PUCRS

FACULDADE DE INFORMATICA

PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO
MESTRADO EM CIENCIA DA COMPUTACAO

RAFAEL ANTON EICHELBERGER

SFC PATH TRACER: A TROUBLESHOOTING TOOL FOR SERVICE FUNCTION
CHAINING

Porto Alegre
2017

POS-GRADUACAO - STRICTO SENSU

*8.6

it

g h
v * &
Q i

L
Egym®

Pontificia Universidade Catodlica
do Rio Grande do Sul

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS
GRADUATE PROGRAM IN COMPUTER SCIENCE

SFC PATH TRACER: A
TROUBLESHOOTING TOOL
FOR SERVICE FUNCTION
CHAINING

RAFAEL ANTON EICHELBERGER

Dissertation presented as partial requirement
for obtaining the degree of Master in
Computer Science at Pontifical Catholic
University of Rio Grande do Sul.

Advisor: Prof. Tiago Ferreto

Porto Alegre
2017

Ficha Catalografica

E34 s Eichelberger, Rafael Anton

SFC Path Tracer : a troubleshooting tool for service function
chaining / Rafael Anton Eichelberger . —2017.

75 1.

Dissertacao (Mestrado) — Programa de Pos-Graduagao em
Ciéncia da Computagao, PUCRS.

Orientador: Prof. Dr. Tiago Coelho Ferreto.

1. Service Function Chaining. 2. SFC. 3. NFV. 4. SDN. 5. Networking.
I. Ferreto, Tiago Coelho. II. Titulo.

Elaborada pelo Sistema de Geragao Automatica de Ficha Catalografica da PUCRS
com os dados fornecidos pelo(a) autor(a).

Rafael Anton Eichelberger

SFC Path Tracer: A Troubleshooting Tool for Service Function
Chaining

This Dissertation/Thesis has been submitted in
partial fulfillment of the requirements for the degree
of Doctor/Master of Computer Science, of the
Graduate Program in Computer Science, School of
Computer Science of the Pontificia Universidade
Catodlica do Rio Grande do Sul.

Sanctioned on March, 2017.

COMMITTEE MEMBERS:

Prof. Dr. Luciano Paschoal Gaspary (Institution 1)

Prof. Dr. Fernando Luis Dotti (Institution 2)

Prof. Dr. Tiago Coelho Ferreto (PPGCC/PUCRS - Advisor)

SFC PATH TRACER: A TROUBLESHOOTING TOOL FOR SERVICE
FUNCTION CHAINING

RESUMO

Service Function Chaining (SFC) é um importante campo de pesquisa na area de redes de
computadores, com varias propostas de diferentes métodos de encapsulamento e encaminhamento
de pacotes. Os métodos de encaminhamento de pacotes usados para implementar SFC podem
inviabilizar o uso de ferramentas tradicionais de depuracdo de rede, o que dificulta a deteccao de
erros de configuracdo ou possiveis degradacdes de desempenho em ambientes SFC. Este trabalho
apresenta o SFC Path Tracer, uma ferramenta para deteccdo de problemas no dominio SFC em
ambientes NFV /SDN. Essa ferramenta permite a identificacio de problemas no dominio SFC, através
da geracdo de trace de pacotes e medicdo de atrasos intra-hop a partir de um SFC Path especifico.
SFC Path Tracer é agnédstico em relacdo aos mecanismos de encapsulamento e encaminhamento
usados para implementar SFC, sendo eficaz na deteccdo de grande parte dos problemas em um
ambiente SFC.

Palavras Chave: Encadeamento de funcdes de rede, SFC, NFV, SDN, Rede de Computadores.

SFC PATH TRACER: A TROUBLESHOOTING TOOL FOR SERVICE
FUNCTION CHAINING

ABSTRACT

Service Function Chaining (SFC) is an important research field in networking area with
many encapsulation and forwarding mechanisms being proposed. To implement SFC, non-standard
forwarding methods are used which break the mechanism of regular network troubleshooting tools,
challenging the detection of SFC misconfiguration or performance degradation. This work presents
the SFC Path Tracer, a tool for troubleshooting SFC in NFV/SDN environments. This tool enables
the identification of problems in the SFC environment by generating packet trace and computing
intra-hop delays from a specific SFC path. SFC Path Tracer is agnostic regarding the SFC encapsu-

lation and forwarding mechanisms being effective to detect most problems in an SFC environment.

Keywords: Service Function Chaining, SFC, NFV, SDN, Networking.

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
3.1
4.1
4.2
4.3
4.4
4.5

46
47
5.1
5.2
5.3
5.4
55
5.6

LIST OF FIGURES

Software-Defined Networking Architecture [22].. 13
NFV reference architectural framework [19]. 15
SDN and NFV concepts on the same deployment [41]. 16
A network service example with VNFs forming a forwarding graph [19]. 17
Service Function Chain Architecture [26]. 19
Generic SFC deployment example and its elements. 21
Network Service Header [24]. 22
MAC Chain Segments Addressing [14]. 23
IPv6 Extension Header for SFC [30]. 23
OpenDayLight modular architecture [2]. 24
OpenDayLight plugins and service abstraction layer [23]. 25
Architecture of MD-SAL [4]. 27
YANG data tree modeling [23].. 28
ODL plugin structure with YANG model definition in the MD-SAL environment [3].. 28
Example of RESTCONF for an SFC and a single SF in the SFC configuration model. 30
SFC OpenFlow Renderer Architecture [6]., 30
Pipeline tables for SFC OpenFlow renderer [6]. 31
SFC Traceroute protocol [45].. 33
SFC Path Tracer architecture. 39
SFC Path Tracer example use case. 40
Probe packet identification. 42
OpenFlow rules installed by SFC Path Tracer. 44
Implementation of SFC Path Tracer rules. Dotted arrow represents possible paths

while continuous arrow represents the chosen path. 44
Implementation of probe packet listener. 46
Example of SFC Path Tracer output. 46
SDN environment example emulated by Mininet [35]. 50
The components and interfaces of Open vSwitch [47].......... 51
Architecture of SFC configuration framework. 52
Code to create an SFC topology with SFC configuration framework. 53
Topology used to perform initial tests. 54
Topology used in the experiment. 55

5.7 Packet delay with a varying number of chain hops: normal packets (np), probe

packets (pp) and probe packet with controller in the path (ppc).
5.8 Trace Output from SFC Path Tracer.
5.9 SFC Path Tracer graph output.
5.10 Topology used to evaluate chain performance using SFC Path Tracer.
5.11 Latency measurement for each chain'shop..............
5.12 Latency distribution on Snort..

5.13 Rate of probe packets per second (pp/s) reaching the controller over time. With
load represents the Snort analyzing packets, while no load means that traffic just

passes through Snort with no analysis.
5.14 CPU usage comparison of whole traffic and sampled traffic being traced.
5.15 CPU resource consumption regarding switch and SFC Path Tracer.
5.16 The load throughput of the chain while being monitored by SFC Path Tracer.
5.17 Normal and sampled monitored traffic.

5.18 Rate of probe packets per second (pp/s) per chain hop reaching the controller over

TIMeE.
5.19 Rate limit of probe packets per second (pp/s) using tree hops.
5.20 Latency comparison of SFC Path Tracer using SFC VLAN and MAC Chaining en-

capsulation techniques.

5.21 NSH topology.

56
57
57
58

62
63
64

64
65

67

2.1
2.1.1
2.1.2
2.2
221
222
2.3
2.4
241
242
25
25.1
25.2
253
2.6
2.6.1
2.6.2
2.6.3
2.7

3.1
3.2
3.3

3.4
35
35.1
3.6

CONTENTS

INTRODUCTION e 10
BACKGROUND 12
SOFTWARE-DEFINED NETWORKING 12
MOTIVATION . .o 12
ARCHITECTURE 12
NETWORK FUNCTIONS VIRTUALIZATION 13
MOTIVATION . .. 14
ARCHITECTURE 14
SDN AND NFV . 15
SERVICE FUNCTION CHAINING e 16
MOTIVATION . . 17
ARCHITECTURE 19
SFC ENCAPSULATION PROPOSALS 21
NETWORK SERVICE HEADER 21
ETHERNET MAC CHAINING 22
AN IPV6 EXTENSION HEADER FOR SERVICE FUNCTION CHAINING 23
OPENDAYLIGHT . . .o 24
MD-SAL . 26
YANG 27
SFC IMPLEMENTATIONo e 28
SFC TROUBLESHOOTING e 31
RELATED WORK 33
SERVICES FUNCTION CHAINING TRACEROUTE, 33
REVEALING MIDDLEBOX INTERFERENCE WITH TRACEBOX 34
SDN TRACEROUTE: TRACING SDN FORWARDING WITHOUT CHANGING NET-

WORK BEHAVIOR . . . 35
NETSIGHT .. 35
NETWORK VERIFICATION e 36
SFC-CHECKER 36
REVIEW 37

4.1
4.2
4.3
4.4
4.4.1
4.42
443
4.4.4
445
4.5
4.6

51
5.2
53
54
55
5.6
57
5.8
5.9
5.10

5.10.1
5.10.2
5.10.3

SFC PATH TRACER 39

ARCHITECTURE 39
USE CASE . . . 40
IMPLEMENTATION REMARKS 41
SFC PATH TRACER IMPLEMENTATION, 41
PROBE PACKET GENERATION 42
TRACE RULES INSTALLATION ... 43
SFC RULES READER 44
PROBE PACKET LISTENER 45
SFC PATH TRACER OUTPUTS 46
SERVICE FUNCTIONS COMPATIBILITY WITH SFC PATH TRACER 47
SFC PATH TRACER IN THE SFC OAM FRAMEWORK 47
EVALUATION . . . 49
MININET . 49
OPEN VSWITCH 50
SFC CONFIGURATION FRAMEWORK 51
EXPERIMENTS DESCRIPTION 53
EXPERIMENT 1 - PROBE PACKET DELAY 54
EXPERIMENT 2 - TROUBLESHOOTING EVALUATION 56
EXPERIMENT 3 - CHAIN PERFORMANCE 58
EXPERIMENT 4 - SAMPLING OF PROBE PACKETS 61
EXPERIMENT 5 - PROBE PACKET RATE LIMITATION 63
EXPERIMENT 6 - SFC PATH TRACER WITH OTHER SFC ENCAPSULATION

TECHNIQUES . . . 65
MAC CHAINING . .. 65
NETWORK SERVICE HEADER 66
SFC ENCAPSULATION REMARKS 67
CONCLUSION . . . 69

REFERENCES 71

10

1. INTRODUCTION

The development of Software-Defined Networking (SDN) and Network Function Virtu-
alization (NFV) technologies have changed the way administrators and operators manage network
configuration and service deployment. SDN decouples the control and data plane of switches and del-
egates forwarding decisions to a controller entity that has a more accurate view of the network [22].
NFV replaces traditional middleboxes [15], deployed in specific dedicated hardware, with virtualized
network functions that run on general purpose hardware, establishing a network infrastructure that

has the same dynamicity and flexibility of virtual computing environments [18].

Middlebox is defined as any intermediary device performing functions other than the nor-
mal, standard functions of packets routing. Common network topologies contain several middle-
boxes, proportional to the number of switches and routers [53]. These network devices perform
a critical role in the deployment of network services, such as: firewalls, IDS (Intrusion Detection
Systems), DPI (Deep Packet Inspection), Proxies, Gateways, NAT (Network Address Translation),
and WAN optimizers. Managing these devices is complex and require specialized technical support
to reach the best performance among all aggregated functionalities. Networking requires an effi-
cient and flexible way to control and route network packets, with middleboxes being as important

as switches and router devices.

The features delivered by SDN and NFV have leveraged the on-the-fly configuration of
network functions interconnections known as Service Function Chaining (SFC), enabling the addition
and removal of those functions according to network requirements. SFC is a prominent research
field in networking [5, 8,20] with many proposals from industry [14,17,58] and also from working
groups [9,24]. It is possible to implement SFC using a variety of technologies including SDN/NFV

or even a new protocol stack.

Given the dynamic nature of SFC, its deployment may involve multiple configuration steps
as functions might reside in different hosts or networks. Hence, configuration mistakes lead the
systems to several erroneous behaviors ranging from wrong forwarding decisions to packet drop. Even
when packets reach their final destination, the system might have latent problems such as traversing
suboptimal paths. Moreover, a single overload hop from a chain may degrade the performance of
the whole chain. Besides, the lack of troubleshooting tools makes operators spend great efforts to
ensure that the network meets its intended behavior [21]. To overcome this problem, researchers
and practitioners proposed the SFC Operation, Administration and Maintenance Framework (SFC-
OAM) [12], an Internet draft that discusses and proposes tools to aid SFC operation.

SFC-OAM discussions evolve around trace, connectivity and performance functions. In
traditional networks, these functions assist the detection of misbehavior such as packet drops, un-
wanted network hops, lower paths, etc. However, these current troubleshooting tools are unable
to give precise information in SFC environments because these environments employ ad-hoc for-

warding mechanisms that partially breaks the tools mechanism. Related works consider just SDN

11

networks [11] which are not suitable enough for an SFC environment or present a solution for trace

regarding only a specific SFC mechanism [45].

Therefore, the main contribution of this work is the design of SFC Path Tracer, a trou-
bleshooting tool for SFC environments that enables the visualization and characterization of the
network paths in the SFC domain. SFC Path Tracer is able to generate packet traces given a proof
of transit of network packets in the SFC domain, using probe packets. Moreover, SFC Path Tracer
can also work with the real traffic being able to monitor a traffic flow and compute latency measure-
ments of each chain hop. SFC Path Tracer is agnostic regarding the SFC mechanism employed. The
second contribution of this work is an SFC configuration framework that emulates SFC topologies

and can be used to evaluate other SFC aspects.

The remainder of this work is organized as follows. Chapter 2 describes related concepts to
SFC, presents the SFC architecture and common problems debugging an SFC environment; Chapter 3
shows related work on tracing network packets and detecting middleboxes interferences that might
be leveraged on SFC environments. Chapter 4 describes the architecture and implementation of the
SFC Path Tracer; Chapter 5 evaluates the tool in different scenarios using the SFC configuration

framework. Finally, Chapter 6 concludes this work and proposes possible extensions for future work.

12

2. BACKGROUND

The necessity of a flexible architecture to control and manage the functions of network
services emerges with the proliferation of configurable data-planes and network function deployed
in virtual machines. This chapter describes proposed standards to enhance network infrastructures.
They consist in centralizing network forwarding control (SDN) and bringing virtualization to the net-
work infrastructure (NFV) in order to facilitate the operation and management of network services.
These new standards leverage the dynamic chaining of network function (SFC) in the deployment

of specific services.

2.1 Software-Defined Networking

Software-Defined Networking (SDN) [22] is a network architecture which aims at decou-
pling data and control planes. Network control is performed by a central SDN controller, which
is responsible for computing and configuring network switches. Therefore, switches are responsible
just to forward data packets, following the configurations sent by the controller, which has a global
view of network topology. In a pure SDN environment, switches have no understanding regarding
network topology. In other words, switches have no default protocol and the SDN controller must
install forwarding policies in the switches' flow tables. Network configuration can be performed

automatically and remotely, simplifying the installation and modification of network topologies.

2.1.1 Motivation

The SDN motivation is to provide open user-controlled management of the forwarding
hardware of a network element. SDN operates on the idea of centralizing control-plane intelligence
while keeping the data plane separate. Therefore, the network hardware devices keep their switching
fabric, but hand over their intelligence (switching and routing functionalities) to the controller. SDN
enables a series of benefits such as: programmability of the network, the rise of network functions

virtualization, devices configuration and troubleshooting [31].

212 Architecture

Figure 2.1 shows the SDN architecture. The control layer is located in the center, where the
SDN controller is located. The control plane interfaces with the infrastructure layer through standard
protocols, known as Southbound (SB) API. Network switches are placed in the infrastructure layer.
The most common Southbound protocol is OpenFlow [39], which allows the dynamic configuration

of policies in switches flow tables. Policies are composed by a set of fields (MAC, IP, port, etc) that

13

are matched against network packets to execute defined actions. For example, the forwarding of a

network packet with a specific source MAC address to a determined switch port.

The application layer is where business applications operate. This layer interfaces with the
control layer through protocols known as Northbound (NB) APIl. SDN applications may implement
a variety of network functions such as: security systems (IDS, IPS), traffic shaping, traffic steering,
load balancing, etc. Currently, there is no standard Northbound API. However, many SDN controllers

provide a REST-based interface for applications, such as OpenDayLight controller [42].

APPLICATION LAYER | |

Business Applications

IAF’I
SDN ﬁ
Control
Software Network Services

Control Data Plane interface
(e.g., OpenFlow)

CONTROL LAYER

INFRASTRUCTURE LAYER

Network Device Network Device Network Device
Network Device Network Device

Figure 2.1: Software-Defined Networking Architecture [22].

2.2 Network Functions Virtualization

Network Functions Virtualization (NFV) is a standard specified by ETSI (European Telecom-
munication Standards Institute) [18]. It intends to transform the way that network operators build
networks, by leveraging standard IT (Information Technology) virtualization technology. The goal
is to use virtualization techniques to consolidate diverse network equipment types onto industry
general purpose platforms, which could be located in Datacenters, network nodes, or on the end
user premises [18]. Hence, network functions are implemented in software on top of a virtualized in-
frastructure, instead of being deployed in a complex appliance with dedicated hardware. Virtualized
Network Functions (VNF) run on a range of industry standard servers, known as COTS (Commer-
cial Off-The-Shelf). It provides a flexible network environment, where network functions can be

instantiated and replicated when required, to reach service level agreements (SLA).

14

22.1 Motivation

NFV emerges as a new standard to migrate traditional middlebox devices (IPS, DPI, NAT,
etc), from specific vendor platforms, to generic virtualized environments, with defined layers and
communication standards. Some specific device vendors may require another device from the same
vendor to properly work or to reach the expected performance. This leads to complex and static
network topologies, with high costs and proprietary technical support. The lack of middlebox mobility
may conduct to significant problems in common network deployments. The main motivations for
NFV [52]:

» Decrease the expenditure in specific network infrastructure equipments (CAPEX - Capital
Expenditures). This is reached by deploying network functions in general-purpose platforms
using virtualization techniques. Virtualized network functions (VNF) might also share resources
with other VNFs.

» Increase the flexibility and availability of network functions at different infrastructure regions.
This can be achieved with standardization of a generic infrastructure to run any network
function, called NFVI (Network Function Virtualization Infrastructure). The VNFs can be
instantiated in the NFVI dynamically when required.

» Decrease time to implement and provide new features in the network services. Unlike hardware
appliances, a software implementation of network functions brings the possibility to rapidly

update or change network functionalities, as well as to add new network functions to a service.

» Decrease the expenditure in network operational and technical support (OPEX - Operational

Expenditure) since the generic hardware does not require specialized operators.

NFV aims to standardize management and orchestration network layers in order to al-
low transparent communication between network devices from different vendors, unifying network

management.

2272 Architecture

The goal of NFV is to virtualize network functions. Virtualized Network Functions, named
as VNF, run on top of NFVI infrastructure. NFV management and orchestration module is re-
sponsible for managing the hardware and software resources, as well as managing VNFs [52]. NFV
reference architecture, defined by ETSI, is shown in Figure 2.2, with NFV functional modules and
Reference Points. Reference points are interface points between components or architectural layers.
NFV architecture focuses on functionalities that are necessary for virtualization. It does not specify

which network functions should be virtualized. In other words, NFV architecture does not restrict

15

the use of a specific virtualization solution, rather it expects to use virtualization layers with standard

features and open execution reference points towards VNFs and hardwares [19].

NFV Management and
Orchestration

Os-Ma
- OSS/BSS } Orchestrator
Se-Ma
: @ce, VNF and Infrastructure !
5 s 1
H Deseription Or-Vnfm
EMS 1 EMS 2 EMS 3 Ve-Vnfm
H T : : } VNF
: _" T & Manager(s)
VNF 1 VNF 2 VNF 3 1 orvi
1 £ Vn-NF . 1 Vi-vnfm
NFVI - ki =
Virtual Virtual Virtual
Computing Storage Network
- — Nf-Vi Virtualised
Vlrluallsa‘t_mn Layer l Infrastructure
VI-Ha I Manager(s)
: Hardware resources
(TP Computing Storage Network
Hardware Hardware Hardware
@ Execution reference points | Other reference points e Main NFV reference points

Figure 2.2: NFV reference architectural framework [19].

NFV must also support Physical Network Functions (PNF), which are the traditional
middlebox appliances. This is essential to the NFV standard in order to maintain compatibility with
current network environments. Therefore, NFV can be adopted gradually by companies, requiring

small changes in the infrastructure.

2.3 SDN and NFV

NFV and SDN do not depend on each other to be adopted. However, they are complemen-
tary, enhancing their benefits together on a system. An OpenFlow-based SDN controller provides
a flexible framework that can be used by the NFV orchestrator layer to manage network func-
tions [41]. Figure 2.3 shows an example of SDN and NFV concepts working together on the same
network topology. NFV orchestration communicates with an SDN controller through the North-
bound APIL. NFV orchestration is able to manage the network topology while the SDN controller
interacts with switches through OpenFlow. Switches can be virtual or physical. Figure 2.3 also
shows virtualized network functions (VNF) running in virtual machines on top of Hypervisors hosted
by general-purpose servers. Theses VNFs are managed by the NFV orchestration and management

layer.

16

NFV
Orchestration
BEEAN BEAN
E i E . North Bound
E Hypervisor E Hypervisor Interfaces

OpenFlow
Controller

Network
Device

Network

Device Device

Network
Device

Device

Network
Device +

Figure 2.3: SDN and NFV concepts on the same deployment [41].

(@]

2.4 Service Function Chaining

Network services commonly require different kinds of processing when its packets traverse
the network infrastructure. This processing is performed by middleboxes, also called network func-
tions. Middleboxes manipulate traffic for different purposes, and it is defined as any intermediary
device performing functions other than forwarding packets on the datagram path between a source
and destination hosts [15]. The datagram is a self-contained and independent entity of data car-
rying sufficient information to be routed, defined in RFC 1594 [57], and the datagram path is the
pathway formed by network devices for datagram traffic. Middleboxes play a critical role on network
infrastructures, with functions such as: firewalls, traffic shapers, load balancers, Intrusion Detection
Systems (IDS), Intrusion Prevention Systems (IPS), and application enhancement boxes. These
functions, usually performed by specific hardware appliances, are characterized by the lack of mo-
bility and its high cost. Some initiatives have been proposed to virtualize such functions to operate
in commodity platforms [25,53]. These functions virtualization represent the VNFs, in the NFV
architecture.

Usually, network services require a set of network functions, which are mostly topological
dependent due to its hardware dependencies. Some common deployments insert network functions
on the data-forwarding path between communicating peers [20], which restrict infrastructure changes
and adoption of new network functionalities. The static nature of such deployments limits the ability
of an operator to modify existing services or introduce new network functions. The introduction
of a new network function can be difficult, in both technical and organizational spaces, requiring

topology changes and even manual configurations [51].

Deployment of network services is changing with SDN and NFV. Instead of requiring the
placement of service functions along the direct data path, the traffic is steered through network
functions, wherever they are deployed. Therefore, emerges the possibility of network services being

deployed and changed dynamically.

17

Figure 2.4 shows an example of a network service deployed with network function chaining
in the NFV architecture. The ETSI working group defines the VNF-forwarding graph, which is
responsible for configuring a forward path for network packets. NFVI provides a virtualization layer
through the N-Pop (Network Point Of Presence), where VNFs are instantiated. VNFs are the
network functions that the service requires (firewall, IDS, NAT, etc). The dotted line shows a
logical path where packets will be forwarded through VNFs. The solid line shows a physical link,

which represents appliances where VNFs are instantiated or the PNFs are located.

End-to-end network service

VNE-FG Corresponding to e NNERG2 o :
NF Forwa_rdmg Graph of i =y VNF- i
Figure 2 i I L= il |
AL 2a By
ST VR i A~ =" A | Y VNF3
——————— : || VNF- }
A i il 2c w
' e e el
----------- ¢--------------------;----#------------ PRSP RPN

Hardware

'
Legend 5 \ Sl
i t 1 \ "~ Resources
/ | e in Physical
| NFVI-PoP ; \ i] PR
—— Physical link X /
= = = Logical link [J,'
'? Virtualisation 4

Figure 2.4: A network service example with VNFs forming a forwarding graph [19].

Similarly to ETSI VNF-Forwarding Graphs, IETF (Internet Engineering Task Force) defines
the Service Function Chaining (SFC) [20], as an abstract view of network functions and the order in
which they need to be applied. SFC forms traffic chains among service functions regarding a specific
network service. SFC is instantiated from a set of network functions, which are placed in specific
locations forming a forwarding graph. SDN and NFV play an essential role in the SFC adoption, so
the network topologies could become more flexible and malleable lowering the time to market for

new features.

241 Motivation

The following points describe aspects of existing service deployments that are problematic

and that the SFC proposals aims to address [51]:

» Topological dependency, deployment of network services are often coupled with network topol-
ogy. Such dependency can restrict network operators from optimally utilizing service resources,
reduces flexibility, as well as the deployment of new services. This dependency also limits the

placement and selection of service functions.

18

Configuration complexity is a direct consequence of service functions being topological de-
pendent. Once an SF is configured, operators may hesitate to change configurations, which

leads to static network service deployments.

High availability, since traffic reaches many SFs based on network topology, redundant service
functions must be placed in the same topology as the primary service. Therefore, topological
dependency affects the complexity of SFs availability.

Consistent ordering of Service Functions, SFs are independent regarding ordering. However,

many SFs must keep a restricted ordering in the service deployment perspective.

Application of Service Policy, SFs depend on topology information to determine service policy
selection, i.e., the SF action taken. Topology information often does not give adequate
information to SFs, then SFs are forced to individually perform a more granular classification

and its semantics may be overloaded.

Transport dependency, SFs are deployed in a network with a variety of transport protocols
and tunneling. SFs topological dependencies may require the service functions to support

transport protocols.

Elastic service delivery, network services changes, such as adding and removing SFs, commonly
lead to VLAN or routing changes. Rapid changes to the deployed service capacity can be hard

to perform, due to the risk and complexity of VLANs or routing modifications.

Traffic Selection Criteria, network traffic on a particular segment traverses all service functions,
whether the traffic requires service enforcement or not. In some deployments, more granular
traffic selection is achieved using policy routing or access control filtering, which is operationally

complex.

Classification /reclassification per Service Function, classification functionality often differs be-
tween service functions, and SFs may not leverage the classification results from other service

functions.

Symmetric traffic flows, SFC may be unidirectional or bidirectional depending on the service
deployment requirements. Existing service deployment models provide a static approach to
create chains, with complex topological configurations. On a bidirectional chain, it would be

necessary the same complex configuration in both directions.

Multi-vendor Service Functions, deploying service functions from multiple vendors often re-

quires a vendor specialized support, hence standards are needed to ensure interoperability.

In modern network deployments, the number of middleboxes almost follows the large num-

ber of forwarding elements such as routers and switches. For instance, on the enterprise middlebox

survey [54], a deployment is mentioned with 2850 L3 routers have a total of 1946 middleboxes.

19

The management of this variety of Middleboxes is complicated and typically they are physically
inserted on the data-forwarding path between communicating peers. The network traffic is directed
via virtual LANs (VLANSs) and policy-based routing techniques. Consequently, services are tightly
coupled to the physical network topology [49]. Virtual LANs techniques might be considered as an
early SFC technique.

242 Architecture

The basic concepts of SFC are defined by IETF (Internet Engineering Task Force) [26]. It
defines all SFC elements and its functions. In this work the taxonomy used is based on this IETF
definition, where network functions are named as Service Functions (SF). Other terms used in SFC

architecture are defined in Table 2.1.

SFC enables the creation of composite network services that consist of an ordered set
of SFs (SF1 = SF2 = SF3) that must be applied to packets/frames/flows selected as a result
of classification. Each SF is referenced using an identifier that is unique within an SFC-enabled
domain. SFC describes a method for deploying SFs in a way that enables dynamic ordering and
topological independence of SFs, as well as the exchange of metadata between its components [26].
Figure 2.5 shows the SFC architecture, where the SCF, Service Classification Function, performs
packet classifications and encapsulation for an SFC-enable domain. The encapsulation contains SFP

for service functions of a particular chain.

SFC

Figure 2.5: Service Function Chain Architecture [26].

The SFC elements shown on Table 2.1 can be seen in Figure 2.6. The figure shows
a generic example of an SFC deployment, and where the SFC elements are placed in a network
topology. In this example, a client sends a request to remote servers with standard protocols such
as TCP/HTTP. SCF is responsible for classifying network traffic and adding the SFC-Encapsulation
to the chain traffic then forwarding to the SFC-Enabled domain. In the SFC-Enabled domain, SFC-
Encapsulation packets are forwarded to SFs (SF1, SF2 and SF3) by SFFs (SFF1 and SFF2) following
the SFP. SFC defines the ordered set o SFs of a chain, which afterward is translated to an SFP, the

actual path of the chain, that is used to configure and install rules in SFFs.

In order to support legacy SFs, witch are not aware of SFC-Encapsulation, an SFC-proxy
element is defined. SFC-proxy is responsible for removing the SFC-Encapsulation for unaware SFs
and add it back when forwarding back to SFFs. Important to notice that this proxy function is
placed between SFF and SF elements and it can be achieved by multiple approaches. SFC-proxy
can be performed by an external box or inside the SFF or SF spaces. Once SFP is finished, the CTF

20

Table 2.1: SFC taxonomy used [26].

’ Taxonomy

| Name

| Description

SF

Service Function

A function that is responsible for
the specific processing of received
packets. SF can be aware or un-
aware. An aware SF knows it be-
longs to a chain and is able to treat
SFC metadata. When the SF has
no knowledge of the SFC layer, it
is called an unaware SF. Traditional
middleboxes might be an example
of unaware SF, requiring an SFC-
proxy to be part of a chain.

SFC

Service Function Chain

Defines an ordered set of abstract
Service Functions (SFs).

SCF

Service Classifier Function

Defines the packet classification
that will be forwarded to a spe-
cific chain. The classifier lo-
cally matches network traffic flows
against policies for subsequent ap-
plication and then forwards to the
required set of network service
functions.

SFF

Service Function Forwarder

It is responsible for forwarding traf-
fic to one or more connected SFs
according to information carried in
the SFC encapsulation. SFF is usu-
ally composed of one or more net-
work switches.

SFC-proxy

Service Function Chaining Proxy

Removes and inserts SFC encapsu-
lation on behalf of an unaware SF.

SFP

Service Function Path

It is a constrained specification
of the specific service function in-
stances and network nodes cho-
sen in which the packets will pass
through.

SFC-Encapsulation

Service Function Chaining Encap-
sulation

It provides a minimum SFP identi-
fication, that will be used by SFFs
and SFs.

SFC-Enabled Domain

Service Function Chaining Enable
Domain

A network or region of a network
that implements SFC.

CTF

Chain Termination Function

The termination point of the chain,
where the SFC-Enabled Domain
ends. This element should remove
any SFC-Encapsulation.

21

removes the SFC-Encapsulation from packets and forwards the traffic to its original destination.
CTF can be SCF switches or the last SFF of the chain.

SFC-enabled domain

Normal network packet
B —

SFC-Encapsulation packet
----------- >

client

Figure 2.6: Generic SFC deployment example and its elements.

Server

SCF

2.5 SFC encapsulation proposals

SFC is a prominent research field in network area [1,5,8]. There are several SFC proposals
[14,24,30,58] from industry and academia. The following sections present SFC proposals based on
IETF drafts. SFC techniques may use current network protocols, leverage encapsulation protocols or
even add new layers in the protocol stack. For instance, most of these techniques can be implemented

using OpenFlow rules to configure the data plane to forward packets through service chains.

251 Network Service Header

Network Service Header (NSH) [24] is one of the most complete solutions of SFC. It
aims to implement a service function chaining as it is defined on the SFC architecture [26]. NSH
contains service path information and optional metadata that are added to a packet and used to
create a service plane. The original packets preceded by NSH are encapsulated in an outer header
for transport.

NSH header is added by a network classifier and removed by the last SFF or SF in the
chain. NSH is composed of a Base Header, a Service Path Header, and Context Header, as shown in
Figure 2.7. The base header provides configuration fields, such as metadata type (MD Type). The
service path header provides the chain and its service functions identifiers. Context Header provides
a space for a context metadata specified by MD Type field. Context header can be mandatory,
which means that metadata bytes, with a fixed length, must be added immediately following the
Service Path Header. Context header can also contain variable metadata length, following MD Type

definition.

Service Path ID indicates a path that is formed by a set of SFs identified by a service index
field. The first classifier in the NSH function path should set the Service Index (Sl) to 255. Sl is

22

Base Header

Service Path
Header

Contex Header

Figure 2.7: Network Service Header [24].

decremented along the chain by SFs or proxy nodes to reach the next SF on the chain. It is possible
to reclassify traffic in the middle of the path chain, which will change the NSH header and set Sl to
255 again.

NSH can be formed by a NSH-aware service function, that may alter the content of the
NSH headers, and a NSH-proxy, which is used to remove the NSH header for an unaware SF. NSH-
proxy and classifiers can add and remove NSH headers, as well as the SFF, which is also responsible
for selecting the service function path.

NSH emerges as the leading SFC approach even with the requirement of an NSH-enabled
switch. Open vSwitch [43] supports NSH, and can be used to perform tests and evaluations.
OpenDayLight [42] controller has an SFC module that also supports the NSH protocol. These
softwares can be used in a virtualized environment to build a testbed for NSH evaluation. However,

there is no easy-to-use environment to exercise NSH.

2.5.2 Ethernet MAC Chaining

MAC Chaining is based on the current IEEE 802 Ethernet header for physical and virtualized
environments. The basic mechanism is to use MAC addresses in the Ethernet header for both
identifying chains and forwarding packets along the MAC chain [14]. These assigned Ethernet
addresses are called Chain Segment MAC (CS-MAC). The CS-MACs allows MAC chaining to be
implemented on existing Ethernet infrastructure. Therefore, no extra network header is necessary

to perform the service function chaining.

Figure 2.8 illustrates a chain example, where a classification (SFC) is performed and the
MAC destination field of the packet is changed to the chain enter point identifier, CS-MAC A. In
the SFF, a flow rule will forward the packet from A to the first hop of the chain, and increment the
chain segment. When back from SF1, the packets will be matched by another SFF flow rule, CS2
and then forward to SF2. A final chain rule will forward packets to the Chain Termination Function
(CTF) that will perform any de-encapsulation and operations required to continue forwarding to the

final destination.

MAC Chaining uses Ethernet MAC address bits to encapsulate CS-ID information, as well

as a branch decision for aware SFs. SFF matches the source MAC fields, increments the Chain ID

23

cs1 cs4

CS-MAC=A CS-MAC=F

Figure 2.8: MAC Chain Segments Addressing [14].

and forwards the packets to the next hop of the chain. Therefore, another match will be performed
against the incremented Chain ID for subsequent chain hops. MAC Chaining supports unaware SFs

with no SFC-proxy, as it does not add an extra network header.

Currently, Ethernet MAC Chaining has no public implementation nor proof of concept.
However, it is being developed a first proof of concept under OpenDayLight controller. This SFC

approach does not require specific switch modification and works with any OpenFlow-based switch.

253 An IPv6 Extension Header for Service Function Chaining

SFC-IPv6 leverages the IPv6 extension header to perform Service Function Chaining [30].
The IPv6 extension header is used by SFC data plane elements to make forwarding decisions in an

IPv6-enabled SFC domain and it conveys metadata that are processed by SFC-aware nodes.

Based on the selection of Next Header from IPv6 header and following the uniform format
of IPv6 extension headers (RFC 6564), SFC extension header is used as shown in Figure 2.9.
The fields Next Header and Hdr Ext Len follows the RFC 6564 and identifies the type of header
immediately following the extension header and the length of SFC extension header. The Flags field
comprises a set of 8 flags where it is informed if optional field are present and other bits reserved
for future implementations. SF Index field is decremented by 1 and used to detect SFC loops and
SFC ID identifies the SFC associated to the IPv6 packet. The optional SFP ID is used to convey
an identifier of a path that is bound to a given SFC. Information Elements field may be used to

conveys one or multiple optional metadata that may be supplied within an SFC-Enabled Domain.

Figure 2.9: IPv6 Extension Header for SFC [30].

24

An IPv6 network packet, in IPv6-enabled SFC domain, has the advantage to using any
specific transport encapsulation scheme when forwarding packets between nodes that are connected
to the same subnet. A classifier typically inserts the SFC Extension Header to incoming packets that
matches SFC classification policies. SFFs are responsible for decapsulating the packet, and process
the SFC information carried in the SFC Extension Header. The SFF will use this information to
position itself in the forwarding path, determine which SF instances need to be invoked next and

make its forwarding decision according to the SFC instructions carried in the SFC Extension Header.

2.6 OpenDayLight

The OpenDaylight (ODL) project is a commercial, collaborative, open-source and java
based platform to accelerate the adoption and innovation of SDN and NFV. ODL architecture is
developed based on the Open Services Gateway Initiative (OSGi) which is a modular development
framework where loosely coupled modules construct the entire platform. The modules can be built
independently with the ability to import and export data from one another [29]. The innovation of
Model-Driven Service Abstraction Layer (MD-SAL) in the architecture leads to developing models
for automatic management and configuration of the network. MD-SAL provides ODL with the ability
to support any protocol talking to the network elements as well as any network application. The

flexibility is a strong characteristic of ODL, where multiple plugins might be connected performing

several functionalities. Figure 2.10 shows the ODL architecture from 5th release named Boron.

OpenFlow Enabled . Additional Virtual & Pata P'af‘e Elements.
] Open vSwitches . 5 (Virtual Switches, Physical
Devices Physical Devices e
Device Interfaces)

Figure 2.10: OpenDayLight modular architecture [2].

ODL provides a rest APl (NorthBound API) for external applications be able to configure
internal plugins which might control and manage network elements through protocols (SouthBound
API) such as, OpenFlow, BGP, Netconf, etc. OpenDayLight features are composed by Base Network

25

Service Functions, Platform Network Service Functions, and the Service Abstraction Layer [29],
highlighted in Figure 2.11 .

» Base Network Service Functions are responsible for collecting and providing information about
network topology, statistics, switches and hosts information, etc. They expose NorthBound

(NB) APIs for applications as well as to any other internal plugin.

» Platform Network Service Functions are pluggable oriented services performing specific network
tasks. Two examples of platform functions are L2 Switch and SFC. L2 switch provides L2
switch functionality and creates reusable services such as address tracking, basic spanning tree
protocol, event-driven packet handling and basic path computation. On the other hand, SFC
provides an SFC modeling and the ability to define a chain of network functions. This SFC
function is used in this work to deploy chains that will be evaluated with SFC Path Tracer.

= Service Abstraction Layer (SAL) is the central element of ODL and is responsible for providing
connectivity among ODL plugins. Most SAL services are built based on SouthBound plugins
features. ODL implements Model-Driven SAL, detailed in Section 2.6.1.

The southbound (SB) interface and protocols plugins enable communication between the
controller and the network devices. ODL support multiples SB protocols. These SB protocols
enable ODL to support heterogeneous networks and ensure interoperability with other technologies
and between other vendors [29]. ODL provides SB plugins that implement protocols such as,
OpenFlow, OVSDB, NETCONF, BGP, etc. Figure 2.11 shows ODL architecture with network basic

function, and the service abstraction layer providing communication between functions either NB or

?WM

[NETCON l"] [RESTCONF]

SB plugins.

Service Functions Base Network Fur
Confi Statist I d - -
onfig Statistics Forwarding - T = "
[Subsystem] [Manager][Rul:s _\hn:q;cr] [ﬁ I.l’] [II:‘E;::;:: [I&::::g

I Service Adaptation Layer l

OpenFlow BGP-LS PCEP N‘?I_C.ﬂnl
|C Client
|Controller

{f {0 {f
T DEicEs —

Figure 2.11: OpenDayLight plugins and service abstraction layer [23].

Generally, ODL plugins are built based on YANG models, detailed in Section 2.6.2. An
ODL plugin should implement listeners for data modification on defined YANG model. This im-

plementation should take actions based on data added, removed or changed. A plugin can also

26

listen to other plugins data models. User applications are able to interact with plugins through auto
generated RESTCONF APIs. Plugins can interact with each other by adding or modifying data of
other plugins model. The communication among plugins or provided RESTCONF APlIs are routed

by the service abstraction layer.

The controller plugins can be either data/service provider or data/service consumer. A
provider provides data/services to the data stores through its APIs. A consumer consumes ser-

vices/data located in the data stores, provided by one or more providers.

26.1 MD-SAL

OpenDaylight leverages the Model Driven Software Engineering (MDSE), which is defined
by the Object Management Group (OMG). MDSE describes a framework based on consistent rela-
tionships between models, standardized mappings and patterns that enable model generation and,

by extension, code/API generation from models [23].

Model-driven Service Abstraction Layer (MD-SAL), the Model-driven approach to service
abstraction, presents an opportunity to unify both northbound and southbound APIs and the data
structures used in various services and components of an SDN Controller [4]. Basically, MD-SAL
defines a common layer, concepts, data model and messaging patterns, and also provides infrastruc-
ture/framework for application and inter-application communication. MD-SAL also provides com-
mon support for user-defined transport and payload formats (JSON) for NB communication [23].
MD-SAL can store data models defined by plugins, allowing provider and consumer plugins to ex-

change its data through the data stores.

MD-SAL exposes two different APIs, Binding APIs and DOM (Document Object Model)
APIs [23]:

Binding APIs are Java-based APIs which uses interfaces and classes generated from YANG models.

They provide a compile-time safety, as they use Java language to implement its content.

DOM APIs are payload format APlIs that interpret YANG models and provide functionality from
any valid model. DOM format makes the model more powerful and efficient but provides less

compile-time safety.

MD-SAL data handling is separated into two brokers: a binding-independent and binding-
aware brokers. Binding-independent brokers (DOM) is the core component of MD-SAL and inter-
cepts YANG models at run-time. DOM broker uses YANG to describe data and instance identifiers
to describe paths to specific elements in the data stores. DOM broker is responsible for manipulating
requests in the data store, and it relies on the presence of YANG schemas, which are interpreted
at run-time for functionality-specific purposes, such as RPC routing, data store organization, and

validation of paths.

27

Binding-aware brokers rely on Java-based APls, generated from YANG models and Java
DTOs (Data Transfer Object), which are enforced by code generation. Binding-aware brokers are
connected to DOM-brokers so that application or plugins can communicate with their respective
binding-independent equivalents. Figure 2.12 shows brokers connection and the relationship with

consumers and providers.

Consumers

Controller SAL

Providers

Independent

Providers

Figure 2.12: Architecture of MD-SAL [4].

OpenDaylight data storage is composed of data trees, with two divided logical data stores
views: operational and configuration. However, the data view of both is independent and can be
addressed using instance identifiers. For instance, operational data can represent the current state

of a specific device while configuration represents actual device configuration.

2.6.2 YANG

ODL uses Yet Another Next Generation (YANG) as data modeling language which was
basically developed to model RPCs, notifications, configuration, state data of network elements, as
well as constraints to be enforced on the data [13]. It was created to be a data modeling language
for the NETCONF network configuration protocol, and used as the modeling language for ODL
plugins. YANG models the hierarchical organization of data as a tree in which each node has a
name, and either a value or a set of child nodes. YANG provides the description of nodes, as well

as the interaction between those [23]. Figure 2.13 illustrates the data tree organization of YANG.

YANG presents the advantages of a human readable representation, hierarchical data model

being possible to reuse types and groups. It is extensible through augmentation mechanisms and

28

supports operation definitions, such as RPC and notifications. In ODL, YANG is used to model
almost everything, from applications and plugins to the internal MD-SAL behavior.

Standard Proprietary
Models Models

- _\\.——h_:}_‘__:____ﬂ—-—/—:;’ ~
~ e —_
. U —

[congdata | | RPGa |

-
l notifications ‘

_ |containers| /

Figure 2.13: YANG data tree modeling [23].

YANG is managed by the YANGTools project, which contains modules that describe the
code generation from YANG models, the mapping between YANG and DOM/Java formats, the

modeling of data stores and its operations (transactions, RPCs, and notifications).

Figure 2.14 shows the ODL plugin structure built from a YANG model. Based on the
YANG data model definition, YANGtools will generate Java-based classes for the defined model, as
well as REST APIs to give data access to external applications. Therefore, the plugin implementation
should handle data state changes and take action on the appropriate devices.

Compile
model

Implement
your model's
functionality

Openflow g NETCONF

Figure 2.14: ODL plugin structure with YANG model definition in the MD-SAL environment [3].

2.6.3 SFC implementation

The OpenDayLight SFC project [8] implements the SFC architecture [26] as defined by
IETF. This project provides the infrastructure such as the chaining logic and SFC APls, to provision
a service chain in the network. SFC project, as any other ODL feature, is modeled in YANG, which

29

mainly comprises of SFs, SFFs, classifiers (SCF), service chains (SFC), chain paths (SFP), etc.
OpenDayLight's modular architecture enables the possibility of many SFC methods implementations.
ODL SFC project implements NSH technique over VxLAN encapsulation. SFC also implements a
technique based on L2 OpenFlow rules using VLANs or MPLS to encapsulate the packets. SFC
YANG models can be easily augmented to include extra data related to other SFC implementations
as well. SFC implementation uses SB plugins to install configuration rules on switches. It can
install rules though OpenFlow or OVSDB (Open vSwitch Database) plugins, both open-source ODL

projects.

The SFC model defines its components (SFFs, SFs, SFPs, etc), as well as RPC to actually
deploy a service function chaining (Rendered Service Path - RSP). For instance, the Service Function

component, modeled in YANG, presents the following parameters:
= Name is the unique name to identify a specific SF.

= Type refers to VNF type function, such as firewall, DPI, IPS, etc. Usually, an environment can
have multiple SFs of a specific type. Therefore, providing the ability to perform load balance
of SFs.

» Data Plane Locator specifies how service functions can be reached by an SFF. In this element,
it is defined the SFF connected to it, the transport type (L2, VXLAN, etc) and its network
addresses (MAC or IP).

To configure a Service Function Forwarder the following parameters are modeled:
= Name is the unique name to identify a specific SFF.

= Node refers to the ODL node that stores this switch information, in other words, the switch

identification.

» Data Plane Locator specifies the SFF interfaces. Each switch port must be defined here with

transport type, address and port number.

» Service Function Dictionary informs all SFs connected to this SFF. Each item on SF dictionary

must inform the plane locator name from the SF and the SFF.

Figure 2.15 shows a RESTCONF example of two elements from the SFC configuration
model. On the left side, a chain named cI is configured to reach a firewall, a DPI and an IDS.
These elements represent the ordered list of service function types that form a service chain. On the
right side, it is also shown an SF instance configuration of type IDS, called sfI. Other parameters
to reach this SF are also configured such as MAC address and VLAN.

SFC project also models other SFC elements, such as Service Function Path, where it is
specified path symmetric information, the classifier used, and SFC identification. Classifier model
is built based on an SFF without SFs dictionary. Rendered Service Path (RSP) models the RPC
to deploy a service chain. Considering multiples SFC implementations, a specific SFC technique is

triggered depending on data configuration, such as chain transport and encapsulation types.

30

"service-function-chain": [

{
"name": "c1", "service-function": [
"sfc-service-function": | {
{ "ip-mgmt-address": "10.0.0.11",
Ilnamen: ”fW", "namell: llsfllll
"order": 0, "sf-data-plane-locator": [
"type": "service-function-type:fw" {
1 "mac": "00:00:00:00:00:11",

"name": "sfl-plane-0",
"service-function-forwarder": "SFF2",

"name": "dpi",
"order": 1, "transport": "service-locator:mac”,
"type": "service-function-type:dpi" "vlan-id": 304

L }

{ I
"name": "ids", "type": "service-function-type:fw"
"order": 2, }

"type": "service-function-type:ids"]

Figure 2.15: Example of RESTCONF for an SFC and a single SF in the SFC configuration model.

SFC OpenFlow Renderer

Most of SFC techniques implemented in ODL are achieved by data plane configuration
rules using OpenFlow. The ODL SFC project provides an architecture for SFC OpenFlow renderers,
as shown in Figure 2.16. NorthBound SFC API exposes SFC model for operational configuration,
which is stored in the MD-SAL layer. The SFC OpenFlow renderer is invoked after an RSP call.
Different OpenFlow renderers have its own business logic and are responsible for creating OpenFlow
rules regarding the SFC technique employed. Finally, the OpenFlow plugin is called to install the

rules on switches.

e { | RESTConf Northbound SFC API |
| MD-SAL DataStore |
SfcOfRspDatal istener
OpenFlow Programming Business Logic
SFC OF |
Renderer

SchfFIov:r"I:-'ch:n%r‘zmmerlmpl SfcOpenFlowUtils
SfcOfFlowProgrammerinterface

OpenFlowPlugin via MD-SAL DataStore ‘

SouthBound OpenFlow

Figure 2.16: SFC OpenFlow Renderer Architecture [6].

Two examples of SFC OpenFlow renderers are NSH and VLAN renderer. NSH renderer

creates OpenFlow rules that matches NSH fields and forwards packets to specific SFs at each chain

31

hop. Currently, NSH is implemented over VxLAN-GPE [50] tunnels. Therefore, the generated
OpenFlow rules will set the remote tunnel IP for the next hop destination. The SFC VLAN renderer
creates OpenFlow rules to match chain identifiers encoded in the DSCP field of IP header and match
the source MAC address to identify the chain hops. Once matched, these OpenFlow rules will set
the destination MAC address of the next hop and forward the packet through a specific switch port.

SFC OpenFlow Renderer uses flow pipeline tables to process packets. The described
matches and action are installed in OpenFlow tables as shown in Figure 2.17. The tables are divided
by functions, such as Transport Ingress responsible for matching incoming packet based on supported
encapsulations, Path Mapper will match based on tunnels ID, such as VLAN ID and remove them,
Next Hop that identify next hop destination and finally Transport Egress that encapsulates and
outputs the packets.

Tble | Function

0 Classifier

1 Transport Ingress
2 Path Mapper

4 Next Hop

10 Transport Egress

Figure 2.17: Pipeline tables for SFC OpenFlow renderer [6].

2.7 SFC troubleshooting

Service Function Chaining is used in scenarios such as network security [36], data center
networks [34], and mobile networks [40]. SFC can also be deployed in hierarchical layers [37]
allowing an SFC organization into multiple domains with different SFC encapsulations. In complex
deployments, service functions can have its instances spread in several servers. These aspects make
the debugging process complex, specially in huge network topologies. It might be hard for network

operators to find root causes of a problem when the system is not working properly.

SFC configuration involves multiple steps, such as: defining a chain, translating the intent
chain into network policies, installing switch flow rules and even configuring service functions. Any
misconfiguration can lead the system to erroneous behavior, with packets being forwarded to wrong
SFs or even dropped along its path. A malfunction or overloaded SF can degrade the performance
of the whole chain. Troubleshooting can be a difficult task in the SFC domain, even when network
traffic does reach the final destination. It might be challenging to assure that the traffic correctly

passes through all configured service functions or detect overloaded hops.

Different SFC approaches present a variety of techniques to implement the SFC encapsula-
tion which affects the complexity to properly evaluate such implementations. Once SFC is deployed,
it is hard to evaluate or troubleshoot possible problems, regardless of the SFC technique used. For

instance, if a reachability problem is detected in the chain path, it might be a massive work to find

32

where the packet is being lost. Network operators may need to dig into each device and inspect
packets using tools such as tcpdump!. Some of the common SFC environment problems that should

be requirements for a troubleshooting tool to detect are [12] :
» Wrong switch configuration;
= Conflicted rules installed on switches;
= Switch connectivity problem;
= SF not working or presenting connectivity problems;
» SF introducing high latency in the traffic;
» Assurance that all network functions are being reached;
» Assurance of correct packet forward ordering of network functions;
= QOverloaded network link;
» General debugging on a deployed chain.

Network operators spend significant effort in ensuring that network meets their intent
behavior [21], with the lack of tools to check network functions in the path. The increasing scale and
dynamism that NFV introduces add, even more, challenges to detect possible misconfiguration. OAM
for SFC [12] provides a reference framework for Operations, Administration and Maintenance (OAM)
for Service Function Chaining (SFC). It indicates the aspects of SFC that should be monitored. The
monitoring element should have capabilities to monitor aware and unaware service functions, service
function performance, service functions forwarders and the classifier. OAM for SFC highlights
monitoring functions such as connectivity, continuity, trace and performance measurements. Packet
trace function enables the detection of above common problems. Once a packet trace is generated,
a path can be monitored to detect connectivity and performance issues such as packet losses and
overloaded SFs. Packet traces give informations such as prof of transit of network packets and then

pinpointing the problematic location when traffic is delayed or does not reach its destination.

An SFC trace tool should detect all network elements that interact with network packets
in a specific chain. Detecting both SFFs and SFs allow the generation of complete packet traces in

order to check SFC correctness.

Moreover, it is important to the SFC trace generation tool to be agnostic of the SFC
encapsulation mechanism. Currently, there are several proposals of SFC encapsulation techniques
[14, 24,58]. However, none of them has yet been adopted as a de facto standard for Service
Function Chaining. Network Service Header (NSH) [24] is the most accurate proposal regarding the
SFC architecture. NSH has optional metadata fields that can be used for trace and performance
purposes. However, NSH is far from being considered as an SFC standard as it is a new protocol

stack and demands switches and service functions to have explicit NSH support.

1 http://www.tcpdump.org/

3.

RELATED WORK

33

Some tools and frameworks that generate packet traces may be used by network operators

to help identify recurrent problems in the SFC environment. Some of the tools described in the
literature include: SFC Traceroute [45,59], Tracebox [16], SDN Traceroute [11] and NetSight [28].
Related works considering network verification are also presented.

3.1

Services Function Chaining Traceroute

Services Function Chaining Traceroute [45] defines a protocol that allows a user to check

liveness and get reports of the service-hops of a service path using NSH. The proposed protocol

defines a trace packet that makes use of the metadata space from NSH header. Basically, it defines

a trace packet that will traverse the SFs from a specific chain and store information from a defined

chain hop. Figure 3.1 shows the trace packet format in the NSH header. ldentified by MD-type

field on NSH header, SFC Traceroute uses the OAM (Operations and Management Requirements)

protocol [12] to define a trace header. The SFC Traceroute defines the following fields to store trace

information:

Trace Msg Type defines a trace type: 1 for Trace Request and 2 for Trace Report.

SIL (Service Index Limit): The index of the service function hop which is intended to get

information.

Dest Port is the destination Port where trace report must be sent.

Dest IP is the destination |IP address where trace report must be sent.

Version Length MD Type =1 OAM Protocol

SFC Service Path ID Service Index
Mandatory Contex Header/
Variable Length Context Headers
Trace Msg Type SIL Dest Port
OAMtrace —

Trace data —

Dest Ip Address

SF Type Len SF Type

SF Name Len SF Name

Figure 3.1: SFC Traceroute protocol [45].

Next Protocol =

34

When a Service Function receives an SFC trace request packet, it decrements the Service
Index (SI), as for any other packet. If Sl is equals to the Services Index Limit (SIL), SF adds its
identifier information at the end of the existing headers as shown in Figure 3.1. Finally, the Service

Function sends the packet back to SFF, regardless the Sl value.

An SFF will route trace packets based on service path ID and service index just like any
other NSH packet. This guarantees that a trace packet follows the same path as data packets. The
SFF will drop the packet and generate a report when: (i) Sl is equals to SIL, (ii) it cannot find the
next hop, or (iii) SFF receives a trace packet with SI = 0.

A trace report packet carries the identification of the last SF that processed the packet.
In all other aspects, the trace report is exactly the same as a trace request. SF Type and Name

from Figure 3.1 are the fields to store Type and Name information of Service Functions.

To build a trace report packet, SFF will use the same encapsulation as the received packet
and it will copy the entire header (NSH, trace request headers, and report section) from the received
packet and send to destination IP and port defined in the OAM trace header. If an SFF cannot find
the next service-hop for a trace packet, it will drop the packet and generate a report packet, even
if SIL is different from SI. This guarantees that the trace ends at the end of the path irrespective if
Sl has reached SIL or not. Moreover, it allows users to perform a trace that will traverse the entire
path without having to know beforehand the number of service-hops in the path by setting SIL to

ZEro.

SFC Trace Issue Analysis and Solutions [59] is a draft to provide solutions for some un-
dressed SFC Traceroute issues. SFC traceroute requires aware SFs, to interact with trace packets,
otherwise, it will report as an error. SFC traceroute just triggers SFs and does not identify SFFs.
These limitations are addressed by this work. SFC Trace Issue Analysis and Solutions proposes to
change the adding of SF information in the trace request packet, from SF to the SFFs. Therefore,
SFFs will be responsible for adding next hop SF or SFF information. To achieve this changes the
OAM trace header from Figure 3.1 is modified including new fileds such as: Number Index (NI), to
store the number of traversed chain hops and Last Service Index (LSI) to store the last processed
service index. This approach is able to trigger both SFs and SFFs, skip unsupported SFs and take

into account chain multipath by broadcasting trace packets.

SFC Traceroute is a complete solution to generate traces for an SFC enabled domain.

However, it is only suitable for NSH encapsulation being incompatible to any other SFC techniques.

3.2 Revealing Middlebox Interference with Tracebox

Tracebox [16] proposes an extension to the widely used traceroute tool, that is capable of
detecting various types of middlebox interference over almost any path. Tracebox sends IP packets
containing TCP segments with different TTL values and analyses the returned ICMP messages. In

addition, Tracebox can often pinpoint the network hop where the middlebox interference occurs.

35

To detect middleboxes, Tracebox uses the same incremental approach as traceroute, i.e.,
sending probes with increasing TTL values and waiting for ICMP time-exceeded replies. While
traceroute uses this information to detect intermediate routers, Tracebox uses it to infer the modi-
fication applied on a probe by an intermediate middlebox. Tracebox detects changes on controller
bits from TCP/IP headers to detect a possible interference of Middleboxes.

Although this is a useful tool to detect Middleboxes, it cannot detect transparent middle-
boxes that do not change L3/L4 headers fields. This tool does not consider an SFC environment,
where traffic might be classified and reach different chains. In an SFC environment, this tool could

just identify some SFs and cannot detect SFFs,

3.3 SDN traceroute: Tracing SDN Forwarding without Changing Network Behavior

SDN traceroute proposes a tool that can query the current path taken by any packet
through an SDN-enabled network [11]. The path is traced by using the actual forwarding mechanisms

at each SDN-enabled device without changing the forwarding rules being measured.

SDN traceroute employs low-overhead probe packets to measure network paths. It uses
an algorithm to detect adjacent switches by tagging packets using VLAN priority field. Then, using
the results of this algorithm, it installs a small number of high-priority rules in every switch in the
network, which allows them to trap probe packets coming from neighbors switches. Every switch
contains rules to detect adjacent switches and steer packets to the controller. SDN traceroute injects

a probe packet into the network to start tracing the route.

Considering a switch perspective, the probe packets will be detected and sent to the
controller when it came from any adjacent switch. The controller detects the switch hop and
change the tag to the current switch, and then sends the packet back to switch. Therefore, the

packet is normally processed until it reaches the next switch in the topology.

This is an interesting solution as it does not change the installed rules in the switches.
However, it is not complete enough to trace packets in an SFC environment because it just detects
switch hops and cannot detect middleboxes. In this solution, the probe packets must traverse the
controller, what causes additional delay in the packet path. Therefore, it is not possible to measure
latency throughout the chain path.

3.4 NetSight

NetSight [28] is an extensible platform that captures packet histories and enables appli-
cations to concisely and flexibly retrieve packet histories of interest. NetSight assembles packet
histories using postcards-event records created whenever a packet traverses a switch. Each postcard

contains a copy of the packet header, the switch ID, the output ports, and a version number for the

36

switch forwarding state. To generate postcards, NetSight prototype transparently interposes on the

control channel between switches and controllers.

NetSight is implemented on servers and stores all network headers traversing the network
switch hops. NetSight uses a regex-like language to concisely specify paths, switch state, and packet
header fields for packet histories of interest. NetSight exposes an API for applications to specify,

receive, and act upon packet histories of interest.

Atop of NetSight is built an interactive network debugger, called ndb [27]. The objective
of ndb is to provide interactive debugging features for networks, analogous to those provided by gdb
for software programs. The idea is to use ndb to help pinpoint the sequence of events leading to a

network error, using familiar debugger actions such as breakpoint, backtrace, etc.

This solution takes into account SDN networks and intent to diagnostic bugs that affect
the correctness of forwarding, including control logic errors, network race conditions, configuration
errors, unexpected packet formats, and switch implementation errors. This work does not consider
SFC environment and detection of service functions. It might be challenging to leverage this work
for SFC backtrace generation, due its heavy implementation requiring dedicated servers to store all

network headers.

3.5 Network Verification

Another related research field is the static analysis and verification of network environments
that also can be used to perform verifications in the SFC architecture. There are initiatives [21,
33,55] that perform static and symbolic analyses of the network data plane with the objective to
detect connectivity and isolation errors from the network. These works build models out of network
topology and exercise these created models with symbolic network packets to predict errors, network

misconfiguration and reachability.

3.5.1 SFC-Checker

SFC-Checker [56] is an SFC troubleshooting and diagnosis tool with the objective of
checking the forwarding behavior of an SFC. The goal is to examine whether flows are forwarded
correctly according to the high level service chaining policies. SFC-Checker can check the sequence
of NFs any flow should traverse, check the correct implementation of intent policies and check
network function configurations. This work has the objective to a build static analysis framework to

capture the problems before the deployment.

SFC-Checker leverages existing middlebox abstract models and generalize them to a for-
warding model for network functions. Each NF is described using a flow table and a state machine.

The temporal relationship between states are described using a Finite State Machine (FSM). SFC-

37

Checker also develops an algorithm for the static analysis of stateful networks. It proposes a Stateful
Forwarding Graph (SFG) that encodes both the state transitions and forwarding behavior. There-
fore, an algorithm is developed to automatically generates SFGs from Network Function tables and
FSMs.

An SFC tool using network verification and static analyses is complementary to an SFC
trace tool, which intends to check the actual behavior of a deployed SFC. Although SFC verification
tools are useful to detect possible network failures, these initiatives try to predict errors before the
network deployment or SFC deployment. On the other hand, an SFC trace tool intends to detect

root causes of possible errors in an online manner.

3.6 Review

The presented related works reinforce that network packet trace is useful to detect net-
work errors and reduce the time spent on the troubleshooting process. However, most of the tools
do not take into account an SFC environment, while the SFC traceroute proposal (Section 3.1)
is tightly coupled with the use of NSH header, which is just one technique that is far from be-
ing supported for hardware devices and VNFs. Moreover, none of these tools collects timestamp
measurements, which is also useful to detect congested paths. An SFC tracer proposal should fill
this gap in the SFC environment and generate traces agnostic to SFC technique. The collection of
timestamp measurements enables the latency computations throughout the chain path. Table 3.1
shows a summarization of the related works analyzing the following aspects which are considered as

requirements for a complete SFC tracer solution [12].

the tool need to be adapted to fit in the SFC environment;

» the tool is able to collect timestamp measurements in each hop;
= the tool is able to detect NFs;

= the tool is able to detect SFFs;

= the tool can be deployed in an ordinary SFC deployment with no spread software agents nor

extra equipments

» the tool can be used in a deployed chain in an online manner;

Table 3.1 also includes network verification works exemplified by SFC-Checker [56]. The
Table shows if the specific aspect are compatible or supported by the tools, and a comment if some

adaptation is needed.

None of the presented tools have the desirable features shown on the table regarding an

SFC environment. The presented SFC tools have different scopes of the current proposal, such as

38

Table 3.1: Related work comparison.

SFC envi- no extra on-the-fly
collects detects detects
Work ronment . agents nor measure-
timestamp NFs SFF .
awareness equipments ments
SFC .
Traceroute Just for no yes yes yes yes
NSH chains
[45]
Tracebox no no es no es es
SDN need to be
traceroute no no added in the yes yes yes
[11] model
NetSight need t.o be
no yes added in the yes no yes
[27]
model
Network
Verification o no os os no no
/ SFC- y y y

Checker [56]

SDN networks or just the identification of middleboxes

. SFC Traceroute is only suitable for NSH,
SFC-checker is a tool for static analyses with the purpose to predict errors before SFC deployment.

The remainder tools are no meant to be used in an SFC environment and may need hard adaptation

to be used in this scope.

39

4. SFC PATH TRACER

This work aims to propose a solution for troubleshooting SFC-enabled domains through
packet trace generation, called SFC Path Tracer. SFC Path Tracer uses tagged probe packets to
generate path traces in an SFC environment. It is also able to count network packets per flow
and measure latency along the chain path. SFC Path Tracer is agnostic to SFC encapsulation
mechanism employed, enabling its utilization in different SFC implementations and providing a trace

which includes all network components in the SFC path.

4.1 Architecture

Figure 4.1 shows the high-level architecture of SFC Path Tracer and where it is placed
in a network deployment. In a controller/orchestration layer, SFC Model represents the SFC con-
figuration including all its elements (SFF, SFs, SFP, etc). SFC Driver is an SFC implementation
with the responsibility to read the configuration in the SFC Model and then install SFC rules in
the Network Elements. SFC Path Tracer reads all SFC forwarding rules installed in the switches
and based on that, it adds trace rules to mirror network packets. The trace generation will be
triggered only by probe packets (pp). Therefore, probe packets that traverse a target chain will be
mirrored to the trace tool. SFC Path Tracer is able to detect these probe packets (Probe Packet
Listener). Moreover, it analyses probe packets header information and compares it against the SFC
configuration to generate the trace (Trace output). Therefore, it is possible to identify chain hops
elements and then generate a meaningful trace, with switches and network functions names as they

were configured in the SFC Model.

/ Control / Orchestration Layer \
SFC Driver SFC
Model
SFC Path Tracer
|| SEC forvarding rules SFC Rules Path Trace ::> Trace
[~ ~fracerules ~~ Reader Analyzer output
SFC b
rules Probe Packet Probe Packet
Generator Listener
7 4 /

Figure 4.1: SFC Path Tracer architecture.

In order to be detectable, probe packets must be flagged. A probe packet will traverse a
target chain as any other network packet. However, whenever a probe packet leaves a forwarder

switch to its next hop, it is also mirrored to the trace tool. Probe packets can be identified in

40

many ways, using optional header fields or encoding meaningful information in the L2 header. The
probe packet is used to identify a specific traffic and consequently get its trace. The use of probe
packets allows a filter mechanism to restrict the steering of network packets to the SFC Path Tracer.

Therefore, avoiding possible saturation of the channel that connects switches with the trace tool.

4.2 Use case

Service Function Chaining has several types of use cases. In all use cases, an SFC trace
tool provides valuable data that eases the troubleshooting process. In order to exemplify the SFC
Path Tracer use case, we chose a common service based on SFC use cases for network security [36].
Figure 4.2 shows a use case where a chain is configured to reach the Firewall and IPS (Intrusion

Prevention System).

From Figure 4.2, the client sends probe packets and, through trace rules, installed by SFC
Path Tracer, probe packets are mirrored to the controller in every chain hop. In the controller,
SFC Path Tracer gets information from the received packets and identifies the switch ID and the
next hop. It uses this information to compare against the configured SFC model and then generate
a packet trace. The expected behavior from the example of Figure 4.2 is the following: traffic is

classified by SCF, then it traverses the configured chain ending in a server.

Mirrored network traffic [SFC Path Tracer]
----------- i controller]
Normal network traffic b ToA 473 T4y Y.75
® ® NONGING) Server
out

pp
client £

@,|* @,

‘ Firewall IPS

Figure 4.2: SFC Path Tracer example use case.

The continuous line, shown on Figure 4.2, means probe packets traversing the network
elements, while the dotted line represents the mirrored probe packets being sent to the controller in
order to generate the trace path. Whenever a probe packet leaves a switch, it is also mirrored to
the controller. The packet flow sequence is identified by numbers in the figure. Each hop latency
is computed by the difference between measured timestamps. For instance, T'3 — T2 results in the

Firewall latency while T'5 — T'4 results in the IPS latency.

The resulting path trace prints all SCF, SFs and SFFs reached by the probe packets. The
trace output in the example of Figure 4.2 is SCF = SFF1 = Firewall = SFF1 = SFF2 =
IPS = SFF2. In case something is wrong with the Firewall, SFC Path Tracer updates the trace

41

output just while the packet is traversing the chain and stops at the problematic SF. Therefore, it
is possible to identify the SFC path region that is not working.

The delay for mirrored packets to travel from switches to the controller is ignored, since
this delay will be added for both 72 and T'3 from the previous example. The purpose of SFC Path
Tracer is to pinpoint problems to help network operators to troubleshoot an SFC environment. SFC
Path Tracer is not designed to be constantly executed and give precise latency information. SFC
Path Tracer provides the exact path trace traversed by probe packets. Therefore, network operators

could rapidly identify the root cause of a chain problem and save time in troubleshooting process.

4.3 Implementation remarks

SFC Path Tracer is implemented in the SDN controller layer. OpenDayLight [2] is the
chosen platform. OpenDayLight (ODL) is an open source controller with several contributors from
many companies and largely used in the SDN/NFV area. SFC Path Tracer is implemented as a
plugin in the ODL controller under the ODL SFC project [8]. The SFC modeling schema from
ODL allows the coexistence of multiple SFC forwarding implementations over different southbound
protocols. SFC Path Tracer design was evaluated using SFC implementation that uses OpenFlow
to configure switches as SFFs and SCFs in the SFC domain.

Since ODL and OpenFlow are used to evaluate SFC Path Tracer design, the OpenFlow
channel is used to send mirrored packets to the controller where SFC Path Tracer is running. ODL'’s
abstraction layer is used to watch switch rules installation and read the SFC model configuration.
OpenDayLight basic concepts, used to implement SFC Path Tracer, are presented in Section 2.6.

4.4 SFC Path Tracer implementation

SFC Path Tracer is developed as a plugin in the ODL-SFC project and it does not have
a specific model of its own. However, a YANG file is created to define trace RPCs to query trace
information or clean old trace data. SFC Path Tracer interacts with other ODL modules through the
MD-SAL layer, such as the OpenFlow plugin to install trace rules and SFC Model to get chain hop
information for the trace generation. SFC Path Tracer was initially evaluated using VLAN OpenFlow
renderer in ODL-SFC. This technique implements SFC for SF connected through L2 connectivity
(Section 2.6.3). Based on SFC Path Tracer architecture, the tool implementation is divided into four

parts: probe packet generation, trace rule installation, SFC rules reader and probe packet listener.

42

4.4.1 Probe packet generation

Trace generation is triggered by specific probe packets which are flagged in order to be
identifiable. In this implementation, probe packets are flagged by an IP header field that is not
commonly used for regular traffic and can also be used as a match field in OpenFlow rules. The
used field is the 2-bit Explicit Congestion Notification (ECN), shown in Figure 4.3. This field is part
of a modern redefinition of 8-bits ToS (Type of Service), which now is composed of 6-bits DSCP
(Differentiated Services Code Point) and the 2-bits ECN. The 2-bits set from ECN will trigger

OpenFlow rules to send packets to the controller.

IP packet header
0 4 8 16 31

‘ { —— Probe Packet identification

Figure 4.3: Probe packet identification.

Another justification to use a flagged packet is the necessity to filter packets or flows and
send it to the SDN controller. Otherwise, all traffic would have to be steered to the controller,

which could saturate the OpenFlow channel.

In order to generate an SFC trace for a specific chain, probe packets can be generated in
two ways, by the controller or in the chain input. The controller can artificially inject probe packets
in the chain input to generate the trace. A client placed behind the classifier, as chain input, can
send probe packets. Probe packets can be sent as an unique packet such as pings or can also be

part of a normal network traffic, with the classifier inserting the flag in a specific traffic flow.

In the case of inserting probe flags in a traffic flow, a sampling mechanism might be
necessary for higher throughput, to avoid saturation of the tool. The sampling mechanism can be
achieved in multiples ways. The SDN controller can dynamically create and remove OpenFlow rules
to add the probe packet flag in the packets. Techniques to watch the OpenFlow counter [10] can
also be used. Therefore, the OpenFlow counter of the sampling rule is read, and after a predefined
number of hits the rule is erased. Sampling implementation in hardware switches such as sFlow [48]
can be used to send packets to SFC Path Tracer. sFlow is a multi-vendor sampling technology
embedded within switches and routers. It provides the ability to continuously monitor application

level traffic flows at wire speed.

Probe packets might be sent over any transport layer that supports IP packets such as
UDP, TCP, or even ICMP, depending on the type of traffic the network functions are able to handle.
It is assumed that SFs being traced will not drop those probe packets. The use of ECN fields to

43

identify probe packets is an implementation choice of SFC Path Tracer in order to get the least
impact. For services that make use of ECN bits the probe packet can be identified in an alternative
way, for instance, encode information in the MAC address or tunnel optional fields (e.g. VLAN,
VxLAN). Others probe packet identification techniques may also have its limitations. The probe

packet identification could also be configurable depending on the type of traffic being traced.

442 Trace rules installation

SFC Path Tracer configures the generation of a trace for a specific SFC path by listening
to the installation of SFC forwarding rules, i.e rules installed on Transport Egress table. SFC Path
Tracer detects those rules and adds new trace rules with higher priority (p), as shown in Figure 4.4.
SFC implementation on OpenDayLight defines a pipeline of switch tables that will process network
packets. Each OpenFlow table has its purposes, such as transport ingress, path mapper, next hop
decision and finally the transport egress. SFC Path Tracer detects those transport egress rules and
adds the trace rules. The new trace rules are copies of the original egress rules, but with slightly

modified matches and actions.

In the OpenFlow match, it is added the probe packet identification, in this case, the ECN
field, in order to filter just probe packets. The OpenFlow action is changed to decrement IP TTL
(time to live) field, write the output forward port into the OpenFlow metadata field, and add an
action to forward the packet to the next table, defined as trace table. Since probe packets may reach
the controller through different paths and from different switches, TTL is decremented to guarantee
the trace ordering among hops. The output port is encapsulated into the OpenFlow metadata field
in order to trace the next hop. The information encapsulated in the metadata fiel is used to query

SFC configuration and discover the next service function destination.

Important to noticed that OpenFlow actions are applied in the specified order. Besides
the original SFC actions, the TTL is decremented and the probe packet is forwarded to its original
destination. However, the next actions write the port in the metadata field and forward packets to
the trace table. Therefore, in this moment the probe packet is mirrored. On the trace table, the
mirrored packet is matched again by ECN bits and sent to the ODL controller, where SFC Path
Tracer will be listening. Figure 4.4 shows the ODL-SFC OpenFlow tables with the added trace rules
highlighted in bold.

As SFC trace Monitor was initially evaluated using SFC VLAN OpenFlow renderer, the
trace rules shown in Figure 4.4 considers this SFC technique. For other SFC techniques, some slight

adaptation might be necessary.

44

ool Jwatch lagen

Next Hop P Do not care Go to Transport Egress table
Transport Egress p=n+l Next hop identification dec_ttl + Output : switch port +
+ ECN == Metadata = switch port + go to trace
table

p=n Next hop identification Qutput : switch port

Trace table o] ECN == Output : controller

Figure 4.4: OpenFlow rules installed by SFC Path Tracer.

4.43 SFC rules reader

Figure 4.5 shows the SFC implementation schema in ODL with the SFC Path Tracer
module plugged in. Network operators configure the SFC model [60] in ODL by entering information
regarding all SFC elements defined on the SFC architecture [26]. Once the SFC model is configured,
the RSP RPC (Rendered Service Path) is called to actually deploy the configured chain. SFC
implementations read the configured SFC model, detects which SFC technique should be used and
generates the OpenFlow rules to configure SFFs and SCFs. Figure 4.5 highlights VLAN OpenFlow
renderer being selected as SFC implementation.

As the OpenFlow plugin is used, the generated SFC rules are sent to the OF data store on
the ODL MD-SAL layer. OF data store keeps the data related to the OpenFlow plugin. OF-plugin
is responsible for listening any modification in OF data store and updating these changes in the

switches.

SFC)
Configuration J— 5 e S
RSP RPC
SFC Implementations,»”~ | "N~y . SEC
i e ! S~o !
| e ¥ model
! VLAN + MAC | !
! NSH] [TOS] [chaining | | <:|
' & ~
b i, n— ___;,,_-_'_'.’ _____ - .
OF data store (MD-SAL)

. SFC Path
OF-plugin }[Tt

Data Plane

Figure 4.5: Implementation of SFC Path Tracer rules. Dotted arrow represents possible paths while
continuous arrow represents the chosen path.

45

As shown in Figure 4.5, SFC Path Tracer also listens to OF data store changes looking
for SFC transport egress rules. These rules are detected by the OpenFlow cookie of installed rules.
OF cookie is an opaque identifier of OF rules defined on the rule installation. When detected,
transport egress rules are used to create the new trace rules with the added match and action fields.
Afterward, SFC Path Tracer writes the new rule back in the OF data store. OF-plugin detects the
OF data store changes and updates switches with the extra trace rules.

444 Probe packet listener

SFC Path Tracer must listen to packets coming into the ODL controller. SFC Path Tracer
registers a listener for incoming packets. This listener filters just probe packets flagged with ECN
bits. Figure 4.6 shown the fluxogram of probe packet listener. Once probe packet is identified from
packet-in, the packet is parsed to retrieve information such as the switch that sent the packet to
the controller, OpenFlow metadata and IP/MAC addresses. SFC Path Tracer uses these retrieved
information as inputs to read the SFC configuration and discover chain hops. From the switch
that sent the packet to the controller, it is discovered which Service Function Forward handled the
packet. From the output encapsulated in the OpenFlow metadata field, the next hop destination
(next SF) is detected. SFC Path Tracer knows the SFs and SFFs by looking the SFC data model
and finding the SFF name and the SF connected to the specific switch port. It is worth noting that
more information can be used from the income probe packet in the controller. For instance, if the
port is not present in the SFC configuration, the search might be done looking for the MAC address

from a specific SF.

Once the elements are found in the configured SFC model, the ID field from IP header
is read to uniquely identify a packet and create a new element in a trace map. According to RFC
6864, the IP identification field is a 16-bit value that is unique for every datagram for a given source
address, destination address, and protocol. Therefore, it is possible to identify a single packet among

a traffic flow enabling the use of concurrent probe packets.

The IP identification field is used to disambiguate packets in order to handle concurrent
probe packets. The trace map associates IP ID to a traced path. Therefore, the hop information is
stored in the trace map by each IP ID. In this map, every traced hop is kept linked with its input

timestamp, in other words the timestamp when packet-in reached the controller.

Through a Trace RPC, the trace map is read in order to merge identical stored paths into
the SFC trace output. In this output map, single traced paths are stored together with the counter
of packets and the timestamp of each chain hop. The collected timestamps are used to compute
the latency spent in each hop. Since IP ID field can identify 65536 packets, the process of merging
identical stored paths are done periodically in order to clean the trace map and be able to identify

the same IP ID from another packet.

46

Packet-in (Tin)

Is probe
packet?

Parse Packets

OF metadata

Trace RPC

| Compare
' Paths

Sw ID, port
SFC ——m

model ——m—m—m

SFF, SF

Discover the
hop

% create trace map
store Tin
e Update

Figure 4.6: Implementation of probe packet listener.

Create output Increment counter

4.4.5 SFC Path Tracer outputs

The output trace format is identified as [n][p; — SF'F — py] — [SF], where n is the number
of packets, p; is the ingress port in the switch and p, is the egress port. If the egress port is connected
to an SF, then the SF will be traced, otherwise, this hop is done and the process is repeated for
the next hop. For each hop, SFC Path Tracer also prints the computed average latency among all
received probe packets. Figure 4.7 shows an example of trace output for a chain segment. In this
example, seven probe packets were detected and tree hops were traced, informing the switch ports,

the next SF and the average latency for each hop.

[7] [3 - SFF - 1] - [SF1]
Avg. latency (ms)

[7] [1 - SFF - 2] - [SF2]
Avg. latency (ms)
[7][2 - SFF-3] -

Avg. latency (ms)

Figure 4.7: Example of SFC Path Tracer output.

Although the average latency is printed in the trace output, SFC Path Tracer keeps the
hop latency information for every received probe packet along with its timestamp. This information

is written in trace files in order to generate output graphs over time. For instance, in the example

47

of 4.7, a trace file is generated with seven entries for each hop containing the timestamps of each

probe packet and the hop latency computed against the previous hop timestamp.

SFC Path Tracer provides two set of data, the latency and the number of probe packets
arrived in the controller. SFC Path Tracer computes the incoming probe packet rate per second
(pp/s) in order to prevent a possible saturation of OpenFlow channel. In order to plot graphs, SFC
Path Tracer computes averages for every step in the graphs. Therefore, the output trace files are
generated with 100 entries, which enable to plot graph with 100 steps.

4.5 Service Functions compatibility with SFC Path Tracer

SFC Path Tracer works with any SFC technique that installs rules in SDN switches, being
compatible with a variety of network function types. The tool does not require any agent from SF
side. SFC Path Tracer technique allows the utilization of any IP packet that carries a probe flag,
e.g. ECN, which can be used in most transport protocols. It is just required that SFs do not drop
those packets, otherwise the probe packet flagging mechanism should be done using an alternative
approach such as encoding the probe in the MAC addresses. The probe packet information could
also be configurable, given the network operator the possibility to choose where the probe packet
flag will be encoded.

SFC Path Tracer may present compatibility issues with SFs which open new output con-
nections such as TCP proxies. In this case, the probe packet flag encoded in the packet header will
be lost and the next SFF will not recognize it as a probe packet. SFC Path Tracer also relies on
IP ID field to unique identify a packet, which in this case would also be lost. However, this can be
seen as an issue of the SFC technique itself. The SFC technique must have a mechanism to link
input and output of an SF in order to identify that the packet belongs to a specific chain. The link
between input and output could be done using outer headers such as encapsulation tunnels. SFC
Path Tracer can be adapted to act in this link level, using special bits from the tunnel mechanism

to encode the probe packet flag and identify the packet.

4.6 SFC Path Tracer in the SFC OAM framework

Operation, Administration and Maintenance (OAM) for SFC [12] discusses tool gaps to
perform OAM function on an SFC environment. The gaps are related to verifying that there is
connectivity between network elements in the chain and the continuity of those elements. Continuity
is a model where OAM messages are sent periodically to validate or verify the reachability to a given
SF or SFC. Performance and trace functions are also discussed as important functions to achieve the
OAM for SFC. Some of these gaps can be filled by SFC Path Tracer. Table 4.1 shows this SFC tools
gap analyses presented in the OAM for SFC [12]. The original analyses from SFC-OAM presents

48

this table with tool gaps for all SF and SFC functions. Table 4.1 pinpoints where SFC Path Tracer
can be leveraged to achieve the required SFC-OAM functions.

Table 4.1: OAM Tool gap Analysis [12].

’ Layer \ Connectivity \ Continuity \ Trace \ Performance ‘
Network Overlay | Ping BFD [32] Traceroute IPPM [44]
SF None SFC Path Tracer | SFC Path Tracer | SFC Path Tracer
SFC SFC Path Tracer | SFC Path Tracer | SFC Path Tracer | SFC Path Tracer

Existing tools used for network overlay does not work within the SFC environment. SFC
Path Tracer can be used to analyze continuity of a chain, with the trace generation and compute
the latency of each chain hop. With a trace generation, it is possible to infer the SFC connectivity,
however, SFC Path Tracer was not designed to test the connectivity of individual service functions.
Important to notice that SFC Path Tracer is designed to be a troubleshooting tool to assist network
operator to find problems in the chain path. SFC Path Tracer is not suitable to be executed
permanently, due to the additional traffic in the OpenFlow channel. However, SFC Path Tracer can

be leveraged to monitor SFC paths with lightweight probe pings over time.

SFC Path Tracer provides a complete solution to generate packet traces in an SFC en-
vironment. It is agnostic to the SFC encapsulation mechanism employed, enabling its utilization
in different SFC implementations, as opposed to SFC Traceroute [45]. It also provides a trace
which includes all network components in the SFC path, in contrast to Tracebox [16] and SDN

Traceroute [11] approaches.

49

5. EVALUATION

SFC Path Tracer was firstly evaluated using the SFC VLAN technique, implemented in
OpenDayLight as an OpenFlow renderer. MAC Chaining and NSH techniques are also used to
demonstrate the SFC Path Tracer compatibility. In order to generate traces, individual probe packets
and regular HT TP load are used to traverse target chains. Auxiliary tools are used to generate the

network traffic, such as hping3 !, Tsung? and iperf3.

In order to evaluate SFC Path Tracer and easily create different SFC scenarios, a framework
to emulate SFC topologies was created. These topologies may be formed by multiple hops with
different SFFs and SFs enabling the configuration of multiple chains. With this framework, it was
possible to create SFC topologies using SFC VLAN and MAC Chaining techniques. Both techniques
rely on L2 connections between SFFs and SFs. In NSH case, which is implemented using VxLAN
tunnels, SFC Path Tracer was evaluated in a different scenario, using separate VMs to run the SFF

and each SF. The evaluation framework is created upon Mininet and OpenVswitch.

5.1 Mininet

Mininet is a system for rapidly prototyping large networks in a single laptop [35]. Mininet
uses the lightweight virtualization mechanisms built into the Linux OS (Operating System), processes
running in network namespaces, and virtual Ethernet pairs. This allows Mininet to scale up to
hundreds of nodes. The main goal of Mininet is to support studies in the SDN domain, enabling
self-contained SDN prototypes in a single PC. With Mininet, users can implement a new network
feature or entirely new architecture, test it on large topologies with real traffic, and then deploy the

exact same code and test scripts into a real production network.

Mininet provides a rapid prototyping workflow to create, interact and customize a software-
defined network. With a simple command line interface (CLI) it is possible to create a network with

SDN controllers, switches and hosts. The main components of Mininet are [35]:

» Links are virtual Ethernet pair or veth pair, they act like a wire connecting two virtual interfaces.
Each interface appears as a fully functional Ethernet port to all system and application software.

Links may be attached to virtual switches or a software OpenFlow switch.

» Hosts are network namespaces or containers [38] for network state. Containers provide pro-
cesses with exclusive ownership of interfaces, ports, and routing tables. For example, two web
servers in two network namespaces can coexist in one system, both listening to private ethO
interfaces on port 80. A host in Mininet is simply a shell process moved into its own container.

Each host has its own virtual Ethernet interfaces, with its own IP and MAC addresses.

http://www.hping.org/
http://tsung.erlang-projects.org/
3 https://iperf.fr/

50

= Switches are based on software and provide the same packet delivery semantics that would be
provided by a hardware switch. Both user-space and kernel-space switches are available. An
example of a virtual switch is Open vSwitch [43]. It is an open project widely accepted in the

network virtualization area.

Controllers can be anywhere on the real or simulated network, as long as the machine on
which the switches are running has IP-level connectivity to the controller. The controller can

run inside a virtual machine, natively on the host machine, or in the cloud.

Figure 5.1 shows an example of a Mininet network emulation running in the Linux operating

system. An external SDN controller is connected via eth0, and user-space OpenFlow switch connects

both ~A2 and h3, working as hosts in containers.

root namespace

| unix socket
ofprotocol | /tmp/s1 | ofdatapath

A «

Pl 71

raw raw L I

socket socket elpe pipe

¥ \ 5 .'

(! I

[etho | g1-eth1 st-eth2 | 7 |

P 1

’]

P i

veth pair ;” veth pair I-I

TCP/SSL v |

connection P)

l h2-eth0 L h3-eth0 | 1

¥ v
host h2 namespace host h3 namespace

Figure 5.1: SDN environment example emulated by Mininet [35].

5.2 Open vSwitch

Open vSwitch (OVS) [43] is a multi-layer open source virtual switch for all major hypervisor
platforms. Open vSwitch is an OpenFlow switch. It is deliberately not tied to a single purpose, tightly
vertically integrated network control stack, but instead is re-programmable through OpenFlow [47].
It has user and kernel space implementations as shown in Figure 5.2. The first packet of specific
flow results in a miss and the kernel module directs the packet to the userspace component, which
caches the forwarding decision for subsequent packets into the kernel. The controller might be

external, such as OpenDayLight. Open vSwitch is open to programmatic extension and control

using OpenFlow and the OVSDB [46] management protocol.

51

=

é- Controller

>

e 4

------------------ QVSDB '---- OpanFlow -=============-

E / \d

o

'E ovsdb-server ovs-vswitchd

3

2 First Packet - \‘--—I-
3 g Kernel Datapath

3 Subsequent i
= Packets

Figure 5.2: The components and interfaces of Open vSwitch [47].

5.3 SFC configuration framework

In order to create an evaluation environment, a framework was built to create topologies
and configure chains on a single virtual machine. The SFC configuration framework consists in: (i)
creating an emulated environment with Linux containers and (ii) configuring SFC RESTCONFs on
ODL. The objective of this framework is to facilitate the process of SFC topology creation, allowing
the rapid deployment of multiple chains on different topologies. SFC configuration framework uses
the information of the built topology to generate SFC RESTCONFs to configure ODL with the

desirable chain. The test environment contains the following components:

= OpenDayLight (ODL) is used as the SDN Controller to configure the virtual switches (SFFs

and classifiers) to perform the chaining process.

= Open VSwitch (OVS) [43] is responsible for emulating the network switch components and

connecting hosts and service functions on the topology.

= Mininet [35] provides the network topology and containers, which are used to emulate hosts
and service functions. Mininet builds network topologies using OVS as the virtual switch and

ODL as the controller.

» Dummy service functions are implemented to test service chains. Dummy SFs receive a
network packet and just forward it to the next SFF, performing no modifications in the packet.
The dummy service function was implemented using raw sockets, which is responsible for

listening network packets and forwarding them back.

Figure 5.3 shows the test environment structure using the described elements. On top of

this infrastructure, the SFC configuration framework was built. It is responsible to easily define a

52

network topology interfacing with Mininet to create SFs and hosts. Hosts worked as chain input
and output, for instance, a client communicating with a server throughout a chain. Based on the
configured topology, SFC configuration framework generates RESTCONF APIs to configure ODL
and configuring the SFs, SFFs, SFPs, SCF and the chain. In ODL controller, the SFC Driver reads
this SFC configuration, and based on that installs OpenFlow rules in SFFs and SCFs.

Ir virtualized environment :
: I
| A 4 ‘/ﬁf
I i ' |
I 1 1 I
1 1
: : : |
. |) R X X) |
N T [S RO [
1 1 1 1] 1 1 1

Figure 5.3: Architecture of SFC configuration framework.

The SFC configuration framework implements an SFC class that handles Mininet APIs
available in Python. An API| was developed to configure the chain topology, which is responsible
to set up the Mininet topology and build RESTCONFs to configure ODL-SFC. Table 5.1 show all

methods from SFC configuration framework.

Taking advantage of the SFC configuration framework, it is possible to easily define a
variety of topologies such as shown in Figure 5.4. The figure exemplifies the use of SFC configuration
framework illustrating the framework calls to fully configure an SFC environment. Firstly, (1) SFC
class is instantiated with SFC encapsulation type and the controller IP, (2) the switches are added
(sff and scf), (3) the hosts are added to be used as chain input and output (hI and h2), (4) sfl
and sf2 are added and connected to the sff. The SFs are associated to a type of function (e.g. IPS,
Firewall) which later will be used to define the chain. Function addLink (5) creates a link between
switches to form a topology. In order to terminate the chain and deliver the traffic to the original
destination, (6) a gateway is created and connected to the classifier. Array chain (7) represents the
chain itself, formed by a list of SFs. Then, (8) the chain is added using addChain function informing
the chain name and the input classifier. Finally, (9) the chain environment is executed, where the
Mininet topology is actually created and the built RESTCONFs are deployed on ODL.

Figure 5.5 shows the resulting topology created by the framework code shown in Figure
5.4. This topology was used to perform initial tests of SFC Path Tracer. The topology consists of
a service classifier function (SCF) which will classify network traffic to traverse a chain. The chain
is formed by SFs connected to the SFF, in this case, SF1 = SF2.

53

Table 5.1: Methods from SFC configuration framework.

SFC con-
figuration Description Parameters
methods
SFC() SFC topology class is responsible to | (1) SFC encapsulation, (2) ODL IP
handle Mininet topology calls
addSw() Adds an SFF or SCF and builds related -
RESTCONF for ODL-SFC
addHost() Adds a host to work as chain in- | (1) switch where this host is connected
put/output
addSf() Adds an SF and builds related REST- | (1) switch where this SF is connected,
CONF for ODL-SFC (2) type of SF

addLink() Adds a link between two switches and | (1) switch 1, (2) switch 2
updates related RESTCONF for ODL-
SFC

addGw() Adds a gateway to terminate the SFC | (1) switch where this gateway is con-
nected

addChain() Adds an ordered list of SFs (SFC) and | (1) chain name, (2) classifier, (3) list of
builds related RESTCONF for ODL- | SFs

SFC
deployTopo() | Starts the Mininet topology and deploys -
the configured chain

sfc = SFC(sfcEncap.VLAN, ctr.IP) #(1)
scf sfc.addSw () #(02)
sff = sfc.addSw()

sfc.addHost (scf) #(3)
sfc.addHost (scf)

.__

=)

N
I

sfl = sfc.addSf(sff, 'fw') #(4)
sf2 = sfc.addsSf(sff, 'ips')
sfc.addLink (scf, sff) #(5)

sfc.addLink(scf, scf)

sfc.addGw (scf) #(6)
chain = [“ftw", 'ipar] #(7)
sfc.addChain('el', scf, chain) #(8)
sfc.deployTopo () #(9)

Figure 5.4: Code to create an SFC topology with SFC configuration framework.

5.4 Experiments description

SFC Path Tracer was evaluated using the SFC VLAN technique. The experiments were
executed over the SFC configuration framework. The experiments used to evaluate SFC Path Tracer

are:

54

Figure 5.5: Topology used to perform initial tests.

» Experiment 1, in Section 5.5, evaluates Probe packet delay using forged packets with probe
flags. Configuring a chain with multiple hops, normal and probe packets are sent to compute
the extra delay of probe packets. Therefore, it is possible to detect the impact of mirroring

packets to the controller.

= Experiment 2, in Section 5.6, presents a troubleshooting evaluation over a variety of topologies
to guarantee trace output correctness. Also, the trace output is shown in a health chain and

with a chain containing a failed SF.

» Experiment 3, in Section 5.7, evaluates the chain performance computing hop by hop latencies
using HTTP traffic. An Artificial delay is induced in network links to assure the latency
measurement correctness. The experiment is performed with a chain containing a real IPS
as one of the SFs. Also, the latency distribution over time in the IPS is shown. The load in
the IPS is changed in order to demonstrate that SFC Trace Monitor can detect the latency

variation of an overloaded SF.

» Experiment 4, in Section 5.8, presents the sampling of probe packets in order use SFC Path
Tracer with higher throughputs. Sampling is used with the objective to not mirror all packet
of a traffic to the controller and then avoiding saturation of OpenFlow channel. The CPU
load for sampled and non-sampled traffic is shown to observe the resource saving. The output

of latency distribution is compared considering sampling and non-sampling packet mirroring.

= Experiment 5, in Section 5.9, computes the probe packet rate limitation in order to avoid probe
packet dropping. SFC Path Tracer computes the incoming probe packet rate over time with
the objective to alert when there is a high rate of probe packet being sent to the controller,

what can cause wrong trace measurements.

» Experiment 6, in Section 5.10, evaluates SFC Path Tracer with other SFC encapsulation to
demonstrate the tool support for multiple SFC techniques. SFC Path Tracer is evaluated with
MAC Chaining and NSH.

5.5 Experiment 1 - Probe packet delay

In order to evaluate the delay introduced on packets that are being traced by SFC Path

Tracer, single probe packets were sent through a chain and compared with normal packets that are

55

not being traced. Using the SFC configuration framework, a topology is created with the objective
to range the number of hops in a chain in order to observe probe packet delays with multiple hops.
The SFC encapsulation technique used in the experiments is the SFC VLAN OpenFlow renderer
from OpenDayLight.

Figure 5.6 shows the largest chain used in the evaluation. This topology is formed by a
classifier and three SFFs switches, connecting three SFs each. In order to adjust the number of hops
in the chain, SFs were removed for each measurement until the smallest chain were formed just by
SFF1 and SF1. The numbers in Figure 5.6 represent the chain hops.

—
L
-

.f'"‘“\ P .F:“\ e P oy P e ,-—H-\
{ 5 { (7 {
v @ & 66 6 O ¢ O

[571]) (52 (1) (o) (o) (o) (5] (s8] (5]

|

—

) (=]

Figure 5.6: Topology used in the experiment.

Probe packets are generated using hping3 tool. This tool can create custom packets to
ping devices via UDP, TCP or ICMP. In the context of the experiments, hping3 is used to create
probe packets, i.e. IP headers with ECN bits set to one. Besides that, the probe packet carries
an UDP payload that targets a closed port. According to RFC 792, if a source cannot deliver a
datagram to a protocol module or process port, the destination may send an ICMP Port Unreachable
back to the source. The experiments use this message to calculate the Round-Trip Time (RTT),

and thus obtain the total latency of the chain.

In order to measure the delay, an UDP packet is sent through an unidirectional chain from
H1 to H2. Figure 5.7 shows the RTT for normal packets (np) that were sent over the chain with
ECN untouched and probe packets (pp) with ECN bits set. It was also evaluated the approach
used by SDN Traceroute [11] (ppc). In this approach, probe packets are sent to the controller and
forwarded back to the switches. Therefore, the controller is located in the direct path of probe
packets, since they are not mirrored. The amount of time for packets to traverse the chain is
computed collecting RTT measurements from an average 1000 pings executed in 10 cycles of 100
pings.

The additional delay of pp, compared to np, represents the cost of copying those packets in
the switches in order to send it to the controller. Since this evaluation runs on virtual switches, this
copy is notable. On hardware switches, the probe packet mirroring would have significant smaller

cost. Although there is a small extra delay for pp, this delay is significant smaller compared to SDN

56

35

30

25

20

15

Packet RTT (ms)

10

0 2 4 6 8 10 12 14
Chain hops

=np Ppc PP

Figure 5.7: Packet delay with a varying number of chain hops: normal packets (np), probe packets
(pp) and probe packet with controller in the path (ppc).

Traceroute approach (ppc). While the average of additional delay for ppc is around 2.3 ms per hop,
for pp is approximately 0.3 ms per hop. The extra cost of ppc refers to the time probe packets to
reach the controller and get back on switches. The fact that SFC Path Tracer does not introduce
the controller in the direct path of probe packets enables the possibility to flag normal network

packets, being able to generate traces of specific flows from real traffic.

5.6 Experiment 2 - Troubleshooting evaluation

SFC Path Tracer tool is useful to troubleshoot common SFC problems such as miscon-
figured policies and SFs connectivity issues. For instance, while setting up the test environment,
SFC Path Tracer made explicit several errors such as bogus SFs, wrong OpenFlow rule sets installa-
tion, and dataplane misconfiguration (e.g., disabled ports). With the use of SFC Path Tracer, such
problems were easily identified observing the SFC trace output. Figure 5.8 shows the trace output
of SFC Path Tracer from a chain with two SFF and four SFs. Figure 5.8a shows the trace output
when the chain is properly working. In this case, the chain has six hops indicated on the right with
numbers. On the left, the first number indicates that 9 probe packets were detected in each hop.
Then, the SFF is traced with the ingress and egress port from SFF. At the end of each row, the next
SF is traced, such as sfI (1). In case the next hop is other switch (3), nothing is traced. Bellow
each traced hop, its average hop delay in milliseconds is printed. Figure 5.8b shows the trace output
considering same chain but with sf3 turned off. Since the packets are dropped in sf3, the trace is
printed until reach the problematic SF. The trace output from Figure 5.8b pinpoints the SFC path

location where the packet was dropped.

57

Traceout chain-0
(9] [3 - SFF2 - 1] -[sf1] - #(1)
avg delay (1.67) Traceout chain-1
[9] [1 - SFF2 - 2] -[sf2] - #(2) [13] [3 - SFF2- 1] -[sf1] - #(1)
avg delay (1.89) avg delay (4.08)
(9] (2 - SFF2- 4] - #(3) [13] [1- SFF2 - 2] -[sf2] - #(2)
avg delay (0.10) avg delay (2.31)
[9] [3 - SFF3 - 1] -[sf3] - #(4) [13] [2 - SFF2 - 4] - #(3)
avg delay (2.89) avg delay (0.08)
[9] [1 - SFF3 - 2] -[sf4] - #(5) [13] [3 - SFF3 - 1] -[sf3] - #(4)
avg delay (5.44)
(9] [2-SFF3-4]- #(6)

(a) Output from a working chain. (b) Output from a problematic chain.

Figure 5.8: Trace Output from SFC Path Tracer.

Figure 5.9 shows a graph representation of SFC Path Tracer output. In the figure, probe
packets trace a chain composed of two SFFs and six SFs. In order to illustrate SFC path failures,
SF6 was disconnected and the link between SFF'3 and SF'5 was configured to drop half of the
traffic.

In order to generate the graph representation, the collected traces are merged considering
a known SFC path. SFC Path Tracer generates one trace output for each unique traversed path and
then count the number of packets regarding this trace output. Since a link is configured to drop
half of the packets, two trace outputs are generated similarly as shown in Figure 5.8. Therefore, the
trace outputs are merged and packet counter are combined to generate the graph representation.
From the resulting graph output, it is possible to observe that all probe packets reached the first
four SFs, 50% of the traffic is lost in between SFF3 and SE'5, and no traffic is observed between
SFF3 and SF6. Once it is detected the point where network packets are lost, it is possible to
perform a deeper investigation to quickly find the SFC path failure.

QOEOEE

0% loss 0% loss|| 0% loss 0% loss \\ 50% loss = 100%

SFF2 e SFF3

Figure 5.9: SFC Path Tracer graph output.

SFC Path Tracer accuracy regarding trace generation is verified testing the tool with fault
injections. Given a specific topology, SFs were randomly turned off in order to simulate failures in
the chain path. Therefore, the output trace generated by SFC Path Tracer was compared against

the resulted topology, with failed SFs, and then verifying the correctness of trace output.

58

5.7 Experiment 3 - Chain performance

Besides being useful to troubleshoot common SFC problems such as misconfigured policies
and SFs connectivity issues, SFC Trace Monitor is also able to characterize chain performance by
measuring the delay introduced by the chain in each packet. Therefore, it is possible to visualize a
delayed path or an overloaded service function. To enable the monitoring of a particular chain path,
the whole traffic must be flagged in order to be mirrored to the controller. In this experiment, the
classification rule that forwards packets to the chains is changed to add an extra action to set the
ECN bits. Thus, the whole traffic forwarded to the chain is traced.

To evaluate latency measurements, a bi-directional chain is configured, e.g. packets are
forwarded through a chain (upstream) and forwarded back through the same chain but in the
opposite direction (downstream). In this experiment, using the SFC configuration framework, a
chain is configured with two SFFs connecting two service functions each, as shown in Figure 5.10.
The arrows in the figure represents the upstream direction of the chain. Besides dummy SFs, this
experiment was executed with a real service function being part of the chain. We used Snort* in
IPS (Intrusion Prevention System) mode, i.e., inline through the path. In this mode, Snort analyzes
the traffic based on configured rules. Additionally, a 10ms delay was artificially added in the link
between SFF1 and SFF2 in order to emulate a path delay.

‘ client \ ‘ server \

Figure 5.10: Topology used to evaluate chain performance using SFC Path Tracer.

In the chain input, a client sends HTTP requests to download a text file from a server.
This traffic is tagged with the probe flag and classified to traverse the chain. Figure 5.11 shows the
average latency and the standard deviation of each hop in both directions of the chain, upstream
and downstream. The average is computed considering all packets from the HTTP load, which is

around 4000 for upstream and 7000 for downstream.

4 https://www.snort.org/

59

SFC Path Tracer correctly detected the delayed path between the SFFs. Besides, it is
possible to observe the average delay of each service function. For dummy SFs, the average latency
is around 4ms with higher deviation. However, for Snort the average latency is smaller than 1ms.
Dummy SFs are implemented in a single thread what may cause packet queuing, since they seri-
alize the traffic. This packet queuing can increase the introduced latency by dummy SF in higher

throughput. This is the reason it is observed a greater deviation for dummy SFs.

14
12
10
w
O
S 8
O
&
= 6
S
4
2
0 e
SF1 snort SFF - SFF SF2 SF3

B upstream W downstream

Figure 5.11: Latency measurement for each chain’s hop.

SFC Path Tracer also enables the analyzing of latency considering a particular service
function. For instance, it is possible to observe the latency distribution over time considering just
a suspicious SF. In this experiment, we observe the latency distribution on Snort, as shown in
Figure 5.12. The load of this experiment consists of a text file of 10M Bytes being downloaded
twice through the same chain of Figure 5.10 but with no delay between SFFs. Since this chain is
composed by tree dummy SFs, the reached load rate is around 500kbps.

The download is performed through a chain with an overloaded Snort. The overloading of
Snort was emulated limiting the CPU resource for its process. Firstly, the experiment was executed
with the Sort containing rules to analyze the TCP traffic (with load). Second, the same experiment
was done with no rules installed in Snort, i.e., the traffic just passes through Snort, with no traffic
analysis (no load). Figure 5.12 shows that SFC Path Tracer was able to detect the load difference in
Snort. With no load in Snort, the latency curve keeps flat bellow 1ms, while with load, it is possible
observe spikes up to 20ms of latency. Since the Snort is overload, the CPU resource is limited by
each connection. Therefore, when Snort demands the CPU resource to analyze the packets we can
observe the four latency spikes in the graph. Using SFC Path Tracer, an operator can troubleshoot

a suspicious chain and watch a particular service function that may present intermittent problems.

SFC Path Tracer stores the timestamp of each probe packet arrived in the tool. These
timestamps are used to compute the delta time between hops. Therefore, every traced hop is
associated with its hop delay. Additionally, SFC Path Tracer also measures the probe packet rate

(pp/s) over time in order to prevent saturations of OpenFlow channel. Figure 5.13 shows the rate

60

25

20

=
(0

milliseconds
=
o

0 L= ~d e PP,
0 2 4 6 8 10 12 14 16 18
seconds
with load =no load

Figure 5.12: Latency distribution on Snort.

of probe packets regarding the experiment of Figure 5.12. This measurement provides information
of any higher rate of packets reaching the controller, that could saturate the OpenFlow channel,
which interconnects switches and the controller. The saturation of the OpenFlow channel could
inject an extra delay in probe packets traveling to the controller and then providing wrong results
of latency. The saturation can also cause the packet drop, what can produce wrong trace results.
Figure 5.13 shows the probe packet rate in the controller for each hop of the chain. Since this date
was collected simultaneously with the previous experiment, the curves show the pp/s considering
Snort with load and with no load. For both measurements, the average of probe packets reaching
the controller is around 400pp/s for each hop. As this chain contain 5 hops for upstream and 5

hops for downstream, the total average rate for incoming probe packets is around 4000pp/s.

600
500
400
<
o 300
o
200
100
0
0 2 4 6 8 10 12 14 16 18
seconds
with load ==no load median (with load) ==median (no load)

Figure 5.13: Rate of probe packets per second (pp/s) reaching the controller over time. With load
represents the Snort analyzing packets, while no load means that traffic just passes through Snort
with no analysis.

61

5.8 Experiment 4 - Sampling of probe packets

In order to support chain characterization of higher throughput traffic and also save com-
pute resources, a target chain must have its traffic sampled to be traced. Instead of flagging the
whole traffic to be mirrored to the controller, just small portions of traffic are periodically flagged.
To evaluate the sampling of probe packets with SFC Path Tracer, OpenFlow rules were installed in
the classifier to add the defined probe flag to packets. These sampling rules are installed with a hard
timeout of one second, which is the minimum value allowed by OpenFlow. In OpenFlow protocol,
when the hard timeout expires, the rule is automatically deleted. Therefore, the sampling rule is

installed every 5 seconds to match a target traffic and thus achieving the probe packet sampling.

Sampling experiments were executed with Tsung, a tool used to test the scalability and
performance of IP-based client/server applications. Tsung is configured to execute HTTP GET
operations in a text file located on the server side. In this experiment, we set a limited throughput

to properly compare SFC Path Tracer outputs between sampled and non-sampled traffic.

In order to achieve a load with higher throughput, the dummy SFs are not used in this
experiment. Following the same topology scheme as the previous experiment, a chain is config-
ured with just two service functions connected to a single SFF. Two Snorts are used as SFs (e.g.,
Snortl = Snort2). Using the same chain, we execute the test twice, (i) with all packets being
mirrored to the SFC Path Tracer i.e., with no sampling, and (ii) with traffic being sampled, mirroring
packets every 1 second in a period of 5 seconds (i.e. 1 second adding the flag and 4 seconds with
no flagging). Figure 5.14 shows the CPU usage on the machine where the whole experiment is

executed, with the emulated network environment.

90

— whole traffic

80f - — sampled traffic|'

% cpu usage
w B %)) [e)] ~
o (=) =) =) o

N
o

=
o

; ; i ; i
0 50 100 150 200 250 300
seconds

Figure 5.14: CPU usage comparison of whole traffic and sampled traffic being traced.

Since the whole experiment is executed on a single machine with the emulated network

environment, when the whole traffic is traced it is observed a greater CPU consumption due to the

62

mirroring of all packets of a high throughput traffic and the parsing of this probe packets by SFC
Path Tracer. Figure 5.14 shows the Tsung monitoring from CPU usage of the whole system with a
chain load bandwidth limited in 4M Bytes/s. As expected, it is notable the CPU resource saving

when sampling the monitored traffic comparing with the whole traffic being traced.

Figure 5.15 highlights CPU consumption analyzing the SFF (OVS process) and the SFC
Path Tracer (ODL process). The percentage of CPU usage is regarding a system with four CPUs.
Therefore, full CPU usage would be 400% of CPU consumption. Figures 5.15a and 5.15¢c show
the CPU usage of OVS. It shows the system and user CPU consumption, where can be observed
the difference between sampled and non-sampled traffic due to the extra cost of packet mirroring.
Figures 5.15b and 5.15d show the CPU consumption of ODL controller. The increase of CPU
consumption represents the probe packets processing by SFC Path Tracer. It is possible to notice
that the system CPU of ODL have a significant increase comparing to OVS. In the ODL, SFC Path
Tracer creates 4 times extra threads to process the probe packets, that is why it is possible to
observe the CPU usage increase from around 15% to 75%.

100 100
90 90
80 80
> 70 5 70
a a.
O 60 O 60
£ so § so
@ @
o 40 o 40
X 3 X 30
20 20
10 10
0 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
seconds seconds
——not sampled ——sampled ——not sampled —sampled
(a) OVS system CPU usage. (b) ODL system CPU usage.
100 100
%0 90
20 80
70 70
S o
& 60 8 60
. 550
g so o
S 40 S 40
E X
30 30
20 20
0 0o &% L\
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
seconds seconds
——not sampled ——sampled ——not sampled ——sampled
(c) OVS user CPU usage. (d) ODL user CPU usage.

Figure 5.15: CPU resource consumption regarding switch and SFC Path Tracer.

It is possible to observe that the processing time from ODL takes longer than OVS due
to probe packet queuing in the SFC Path Tracer. Therefore, the remaining time of ODL processing

is regarding to the last probe packets parsing. On the other hand, the sampling process time is

63

shorter than non-sampling due to high CPU demand in the non-sampling case. Since the CPU
resource is limited, when the probe packets are not sampled the throughput presents a higher
oscillation causing the download time to take longer. Figure 5.16 shows the Tsung measurement of
the load throughput between client and server through the chain that is being traced. Again, the
measurement is performed for sampled and not sampled traffic mirroring. In both cases the load
throughput keeps nearly the same. However, it is possible to observe a higher oscillation to achieve
the defined throughput of not sampled mirroring due to high CPU demand.

35

— not sampled
— sampled

Mbps

10
0

I I I I I
50 100 150 200 250 300
seconds

Figure 5.16: The load throughput of the chain while being monitored by SFC Path Tracer.

Figure 5.17 shows the latency distribution in one of the Snorts in the chain in order to
compare the SFC Path Tracer output with sampled and non-sampled traffic. In this experiment,
we artificially limited the CPU resource of the Snort process to emulate a heavy load during the
traffic. This CPU limitation was added during the test to be able to see the heavy load transition.
The results shows no big difference on the latency distribution considering just Snort. The sampling
mechanism does not affect resulting latency output, it is possible to observe that both curves show
the increasing latency between the interval of 90ms to 190ms, when CPU resource was limited for
Snort.

5.9 Experiment 5 - Probe packet rate limitation

The probe packet rate limitation can be observed from the pp/s curve provided by SFC Path
Tracer. The data from this experiment was collected during the previous experiment from Section
5.8. Figure 5.18 shows the rate of probe packets (pp/s) being sent to the controller (packet-in)
during the previous experiment with two Snorts. The graph is related to a single chain hop. The
median curves of sampled traffic is bellow 500pp/s, while the median curve of non-sampled traffic is
around 1800pp/s. Additionally, it is possible to observe that the non-sampled curve reaches around

2000pp/s and then goes down to almost Opp/s. This behavior indicates that we reached the limit

64

milliseconds
=
(9]

D K \ N N N

0 50 100 150 200 250 300

seconds
not sampled —sampled

Figure 5.17: Normal and sampled monitored traffic.

rate for processing probe packets. Since the SFC Path Tracer is not able to process this amount of
probe packets per second thought packet-in, some packets are lost and thus, it is possible to observe

such behavior as shown in the graph of Figure 5.18.

2500

2000

1500
(8]
Q
)
S
Q
Q

1000

500 |~ o LA\ AVA ~— " N
0
0 50 100 150 200 250 300
seconds
not sampled —sampled median (not sampled) — -median (sampled)

Figure 5.18: Rate of probe packets per second (pp/s) per chain hop reaching the controller over
time.

SFC Path Tracer collects incoming probe packets considering a particular hop, as shown
in Figure 5.18. Since the tested chain has 3 hops for upstream and also 3 hops for downstream, the
total number of incoming probe packets need to be multiplied by 6. From the valley in the graph
after the rate of incoming packets reach around 2000pp/s, it is possible to infer that SFC Path
Tracer is able to process around 12000pp/s (2000 * 6hops).

In order to demonstrate the probe packet rate limitation, we configure the same chain with
UDP traffic considering just upstream direction, i.e. 3 hops. To control the bandwidth load, iperf
was executed on the client side (input of the chain), targeted to the server at the end of the chain.

Figure 5.19 shows the measured incoming pp/s regarding a single chain hop. The tested bandwidth

65

is increased every 40 seconds. Again, it is possible to observe the probe packet dropping after
reaching 4000pp/s. Considering this chain has 3 hops, the same probe packet limitation is observed
(4000 * 3hops = 12000pp/s). From observations of OF counter and number of packets arrived in
the controller, it is possible to conclude that the ODL buffers that stores packet-in messages are

overloaded and causing the probe packet losing.

8000
7000
6000
5000
£ 4000
o
o
3000
2000

1000

0
0 50 100 150 200 250

seconds

Figure 5.19: Rate limit of probe packets per second (pp/s) using tree hops.

It is important to notice that SFC Path Tracer is a proof of concept and it was not
implemented to achieve the most effective performance. The limitation found is considering the
current testbed, with a single machine. The limitation can be different in other deployments with
ODL clustering for example. This implementation uses the OpenFlow channel to send probe packets
to the controller, what have known limitations. In a real deployment that may demand a higher
measurement precision with bigger sampling windows, a dedicated VxLAN tunnel can be used to
forward probe packets to SFC Path Tracer.

5.10 Experiment 6 - SFC Path Tracer with other SFC encapsulation techniques

SFC Path Tracer was designed to be agnostic regarding the SFC encapsulation technique.
Some SFC encapsulation may require small adaptation in the trace rules. However, the high-level
design may be used for almost every known SFC encapsulation. In order to demonstrate the SFC
Path Tracer compatibility, the tool was also tested with MAC Chaining and NSH.

5.10.1 MAC Chaining

Similarly to SFC VLAN, MAC Chaining also implements an SFC encapsulation for Service

Functions with L2 connectivity. However, instead of encapsulating the chain ID in the TOS field

66

from IP header, MAC Chaining encapsulates it in the MAC addresses. MAC Chaining is implemented
in OpenDayLight, as a different OpenFlow renderer and follows the defined ODL-SFC pipeline tables
for OpenFlow rules. No adaptation was needed to support SFC Path Tracer.

Using the implemented SFC configuration framework, an SFC topology is created similarly
to Figure 5.10, with four dummy SFs and two SFFs. SFC correctly traced probe packets, presenting
the same output as SFC VLAN. In order to exemplify a comparison between the two encapsulation
techniques, Figure 5.20 shows the latency distribution for both SFC VLAN and MAC Chaining
techniques. The chain is exercised with UDP pings carrying the probe flags. Dummy SFs may
introduce latency in the chain with significant variation among tests, as can be seen by standard
deviation error bars. Therefore, the collected latency values in SFs hops are illustrative, with the
intention to show the possibility of such comparisons using SFC Path Tracer. As both SFC techniques
are similar, the latency values are in the same range of milliseconds per hop.

From the figure, it is possible no notice that MAC Chaining traced the classifier switch
while SFC VLAN did not. Although it is possible to trace the classifier in both techniques, SFC VLAN
does not include the classifier in the SFC model. In the SFC VLAN, the classifier is implemented
through scripts that directly install classification rules in the OVS switches and thus, with no visibility
to SFC Path Tracer to trace it.

5

4.5
4
3.5
35 3
c
3
@ 2.5
E 2
1.5
1
0 *
SCF - SFF SF1 SF2 SFF - SFF SF3 SF4 SFF-SCF

W SFC-VLAN ® MAC Chaining

Figure 5.20: Latency comparison of SFC Path Tracer using SFC VLAN and MAC Chaining encap-
sulation techniques.

5.10.2 Network Service Header

Network Service Header (NSH) is implemented in OpenDayLight also as a different Open-
Flow renderer. This implementation uses VXLAN-GPE tunnels to forward NSH packet among SFFs
and SFs. SFC Path Tracer was slighted adapted to work with NSH chains. In the SFC VLAN and

67

MAC Chaining, the output port is encoded in OpenFlow metadata field to be used as input to query
the SFC configuration and discover the next chain hop. For NSH-VxLAN this cannot be used since
a single tunnel port may reach different destinations depending on the remote IP. Therefore, this
remote tunnel IP could be encoded inside metadata field for the next hop identification. However, in
this implementation, SFC Path Tracer does not use OpenFlow metatada for NSH packets. Instead,
SFC Path Tracer parses NSH header from incoming probe packets, and based on NSP and NS/
fields from NSH, it is possible to identify chain and hop identification and thus, query the SFC

configuration for the trace output.

Unlike other experiments, this test does not use the SFC configuration framework due to
the necessity to configure a topology with VXLAN tunnel connecting SFs and switches. Figure 5.21
shows the configured chain. As chain input and output, H1 and HZ2 are deployed as containers in
the same machine of the classifier (SCF), they are connected via L2 connectivity. SFF, SFI and
SF2 are separated VMs interconnected via VxLAN-GPE tunnels. In the SFs, Python scripts are

executed to parse and reply incoming NSH packets.

Figure 5.21: NSH topology.

In the same way as the previous experiment, UDP pings are sent through the chain and
traced by SFC Path Tracer. SFC Path Tracer correctly generated a trace as: SCF = SFF =
SF1 = SFF = SF2 = SFF = SCF. The registered latency for both SFs is 15ms each. The
latency is greater comparing with the latency values of SFC VLAN and MAC Chaining (Figure 5.20)
due to VXLAN overhead and mainly due to SFs implementation in Python to parse NSH packets.

The dummy SFs used in the other experiments were implemented in C.

5.10.3 SFC encapsulation remarks

SFC Path Tracer was evaluated using SFC ODL implementation such as SFC VLAN, MAC
Chaining, and NSH. However, SFC Path Tracer design can be applied to others SFC encapsulation
methods. For instance, it is trivial to adapt it to Five-tuple methods, SFC techniques that use

flow identifiable information to forward SFC traffic. In cases where ECN is impossible to be used

68

to flag probe packets, MAC address fields could encode probe packets flagging information. SFC
Path Tracer can also be adapted to work with IPv6 headers, flagging probe packets information in
extension headers. SFC technique that relies on traditional switch routing protocols such as 802.1q
(VLAN) and MPLS may not be trivial to adapt the SFC Path Tracer as it may not use OpenFlow
or any other SDN protocol.

Table 5.2 shows how probe packets flagging information could be encoded (ECN and
MAC columns) considering different encapsulation techniques. Although SFC Path Tracer was just
evaluated using ECN as probe flag, just chaining the trace rule installation and the filter mechanism
for probe packet listener it is possible use MAC or other probe encapsulation method. OpenFlow
column shows the SFC encapsulation mechanisms that may be implemented using OpenFlow protocol

and thus being possible to support SFC Path Tracer, otherwise SFC Path Tracer cannot be adapted.

Table 5.2: Supported SFC encapsulation methods.

(@)

SFC methods OpenFlow ECN
NSH [24]

NSH L2

Segment Routing (VLAN) [17]
Mac Chaining [14]

Five-tuple

MPLS-SPRING [58]

Port Chain [9]

SFC VLAN [7]

xx\'\x'\\\%

AN RIANENE A NAN
NN 3NN N[XS

69

6. CONCLUSION

This work presented the SFC Path Tracer, a troubleshooting tool for SFC environments.
SFC Path Tracer proved to be useful for identifying problems in SFC paths configuration. The variety
of problems make it difficult for the operator to troubleshoot a problematic chain path. Therefore,
packet trace information reduces the debugging time by pinpointing the origin of a possible problem.
SFC Path Tracer also provides latency information hop by hop enabling the identifications of delayed

links and overloaded SFs.

SFC Path Tracer was implemented in OpenDayLight, an SDN controller largely used in
the NFV/SDN area. Therefore, SFC Path Tracer was evaluated in a totally emulated environment
without the requirement of any type of simulation. The implemented SFC configuration framework
enables the creation of this emulated environment. With this framework, it is possible to easily
create an SFC environment and automatically deploy the SFC configuration on different topologies
containing SFFs and SFs.

The strategy of decrementing TTL field from IP packets ensures correct ordering of network
elements in the trace. This enables the possibility to mirror probe packets to SFC Path Tracer, which
does not introduce significant delays in probe packets. The usage of IP identification field to identify
single probe packets among the traffic flow enables the use of concurrent probe packets, allowing
the trace generation of regular traffic and not only forged pings carrying the probing flag. For regular
network traffic, it is possible to use sampling techniques to add the probe flags in the packets and

thus, measure chain performance and compute chain latency hop by hop.

SFC Path Tracer was designed to be a troubleshooting tool to assist network operator in
the process of debugging chain path. SFC Path Tracer is not suitable to be executed constantly with
regular network traffic due to the extra traffic generation in the channel that interconnects switches
and the controller, where SFC Path Tracer is running. However, with lightweight probe pings, SFC
Path Tracer does not introduce significant overhead in the chain path. Therefore, SFC Path Tracer
can be constantly used to give precise trace information, containing all reached network elements

by network packets in the chain.

SFC Path Tracer was published in the student demo track of IEEE NFV-SDN conference
in 2016 at Palo Alto/USA. The SFC Path Tracer tool was also accepted as a short paper in the
IEEE IM conference that will be in Portugal in May 2017.

SFC Path Tracer presented limitations to handle probe packets at high throughput. This
tool was implemented as a proof of concept and it was not optimized regarding performance and
concurrent thread management. To be able to process a higher rate of probe packets, instead of
using the OpenFlow channel, a VxLAN tunnel could be used to send probe packets to the tool.
Another aspect that could be improved is the use of alternative techniques of probing encapsulation.
This could be configurable and then increase the SFC Path Tracer compatibility. SFC Path Tracer

70

could also be implemented using P4 ! protocol instead OpenFlow, what could give more flexibility

for possible new features.

SFC Path Tracer was just evaluated in an emulated environment in order to easily create a
variety of topologies to assure correct tracing in different scenarios. An extension of this work could
evaluate this tool in a more static environment but in real deployments with virtual machines, using
real network functions and even physical OpenFlow switches. This can be done deploying service
chains using OpenStack integrated with OpenDayLight. This SFC integration with OpenStack is
planned for the next OpenDayLight release.

SFC Path Tracer can be leveraged to add new features for future works. SFC Path
Tracer just collects measurement data and does not perform any type of automatic verification.
This measurement data can be used to extent SFC Path Tracer and verify SFC paths in the SFC
configuration. Based on the traced output, the tool could examine the SFC configuration and
automatically confirm the SFC path correctness. A future work could also use this trace output for
automatic verification such as ping SFs, check switch connectivity with SFs or even rewrite SFC
OpenFlow rules. Latency data also can be used to perform monitoring such as SLA verification and

alert generation of a delayed path.

1 http://p4.org/

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

71

BIBLIOGRAPHY

“ContexNet: Subscriber Aware SDN Fabric enabling NFV". (Accessed on 12/05/2016),
Retrieved from: https://www.hpe.com/h20195/v2/GetPDF.aspx/c04725726.pdf.

“Lithium | opendaylight”. (Accessed on 04/09/2016), Retrieved from: https://www.
opendaylight.org/.

“MD-SAL Wiki". (Accessed on 05/18/2016), Retrieved from:
https://github.com/BRCDcomm /BVC/wiki/MD-SAL.

“OpenDaylight Controller: MD-SAL Architecture”. (Accessed on 01/28/2017), Retrieved from:
https://wiki.opendaylight.org/view/OpenDaylight_ Controller: MD-SAL:Architecture.

“Service Function Chaining Home - Service Function Chaining - OPNFV Wiki". (Accessed
on 11/22/2016), Retrieved from: https://wiki.opnfv.org/display/sfc/Service4+Function+
Chaining+Home.

“Service Function Chaining — OpenDaylight Documentation Boron documentation”. (Accessed
on 12/21/2016), Retrieved from: http://docs.opendaylight.org/en/stable-boron/user-guide/

service-function-chaining.html.

“Service Function Chaining:Lithium User Facing Features - OpenDaylight Project”. (Accessed
on 05/18/2016), Retrieved from: https://wiki.opendaylight.org/view/Service_Function\
_ Chaining:Lithium_User_Facing_Features#SFCOFL2.

“Service Function Chaining:Main - OpenDaylight Project” (Accessed on 11/22/2016),
Retrieved from: https://wiki.opendaylight.org/view/Service_Function_Chaining:Main.

“Service Port Chain Workflow documentation”. (Accessed on 09/03/2016), Retrieved from:
http://docs.openstack.org/developer/networking-sfc/port_chain_system_and_ flow.html.

Afek, Y.; Bremler-Barr, A.; Landau Feibish, S.; Schiff, L. “Sampling and large flow detection
in SDN". In: ACM SIGCOMM Computer Communication Review, 2015, pp. 345-346.

Agarwal, K.; Rozner, E.; Dixon, C.; Carter, J. “SDN traceroute: Tracing SDN forwarding
without changing network behavior”. In: 3rd workshop on Hot topics in software defined
networking, 2014, pp. 145-150.

Aldrin, S.; Pignataro, C.; Krishnan, R. R.; Ghanwani, A.; Akiya, N. “Service Function Chaining
Operation, Administration and Maintenance Framework”, Internet-Draft draft-aldrin-sfc-oam-

framework-02, Internet Engineering Task Force, 2015, work in Progress.

Bjorklund, M. “YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF)", RFC 6020, RFC Editor, 2010.

72

[14] Bottorff, P.; Fedyk, D.; Assarpour, H. “Ethernet MAC Chaining”, Internet-Draft draft-fedyk-

sfc-mac-chain-01, Internet Engineering Task Force, 2016, work in Progress.
[15] Carpenter, B.; Brim, S. "Middleboxes: Taxonomy and Issues”, RFC 3234, RFC Editor, 2002.

[16] Detal, G.; Hesmans, B.; Bonaventure, O.; Vanaubel, Y.; Donnet, B. “Revealing middlebox

interference with tracebox™. In: Internet Measurement Conference, 2013, pp. 1-8.

[17] Dolson, D. “VLAN Service Function Chaining”, IETF (Internet Engineering Task Force)
Internet-Draft, draft-dolson-sfc-vlan-00, 2014.

[18] European Telecommunications Standards Institute (ETSI). “Network Functions Virtualization:
Introductory White Paper”. (Accessed on 06/10/2016), Retrieved from: https://portal.etsi.
org/nfv/nfv_white_ paper.pdf, 2012.

[19] European Telecommunications Standards Institute (ETSI). “Network Functions Virtualisation
(NFV); Architectural Framework”. (Accessed on 07/20/2016), Retrieved from: http://www.
etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf, 2013.

[20] Farrel, A. "Service Function Chaining”. (Accessed on 07/21/2016), Retrieved from: http:
//datatracker.ietf.org/doc/charter-ietf-sfc/.

[21] Fayaz, S. K.; Yu, T.; Tobioka, Y.; Chaki, S.; Sekar, V. “BUZZ: testing context-dependent
policies in stateful networks”. In: 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), 2016, pp. 275-289.

[22] Fundation, O. N. “Software-defined networking: The new norm for networks”. (Accessed on
03/10/2016), Retrieved from: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf, 2012.

[23] Garcia, B. R. “OpenDaylight SDN controller platform”, Master’s Thesis, Universitat Politécnica
de Catalunya, 2015.

[24] Garg, P.; Quinn, P.; Manur, R.; Guichard, J.; Kumar, S.; Chauhan, A.; McConnell, B.; Smith,
M.; Wright, C.; Elzur, U.; Halpern, J. M.; Henderickx, W.; Nadeau, T.; Majee, S.; Melman,
D. T.; Glavin, K.; Agarwal, P. “Network Service Header", Internet-Draft draft-quinn-sfc-nsh-07,

Internet Engineering Task Force, 2015, work in Progress.

[25] Greenhalgh, A.; Huici, F.; Hoerdt, M.; Papadimitriou, P.; Handley, M.; Mathy, L. “Flow
processing and the rise of commodity network hardware”, ACM SIGCOMM Computer
Communication Review, vol. 39-2, 2009, pp. 20-26.

[26] Halpern, J.; Pignataro, C. “Service Function Chaining (SFC) Architecture”, RFC 7665, RFC
Editor, 2015.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

73

Handigol, N.; Heller, B.; Jeyakumar, V.; Maziéres, D.; McKeown, N. “Where is the debugger
for my software-defined network?” In: 1st workshop on Hot topics in software defined networks,
2012, pp. 55-60.

Handigol, N.; Heller, B.; Jeyakumar, V.; Mazieres, D.; McKeown, N. “| know what your packet
did last hop: Using packet histories to troubleshoot networks™ In: 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), 2014, pp. 71-85.

Hemid, A. “Facilitation of the OpenDaylight Architecture”. (Accessed on 03/18/2016),
Retrieved from: http://mc-lab.inf.h-brs.de/projects/sdn/OpenDayLight.pdf, 2015.

Jacquenet, C.; Boucadair, M. “An IPv6 Extension Header for Service Function Chaining”,
Internet-draft, IETF, 2015.

Jammal, M; Singh, T.; Shami, A.; Asal, R.; Li, Y. “Software defined networking: State of the
art and research challenges”, Computer Networks, vol. 72, 2014, pp. 74-98.

Katz, D.; Ward, D. “Bidirectional Forwarding Detection (BFD)", RFC 5880, 2010.

Kazemian, P.; Varghese, G.; McKeown, N. “Header space analysis: Static checking for
networks”. In: 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), 2012, pp. 113-126.

Kumar, S.; Tufail, M.; Majee, S.; Captari, C.; Homma, S. “Service Function Chaining Use Cases
In Data Centers”, Internet-Draft draft-ietf-sfc-dc-use-cases-04, Internet Engineering Task Force,
2016, work in Progress.

Lantz, B.; Heller, B.; McKeown, N. “A network in a laptop: rapid prototyping for software-
defined networks”. In: ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1-6.

Leung, K.; Wang, E.; Felix, J.; lyer, J. “Service Function Chaining Use Cases for Network
Security”, Internet-Draft draft-wang-sfc-ns-use-cases-01, Internet Engineering Task Force,
2016, work in Progress.

Lopez, D.; Homma, S.; Dolson, D.; Boucadair, M.; Liu, D.; Ao, T.; Vu, V. A. “Hierarchical
Service Function Chaining (hSFC)", Internet-Draft draft-dolson-sfc-hierarchical-06, Internet
Engineering Task Force, 2016, work in Progress.

Ltd.,, C. “LXC Linux containers”. (Accessed on 7/22/2016), Retrieved from: https://

linuxcontainers.org/.

McKeown, N.; Anderson, T.; Balakrishnan, H. “OpenFlow: Enabling Innovation in Campus
Networks”, ACM SIGCOMM Computer Communication Review, vol. 38-2, 2008, pp. 69-74.

Napper, J.; Haeffner, W.; Stiemerling, M.; Lopez, D. R.; Uttaro, J. “Service Function Chaining
Use Cases in Mobile Networks”, Internet-Draft draft-ietf-sfc-use-case-mobility-06, Internet

Engineering Task Force, 2016, work in Progress.

74

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

ONF. “OpenFlow-enabled SDN and Network Functions Virtualization”. (Accessed on
04/28/2016), Retrieved from: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/solution-briefs /sb-sdn-nvf-solution.pdf, 2014.

OpenDayLight. “"OpenDaylight Platform”. (Accessed on 05/10/2016), Retrieved from: https:
//www.opendaylight.org/.

OpenVswitch. “Open vSwitch". (Accessed on 7/19/2016), Retrieved from: http://openvswitch.
org/.

Paxson, V.; Almes, G.; Mahdavi, J.; Mathis, M. “Framework for IP Performance Metrics”, RFC
2330, RFC Editor, 1998.

Penno, R.; Quinn, P.; Pignataro, C.; Zhou, D. “Services Function Chaining Traceroute”,
Internet-Draft draft-penno-sfc-trace-03, Internet Engineering Task Force, 2016, work in
Progress.

Pfaff, B.; Davie, B. “The Open vSwitch Database Management Protocol”, RFC 7047, 2013.

Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.; Zhou, A.; Rajahalme, J.; Gross, J.; Wang,
A.; Stringer, J.; Shelar, P.; et al.. “The design and implementation of open vswitch”. In: 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), 2015, pp.
117-130.

Phaal, P.; Panchen, S.; McKee, N. “InMon Corporation’s sFlow: A Method for Monitoring
Traffic in Switched and Routed Networks”, RFC 3176, RFC Editor, 2001.

Quinn, P.; Guichard, J. “Service Function Chaining: creating a service plane via network service
headers”, Computer, vol. 11-47, 2014, pp. 38—44.

Quinn, P.; Kreeger, L.; Lewis, D.; Yong, L.; Xu, X.; Elzur, U.; Smith, M.; Garg, P.; Manur,
R.; Maino, F.; Agarwal, P.; Melman, D. T. “Generic Protocol Extension for VXLAN", Internet-
draft, Internet Engineering Task Force, 2015.

Quinn, P.; Nadeau, T. “Problem Statement for Service Function Chaining”, RFC 7498, RFC
Editor, 2015.

Rosa, R.; Siqueira, M.; Rothenberg, C. E.; Barea, E.; Marcondes, C. “Network function
virtualization: Perspectivas, realidades e desafios”, SBRC-Simpésio Brasileiro de Redes de
Computadores e Sistemas Distribuidos, 2014.

Sekar, V.; Ratnasamy, S.; Reiter, M. K.; Egi, N.; Shi, G. “The Middlebox Manifesto: Enabling
Innovation in Middlebox Deployment™ In: 10th ACM Workshop on Hot Topics in Networks,
2011, pp. 21.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

75

Sherry, J.; Ratnasamy, S.; At, J. S. “A survey of enterprise middlebox deployments”. (Accessed
on 03/12/2016), Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
379.3064, 2012.

Stoenescu, R.; Popovici, M.; Negreanu, L.; Raiciu, C. “SymNet: scalable symbolic execution
for modern networks”. In: ACM SIGCOMM Computer Communication Review, 2016, pp. 314-
327.

Tschaen, B.; Zhang, Y.; Benson, T.; Benerjee, S.; Lee, J.; Kang, J.-M. "SFC-Checker:
Checking the Correct Forwarding Behavior of Service Function Chaining". In: Network Function
Virtualization and Software Defined Networks (NFV-SDN), IEEE Conference, 2016, pp. 134-
140.

Wells, A. T.; Krol, E.; Plzak, R. “FYI on Questions and Answers Answers to Commonly
AskedNew Internet User Questions”, RFC 1594, RFC Editor, 1999.

Xu, X.; Li, Z.; et al. “Service Function Chaining Using MPLS-SPRING", Internet-draft, IETF,
2015.

Yang, X.; Zhu, L.; Karagiannis, G. “SFC Trace Issue Analysis and Solutions”, Internet-Draft

draft-yang-sfc-trace-issue-analysis-01, Internet Engineering Task Force, 2016, work in Progress.

Zhou, D.; Penno, R.; Quinn, P.; Li, J. "Yang Data Model for Service Function Chaining”,
Internet-Draft draft-penno-sfc-yang-14, Internet Engineering Task Force, 2016, work in

Progress.

*»8.¢

=

Af

v X
“Bges

marista PUCRS

Pontificia Universidade Catdlica do Rie Grande do Sul
Pré-Reitoria Académica
Av. Ipiranga, 6681 - Prédio 1 - 32 andar
Porto Alegre - RS - Brasil
Fone: (51) 3320-3500 - Fax: (51) 3339-1564
E-mail: proacad @pucrs.br
Site: www.pucrs.br/proacad

