completely

novel research field. However, we take the inspiration for using a GM which resembles a tree from the

work of Salustowicz and Schmidhuber [SS97], which presents a similar implementation but different

application. In their work, the authors sample programs from a univariate distribution. Each node at

the GM encodes functions such as sin, cos, ÷, × and operands. The probabilities at each node are

initialized uniformly, accordingly to the need of a given instruction at a given position in the individual

program. Fitness is measured in runtime (with lower values being better), since a valid program must

necessarily solve a problem (i.e, approximate a function). The authors do not initialize a completen-ary

tree ofH levels; it has its size dynamically modified throughout the evolutionary process. The authors

note however that pruning the GM is required in order to reduce memory consumption.

4.4.9 Final remarks

This section presented Ardennes, an Estimation of Distribution Algorithm for performing

top-down induction of decision trees. Ardennes was submitted and accepted for publication in the

2017 IEEE Congress on Evolutionary Computation, to be held in San Sebastián, Spain, between 5 and

8 of june, 2017 [CBB17]. Ardennes is capable of overcoming LEGAL-Tree, a genetic algorithm, which

employs the same lexicographic strategy towards induction. The results shown here temporally assure

our view that EDAs are better suited for this task. In order to further investigate this we seek to test

Ardennes against more evolutionary approaches in a wider set of datasets. With such testing it will

be possible to determine whether EDAs are overall better than other approaches or if it performs well

only in a niche of applications.

Ardennes presents competitive results regarding J48, a traditional, deterministic top-down

induction algorithm. However, the work presented here is the first step towards developing EDAs

for this task. By tackling the the issue presented in Section 4.4.7 we believe that Ardennes can have

its performance further improved. Two possibilities for solving it would be to use more criteria as tie

breaking – F1 measure, precision, etc – or employing a Pareto approach [HP11]. As for implementation

improvements, Ardennes is well suited for parallelization, since several steps are independent from one

another. In fact we employ parallelism for verifying the quality of thresholds when splitting predictive

attributes. However, several other aspects may be paralellized, such as (1) sampling of individuals, (2)

sampling of nodes within an individual, (3) initialization and updating of weights in the GM (since it

is a univariate) and possibly more.
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5. CONCLUSIONS

Typically, machine learning algorithms rely on a heuristic to perform their tasks, be it cluster-

ing objects into groups or evolving a model to perform classification. Although heuristics significantly

speed-up the optimization process and may yield good results, employing a local-search strategy does

not guarantee a good performance in all scenarios, as outlined by David Wolpert in his "No Free Lunch"

Theorem [Mur12]. It also comes at the cost of minimally knowing about the data being processed:

K -means (Section 3.2.1) requires a pre-defined number of groups to perform clustering; DBSCAN

(Section 3.2.2) expects the user to input the minimum density in which a group may occur; Hunt’s

algorithm (Section 4.1.1) successively splits the data space in order to classify instances, thus reduc-

ing the robustness of generated models and requiring anti-overfitting measures. The use of EDAs,

on the other hand, provides a robust strategy to perform both clustering and decision-tree induction

with little to no prior knowledge, since they employ an efficient global-search strategy: Clus-EDA (Sec-

tion 3.3) requires an initial value for the number of clusters, but its not a rigid limit on the number of

groups and can vary throughout the clustering process; PASCAL (Section 3.4) does not require any

prior knowledge, making use only of the hyper-parameters related to the evolutionary process; and

Ardennes (Section 4.4) only requires the maximum number of levels in which a decision-tree can span,

which may be viewed as a compactness parameter.

In order to achieve good results, the design of an EDA is an important task to be developed.

Take PASCAL for example: its success in performing clustering relies on the Density-Based Clustering

Validation (Section 3.1.4), an internal criterion for validating cluster quality which presents a good

correspondence [MJC+14] to the Adjusted Rand Index, which is an external validity criterion. Another

key aspect for achieving good results is designing the probabilistic graphical model in a way that it is

capable of capturing the underlying dependence between variables. Since in our problems the struc-

ture of the GM dictates the encoding of individuals, we consider that the smart design of GMs is

closely related to the smart design of individuals as well. None of our algorithms (Clus-EDA, PASCAL

nor Ardennes) considers interdependence between variables; however, by the combination of design,

fitness function, and updating procedures, they are capable of finding satisfactory results.

Finally, updating probabilities in a way that it is more likely to generate good solutions in the

following generations allows EDAs to efficiently navigate through the search space. All EDAs presented

in this work use a simple updating process, where values from the fittest individuals from a given gen-

eration are propagated to the following generations. Once the probabilities are updated, the amount

of individuals that will replace the previous generation also plays an important role: Clus-EDA replaces

the whole population in the following generations; PASCAL replaces only half through its median pro-

cedure (individuals with fitness above or equal to the median are preserved, whereas individuals with

fitness below are replaced). Finally, Ardennes employs a similar strategy to PASCAL, preserving individ-

uals with fitness above a user-defined percentile and replacing individuals with fitness below or equal

to it.
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5.1 Contributions

This work presents Estimation of Distribution Algorithms for the tasks of decision-tree in-

duction and clustering. The advantages of using EDAs over other evolutionary algorithms are two-fold.

First, evolutionary analysis is made clearer due to the use of the probabilistic graphical model as a sam-

pling mechanism, allowing one to look at the variables’ probabilities and analyze how variables interact

with each other, how much they are affected by the updating process, for each and every generation

of the EDA. This wide analysis cannot be done with genetic algorithms, for example, due to the use

of the crossover operator, whose stochasticy makes them hard to analyze. Second, due to the use of

probabilistic graphical models, good solutions are much easier to be generated and preserved in the

following generations. This claim is backed by the superior results presented by EDAs in clustering

and competitive ones in decision-tree induction for classification. It is important to note that EDAs

for both clustering and decision-tree induction is a relatively new field, with few studies exploring its

capabilities; we believe that by employing some of the mechanisms described in the next section this

area may advance further.

5.2 Limitations and Future Work

Although EDAs achieve a good performance for both clustering and decision-tree induction,

they share some disadvantages with other evolutionary algorithms for the same tasks, in relation

to traditional methods. First PASCAL is the only which does not use any parameter directly related

to the problem being optimized. Additionally, all EDAs require hyper-parameters to be set, such as

population size and number of iterations, and finding a good set of parameters may add yet another

layer of difficulty.

This work does not present a runtime analysis, since we believe this is not a fair method

of comparing methods given the substantial differences between traditional local-search algorithms,

GAs, and EDAs methods. However, we acknowledge that evolutionary procedures are much slower

than traditional ones, since they do not employ a greedy search procedure. In a wider sense, com-

plexity of EDAs are mainly inherited from the fitness function and sampling and updating procedures

of graphical models. In our work, since all EDAs use univariate probabilistic graphical models, their

runtime performance is more affected by their fitness functions.

As a side note to one seeking to implement EDAs for clustering or decision-tree induction,

most of the code of both Ardennes and PASCAL were ported to a parallel architecture (CUDA [NVI14])

in order to take advantage from several parallel procedures executed by an EDA: individual sampling,

fitness evaluation, and probabilistic graphical model update (when using univariate models).

We also employ one of the simplest models, the univariate marginal distribution, to develop

our EDAs for both tasks. However, interdependence between variables may be inferred in future EDAs.
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By designing the interaction between variables, it would be possible to capture more complex solution

spaces. We also only employ discrete variables in our GMs.

With regard to specific improvements to each of the EDAs, they can be found in their respec-

tive Sections: 4.4.9 for Ardennes; 3.3.5 for Clus-EDA; and 3.4.7 for PASCAL. In a wider sense, EDAs for

clustering and decision-tree induction may benefit from the use of more sophisticated probabilistic

graphical models, which assume dependence between variables, be it in a static way (variables inter-

actions are hand-made prior to EDA execution) or dynamically inferred, using a schema similar to the

one presented in Section 2.1.1. Furthermore, in this work we only use discrete variables; it is yet to be

researched whether continuous variables may provide an improvement in THE EDAs’ performance for

those tasks.
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