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INCREASING MEMORY ACCESS EFFICIENCY THROUGH A
TWO-LEVEL MEMORY CONTROLLER

ABSTRACT

Simultaneous accesses generated by memory clients in a System-on-Chip (SoC) to a sin-
gle memory device impose challenges that require extra attention due to the performance bottleneck
created. When considering these clients as processors, this issue becomes more evident, because the
growth rate in speed for processors exceeds the same rate for memory devices, creating a performance
gap. In this scenario, memory-controlling strategies are necessary to improve system performances.
Studies have proven that the main cause of processor execution lagging is the memory communication.
Therefore, the main contribution of this work is the implementation of a memory-controlling archi-
tecture composed of two levels: priority and memory. The priority level is responsible for interfacing
with clients and scheduling memory requests according to a fixed-priority algorithm. The memory
level is responsible for reordering requests and guaranteeing memory access isolation to high-priority
clients. The main objective of this work is to provide latency reductions to high-priority clients in a
scalable system. Experiments in this work have been conducted considering the behavioral simulation
of the proposed architecture through a software simulator. The evaluation of the proposed work is
divided into four parts: latency evaluation, row-hit evaluation, runtime evaluation and scalability
evaluation.

Keywords: Memory, Memory Controller, DRAM, DDR4.





AUMENTANDO A EFICIÊNCIA DE ACESSO À MEMÓRIA ATRAVÉS DE
UM CONTROLADOR DE MEMÓRIA DE DOIS NÍVEIS

RESUMO

Acessos simultâneos gerados por múltiplos clientes para um único dispositivo de memória
em um Sistema-em-Chip (SoC) impõe desafios que requerem atenção extra devido ao gargalo gerado
na performance. Considerando estes clientes como processadores, este problema torna-se mais
evidente, pois a taxa de crescimento de velocidade para processadores excede a de dispositivos de
memória, criando uma lacuna de desempenho. Neste cenário, estratégias de controle de memória
são necessárias para aumentar o desempenho do sistema. Estudos provam que a comunicação com a
memória é a maior causa de atrasos durante a execução de programas em processadores. Portanto, a
maior contribuição deste trabalho é a implementação de uma arquitetura de controlador de memória
composta por dois níveis: prioridade e memória. O nível de prioridade é responsável por interagir
com os clientes e escalonar requisições de memória de acordo com um algoritmo de prioridade fixa.
O nível de memória é responsável por reordenar as requisições e garantir o isolamento de acesso à
memória para clientes de alta prioridade. O principal objetivo deste trabalho é apresentar um modelo
que reduza as latências de acesso à memória para clientes de alta prioridade em um sistema altamente
escalável. Os experimentos neste trabalho foram realizados através de uma simulação comportamental
da estrutura proposta utilizando um programa de simulação. A análise dos resultados é dividida em
quatro partes: análise de latência, análise de row-hit, análise de tempo de execução e análise de
escalabilidade.

Palavras Chave: Memória, Controlador de Memória, DRAM, DDR4.
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1. INTRODUCTION

In the last decades, technology has presented to the society an enormous amount of so-
phisticated devices that integrate and bring comfort to people’s lives. Computers have significantly
reduced in size and improved in speed, turning into portable devices, and facilitating its use on a
daily-basis, incorporating as personal objects, both for work and recreation. At the same time, large
servers store a significant amount of information available to users through a single click. Modern so-
ciety is surrounded by computers, equipments that stopped being simple calculating machines to turn
into essential everyday elements. They have turned into faster and more accessible devices, steadily
reducing in size and energy consumption. This evolution is accompanied by a crescent innovation,
guided by consumers that demand even more versatile products.

Digital communication started transferring data, voice, and image, evolving high-speed
connection networks for both desktops and mobile. Computational systems in this era are ubiquitous
and participate in daily tasks. These systems are present in domestic, industrial and service equipments,
being smart cars, smartphones or even smart cities. They generate numerous interconnected devices
that create the Internet of Things (IoT) [AD11]. Each modern device presents multiple cores, memory
levels and I/O interfaces that connect each other through a communication architecture and compose
a Multiprocessor System-on-Chip (MPSoC).

The extensive connectivity created by significant amounts of exchanged information between
digital devices leads to a considerable volume of data constantly being stored and accessed. The storage
subsystem of computer systems is composed of a memory hierarchy that comprises multiple levels
of memory devices that cooperate with the core processors to achieve desirable performances. This
memory subsystem also requires accesses to external memory devices that implement higher storage
capacities, but lower response speeds. The interface between such hierarchy levels requires a complex
controlling architecture called Memory Controllers (MC).

The exploration of various approaches of memory controller architectures requires multiple
studies that range from behavioral models to low-level hardware implementations. They need to take
into account various limitations of the current project design methods and memory technologies. This
master’s dissertation aims to present a two-leveled memory controller model capable of improving
the performance of particular applications in a multi-processed system based on predefined priorities.
The solution presented in this work implements state-of-the-art memory access scheduling algorithms
in coordination with bank prioritization techniques. The following sections describe the challenges
for the implementation of complex hardware designs and the abstraction levels related to it. Besides, it
presents the performance gap that exists between processors and memories, and in the end, it presents
the motivation, objectives, and contributions aimed at this work.
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1.1 Computer System’s Project

The VLSI1 project is a crescent challenge. As foreseen by G. Moore in 1965, the complexity
of integrated systems doubles every two years [Moo06], due to the increase in transistor size in a single
chip. This exponential growth in the number of transistors, which is possible by their reduction in size,
creates an increase in complexity during circuit integration. The complexity improvement is reached
with the advancement of tools and techniques used during project development. Although, the growth
in size and speed of transistors do not directly imply in improvement of the system computational
capacity.

The difference between the existent number of transistors theoretically available in a chip
and the capacity of using them is known to be the productivity gap, as presented by Bonatto [Bon14].
Researchers point out that the difference in productivity will only be surpassed if the project method-
ology were modified. Currently, high-complex circuits are still projected through low-level hardware
descriptions, like Register-Transfer Level (RTL) and state machines. Some alternatives to reduce this
productivity gap is the implementation of higher-level description methods and the accession of a
system-level design [Pim16].

According to Keating [Kea11], we are currently in the third VLSI project revolution, char-
acterized by the behavioral analysis of complex applications using high-level hardware and software
representations combined. The computer system comprises hardware and software layers that are
implemented and validated in various abstraction levels.

1.1.1 Abstraction levels

The automation of the VLSI project design is presented as the main solution to reduce the
productivity gap. Although, this process requires a simplified presentation of the hardware modules,
allowing the description of more complex systems. These automation steps require the use of different
abstraction and description levels. As proposed by Suzim [Suz81], the MPSoC description levels
create a project flow that starts from a high-level implementation up to the layout of the transistor.
Each level comprises the implementation of an algorithm in a hardware or software language.

In many studies, such as [AG11][RLP+11][SKKD12], the authors prefer to describe their
work in a high-level abstraction language and use hardware simulators implemented as software to
study the behavior of their architectures. Such simulators present an advantage over the hardware
descriptions for providing a simpler way to represent complex systems with significant lower imple-
mentation efforts. These can be considered high-level hardware representations or software programs
that simulate the behavior of a certain system; languages like SystemC and/or C++ are commonly
used to represent such levels.

1Stands for Very Large Scale Integration.
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1.2 Processor-Memory Performance Gap

The speed of microprocessors outgrows the speed of memories and data-storing disks, which
infers in a performance gap created by the latency of data accesses. The chart illustrated in Figure
1.1 presents a comparison between the performance evolution of processors and memories. The
image presents examples of desktop processors and SDRAM memory modules released in the past
three decades. The performance discrepancy between both technologies is notable, and this variation
negatively affects the system efficiency. Despite presenting high bus frequencies, modern Double-
Data Rate (DDR) memories still internally operate at lower rates; therefore, several idle clock cycles
are necessary between consecutive load or store operations. For example, considering an access of
a 3GHz processor to a DDR4-2400 memory that internally operates at 300MHz [Jed16b]. For each
single memory access, the processor would use 1 clock for accessing the memory, and would need
to stay 10 clock cycles in idle waiting for the response. This difference in performance represents a
significant cost to pay.
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Figure 1.1: Performance evolution for processors and DRAMs. The memory frequencies presented in the labels of this
plot consider data-bus frequencies. Memory internal clock frequencies are considerably smaller, therefore, explaining the
performance gap [Jed16b]. Source: data extracted from [Car02][Li16][Mic16c].

Modern SDRAM devices implement burst techniques and high-bandwidth data-bus con-
nections to compensate for internal low-frequency operations. The independent bank organization of
DDR memories allows the parallelization of accesses and the increase of bandwidth. Cache memories
are used between the processor and the main memory, attempting to improve computational efficiency.
In addition, with the introduction of parallel programming, multi-task computer systems can execute
multiple tasks simultaneously, reaching a significant computational gain without modifying the target
architecture [BNP+14].

The implementation of embedded memory controllers allows the exploration of many
hardware architectures to improve memory accesses and/or guarantee time requirements. These
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MCs implement complex circuitry that comprises multiple request-handling techniques to improve
processor-memory communication.

1.3 Motivation

According to Shao [Sha06], memory accesses are the main cause of execution lagging for
processors. High memory access latencies create unnecessary instruction stalls and severely degrade
the performance of applications. Multi-task computer systems that share one or more memory devices
face a common issue. According to Moscibroda and Mutlu [MM07], the competition for memory
access by multiple clients diminishes application performances and increase overall latencies. The
main reason for this behavior is the scheduling of multiple requests to distant memory addresses,
requiring a stressful set of memory operations that present latency escalation.

The study conducted by Reineke et al. [RLP+11] has proven that the memory device, con-
trary to most works, can be seen as a multi-resource system that can be shared by multiple applications
without needing to face bank interferences. This characteristic creates a memory controlling system
that provides client access isolation and relies directly on the behavior of the application. The dis-
tribution of the memory device into resources presents restrictions and scalability limitations, which
are imposed by device characteristics, such as the number of banks. Therefore, a client arbitration
technique may be required to create a higher level scheduling system.

1.4 Objectives

The main purpose of this master’s dissertation is the proposal of a two-level memory
controller model that reduces memory access latencies by guaranteeing bank access isolation for
predefined clients. To help on the achievement of this goal, this project focuses on the accomplishment
of the following items:

• To compile a solid and objective document about state-of-the-art DRAM technologies and
memory controllers.

• To implement a front-end arbitration algorithm that divides clients into priority levels.

• To implement a back-end scheduling technique that guarantees memory isolation to predefined
clients.

• To propose a scheduling technique to support modern DDR4 technologies.

• To evaluate controlling levels and guarantee latency reductions.

• To evaluate system scalability.
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1.5 Contribution and Innovation

The main contribution of this work is the implementation of a memory controller that allows
performance improvements of clients based on priorities predefined by higher levels (i.e., kernel). The
client selection is performed through a fixed-priority arbitration, implemented in coordination with
a starvation-aware module. Aiming to ensure high performances throughout lower memory access
latencies, the proposed memory controller implements a bank privatization technique that allows
high-priority clients to acquire exclusive access to a determined number of memory banks, increasing
row-hits and diminishing row-conflicts.

The major innovation of this work is the utilization of the proposed memory controller
alongside the emerging DDR4 SDRAM. Few works in the literature focus on using this memory
technology, mainly because it presents significant architectural changes when compared to its prede-
cessors, i.e., DDR3 SDRAM. These changes introduce additional time restrictions that increase the
complexity of memory controllers and require more sophisticated access algorithms.

The implementation of a memory controller that ensures low latencies for high-performance
clients can be used in coordination with a scheduling subsystem that implements priority levels on
a kernel. General-purpose systems normally do not implement such priority levels on hardware;
therefore, establishing a reliable connection between both layers may lead to the exploration of high-
performance architectures.

1.6 Document Structure

This work is organized as follows. Chapter 2 presents the main concepts of memory subsys-
tems, memory hierarchies and a detailed description about the state-of-the-art DRAM technologies
and functionalities. Chapter 3 introduces memory controller techniques available in the literature and
discusses related works. Chapter 4 presents the arbitration techniques used in the proposed memory
controller and discusses the implementation methods. Chapter 5 presents the simulation environment
used for the evaluation of the memory controller, including the benchmark selection and simulator val-
idation. Chapter 6 evaluates the results of the proposed architecture under many simulation scenarios.
Finally, Chapter 7 presents the conclusions and directions for future works.
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2. MEMORY SUBSYSTEM

The memory is one of the essential elements for the proper functionality of a computer
system. The memory hierarchy is a fundamental part of an MPSoC project, and allows the exploration
of high-performance circuits. Conveniently, this hierarchy is designed considering the following
structure: cache (SRAM1 or eDRAM2), main memory (DRAM) and disk. Despite being the most
used hierarchy in computer projects, it still does not follow the evolution of processors.

Computational systems are migrating to complex platforms with a considerable amount of
processing elements. An MPSoC comprises multiple separate subsystems that interact with each
other through predefined communication protocols, and use a memory hierarchy to manage the
information. An efficient memory subsystem must consider access competition, data buffering,
scheduling algorithms, access granularity, and scalability when integrating different kinds of memory
technologies [BNP+14]. There are three kinds of CMOS memories: SRAM, DRAM and Flash.
These technologies are fabricated through different processes and present different characteristics.
Therefore, they present different aspects of volatility, speed, area, power consumption and other costs.
The main reason to create a memory hierarchy is the locality reference [Bon14], meaning that it allows
the storage of the same data in different memory levels with different capacities and access latencies.

Considering the crescent complexity of modern systems, VLSI projects need to be divided
into isolated subsystem projects. Therefore, it is possible to define a memory subsystem that comprises
a memory hierarchy. Although, the memory subsystem is not solely composed of different memory
modules, it requires the implementation of mechanisms that support protocol conversions and multiple
clock domains. The memory subsystem consists of a set of on-chip and off-chip memories, distributed
along the system elements as local or shared devices. Figure 2.1 depicts a simplified diagram of a
modern memory subsystem with four cache levels, main memory and storage disk.
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Figure 2.1: Simplified diagram of the hierarchical levels that compose the memory subsystem. The main memory and
storage disk sizes are considered for a single device. Multiple devices can be added to increase capacity. Source: adapted
from [Bon14] and updated with [Int17].

The memory subsystem is defined as the set of heterogeneous elements that creates a
redundant data-storage structure [Bon14]. The memory closer to the core is more frequently accessed,
requiring to present lower area and higher speeds. The memory further from the core presents higher

1SRAM stands for Static Random Access Memory
2eDRAM stands for embedded DRAM, a closer-to-core SDRAM structure currently used by the new generation of

Intel processors (Haswell) [Int17].
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capacity, but it is slower, presenting lower access rates during the system execution. Between these
two memory types there can be other hierarchy levels, projected to supply the needs of the target
system.

2.1 DRAM

This section introduces the key features and functionalities of the DRAM technology,
presenting the basic concepts and internal structure.

2.1.1 DRAM Evolution

The Dynamic Random Access Memory (DRAM) have been continuously evolving in the
past decade, creating a series of generations that present a meaningful improvement in storage capacity
and data-bus speeds. Its first appearance was in 1965 when it was patented by Dennard [Com16].
Years later, in 1993, the Joint Electron Device Engineering Council (JEDEC) introduced a new
specification of the memory including a clock sign. From this moment on, it was known as the
Synchronous DRAM (SDRAM). Until today, the JEDEC is responsible for creating the specification
of new memory technologies arising from the research industry.

In 1996, it was presented the first Double-Data Rate (DDR) device, using both rising
and falling edges of the clock signal to transfer data. This technology introduced the data prefetch
architecture that allowed the load of consecutive data positions in a burst manner. For this model, the
prefetch buffer size is 2n, meaning that one access returned two data-words [Mic16a]. The following
DDR specifications were DDR2 (2003) and DDR3 (2007), implementing the prefetch 4n and 8n,
respectively.

Later in 2012, JEDEC announced the DDR4 specification, presenting high-bandwidth bus
and high data transfer rates. While the DDR3 can achieve data transfers between 800 to 2400 mega-
transfers per second (MT/s), DDR4 modules allow transfers ranging from 1600 to 3200 MT/s [Jed16b].
Past DDR modules presented up to eight banks, while the DDR4 introduces the 16-bank architecture
with bank-groups. The bank-group technique allows DDR4 memories to access banks physically
located far from each other, in a parallel manner, without any noise interference. It compensates for
the prefetch technique that is maintained as 8n, like DDR3. Other important changes on the DDR4
generation are the supply voltage reduction3, command-address parity, Cyclic Redundancy Check
(CRC), Data-Bus Inversion (DBI), new refresh modes, temperature awareness, and more [S+13].

The semiconductor manufacturers Hynix, Micron and Samsung were the first to start pro-
duction of DDR4 devices. Samsung announced the fabrication of 4Gb DDR4 devices with 1.2V in
August 2013, using 20nm technology. Micron started the fabrication of 4Gb and 8Gb DDR4 1.2V

3Power supply ranges from 1.05 to 1.2 volts. The DDR3 was between 1.2 and 1.65 volts.
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devices using the TwinDie technology in 2014 [Mic16d]. Currently, DDR4 is being mass produced
by many manufacturing companies and is presented as in early adoption phase. The market trends
presented by Xilinx [Sch15] foresee that DDR4 devices will reach other memory technologies in just
a few years.

Other than that, DDR memories contemplate other branches aside desktop and servers, such
as low-power DDR (LPDDR) and graphics DDR (GDDR). The LPDDR presents low-power and low-
heat DDR implementations and is targeted to portable devices, such as smartphones. It has presented
four generations within the past few years: LPDDR (2009), LPDDR2 (2011), LPDDR3 (2013) and
LPDDR4 (2014). Meanwhile, the GDDR memories are targeted to graphic processing units (GPUs).
Its latest release is the GDDR5X, which holds the record for fastest DDR device available on the
market, reaching to 96GB/s.

Another promising DRAM trend is 3D stacking. These memories use the Chip-on-Wafer-
on-Substrate (CoWoS) techniques that use the Through Silicon Vias (TSV) technology to integrate
and stack multiple chips into a single substrate, containing inter-chip and pin connections. This
architecture allows a higher interconnection density, reducing the global connection distance and the
associated RC charge. It results in better performances and lower energy consumptions. Among
the architectures that present this technology are the HMC (Hybrid Memory Cube) [Sch15], HBM
(High-Bandwidth Memory) [Jed15] and WideI/O (v1 and v2) [Jed14].

Table 2.1 wraps up the DDR memory technologies presented in this section, highlighting
some important parameters such as release date, frequency, and transfer data rate. The table considers
a 64-bit data-bus size interface for the calculation of data rates.

Table 2.1: Evolution of DDR SDRAM devices. Source: DDR devices [Mic16c], LPDDR devices [Mic12][Jed16a] and
GDDR devices [Mic12][Nvi16].

Technology Voltage (V) Bus Width Density Bus Frequency (MHz) Transfer Rate (MT/s) Data Rate (GB/s) Year

Desktop and Server SDRAM

SDR 3.3 x4, x8, x16, x32 64MB to 512MB 66.7 to 133 66.7 to 133 0.5 to 1 1993
DDR 2.5 to 2.6 x4, x8, x16 256MB to 1GB 100 to 200 200 to 400 1.6 to 3.2 1996
DDR2 1.55 to 1.8 x4, x8, x16 512MB to 4GB 333 to 533 667 to 1,066 5.3 to 8.5 2003
DDR3 1.35 to 1.5 x4, x8, x16 1GB to 16GB 667 to 1,066 800 to 2,400 6.4 to 19.2 2007
DDR4 1.05 to 1.2 x4, x8, x16 4GB to 16GB 1,067 to 1,600 1,600 to 3,200 12.8 to 25.6 2014

Low-Power SDRAM

LPDDR 1.2 to 1.8 x16, x32, x64 512MB to 8GB 133 to 200 333 to 400 2.6 to 3.2 2009
LPDDR2 1.1 to 1.8 x16, x32, x64 512MB to 16GB 208 to 533 800 to 1,066 6.4 to 8.5 2011
LPDDR3 1.2 x32, x64, x128 8GB to 32GB 800 to 933 1,600 to 1,866 12.8 to 14.9 2013
LPDDR4 1.1 x32 8GB to 16GB 1,600 3,200 25.6 2014

Graphics SDRAM

GDDR2 2.5 x4 1GB 400 to 500 800 to 1,000 6.4 to 8 2003
GDDR3 2.0 x4 4GB 500 to 800 1,000 to 1,600 8 to 12.8 2004
GDDR4 1.5 x4, x8 4GB 800 to 1,484 1600 to 3,200 12.8 to 23.2 2005
GDDR5 1.35 to 1.6 x32 2GB to 8GB 900 to 1,375 5,000 to 8,000 40 to 80 2013
GDDR5X 1.35 to 1.5 x32 8GB 1,067 to 1,500 10,000 to 12,000 80 to 96 2016
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2.1.2 DRAM Device

The DRAM device is composed of a set of banks, which are indexed by a set of rows and
columns. This way, to access a data-word4, it is necessary to translate the processor physical address
into bank, row and column coordinates. Many chips are combined to form a Dual In-line Memory
Module (DIMM). DIMMs comprise multiple DRAM chips and make the memory product that we
see available on stores; it is characterized by the existence of pin connections on both sides of the
device, different from old technologies such as the SIMMs (Single In-line Memory Module), which
presented bus connections on only one side of the device. SDRAM devices allow bank parallelization
to compensate for reduced internal frequencies. Figure 2.2 presents the bank distribution considering
multiple chips on a DIMM. During a memory access, multiple chips can be triggered to return the
requested data. It depends on the burst configuration and the memory technology. In modern DRAM
devices, each side of the DIMM is called rank. Ranks are seen as independent DRAM structures that
share the same DIMM and can be accessed in parallel presenting minimal access restrictions when
compared to the parallelization of internal banks.

Bank 0
Bank 1

Bank n
...

DIMM

Figure 2.2: Bank distribution on a DIMM. Source: created by the author.

Memory accesses are made in a particular way, following a sequence of commands respecting
predefined time intervals. Initially, the target bank and row are selected, following, the column of
the respective row. During the access, the target row is copied into an internal buffer known as the
row-buffer, or sense-amplifier. This row-buffer is accessible by a multiplexing module that implements
the prefetch technique previously discussed. When the row-buffer contains the information of a row,
we may say that it is active. The operation of copying the information into the row-buffer is known as
activate. An active row-buffer is available to receive read or write operations.

Each bank contains its row-buffer; separate bank accesses are independent of each other
and can be performed simultaneously. Upon receiving a closing command, the row is removed from
the row-buffer and reallocated back to the bank. This closing operation is known as precharge. The
internal structure of the DRAM, as well as an illustrative representation of its main operations, is
presented in Figure 2.3. It comprises two address decoders: row and column. The row decoder selects
a line from the target bank, transferring its data to the row-buffer. This bank is classified as open. The
column decoder selects the target column to connect with the data in/out bus. In addition, the internal

4Data-word is a set of bits of the same size as the width of the data-bus.
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structure of DRAMs supports the activation of multiple banks. In practice, the DRAM memory can
operate with all banks in open state [Bon14].
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Figure 2.3: Internal DRAM structure. Source: created by the author.

The DRAM also implements the refresh command, which is used for updating the infor-
mation contained in each cell of each bank in the memory structure. The DRAM cell is composed
of a 1T1C structure that comprises a capacitor and a transistor, as seen in Figure 2.4. As a physical
characteristic of capacitors, continuous discharge creates the possibility of losing information along
time. The refresh command solves this problem by updating the data contained in each memory
capacitor periodically. Each memory device presents a characteristic refresh cycle, but is a basic
feature of all DDR generations the full memory refresh in a period of 64ms [M+13].

Transistor

Address Line

Capacitor

Bit Line

Figure 2.4: Internal DRAM cell structure (1T1C). Source: created by the author.
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2.1.2.1 Page Policy

The term Page refers to the information contained in the row-buffer. In most devices, the
size of a page is the same of a row. The page policy states whether to close or maintain a page open in
the DRAM. An effective memory controller page policy is important to minimize power consumption
and increase system performance [Bla13].

Page policies are directly linked to the concept of row-hit, row-empty and row-conflict. A
row-hit occurs when the request address is contained within the current open page in the row-buffer.
Row-hits provide the lowest access latency possible for the memory module. Meanwhile, row-empty
occurs when the request address aims a bank with closed row-buffer, and when the address aims a
row-buffer that is currently holding a page different from the target row, it is called row-conflict.

The most common page policies used by memory controllers are closed-page, fixed open-
page and adaptive open-page. The closed-page policy ensures that the memory controller will close
the row-buffer page after every access. They guarantee a fixed execution time for every memory access
and are commonly used to provide real-time guarantees.

The fixed open-page policy leaves the row-buffer page open for a fixed amount of cycles
after the last read or write operation. This timeout interval can be predefined during design time or
an initial configuration. The adaptive open-page policy leaves the row-buffer page open for a flexible
amount of time, depending on certain parameters (e.g., access rate, power consumption, etc). These
last two page policies are commonly used by high-performance memory controllers that do not seek
real-time guarantees. Only open-page policies are capable of exploring row-hits.

2.1.2.2 Bank-Groups

The bank-group was first introduced by the GDDR5, and was borrowed by DDR4 and
GDDR5X technologies. In these architectures, a set of banks is physically isolated from each other,
composing bank-groups. Accesses to one bank-group does not corrupt or create noise interference in
another. More specifically, the activation of one set of row-buffers associated to a bank-group does not
corrupt the others. The inclusion of this technology in DDR devices allowed simultaneous accesses to
high number of banks using higher frequencies, although, it increased the complexity of the memory
controller, since additional time restrictions were added. Two main bank-group modes exist: two
and four bank-groups. For DDR4 devices with x16 bus-width, banks are organized into two bank
groups of eight banks each, meanwhile, for x8 and x4 DDR4 bus-width, the banks are divided into
four bank-groups of four banks each [GCAG16].

2.1.3 DRAM Data-bus Technology

In a DRAM, the read and write commands are used to transfer data blocks with configurable
sizes defined by the burst-length (BL) parameter. The burst access is triggered by a single command
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and BL is previously configured during the initialization of the device. The data sequence considered
is given by the address of the request, which indicates the initial data of the burst. For example, in case
of accessing column 5, to a memory configured with BL=4, the address sequence returning is 5-6-7-8.
If the same memory device is configured with BL=8, the address sequence would be 5-6-7-8-1-2-3-4.
The burst always accesses a predefined number of elements, which are always contained within the
open row in the row-buffer.

This architecture is called n-bit prefetch. For every bit accessed there are n correspondent
bits that will follow. This way, DRAM generations allow data transfers to be n times faster than its
internal frequencies. This technology was developed so memory interfaces could evolve in access
speed and bandwidth, when compared to the internal memory core. Figure 2.5 presents a block
diagram of a 2n prefetch.
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Figure 2.5: Input and output of a 2n prefetch architecture. Source: created by the author.

The introduction of the prefetch technology allowed the internal memory circuitry to remain
unchanged over many DDR generations. The main modifications are focused on the in/out interface
parallelization, capacity and differential amplifiers [BNP+14]. The main advantage of this technique
is the increase in data-bus speed that allows the improvement of memory access bandwidth.

2.1.4 DRAM Access

DRAM accesses are performed through a combination of commands sent to the memory in
coordination to the address bus. A set of commands respecting certain time restrictions is required
to execute read or write operations. These time restrictions are imposed by the internal memory
architecture that operates at lower frequencies when compared to the external interface. The memory
efficiency relies on well-defined time intervals that dictate the limitations of the device. As previously
stated, five commands compose the set of available operations of DRAMs. These commands are
activate, read, write, precharge and refresh.
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2.1.4.1 Activate Command

The activate command copies the target line into the row-buffer, which has enough space
to accommodate one full line per activation. Two parameters are used to define the time intervals
associated with the activate command: tRCD and tRAS. The minimum delay time required to perform
a read or write operation is called row to column delay (tRCD). After this delay, the row-buffer data
is available to read and write operations through the data-bus. The other timing parameter is the row
access strobe time (tRAS), which represents the minimum time the row must stay activated before
closing it. No operation on the DRAM device can take less than tRAS.

A set of activate commands can be issued to different banks, improving the memory perfor-
mance by parallelizing banks. Although, consecutive active parameters must respect the row-to-row
delay (tRRD). In modern DDR SDRAM devices, all memory banks are allowed to stay open simulta-
neously, although there is a time limitation during their activation, which is called four-bank activation
window (tFAW). The tFAW parameter indicates a time window that allows the activation of only four
banks. If more banks need to be activated, this time window must be respected. For example, if one
bank is activated at clock cycle T1, tRRD later another bank can be activated, although, the fifth bank
can only be activated at cycle T1+tFAW, which is greater than T1+4xtRRD.

2.1.4.2 Read Command

The read command is used to move a data segment from the row-buffer to the in/out data-bus.
This command is associated with three timing parameters: tCAS, tCCD and tBURST. The column
access strobe (tCAS) parameter, also known as column latency (tCL), is the required time for the
memory module to transfer the response data from the row-buffer to the data-bus after receiving the
read command. The burst time (tBURST) is associated with the prefetch technique, corresponding
to the number of cycles necessary to transmit the complete data burst. Commonly, tBL is half of the
configured burst length. Finally, the column-to-column delay (tCCD) determines the minimum delay
time between consecutive read or write5 commands. The complete read operation is composed of
tCAS + tBURST. After a read operation, a precharge command can be issued to close the respective
row-buffer after tRTP (read to precharge) cycles.

2.1.4.3 Write Command

The write command transfers the data information from the data-bus into the row-buffer,
and consequently, into the memory matrix after a precharge. The write data-burst must be placed
on the data-bus tWL (write latency) cycles after the write command is performed. In modern DDR
SDRAM devices tWL=tCL-1. The data placed on the data-bus are stored in the memory matrix after
a precharge command. To perform this command, the write recovery delay (tWR) must be respected.
Therefore, the complete write operation takes tWL + tBURST + tWR cycles to be completed.

5The tCCD is only applied to consecutive access of the same kind (read or write). Accesses of different kinds present
extra penalties.
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2.1.4.4 Precharge Command

The precharge command marks the end of the row-access cycle. To access a new row, the
precharge command must be executed. It transfers the information contained in the row-buffer, back
to the memory matrix. This operation restarts the sense-amplifiers that compose the row-buffer, and
prepares memory rows to a new activation. The row precharge delay (tRP) denotes the duration time
of a precharge comman; during this interval, no other operation can be issued to the bank. The time
parameters tRAS and tRP compose the row cycle time (tRC), which represents the minimum time
interval between the memory activation and its closure.

2.1.4.5 Refresh Command

The characteristic leakage of capacitors is compensated by the periodical refresh operation
controlled by the memory controller. The refresh cycle time (tRFC) parameters determine the required
time for the memory to refresh one complete row. Higher the number rows, more refresh commands
are necessary to update all the banks. Modern DRAM memories require the complete memory refresh
in an interval of 64ms, therefore, for a module with 32,768 rows, 512 refresh commands need to be
issued within this time. Another important parameter for the refresh command is the refresh interval
(tREFI). This parameter indicates the minimum interval between refresh commands.

Low-power DDR devices present flexible refresh policies that allow the memory controller to
refresh separate banks in separate times, improving bank parallelism. Up to DDR3, memory modules
executed refreshes in parallel, disabling commands for all the banks during tRFC cycles. With the
release of DDR4, a larger flexibility was integrated. These devices introduced the Fine-Granularity
Refresh (FGR). A mechanism that allows the memory to select between three refresh modes during
the initialization sequence; these are 1x, 2x and 4x. The 1x mode is equal to the one in use by past
DDR generations. Meanwhile, the 2x and 4x modes allow the refresh of only 1/2 and 1/4 of the the
row at each command, respectively. These new modes infer in lower tRFC delays, but the frequency
of refresh commands is increased. The work presented by Mukundan [M+13] proved that, overall
performance-wise, the 1x mode is still better.

2.1.4.6 Command Dependencies

The interaction between commands is formed by the command sequence issued to the
memory, respecting time limitations to guarantee a reliable manipulation of information. After
an active command, consecutive operations can be executed on the same open row. Within these
operations there are read after read, write after write, read after write and write after read. No
precharge command is necessary. Although, the exchange of command types result in delay penalties.
The memory device requires a minimum time to change the direction of the data-bus for different
command types. Therefore, between a read and a write there must be read to write delay (tRTW)
cycles, and between a write and a read there must be write to read delay (tWTR) cycles.
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Figure 2.6 presents the relationships between these commands. Dependencies that affect
only the target bank are called intra-bank dependencies, while those that can affect other banks are
called inter-bank dependencies. Some time parameters do not necessarily create dependencies. Table
2.2 recaps all time parameters presented in this chapter.
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Figure 2.6: Timing dependencies between commands and banks. Dashed lines indicate inter-bank dependencies. Source:
created by the author.

Table 2.2: Summary of DDR SDRAM time parameters. Source: created by the author.

Time Parameters
tRCD Row to Column Delay tWR Write Recovery
tRAS Row Access Strobe tRP Row Precharge
tRRD Row to Row Delay tRC Row Cycle time
tFAW Four-bank Activate Window tRFC Refresh Cycle
tCL/tCAS Column Access Strobe Latency tREFI Refresh Interval
tCCD Column to Column Delay tRTW Read to Write time
tBURST Burst transference time tRTW Write to Read time
tWL Write Latency

2.1.4.7 DDR4 Command Dependencies

The presentation of the DDR4 technology brought considerable advances to the SDRAM
area. The introduction of bank-groups allowed burst accesses to 16-bank devices in parallel and
presenting reduced interference. Although, this new technology also presented new time parameters,
which increased the project complexity of memory controllers targeting this device. These new time
parameters define that different bank-group accesses must be prioritized to achieve high bandwidths.

The new time parameters present a _S and _L suffix that stand for Small and Large, respec-
tively. Consecutive memory requests targeting different bank-groups consider parameters with _S.
Meanwhile, requests to the same bank-group consider parameters _L. All _L parameters are higher
than _S. Among the DDR4 new parameters are tCCD_S, tCCD_L, tRRD_S, tRRD_L, tWTR_S and
tWTR_L.
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3. MEMORY CONTROLLERS

This chapter presents the role and functionality of memory controllers in the memory
subsystem. In the end, it presents some state-of-the-art controllers and their main characteristics.

3.1 Classic Memory Controller

The Memory Controller (MC) serves as the interface between the Central Processing Unit
(CPU), or the last cache level, and main memory. It translates read and write commands, generated
by the system, into memory-friendly operations. Its main objective is to provide a reliable communi-
cation, aiming to optimize the system performance by guaranteeing low-latency and high-bandwidth
memory accesses. A sound implementation of a memory controller demands to understand the system
requirements and the memory limitations [Inp14].

In a memory controller, CPU addresses (linear address) are translated into physical DRAM
addresses, composed of rank, bank, row, and column. Also, it is responsible for handling write and
read data to correctly transmit it from and to the requesting CPU, respectively. This communication
is established via a channel, which is connected to the memory port. For modern general purpose
CPUs, each channel has a width of 64 bits, whereas, for embedded systems, this value may vary
[Bon14]. As described in Chapter 2, a memory DIMM is composed of multiple 4, 8 or 16-bit width
memory devices, which are accessed in parallel to supply the CPU demand. Most commonly, each
memory controller is attached to a single channel, but it can also access multiple memory devices in
parallel to supply a higher width channel (i.e., 128 bits). Figure 3.1 considers three different system
configuration.
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Figure 3.1: System configurations: (a) Single-channel (b) Dual-channel and (c) High-bandwidth 128-bit channel. Source:
adapted from [Bon14].

Requesting a read or write access to an external memory takes greater time when compared to
local memories (i.e., caches). Figure 3.2 presents the request path from and back to the CPU. Initially,
the CPU performs the read/write request (step A), following, the memory controller translates the
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CPU address into the memory address and commands the DDR memory to activate, or precharge and
activate, the respective row (step B). Obeying the MC command, the DDR memory selects the chosen
bank and transfers the row information to the row-buffer (step C). If the request is a write, the data is
stored in the respective column in the row-buffer; else, if the request is a read, the data is loaded from
the row-buffer to the output port (step D). Steps E and F complete the read data path back to the CPU.
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Figure 3.2: Data transference steps between CPU and DDR SDRAM. Source: adapted from [Bon14].

Memory accesses are volatile; many variables come into account when performing a
read/write operation. From the memory controller request to the storage of data into the mem-
ory, or the reception of data from the memory, there is a time interval; this interval may also be called
latency. This latency must be well known by the memory controller to handle requests and work on
improving the memory access performance. Lower latencies imply on higher bandwidths; therefore,
higher system performance.

Furthermore, one important characteristic of the SDRAM devices is the need of periodic
refreshes due to the capacitors leakage. The memory controller schedules periodic refresh commands
according to the memory status and limitations, as presented in Chapter 2.

3.2 Multi-Client Controller

The previous section presented a basic overview of memory controllers for a single core.
Today’s general-purpose architectures (i.e., home computers and servers) are composed of multiple
cores, which are connected to a shared main memory via various levels of cache and a single memory
controller. In previous structures, multiple cores were connected via Networks-on-Chip1 (NoCs) or
buses, leading to the memory controller just being another element of the system. This diminished its
controllability and reduced the possibility of treating multiple requests at once to schedule the most

1NoCs are the state-of-the-art communication architecture for high scalable systems. The structure of a NoC is a set of
routers interconnected by communication channels. These routers arbitrate packets traveling the network to deliver them
to their respective destination. [M+04]
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suitable memory command for the moment. From now on, the term client used here addresses an
element capable of sending read/write memory requests to the memory controller.

The choice for a multi-client memory controller aims to solve two main problems of the
memory access performance. First, since the memory controller selects the order of the clients that will
access the memory, it may use special scheduling techniques that bring advantages when compared to
fair-access algorithms used by NoC routers or bus arbiters. Second, the memory controller may store
a record of the opened rows of the memory device, and use this information to reschedule memory
requests and increase memory bandwidth.

Figure 3.3 illustrates the multi-client architecture with three client interfaces (c0, c1 and
c2) and a memory port interface (p0). Upon receiving the memory access request, the arbiter selects
the client according to an implemented selecting algorithm. Requests are transferred to the access-
scheduler that interfaces with the memory port. This module schedules the memory commands
according to the memory status, and maintains a list of the opened rows and bank refresh cycles. The
access scheduler may return the status list back to the arbiter to improve the client selection.
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Figure 3.3: Illustration of a multi-client architecture with the request steps to memory access. Source: created by the
author.

Beyond the scheduling of the client, other factors can also improve memory access depending
on the system purpose. The way the address is physically mapped onto the memory device may vary
according to system parameters and clients characteristics. Besides, wisely controlling memory-
timing constraints, avoiding read-to-write and write-to-read penalties, and improving row-hit rates,
are known ways to enhance the system performance. The following two subsections present some
basic address mapping techniques and memory access scheduling algorithms.

3.2.1 Address Mapping

Address mapping translates the physical addresses received by the clients into memory-
friendly coordinates composed of rank, bank, row and column. A sequential set of memory addresses
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may be translated in various manners; each of them presents a latency impact on the memory
access when completed. Therefore, modifying the way addresses are mapped results in performance
variations.

Mapping techniques can be used to change the allocation of memory blocks to exploit
locality and parallelism. Parallelizing bank accesses and targeting consecutive columns in a row can
reduce the average memory latency and improve system performance [Sha06].

3.2.1.1 Flat Address Mapping

Many possible ways exist to map addresses in SDRAMs. Figure 3.4 presents the flat address
mapping, an intuitive technique that maps the physical address into channel, rank, bank, row, column
and burst index from the most significant bit to the least. It maps the address in a linear way, meaning
that consecutive addresses are sequentially organized according to the bank order. For example,
imagining a memory module with 2K rows and two banks. This mapping technique would assign the
first 1k row addresses to the first bank, and the other 2k row addresses to the second bank.

Ch RowBank Column BurstRank

Figure 3.4: Flat address mapping. The burst index indicates the burst size. Modern SDRAM devices have 8 configured
as burst size, in this case, burst index is 3. Source: created by the author.

This mapping technique is mostly used for systems with completely random memory ad-
dresses, where accessing two different locations along the memory result the same latency. However,
this configuration is not very common. Applications commonly exhibit data hot spots within the
memory, especially due to sequential data structures, like arrays and stacks. Therefore, performance
could be improved if these hot spots were allocated in locations where their accesses would lead to
lower latencies [Sha06].

3.2.1.2 Page Interleaving

The page interleaving mapping [Tom96], illustrated in Figure 3.5, presents a higher locality
exploration. It separates the physical address into channel, rank, row, bank, column and byte. In this
technique, sequential memory blocks in the physical address are mapped into rows of internal banks
within a rank. For example, the addresses that go across all columns of row0 in bank0 will continue
in row0 of bank1, and so on. When reaching the last column of the row in the last bank, the address
continues in the next row of the first bank.

Ch Row Bank Column BurstRank

Figure 3.5: Page Interleaving address mapping. Source: created by the author.
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3.2.1.3 Bank Interleaving

Parallelizing bank accesses is one major technique to raise the memory communication band-
width [ZMS+12]. Since most applications have the characteristic of performing sequential memory
accesses, separating each consecutive access in a particular bank can increase the system performance.
One disadvantage of this technique is dealing with the tFAW constraint, already explained in Chapter
2. Figure 3.6 presents the bank interleaving address mapping, which exploits bank parallelization by
considering the bank index as the lowest part of the address, just before the burst index.

ColumnCh Row Bank BurstRank

Figure 3.6: Bank Interleaving address mapping. Source: created by the author.

3.2.1.4 Rank Interleaving

Similar to page interleaving, rank interleaving [Sha06] organizes physical memory blocks
not only across banks, but also, across ranks. Figure 3.7 presents the bit organization of the physical
address mapped using rank interleaving. This technique increases the possibility of pipelining accesses
to different banks across different ranks. Its greatest disadvantage is the creation of rank-to-rank hazards
more often, sometimes degrading the overall latency of the system [Sha06].

Ch Row Bank Column BurstRank

Figure 3.7: Rank Interleaving address mapping. Source: created by the author.

3.2.1.5 Cache-Block Interleaving

When the address returns a miss in all the cache levels, the system must forward this request
to the main memory. Cache requests generally target addresses divisible by the cache-block size. In
this case, sequential requests will have a gap of cache-block size between each other. The cache-block
interleaving exploits this characteristic by considering the least significant bits of the address as the
lowest part of the column and the burst size, as presented in figure 3.8. It is a mixture of the bank
interleaving and the page interleaving mapping techniques.

Ch Row Bank BurstRank Column LColumn H

Figure 3.8: Address mapping for Cache-block Interleaving. Source: created by the author.
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For a 64B cache block size, and an x8 memory device with a burst-length of 8, both column
L and burst will be 3 bits. Therefore, 2(3+3) = 64, which is the address interval between each memory
request.

3.2.2 Memory Access Reordering

Similar to out-of-order processors, which execute subsequently independent instructions
when the current instruction is pending due to a cache miss or an I/O request, memory controllers
can reorder incoming requests to avoid high latencies, row-conflicts and increase bandwidth. The
reordering mechanism selects the available memory requests and reorders them in a format that yields
minimal execution time for the full system or specific clients [Sha06]. The following subsections
describe some important reorder techniques already presented in the literature.

3.2.2.1 First Come First Served (FCFS)

As presented in Chapter 2, modern SDRAM devices provide multiple banks. Access to
different banks can be executed in parallel if all timing constraints are met. The First Come First
Served (FCFS) algorithm, also known as bank-in-order, takes advantage of this parallelism [R+00].
This mechanism, illustrated in Figure 3.9, is composed of unique memory queues for each bank and
a global arbiter. Memory requests for the same bank are treated in-order, whereas, requests from
different banks can be scheduled first depending on the memory timing status and the bank selection
policy (Round-Robin or the oldest-first are the most common).

Figure 3.9: FCFS (bank-in-order) scheduling mechanism. Source: extracted from [Sha06].

3.2.2.2 First Ready First Come First Served (FR-FCFS)

The First Ready FCFS (FR-FCFS), proposed by Rixner [R+00], presents an improvement
on the FCFS algorithm. As presented in Figure 3.10, this policy introduces the idea of access priority
on the bank queues. Requests that target the opened row from within a bank are scheduled first based
on their age; oldest requests have priority over newer ones. If no request in the queue hit the opened
row, or if no row is opened, the requests are scheduled using the FCFS algorithm.
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Figure 3.10: FR-FCFS (row-hit policy) scheduling mechanism. Source: extracted from [Sha06].

The FR-FCFS algorithm attempts to create as many row-hits as possible from the available
requests. Since row-hits present the shortest access latencies, this algorithm will present a better
performance than the FCFS alone.

3.2.2.3 Burst Reordering

Proposed by Shao and Davis [SD07], the burst reordering adds new levels of priority (e.g.,
reads over writes) to the FR-FCFS policy. In this algorithm, reads targeting the same row are prioritized
over writes. The idea is to avoid the read-to-write and write-to-read penalties by sending a burst of
row-hit reads, followed by a burst of row-hit writes.

Figure 3.11: Burst reordering scheduling mechanism. Source: extracted from [SD07].

Figure 3.11 presents the structure of the burst reordering mechanism. Each bank has separate
queues for reads and writes, and an arbiter to select the row-hit requests, and whether is time for reads
or writes. Other than that, in the case of write requests, a shared write pool is used to store incoming
data from clients. As presented in the figure, the order of the data does not reflect the order the request
will be attended, since it depends on the opened row on the respective bank.
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One disadvantage of this technique is that it may result in data hazards. If a newer read is
scheduled over an older write for the same address space, this read request will be accessing an out
of date information. To solve this problem, Shao and Davis proposed the use of a hardware technique
that checks the write data pool for every incoming read, if the information is available in the pool, the
request is already answered in a reduced amount of time. His solution still brings drawbacks since it
increases hardware overhead [SD07].

3.2.2.4 Read over Write Priority

The memory controller implemented by Hansson et al. [H+14], in the Gem5 Simulator,
uses global read and write request queues. To schedule a request, it considers two priority levels:
first, reads over writes; second, row-hits over row-conflicts (FR-FCFS). In their solution, they continue
to schedule read requests unless the read queue is empty or the write queue hits up to 80% of its
maximum capacity. When reaching this point, it flushes a certain percentage of the write queue and
continues to prioritize reads. Also, to avoid data hazards, they implemented a similar solution as of
the burst reordering (Section 3.2.2.3), presenting a data checker (snoops) in the write queue for every
incoming read. Figure 3.12 presents the read over write structure.

Figure 3.12: Hansson’s read over write scheduling mechanism. Source: extracted from [H+14].

Besides, adding hardware overhead from the module that avoids data hazards, this technique
presents other drawbacks. At first, write requests can win priority over reads if this write is scheduled
on the first level and it hits the currently open bank row on the second level. Second, for a high volume
of write requests, the global read/write queues may come as a flaw, because the write queue would fill
up fast and continuously delay the reads when flushing.

3.2.2.5 Intels Out of Order Scheduling

Figure 3.13 presents Intel’s patented memory access scheduling algorithm, which executes
read and write accesses out of order to improve memory bus utilization and gain overall performance
[Int05].
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Figure 3.13: Intel out of order scheduling structure. Source: extracted from [Sha06].

In their design, queues have a similar structure to the presented by the FR-FCFS model.
Writes are stored in a separate queue, allowing reads to bypass. The read selection logic comprises a
complex algorithm that gives the highest priority to already started accesses and second highest priority
to row-hits. Already started accesses can be row-conflicts that already issued precharge commands,
or row-misses that have already issued activate commands. Their model includes a read/write arbiter
to prioritize the requests between both queues, considering that reads generally have higher priorities.
Besides, their model affords to preempt unfinished write requests with later arrived reads. According
to the authors, this results in a better overall system performance.

3.3 Command Scheduling

While memory access reordering techniques arbitrate intra-bank requests, the command
scheduling manages inter-bank selections. It defines the request arbitration across all bank queues.
The module that implements the command scheduling must be aware of the SDRAM timing depen-
dencies, as presented in Chapter 2. It selects the most appropriate request according to a predefined
algorithm and the memory availability. The following subsections describe some command scheduling
algorithms already proposed.

3.3.1 Oldest-Across-Banks-First

The oldest-across-banks-first algorithm schedules the oldest request from all bank queues2.
It aims to maintain a fair arbitration to all requests [MM07]. Despite this implementation being
starvation-free, it does not improve bank parallelization. In this context, the parallelization character-
istic created by bank mapping techniques may be lost during command scheduling when subjected to
a high volume of traffic.

2Schedules the oldest request between the set of requests selected by the memory scheduling algorithm.
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3.3.2 Round-Robin between Banks

The Round-Robin between banks algorithm aims to grant fair access to banks with available
requests. It considers bank accesses as a circle with a priority pointer; this pointer rotates whenever
a command is scheduled. This scheme can effectively hide bank conflict overhead to a given bank if
there are sufficient available pending requests to other banks that can be executed before the scheduling
priority rotates back to the same bank [JNW10].

3.3.3 Fixed Priority

The fixed priority establishes that memory requests have higher priority over others during
command scheduling. This scheduling technique creates an uneven relation between banks, allowing
the preemption of low-priority requests. This request alone may generate starvation issues that may
require the implementation of an external logic to avoid it. The memory controller proposed by Him
[K+15] serves as an example of fixed priority command scheduling, where critical requests are allowed
to preempt non-critical ones.

3.4 Related Work

Memory controllers can be divided into two major areas: static and dynamic. Static
controllers have the characteristic of arbitrating clients without using memory access reordering
mechanisms. The idea of these controllers is to maintain determinism and predictability. A predictable
system may be able to guarantee application deadlines and firm real-time requirements. These types
of memory controllers aim to guarantee a minimum latency requirement and a desirable bandwidth for
every client at each access [AGR07]. Dynamic controllers, on the other hand, aim to improve overall
system efficiency. It uses memory access reordering mechanisms, together with client scheduling,
to reach the lowest latencies and the highest bandwidths, disregarding time guarantees. Dynamic
controllers are often used in general-purpose processors, while static controllers are more commonly
used in embedded processors and real-time units. The following subsections present some static and
dynamic controllers found in literature, which are related to this work.

3.4.1 Static Memory Controllers

Many studies in the literature relate that predictable memory controllers are necessary to
reduce the undesirable variability of memory accesses in MPSoCs. For years now, predictable and



53

deterministic controllers have been studied, aiming to solve communication barriers in heterogeneous
real-time systems with a significant number of cores.

3.4.1.1 Akesson’s Predictable and Composable Memory Controller

The work proposed by Akesson et al. [AG11] models a predictable and composable memory
controller that offers minimum bandwidth and bounded latency for each client. The authors propose
a formal verification of the real-time requirements to define memory access groups, meaning, pre-
computed access sequences with known efficiency and latency.

In their work, the memory controller is divided into front-end and back-end parts. The
predictability is assured by the front-end part, which interacts with multiple clients using a credit-
controlled static-priority arbiter, also proposed by them in [A+08]. This arbiter controls the client
accesses through a credit counter, which implements static priorities, bandwidth and latency limits,
established during design time. The structure, which is presented in Figure 3.14, is composed of an
atomizer module, a rate regulator, and a fixed priority scheduler. The atomizer element is used to
create accesses using design time established granularities. The rate regulator is used to guarantee
a minimum bandwidth for each client. Finally, the scheduler selects clients based on their priority
[A+08, A+09, AG11].

Figure 3.14: Predictable and composable memory controller divided into front-end and back-end parts. Source: extracted
from [AG11].

The back-end part serves as a multiple-choice resource (composability) since the authors
prove that it can interface with many different memory technologies (e.g., SDRAM and SRAM). This
part uses an FCFS algorithm, which does not interfere with the order of the requests. In conclusion,
their work serves as a model for static memory controllers that aim predictability and temporal
guarantees.
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3.4.1.2 Reineke’s Predictable Memory Controller with Bank Privatization

The work proposed by Reineke et al. [RLP+11] presents a predictable memory controller
that significantly reduces worst-case latencies due to an innovative idea. In their work, instead of
viewing the SDRAM device as one indivisible memory that can only be shared as a whole, the authors
introduce the idea of partitioning the memory into multiple resources. These resources can be shared
or used individually by clients. To maintain predictability, they use a closed-page policy, forcing
rows to be precharged at the end of every access. Memory accesses are fixed in 13 cycles, which is
considered the worst-case access time for either reads or writes.

Another factor to increase time controllability is ensuring temporal isolation. Partitioning
the memory guarantees that applications will not interact with each other (if there are not shared
resources). For the resource division, incoming addresses are mapped using a dedicated resource
module that analyzes client requests and determines the appropriate bank. Due to the fixed latency
choice, the authors claim that the best client arbitration algorithm for their solution is the Round-Robin
[RLP+11], making the prioritization of clients a tough task.

Finally, another contribution of their work is the refresh handling. Instead of issuing periodic
refresh commands, the authors opted to refresh each row manually when possible. To do that, activate
and precharge commands are issued to individual rows, updating its information. However, Mukundan
et al. [M+13] presented a research proving that refreshing rows manually is not as efficient as using
the natural refresh command.

3.4.1.3 Huang’s Memory Controller for HD Video Encoder

Huang et al. [HZZ+13] proposed a memory interface to improve memory bandwidth for
AVS HD video encoder. Their technique is composed of an address mapping layer and an arbitration
layer. Clients in the encoder are divided into four groups, which are assigned to different banks
of the SDRAM. The address mapping is based on characteristics of the multimedia applications to
avoid overheads of inner client and inter client. The authors classify inner client overhead as the
latency during a client access, and inter client overhead as the incurred latency when switching from
one client access to another. It is necessary to know the characteristics of each application previous
to the separation in mapping groups. Authors showed that the proposed method improved memory
bandwidth up to 10% when compared to other custom mapping techniques.

Despite presenting satisfactory results, their controller can be applied in only one scenario,
which severely limits its range of supported applications. Besides, the authors do not mention in their
work about real-time support, predictability or timing guarantees.

3.4.1.4 Bonatto’s Adaptive Memory Controller

The work presented by Bonatto et al. [BNP+14] brings the idea of a predictable and adaptive
memory controller that guarantees minimum bandwidth and bound latency for multimedia SoCs. In
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their work, clients generate a deadline requirement to complete their transaction. The memory
controller classifies each client with a priority, based on the comparison between the Worst-Case
Response Time (WCRT) calculation and the deadline requirement. For this, the authors proposed a
cycle-based analytical estimation of delays. If the deadline requirement is less than the WCRT, the
request is treated as best-effort, and it can guarantee that the transaction will be finished before the
worst-case. Also, in their model, interruptions are allowed to take place if a higher priority request
is waiting while a lower priority request is being executed. An interruption preempts the current
transaction and schedules the higher priority in its place.

Figure 3.15: Block diagram of Bonatto’s adaptive memory controller. Source: extracted from [BNP+14].

Figure 3.15 presents the block diagram of the adaptive memory controller. Multiple clients
are supported by the structure, each one has request and response buffers. The requests are forwarded
to the adaptive arbiter and scheduler that selects the clients based on the their deadline requirements
and the size of their transactions. If necessary, the IRQ gen interrupts current transactions to schedule
higher priority ones. The IP control module interfaces with the DDR3 external controller to forward
the scheduled memory commands in an FCFS manner. Their work focuses on guaranteeing a reliable
memory access for multimedia applications. The authors compared their technique against TDM and
priority arbitrations, and found satisfactory results in most cases. Although, as of a static controller
characteristic, his memory controller treats all applications equally, and best-efforts that do not need
timing guarantees or strict access controls are harmed.

3.4.2 Dynamic Memory Controllers

While static controllers aim to guarantee worst-case latencies in access granularity, dynamic
controllers focus on improving the memory access performance for the system as a whole. The works
described in the following subsections present different approaches for the use of dynamic memory
controllers.
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3.4.2.1 Jang’s SDRAM-Aware Router

In 2010, Jang and Pan [JP10] proposed a decentralized memory controller module using
NoC. The idea of their model is to reorder memory requests traveling on the network aiming to prevent
bank conflict, data contention, and short turn-around bank interleaving. According to the authors,
bank conflict occurs when multiple continuous requests to the same bank are accessing different pages.
Data contention is the case of a read followed by a write, or a write followed by a read, to the same
bank. Also, short turn-around bank interleaving is the phenomenon of being unable to burst multiple
requests aiming different bank addresses due to timing limitations of the memory caused by previous
requests (i.e., the bank cannot receive requests because it is executing a precharge).

The authors proposed a customized router that could reorder memory requests based on
shared bank status information. Incoming packets on the network would have their priority increased
to avoid the previously mentioned hazards and improve the system’s memory access performance. This
solution has reduced hardware on the memory controller, which interfaces the SDRAM, by distributing
the reordering logic over the network. However, the router logic has become more complex and the
solution requires additional hardware costs.

3.4.2.2 Sharifi’s Two Network Priority Schemes

In heterogeneous systems, Processing Elements (PEs) can be CPUs, GPUs, I/O interfaces
and even memory controllers. During an on-chip network communication, the latency of packets may
oscillate, sometimes reaching above-average values. These high-latency packets may be targeted to
the memory and can severely degrade overall system performance, especially, since CPUs may block
processing while waiting for a memory response.

Focusing on this problem, Sharifi et al. [SKKD12] proposed two network priority schemes
to improve the overall system performance when communicating with the memory using NoCs. Their
proposed structure is composed of a NoC with multiple PEs and memory controller interfaces at each
corner. Each PE contains a CPU, a local L1 cache and a shared L2 cache using the SNUCA model
[HKS+07].

In their first scheme, memory requests that have already been processed by the memory, but
contain above-average latencies, are prioritized on the network when returning to their respective L2
caches. The idea of this scheme is to reduce the the variation of the average latencies of packets for all
clients when accessing the external main memory. Meanwhile, for their second scheme, they maintain
an idle counter for bank queues. Packets that are leaving L2 caches targeted to banks that have been
idle longer than others, have higher priority on the network. This scheme aims to maintain an average
bank usage for all banks. They focus on the idea that increasing bank parallelization increases memory
bandwidth [SKKD12].
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3.4.2.3 Goossens’s Conservative Open-Page Policy

Real-time memory controllers, such as static controllers, use close-page policy to maximize
worst-case performance and ignore opportunities to exploit locality. Soft real-time controllers try
to reduce latency and consequently processor stalling by speculating on locality. They often use an
open-page policy that sacrifices guaranteed performance but is beneficial in the average case [GAG13].

In the work presented by Goossens et al. [GAG13], an adaptive page policy is proposed. It
focuses on increasing the exploration of the locality by firm real-time applications in mixed criticality
systems using a page policy that adapts to different request scheduling situations. The authors propose
four different situations:

1. AP: Activate, read/write and precharge a page. Resembling a common close-page policy.

2. NAP: This schedule is used if the previous request was a hit, but the next request is a miss.

3. NANP: In the case of page-hits in both previous and next requests, NANP is used.

4. ANP: Similar to open-page, this schedule activates a row, but does not precharge. A transition from the
AP or NAP to this schedule is made if the next access is a page-hit.

A time window is established, in which the controller must take a decision on which schedule
to use, depending on the upcoming request address. If no conclusive decision is made within this
time-window, the controller assumes that it is a row-miss and precharges the bank to avoid sacrificing
worst-case guarantees. Their solution presents satisfactory overall results, but they do not consider the
source of memory accesses to take their decision. Some applications do not need time guarantees and
can wait for other requests to have a more efficient locality exploitation. In their solution, if they could
inform to the controller which request is real-time and which is not, they could improve best-effort
executions and maintain firm real-time support.

3.4.2.4 Kim’s Priority-Based Controller

Kim et al. [K+15] proposed a predictable priority-based SDRAM controller for mixed-
criticality systems. In their work, requests are scheduled based on their priority. Memory Access
Groups (MAGs) are separated from normal requests. These MAGs have a higher priority on the
controller when competing against other clients, both on the client interface side, and on the scheduling
of commands to the main memory.

Their memory controller, as presented in Figure 3.16, can be seen as a two-level architecture,
with front-end and back-end. The front-end interacts with clients, selecting requests based on their
priority. The back-end interfaces with the main memory, and separates requests based on their target
banks. MAGs have a reserved slot on each bank queue, and preempt any other non-critical request,
regardless its arrival time. Also, non-critical requests are reordered in an FR-FCFS fashion, aiming
to exploit locality. In addition, the authors propose a custom mapping technique that reserves certain
rows on each bank to MAGs.
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Figure 3.16: Structure of the priority-based controller proposed by H. Kim et al. (2015). Source: extracted from [K+15].

The authors claim that the proposed mapping technique aims to help guaranteeing bound
latency for critical requests. DDR devices have multiple banks with one row-buffer each, recalling
the structures presented in Chapter 2. If a row is going to be accessed in a bank, it is copied to the
row-buffer and then accessed. The authors do not explain how reserving separate rows in a bank might
improve critical requests latency, since these requests would still compete against non-critical requests
for the row-buffer.

At last, the authors present a comparison between worst-cases between DDR2 and LPDDR2.
They conclude that worst-case timings are worse in most cases for the LPDDR2. Although, they could
guarantee critical requests especially due to the flexible refresh solution proposed. Since DDRx
modules do not support the same refresh flexibility, it is uncertain whether their solution can be
applied to non-low-power devices.

3.4.3 Summary

The static memory controllers used for real-time systems require deadline guarantees to
execute safety-critical applications. In most situations, a read request to the memory stalls the processor
while it waits for a response. These controllers use a close-page policy to treat all access equally and
provide minimum worst-case execution time, with the drawback of not exploiting memory locality.
Some of the techniques available in the literature present adaptable client scheduling [AG11, Bon14],
bank privatization [RLP+11], and custom memory mapping [HZZ+13].

On the other hand, dynamic controllers focus on improving the system’s overall perfor-
mance by exploiting memory locality. The work proposed by Blackmore (2013) have shown that
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these controllers present a significantly better overall performance when compared to static memory
controllers [Bla13]. Reordering mechanisms have been proven to organize application requests in the
most efficient way for the SDRAM execution [JP10], and the prioritization of delayed requests have
shown that it is possible to reduce peak-latency memory accesses [SKKD12].

Table 3.1 reviews all the works described in this section, presenting some relevant topics.
In the end, a comparison with the memory controller proposed in this work is performed.
Table 3.1: Important topics brought from each work presented in this section. Included, a comparison with the memory
controller proposed in the next chapter. Source: created by the author.

Authors Client Arbitration Memory Scheduling Predictability Locality
Exploitation Contribution Implementation

Level
Target

Memory5

St
at

ic
M

em
or

y
C

on
tro

lle
rs [AG11] CCSP FCFS Yes No Real-time Support Model DDR2

DDR3

[RLP+11] Round-Robin FCFS Yes No Real-time Support PRET
Simulator1 DDR2

[HZZ+13] Round-Robin FCFS NA No AVS HD
Support

HDL
Simulation DDR

[Bon14] Adaptive Arbiter FCFS Yes No Real-time
Multimedia Support

FPGA
Prototyping

DDR2
DDR3

D
yn

am
ic

M
em

or
y

C
on

tro
lle

rs [JP10] NA2
FR-FCFS

and
Read/Write Reordering

No Yes Overall Performance
Improvement

HDL
Simulation

DDR
DDR2
DDR3

[SKKD12] NA2 NA No NA Balanced Bank
Accesses

Gem5
Simulator DDR

[GAG13] Round-Robin Adaptive
Page Policy No Yes3 Adaptive Open-page

Policy
System-C
Simulation DDR3

[K+15] Priority FR-FCFS
Only for
critical
requests

Only for
non-critical

requests
Real-time Support HDL

Simulation LPDDR2

This Work Priority
FR-FCFS

and
Read/Write Reordering

No Yes
Performance

Improvement for
High-priority

DDR4
C++ Simulator4 DDR4

NA - Not applicable or not mentioned.
1 Simulator proposed by the authors.
2 Clients interface the memory controller using NoC. The network characteristics were not discussed by the authors.
3 Due to the adaptive page-policy, locality exploitation depends on the address sequences.
4 Presented in Section 4.5.3.
5 Memory technology used for test experiments.
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4. PROJECT METHODOLOGY

As previously seen, dynamic memory controllers focus on improving overall system perfor-
mance while static memory controllers focus on guaranteeing bound latencies and minimum band-
widths to every memory request. This chapter presents a dynamic memory controller that implements
priority arbitration of clients, bank privatization address mapping and row-hit scheduling, with the
purpose of benefiting predefined memory clients and providing minimal access latencies.

The proposed memory controller, with structure presented in Figure 4.1, is divided into two
levels: Priority Level and Memory Level. The priority level arbitrates clients requesting access to the
main memory using a priority algorithm. The memory level maps client addresses based on their
priority1, reorders requests based on open pages and read/writes, and schedules commands respecting
memory timings and bank-group restrictions. Each client has input and output queues to store pending
requests, avoid unnecessary stalls and improve the system performance.

Client 0

Client 1

Client 2

Client n

Priority 
Level

Memory 
Level

PHY DDR4

Memory Controller

Client 
Arbitration

Address 
Mapping

Command
Scheduling

Memory 
Scheduling

Figure 4.1: Proposed structure of the two-level memory controller: Priority Level and Memory Level. Source: created
by the author.

Despite being possible to use this controller model to any previous multi-bank SDRAMs,
the DDR4 was selected for being an emerging technology and the state-of-the-art DDR SDRAM for
desktops and servers up to the time of this project. Therefore, due to particular characteristics of
this memory structure, the proposal of a bank-group-aware command scheduler was necessary. The
following sections meticulously describe each feature of the proposed work, including arbitration and
scheduling algorithms, mapping techniques and implementation details.

4.1 Client Arbitration

In a mixed-criticality system, particular clients need access advantages to supply system’s
requirements. These applications may have special characteristics that general-purpose memory
controllers cannot provide. For example, memory-bounded applications may require a good part

1Priorities are defined by higher levels according to application or operational system requirements.
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of the memory channel, sometimes degrading the performance of other clients; or even real-time
applications, which require urgency to access the memory to meet deadline requirements. Memory
controllers implementing fair client arbitration may not be able to guarantee the execution of such
applications.

This work proposes a priority arbitration algorithm that schedules requests based on prede-
fined priorities to provide advantages to certain clients. This priority system divides clients into two
groups: High and Low-priority. The number of high-priority clients is predefined during the initial-
ization setup. Examples of these clients are common CPUs requiring some privilege when accessing
the memory, real-time units, and I/O devices. These clients have a priority arbitrarily defined as five
times greater than normal ones, meaning that, for every five high-priority requests selected by the
arbiter, there is one low-priority.

During the memory access, requests issued to the memory controller are temporarily stored
in the input queue. The client arbiter analyzes input queues with pending requests and selects the
highest priority one. If multiple requests present the same priority, a round-robin algorithm is used.
In addition, a virtual priority system is proposed to avoid starvation. When the arbiter selects a request
from a high-priority client, requests waiting in the front position of other queues have their priority
virtually increased by 1. This solution is used only when selecting requests from high-priority clients,
low-priority ones consider a fair round-robin algorithm and no virtual priority is necessary. Table 4.1
presents a representation of client arbitration for a system with four clients.

Table 4.1: Client arbitration representing a system with four clients. Clients 1 and 3 are high-priority, while clients 0
and 2 are low-priority. Tx represents time-slots, and red-bolded numbers represent selected requests by the arbitration.
Source: created by the author.

Time
Slot T0 T1 T2 T3 T4 T5 T6 T7 T8

Client 0 0 0 1
Client 1 5 5
Client 2 0 0 1 1 2 3 4 5
Client 3 5 5 5 5 5 6

In this table, clients 1 and 3 (bold) are high-priority, while 0 and 2 are low-priority. The
first row indicates the time slots, each being represented as Tx. Time slot T0 indicates the beginning
of the system, before client selection. At this moment, clients 0, 1 and 2 have pending requests on
their queue, and they have priorities 0, 5 and 0, respectively. Higher the value, higher the priority.
In T1, the first client arbitration is performed, and the request from client 2 is selected. Selected
requests appear in a red-bolded font in the table. Due to selecting a high-priority request, pending
requests from clients 0 and 2 have their priority increased. In T2, both have the same priority, and
the round-robin algorithm comes into action to select client 0. In T3, client 3 issues a high-priority
request, and the arbiter selects it, leading to an increase in the priority of client 2, which was waiting
on the buffer. During T4 to T6, client 3 issues consecutive requests and client 2 keeps increasing its
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virtual priority. In T7, both pending requests have the same priority, and the round-robin algorithm
selects client 2. Finally, in T8, the last request from client 3 is selected.

4.2 Address Mapping with Bank Privatization

When a request reaches the memory controller, the physical address provided by the client
is translated into channel, rank, bank, row and column, which are the coordinates that compose
an SDRAM access. This translation is referred as address mapping. Section 3.2.1 have presented
many address mapping techniques available in the literature. Each technique directly affects memory
latencies, locality usage and bank parallelization.

According to the work of Moscibroda and Mutlu [MM07], multiple applications mutually
accessing the same banks may negatively affect each other by increasing latencies and execution times.
As a solution to that, the study of Reineke et al. [RLP+11] has proven that bank privatization can
guarantee temporal and access isolation. The concept of bank privatization indicates that one or more
banks are not shared amongst all clients, but are reserved for specific ones. The idea proposed in
this work is to determine private access to banks for high-priority clients, while low-priority ones can
share the remaining banks.

In this work, the address-mapping module holds a Mapping Table containing each high-
priority client ID and its respective private banks. Upon receiving a request, which is accompanied by
the client ID, this module uses a combination of the address and the table information to assign each
request to the respective bank target. This Mapping Table is predefined during initialization setup,
together with the total number of clients and the number of high-priorities.

An address mapping technique is proposed in Figure 4.2 to define private banks. The Burst
field is the number of bits reserved for the burst-size. Column H and Column L compose the column
address. Row is the row address. Bank H and Bank L compose the bank address. The address-mapping
module determines the Bank H field according to the Mapping Table.

Row Bank L BurstColumn LColumn HCh RankBank H

Arbitrated 
according to 

client ID

Figure 4.2: Proposed address mapping technique. Source: created by the author.

The separation of the bank address in two different positions, in addition to applications’
characteristic of accessing consecutive bank addresses, allows the possibility of exploiting the paral-
lelization of a smaller group of banks. Due to the DDR4 bank-group feature, banks that are defined
as private for a single client, ideally, need to be part of different bank-groups. This would lead to
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reduced latencies for high-priority clients. Figure 4.3 explains how the bank privatization is possible
by illustrating the bank mapping for a 16-bank DDR4 SDRAM.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

4-bit Bank Address

Banks
Bank Group 0 Bank Group 2 Bank Group 3Bank Group 1

Figure 4.3: Mapping position of a 16-bank DDR4 in a 4-bit register considering four bank-groups interleaved. Source:
created by the author.

It is possible to control the bank being accessed by controlling the bank address. For
example, if the most significant bit (red bit) is fixed in 0, only the first eight banks can be accessed;
the following three bits determine which one. The sizes of Bank H and Bank L are proportional, and
their concatenation leads to a 4-bit bank address that defines the target bank of the request. Their
sizes are preset during system startup according to the number of high-priority clients, and its value is
dependable on the address Mapping Table. In conclusion, the address-mapping module can privatize
certain banks to high-priority clients and guarantee isolation. Meanwhile, low-priority clients can
share the remaining banks and exploit locality through memory scheduling techniques.

The range of memory addresses available to each client must be reduced to implement the
proposed bank privatization technique since part of the address is determined by the address-mapping
module. The higher-level kernel adaptations necessary to the implementation of this solution will not
be discussed in this work and will be left as future considerations.

4.3 Memory-Scheduling Algorithm

Dynamic memory controllers use scheduling techniques to reorder requests and exploit
locality while reducing latencies and increasing bandwidths. This work considers state-of-the-art
memory scheduling techniques to improve locality exploitation and provide higher performances.
The memory-scheduling algorithm is segmented in two models: FR-FCFS and Read/Write Burst
Reordering.
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4.3.1 FR-FCFS

The classic FR-FCFS algorithm, proposed by Rixner [R+00], is one of the choices for
request reordering in this work. This algorithm reduces overall latency by decreasing the number of
precharge and activate delays, while taking advantage of already opened rows by previous requests.
When no row is opened, the oldest request in the queue is scheduled. Figure 4.4 illustrates an example
of request scheduling using this algorithm. The target bank has the row 2 opened, and several requests
are waiting on the queue. The scheduled request, which presents a pattern background, is the oldest
row-hit of the queue.

Bank j

Row 2

Bank Queues
Banks

Row-Buffer
Command 
Scheduler

Bank Queue jRow 4 Row 3 Row 2 Row 1 Row 2 Row 5

oldest

SDRAM

Figure 4.4: Request scheduling using the FR-FCFS algorithm. The scheduled request presents a pattern background.
Source: created by the author.

For the implementation of this solution, the memory controller must maintain a record of
the scheduled requests to the memory, with the purpose of knowing which row is opened in each bank.
In this work, this record may be called bank status, and it must be informed to the memory-scheduling
module for the request selection.

4.3.2 Read/Write Burst Reordering

For in-order processors, subsequent instructions to read requests are blocked while waiting
for the memory response. Out-of-order processors may bypass this problem by executing an unordered
instruction set, but they still have a time window that must be respected to avoid processor stalling.
Due to this problem, prioritizing reads over writes is an important feature to avoid diminishing the
processors performance and guarantee certain application deadlines.

The FR-FCFS algorithm alone may reduce delays of opening and closing rows, but it does
not consider read priorities or delay penalties caused by read/write switching. Therefore, aiming to
solve this problem, a similar solution to the one presented by Shao [Sha06] is proposed in this work.
This burst reordering works in coordination with the FR-FCFS algorithm. Reads are prioritized over
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writes and row-hits are prioritized over row-conflicts. To avoid data hazards2, the system detects read
dependencies on writes and considers the scheduling of the write request before the read, causing an
exception to the rule. Figure 4.5 presents a diagram with the scheduling possibilities for FR-FCFS
with read/write reordering.
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Schedule 
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Figure 4.5: Request scheduling diagram for low-priority clients.

4.4 Command-Scheduling Algorithm

The command-scheduling algorithm determines which bank is going to be accessed accord-
ing to memory constraints and available requests. In this work, we propose a command scheduling
technique that supports two main characteristics: (1) Bank-group round-robin access and (2) SDRAM
timing dependency awareness. The idea is to provide fair access to all banks, while seeking for lower
latencies through the scheduling of commands that best suit the dependency puzzle created by memory
time constraints.

The round-robin is a starvation-free algorithm that provides fair access to all clients. High
and low-priority ones have equal rights when competing for memory access. The advantages of
high-priority clients are granted in earlier arbitration levels, as detailed in previous sections.

Aiming to maintain a fair arbitration while creating awareness for bank-group interleaving,
we propose the bank-group round-robin. Bank queues are virtually organized in a circular manner,
and the arbiter iterates between them according to the bank ID. Bank queues that do not meet the
current SDRAM time requirements are temporarily ignored during this arbitration event. Due to
bank-groups characteristics, requests that target different bank-groups from recent accesses will be
scheduled before requests that target same bank-groups.

2The scheduling of a read that depends on a write that has not been executed yet is classified as a data hazard.
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4.5 Implementation

The memory controller proposed in this work comprises all the previous scheduling sub-
systems in a two-level architecture. As seen in state-of-the-art controllers, partitioning the system
in front-end and back-end is crucial for understanding client arbitration and memory scheduling dif-
ferences. The front-end is commonly in charge of managing and interacting with clients, following
communication protocols and attending requests. The back-end is responsible for dealing with mem-
ory requests in a finer granularity, interfacing with the memory module and, especially for dynamic
controllers, applying complex algorithms to improve memory access efficiency. Given this definition,
we may classify our front and back-ends as the priority and memory levels, respectively.

This work studies the behavior of the proposed memory controller through the implemen-
tation of a software solution that simulates the arbitration levels and the SDRAM module itself. This
solution was implemented using the C++ language with the addition of System-C libraries to facilitate
time perception and clock management. The use of these libraries eases the possibility of defining
multiple clock domains, thus, enabling the simulation of an architecture more similar to actual modern
MPSoCs. Besides, the clock notion allowed the creation of a clock-sensible counter process, called
Tick, that served as the time reference to the system. All latency and bandwidth calculations are based
on it, and it is simultaneously shared among multiple processes. Other shared-resources (i.e., arrays
and queues) were controlled using native Mutex System-C libraries to guarantee mutual exclusion and
data coherence.

The following sections present the proposed work seen as functional blocks, each one
implementing an arbitration level or a functional logic. These blocks and their intra-connections
illustrate a symbolic relation between the software-based solution and a real hardware implementation.
The subsequent sections present the software logic developed for each module, and try to map it to
the block representation.

4.5.1 Front-end: Priority Level

The front-end, or priority level, handles clients requests according to the priority algorithm
proposed in Section 4.1. Clients are connected in parallel, and have their access scheduled by the
client arbitration module, that we may call Client Manager. In addition, this module also controls the
write and read datapaths, which are necessary to transfer data from and to clients, respectively. Figure
4.6 illustrates a block diagram for this level.
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Figure 4.6: Block diagram of the priority level. The client manager implements the priority algorithm, the n clients are
connected in parallel, and the write and read datapaths transfer data from e to clients, respectively. Source: created by the
author.

4.5.1.1 Clients

In this work, clients are represented as memory traces, extracted from the execution of
applications on an in-order processor with cache3. The choice for tracing brings the advantage of
significantly reducing simulation times, but with the drawback of minimal flexibility. The traces
represent the execution of the processor over a platform different from the target, which makes it a
timed set of memory accesses unaffected by the system using it as input. Table 4.2 presents an example
of a trace file; it is composed of three tags: timestamp, read/write and address. During trace reading,
the timestamp is respected to indicate the injection time of the request, the read/write defines if the
request is a read (0) or a write (1), and the address is the physical address that the client is requesting
to the memory.

Table 4.2: Sample of the trace format. Source: created by the author.

Timestamp Read/Write Address

2036750 0 cf21cd40
2135750 1 cf434d40
2140750 0 cf202f80
2346750 1 cfb2ccc0
2392250 0 cf2489c0

Due to limitations during memory logging, each trace was extracted considering a single-
client system. According to Moscibroda and Mutlu [MM07], an application sharing memory accesses
with others have reduced performances when compared to the same application using the memory
for itself. Given this characteristic, applying multiple traces simultaneously as input to the same

3Further information about trace extraction and simulation parameters are discussed in Chapter 5.



69

system may result in execution delays and the loss of the application’s time principles. Aiming
for this problem, our solution implements a logic that blocks the trace execution, if necessary, and
increments a delay variable. This variable is used to offset further trace accesses and maintain the
time dependencies of the application.

Figure 4.7 illustrates a flowchart of the trace input logic. Initially, the request is read from
the trace file and waits for the Tick counter to reach its timestamp plus the current delay value. When
doing so, the trace input module checks the input buffer availability, if the buffers are full, the delay
is increased and the client is maintained in idle mode, else, the request is accepted by the memory
controller. To maintain the main characteristic of in-order processors, read requests stall the processor
while waiting for a memory response, and write requests are accepted instantly, allowing instructions
to continue to execute unaffected.

Read
Trace

Tick >=
(Timestamp

+ Delay)

Input Buffer
full?

Inject 
Request

Delay++

No

Yes

Yes No

Figure 4.7: Diagram for the trace input logic. Source: created by the author.

In the block diagram presented in Figure 4.6, the proposed delay logic is represented using
the rdy signal. While this signal is 1, the client is allowed to normally issue memory accesses.
Whereas, if it is 0, the system is unable to accept the client request at the moment, meaning that the
delay variable is counting. Furthermore, in a hardware representation, the rdy signal can be seen as
the processor stall, which indicates whether the processor is allowed to communicate or not. When
awaiting for read responses, the event of rising the rdy represents the arrival of the response data from
the memory.

4.5.1.2 Client Manager

The client manager implements the priority scheme proposed in Section 4.1. According
to the algorithm, incoming requests to the memory controller are arbitrated based on the priority of
their respective clients. High-priority ones have an advantage over low-priority. To avoid starvation,
if a high-priority client is attended, the other requests have their priority increased. In addition, the
acceptance of requests by further levels of the controller also depends on buffer availability. If the
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target bank-buffer respective to the request does not have an empty slot to accept it, the request remains
in the input buffer, and a new arbitration event starts.

Figure 4.8 illustrates the logic of the proposed method, presenting a flowchart that considers
the relationship with the block diagram presented in Figure 4.6. Clients with available requests in their
input queues raise the req signal and wait for arbitration. High-priority clients have the hprio signal
set as 1, while in low-priorities it is 0. Initially, a search for the highest priority request is started, if
no high-priority is found, the arbiter continues with the round-robin priority. To forward a request,
the client manager consults the bank-buffer availability that is updated by the memory level through
a credit-based system (bb_status). If buffers are available, the request is accepted. In the end, if a
high-priority client is the one scheduled, other clients have their (virtual) priority increased.

Search for 
Highest 
Priority

Found?

Bank 
Buffer Full?

bb_status 

Current Client

High Priority

Hold Request
Send Request 
to Memory 

Level

Was High 
Priority?

Increase 
Priorities

Current Client

RR Selection

End of 
Arbitration 

Event

Yes

No

Yes No 

Yes

No

Figure 4.8: Client manager logic represented as a flow-chart. Source: created by the author.

In addition, the client manager also controls the write and read datapaths. The write
datapath (w_data) is transferred along with the memory request, while the read datapath is signaled
by valid_r_data. This signal informs that there is valid data (r_data) available; it is accompanied by
the resp_client, which indicates the destination of the data. Since this work proposes the behavioral
analysis of the memory controller, actual data transfers were not considered during the software
implementation.

4.5.2 Back-end: Memory Level

The back-end, or memory level, is in charge of (1) decoding addresses using the proposed
custom mapping technique with bank privatization, (2) reordering memory requests according to
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row-hit and read/writes, and (3) schedule memory commands using the round-robin method, while
respecting memory timing dependencies. These arbitration logics are applied in different stages of
the controller, considering each a separated module. Figure 4.9 presents a block diagram illustrating
these arbitration stages. Whenever a request reaches the memory level, it is decoded by the address
decoder, stored on the bank-buffers, arbitrated by the reordering arbiters and scheduled by the
command scheduler to access the memory module. The bus connection from and to the bank-buffers
is multiplied by b, which is the number of banks of the target memory.
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Figure 4.9: Block diagram of the memory level. The address decoder holds the mapping table and implements the bank
privatization technique. The bank buffers store the memory requests and the reordering arbiters schedule requests using
the proposed reordering algorithm. The command scheduler schedule commands considering bank-group constraints.
Source: created by the author.

4.5.2.1 Address Decoder

The address decoder implements the proposed mapping scheme of Section 4.2. The idea
is to reserve separate banks, or set of banks, to high-priority clients, guaranteeing temporal and
access isolation. This module consults a mapping table, established during startup configuration, and
assigns the bank address to each request based on client ID and priority level, which, in Figure 4.9,
are represented by the signals client_id and hprio, respectively. Besides, according to the incoming
physical address, the address decoder defines the target row and column on the memory module.

In our solution, the address decoder is described by a function that decodes each physical
address request based on the memory module configuration. The number of channels, ranks, banks,
rows and columns of the target memory module define the size of each field during memory mapping.
As a matter of simplicity, this work considers a system with a single channel and a single rank.
Therefore, it is not necessary to reserve channel and rank positions during address mapping. This
configuration reduces complexity and modifies the mapping scheme to the one presented in Figure 4.10.
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The size in bits of each field is calculated through log2(x), being x a variable dependent on controller
configurations or memory module characteristics. This implementation choice does not change the
fact that the proposed solution is still applicable for multi-ranked memories, but this configuration is
not discussed in this work. Further discussions about the memory module configuration, timings and
capacity are made in Section 4.5.3.

Row Bank L BurstColumn LColumn HBank H

Arbitrated 
according to 

client ID

log2(bh) log2(r) log2(ch) log2(bl) log2(cl) log2(bs)

bh : Defined during start up configuration
r : Number of rows
ch : Number of columns – Cache block size
bl : Defined during start up configuration
cl : Cache block size
bs : Burst size

Figure 4.10: Proposed address mapping scheme considering a single channel and a single rank. The size in bits of
each field is calculated through log2(x), being x a variable dependent on controller configurations or memory module
characteristics. Source: created by the author.

4.5.2.2 Reordering Arbiters and Bank Buffers

Bank-buffers store requests already in the form of bank, row, and column. For write requests,
a write data (w_data) space is reserved. In addition, the client ID (client_id) also accompanies these
attributes to further assist on out-of-order read responses. The status of these buffers is directly linked
to the arbitration of requests in previous stages. Requests targeting full buffers are not accepted, and the
client may remain in idle mode. The bb_status signal is responsible for transmitting this information.
This signal is multiplied n times according to the number of banks in the target memory module.

The chosen reordering algorithm is based on the state-of-the-art FR-FCFS [R+00] and the
read/write burst reordering [Sha06] technique. Row-hits are prioritized over row-conflicts, and reads
are prioritized over writes. In addition, if a newer read is selected over an older write to the same
address, it creates an exception to the rule, and the write is scheduled before the read to avoid data
incoherence. Figure 4.11 presents a commented pseudo-coded solution to this arbitration challenge;
it follows the logic presented in Figure 4.5.

Considering the block diagram of Figure 4.9, this logic is implemented by the reordering
arbiters. Each bank-buffer is accompanied by a reordering arbiter, which receives as an input the
bank_status signal, which informs which row is open in the respective bank.
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int FRfcfsSelect( arguments ){ // This function considers that the bankBuffer is not empty

int firstRead = -1, // and it returns the position of the request on the buffer

firstWrite = -1;

for (req being each element on the bankBuffer) { // For each request stored on

// buffer

if (req is row-hit // Request is row-hit?(bank_status)

and target bank of req is open  // Is the current bank open?

and req is a read) { // Request is read?

// If found a matching read request

for (req2 being each element on the bankBuffer){ // Search for a write to the

if (req.address == req2.address) // same address and avoid data

return index of req2; // hazards

}

return index of req; // If the write was not found,

} // return the read request index

if (firstRead == -1 and req is read) // Save the oldest read request 

firstRead = index of req; // in case no row-hit is found

}

for (req being each element on the bankBuffer){ // If no read was found, 

// search for a row-hit write

if (req is row-hit  // return a row-hit write.

and target bank of req is open

and req is a write)

return index of req;

if (firstWrite == -1 and req is write) // Save the oldest write request 

firstWrite = index of req; // in case no row-hit is found

}

// If no row-hit is found

if (firstRead > 0) // return oldest read

return firstRead; // If there is not read

else // return oldest write

return firstWrite;

}

Figure 4.11: Pseudo-code for the reordering arbiter with FR-FCFS and read/write reordering algorithms. Source: created
by the author.

4.5.2.3 Command Scheduler

The command scheduler implements a bank-group-aware round-robin scheme that depends
on memory timing dependencies to provide the efficient use of the memory channel. To implement
this algorithm, which is proposed in Section 4.4, this module maintains a record of previous requests
and memory availability. The bank-group-aware characteristic guarantees the best usage of the DDR4
SDRAM features, providing reduced latency and increased bandwidth. Moreover, this module is also
in charge of scheduling the periodic refreshes necessary to maintain up-to-date information in the
memory capacitors. Figure 4.12 presents a pseudo-code with the algorithm used for the development
of this module. Considering the page policy, the command scheduler implements a fixed open-page
that leaves a page open for PRTHRES cycles when not being accessed, after this, the page is precharged.
The parameter PRTHRES is configurable during the initial setup.

4.5.2.4 Read Command Queue

As previously stated, actual data transference was not considered during the behavioral
development of the proposed architecture, the read command queue, depicted in Figure 4.9, is a
simple illustration of the mechanism to redirect memory responses back to requesting clients. It
is based on the solution proposed by [Bon14], where a separate module maintains a list of issued
commands to the memory and waits for data responses. The client ID is forwarded with the request
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// condition: do the following for every bankBuffer,

// in a circular search,

// until finding a command, 

// when finding a command, break the loop

//  if no command is found, consider NOP

while(condition) {

// Check periodic refresh time

if (refresh time or already refreshing) {

if (refresh time and not currently refreshing) {

command = REFRESH;

}

}

else {

if (currentBankBuffer not empty) {

requestIndex = FRfcfsSelect( arguments );

request = currentBankBuffer[requestIndex];

if (row-hit) { // If request gives a row-hit read

if (read and ((can read different group 

and different group) or can read same group)) {

command = READ;

commandBank = currentBank;

} // Else, a row-hit write

else if (write and ((can write different group 

and different group) or can write same group)) {

command = WRITE;

commandBank = currentBank;

}

}

// If row-miss, activate

else if (row-miss) {

command = ACTIVATE;

commandRow = request.row;

commandBank = currentBank;

}

// If row-conflict, precharge

else if (row-conflict) {

command = PRECHARGE;

commandBank = currentBank;

}

// If a command is scheduled,

//  the precharge counter is zeroed

prechargeCounter = 0; 

}

else {

// If the command queue is empty, 

// precharge the bank

// after PRTHRES cycles of no activity

if (currentBank is OPEN 

   and can precharge currentBank)

     and prechargeCounter > PRTHRES) {

command = PRECHARGE;

commandBank = currentBank;

}

else

prechargeCounter++;

}

}

}

Figure 4.12: Pseudo-code for the command scheduling logic. Source: created by the author.

up to this module, where it is stored and arbitrated in an FCFS manner. Valid data (r_data) returning
from the memory is accompanied by the valid_r_data set as high. This signal indicates that the read
command queue needs to inform to the priority level the owner of that response.

4.5.3 DDR4 Simulator

The DDR4 SDRAM is the state-of-the-art memory device for desktop and servers. It stores
information in cells composed of transistors and capacitors. Accesses to SDRAMs must respect strict
time constraints to guarantee the highest bandwidths provided by the technology. The project for a
hardware memory controller requires the development of power regulators and protocol converters to
support DDR4 complex interfaces. Activate, read, write and precharge commands are translated into
a combination of electrical signals to the memory interface. In most cases, this conversion is made
by the PHY module, which stands for "physical". It is in charge of bridging the memory controller
to the memory device. The implementation of this module and the direct pin-to-pin communication
with SDRAMs is beyond the scope of this work. Instead, we propose the behavioral simulation of
DDR4 SDRAMs through a System-C abstract model. This simulator manages the multiple time
dependencies, bank and bank-group composition, and data bus restrictions of the target memory
module.

The proposed memory simulator uses of a cycle-accurate time analysis of each memory
constraint, guaranteeing the completion of every memory access during predefined time parameters,
and respecting the double-data rate aspect of the data-bus. The simulator takes advantage of control
variables that describe its availability to receive memory commands and best represent the behavior
of a real memory device,. This availability directly relies on timing dependencies that are strictly
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monitored during a memory access. To understand the relationship of these control variables and
comprehend the functionality of the proposed simulator, we divided it in three different processes:
command decoder, timing control and data bus control.

As seen in Chapter 2, SDRAM memory accesses must respect several timing parameters to
correctly load or store information on the memory device. Some examples of these parameters can be
the row-to-row delay (tRRD) that defines the minimum delay between activate commands, the RAS
to CAS delay (tRCD) that defines the delay between activate and read/write, the column-to-column
delay (tCCD) that defines the delay between read/write commands, and many others. In our simulator,
these parameters are predefined in a header file according to the manual of the target memory device.
In addition, internal time counters have been created to manage each access, these counters have
their values assigned when the memory decodes a command, and they perform a countdown at each
clock cycle. They control the access constraints, which represent the availability of the memory to
receive commands at a current time. This method eases the creation of the abstract interaction between
command scheduler and the memory module.

4.5.3.1 Data Structures

structure _ddr4_ {

// Other structures

structure _bank_ bank[NBANKS];

structure _dataBus_ dataBus;

// Time counters

int tccd_s;

int tccd_l;

int trrd_s;

int trrd_l;

int twtr_s;

int twtr_l;

int trtw;

int tfaw;

// Access constraints

bool actvAvail_s;

bool actvAvail_l;

bool readAvail_s;

bool readAvail_l;

bool writeAvail_s;

bool writeAvail_l;

// Command variables

enum enumCommand cmd;

int cmdRow;

short cmdBank;

};

structure _bank_ {

// List of requests

list of _memrequest_ reqBuffer;

// Number of the Openned row

int openRow;

// Time counters

int trcd;

int twr;

int trtp;

int trp;

int trfc;

int trefi;

// Access constraints

bool prechargeAvail;

bool refreshAvail;

bool refreshing;

// Bank status

enum enumBankStatus status;

};

structure _dataBus_ {

// Address of the request

int address;

// Read or Write (out or in)

bool rw;

};

enum enumCommand {

NOP, ACTIVATE, READ, WRITE, 

PRECHARGE, REFRESH

};

enum enumBankStatus {

OPEN, CLOSED, OPENNING, CLOSING

};

structure _memrequest_ {

// Initial info

int address;

short priority;

bool rw; 

int client;

// Target coordinates

int bank;

int row;

int column;

// Timestamp when leaving client

long int timestamp;

// Time counters

int tcl;

int twl;

};

(a)

(b)

(c)

(d)

(e)

(f)

_ddr4_

_bank_

_dataBus_

_memrequest_

Figure 4.13: Data structures used in the memory simulator: (a) Top memory structure; (b) Data structure; (c) Bank
structure; (d) Enumeration of custom variables; (e) Request structure; and (f) Relationship between structures. Source:
created by the author.

Data structures were created for organizing and structuring the program. These structures
represent many time dependency levels of the memory, and they are composed of internal time
counters, access constraints and other variables. Figure 4.13 presents the declaration of these structures
(a - e), and the hierarchical relationship between them (f). The _ddr4_ structure represents the whole
memory device; it contains control variables, a list of banks and a data bus representation. The
_dataBus_ structure represents the memory data channel, and it helps to simulate data transference.
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The _bank_ structure represents a memory bank, which contains control parameters and a request
buffer (reqBuffer). This buffer stores requests represented by the structure _memrequest_.

4.5.3.2 Command Decoder

After understanding about internal time counters, access constraints, and data structures,
it is possible to introduce the command decoder. This process is in charge of decoding incoming
memory commands, and managing time and control parameters to represent a real memory device. It
creates the appropriate time dependencies between requests, and initiates the countdown for activation
and precharge of banks, completion of read and write requests, and the execution of refreshes. The
items below present the decoded commands, including the logic as implemented on the simulator.
Following, Figure 4.14 presents a pseudo-code of the command decoder; the upper-case attributes are
pre-defined timing parameters. In this algorithm, every command is finished calling the disableAll
function. This procedure disables the access to the memory (except for precharges in banks different
from the current target one) during a given period. This access is re-granted by the timing control
process, when analyzing the current memory dependencies.

Activate: During activation, the inter-bank delays tRRD_S and tRRD_L are initialized, and the
activation process takes tRCD cycles to finish. This command modifies the bank status to
OPENING and sets up an open row to the target bank. In addition, the bank-activation window
needs to be considered, if it is the first bank of four, the tFAW counter needs to be initialized.

Read: After a read command, no other read/write requests can be accepted before the tCCD_S when
the address is for a different bank-group and before tCCD_L when the address is for the same
bank-group. Other than that, a write is only allowed after tRTW and a precharge after tRTP.
This command initiates the tCL counter, which indicates the delay necessary to valid data.

Write: Similar to the read command, tCCD_S and tCCD_L serve for the same purpose. This
command establishes that the memory will load from the data bus tWL cycles after decoding
the command, this load takes BL/2 cycles, and the memory will be allowed to accept reads
tWTR_S or tWTR_L cycles later. To precharge, the bank needs to wait for the write access plus
the write recovery delay (tWR).

Precharge: The precharge command takes tRP cycles to be executed and sets the target bank to a
CLOSING state.

Refresh: Before the refresh execution, every bank needs to be closed. Therefore, banks with open
rows require an additional tRP delay to refresh. Already closed banks refresh in tRFC cycles.

NOP: Stands for "No OPeration". It creates a bubble on the command bus.
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switch(ddr4.cmd){

case ACTIVATE:

\\ Activation delay

ddr4.bank[ddr4.cmdBank].trcd = TRCD;

ddr4.bank[ddr4.cmdBank].openRow = ddr4.cmdRow;

ddr4.bank[ddr4.cmdBank].status = OPENNING;

\\ Can t activate during tRRD

ddr4.trrd_s = TRRD_S;

ddr4.trrd_l = TRRD_L;

\\ Manage the activation window (4 banks)

if(actvBankCounter == 0) {

ddr4.tfaw = TFAW;

actvBankCounter++;

}

else actvBankCounter++;

disableAll(ddr4, ddr4.cmdBank)

break;

case READ:

\\ Can t read/write during tCCD

ddr4.tccd_s = TCCD_S;

ddr4.tccd_l = TCCD_L;

\\ Wait to write

ddr4.trtw = TRTW;

\\ Wait to precharge

ddr4.bank[ddr4.cmdBank].trtp = TRTP;

\\ Wait for data

ddr4.bank[ddr4.cmdBank].reqBuffer.back().tcl = TCL;

disableAll(ddr4, ddr4.cmdBank);

break;

case WRITE:

\\ Can t read/write during tCCD

ddr4.tccd_s = TCCD_S;

ddr4.tccd_l = TCCD_L;

\\ Wait to read

ddr4.twtr_s = TWL + BL/2 + TWTR_S;

ddr4.twtr_l = TWL + BL/2 + TWTR_L;

\\ Wait to precharge

ddr4.bank[ddr4.cmdBank].twr = TWL + BL/2 + TWR;

\\ Wait for data

ddr4.bank[ddr4.cmdBank].reqBuffer.back().twl = TWL;

disableAll(ddr4, ddr4.cmdBank);

break;

case PRECHARGE:

\\ Precharge time

ddr4.bank[ddr4.cmdBank].trp = TRP;

ddr4.bank[ddr4.cmdBank].status = CLOSING;

disableAll(ddr4, ddr4.cmdBank);

break;

case REFRESH:

\\ All banks need to be precharged

\\ before refresh

if(ddr4.bank[ddr4.cmdBank].status == OPEN){

ddr4.bank[ddr4.cmdBank].trfc = TRP + TRFC;

ddr4.bank[ddr4.cmdBank].status = CLOSING;

ddr4.bank[ddr4.cmdBank].trp = TRP;

}

else

\\ Refreshing

ddr4.bank[ddr4.cmdBank].trfc = TRFC;

ddr4.bank[ddr4.cmdBank].refreshing = 1;

ddr4.bank[ddr4.cmdBank].refreshAvail = 0;

disableAll(ddr4, ddr4.cmdBank);

break;

case NOP:

\\ Nop creates an execution bubble

ddr4.cmdBank = 0;

ddr4.cmdRow = 0;

break;

}

\\ Memory can t be accessed for a while

\\ Disable all accesses to the device

\\ and disable precharging to the target bank

void disableAll(struct _ddr4_ &ddr4, int bankIndex){

ddr4.actvAvail_s = 0;

ddr4.actvAvail_l = 0;

ddr4.readAvail_s = 0;

ddr4.readAvail_l = 0;

ddr4.writeAvail_s = 0;

ddr4.writeAvail_l = 0;

ddr4.bank[bankIndex].prechargeAvail = 0;

}

Figure 4.14: Pseudo-code for the command decoding logic. Source: created by the author.

4.5.3.3 Timing Control

The timing control process manages the internal time parameters and dependencies of the
memory device. It monitors time counters, updates access constraints and defines bank statuses
based on memory commands currently being held. This process is quite simple, it just relies on the
counters by triggering events whenever a time counter reaches (almost) zero. Figure 4.15 presents
a pseudo-code with the logic for this process. This code sets the values that are monitored by the
command scheduler when scheduling a command to the memory. Therefore, the proper configuration
and handling of these values directly affect the maximum bandwidth reachable by the memory module.
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// Decrease internal time counters

if (ddr4.tccd_s > 0) ddr4.tccd_s--; else ddr4.tccd_s = 0;

if (ddr4.tccd_l > 0) ddr4.tccd_l--; else ddr4.tccd_l = 0;

if (ddr4.trrd_s > 0) ddr4.trrd_s--; else ddr4.trrd_s = 0;

if (ddr4.trrd_l > 0) ddr4.trrd_l--; else ddr4.trrd_l = 0;

if (ddr4.twtr_s > 0) ddr4.twtr_s--; else ddr4.twtr_s = 0;

if (ddr4.twtr_l > 0) ddr4.twtr_l--; else ddr4.twtr_l = 0;

if (ddr4.trtw > 0) ddr4.trtw--;   else ddr4.trtw = 0;

if (ddr4.tfaw > 0) ddr4.tfaw--;   else ddr4.tfaw = 0;

// If tFAW is 0, reset bank counter

if (ddr4.tfaw < 1) actvBankCounter = 0;

// Define access constraints

if (ddr4.trrd_s < 1  and actvBankCounter < 4) ddr4.actvAvail_s = 1; 

else ddr4.actvAvail_s  = 0;

if (ddr4.trrd_l < 1 and actvBankCounter < 4) ddr4.actvAvail_l  = 1; 

else ddr4.actvAvail_l = 0;

if (ddr4.tccd_s < 1 and ddr4.twtr_s < 1) ddr4.readAvail_s = 1; 

else ddr4.readAvail_s = 0;

if (ddr4.tccd_l < 1 and ddr4.twtr_l < 1) ddr4.readAvail_l = 1; 

else ddr4.readAvail_l = 0;

if (ddr4.tccd_s < 1 and ddr4.trtw < 1) ddr4.writeAvail_s = 1; 

else ddr4.writeAvail_s = 0;

if (ddr4.tccd_l < 1 and ddr4.trtw < 1) ddr4.writeAvail_l = 1; 

else ddr4.writeAvail_l = 0;

// Decrease internal bank timing parameters

for (i=0;i<NBANKS;i++) {

if (ddr4.bank[i].trcd > 0) ddr4.bank[i].trcd--; else ddr4.bank[i].trcd = 0;

if (ddr4.bank[i].twr > 0)  ddr4.bank[i].twr--;  else ddr4.bank[i].twr = 0;

if (ddr4.bank[i].trtp > 0) ddr4.bank[i].trtp--; else ddr4.bank[i].trtp = 0;

if (ddr4.bank[i].trp > 0)  ddr4.bank[i].trp--;  else ddr4.bank[i].trp = 0;

if (ddr4.bank[i].trfc > 0) ddr4.bank[i].trfc--; else ddr4.bank[i].trfc = 0;

if (ddr4.bank[i].trefi > 0) ddr4.bank[i].trefi--; else ddr4.bank[i].trefi = 0;

// When refresh counter tREFI reaches 0, it s time for a refresh

if (ddr4.bank[i].trefi < 1 and !ddr4.bank[i].refreshing) 

ddr4.bank[i].refreshAvail = 1;

// When the refresh is finished, tREFI restarts counting

if (ddr4.bank[i].trfc < 1 and ddr4.bank[i].refreshing) {

ddr4.bank[i].refreshing = 0;

ddr4.bank[i].trefi = TREFI;

}

// Change bank status to OPEN when activate operation is finished

if (ddr4.bank[i].trcd < 1 and ddr4.bank[i].status == OPENNING) 

ddr4.bank[i].status = OPEN;

// Change bank status to CLOSED when precharge operation is finished

if (ddr4.bank[i].trp < 1 and ddr4.bank[i].status == CLOSING) 

ddr4.bank[i].status = CLOSED;

// If no pending request, the bank is allowed to precharge

if (ddr4.bank[i].trcd < 1 and ddr4.bank[i].twr < 1 and ddr4.bank[i].trtp < 1) 

ddr4.bank[i].prechargeAvail = 1;

else 

ddr4.bank[i].prechargeAvail = 0;

}

Figure 4.15: Pseudo-code for the timing control logic. Source: created by the author.

4.5.3.4 Data Bus Control

The proposed DDR4 simulator does not handle data transfers; therefore, the data bus control
manages the occupation of an abstract data bus by memory requests. It simulates input and output
data transfers by considering the request address and the type of operation (read/write). Besides, this
module manages internal timing parameters of the request structure, tCL and tWL. Whenever one of
these parameters reaches zero in any of the currently handled requests, it requires access to the data
bus. Since the request synchronization is created in previous processes, it is guaranteed that requests
will not require access to the data bus simultaneously. When finishing execution, requests are removed
from the internal request list of the bank.

Also, this module simulates the data bursts of modern SDRAMs. Requests occupy the data
bus during half of the configured burst-length due to the double data-rate feature of DDR SDRAMs.
For example, if the burst-length is configured to 8 (default for DDR4), the request will require four
cycles to transfer its data.
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5. SIMULATION ENVIRONMENT

This chapter presents the setup for the simulation environment used for the experiments. The
following sections introduce the benchmark chosen for our tests and validation, the trace collection
tool used for the creation of memory traces, and a comparison of the DDR4 Simulator, proposed in
Section 4.5.3, with the state-of-the-art simulator DRAMSim2.

5.1 PARSEC - Benchmark Suite for Multiprocessing

Benchmarking is the quantitative foundation of computer architecture research [BKSL08].
Without a program selection that truly represents the target application space, performance results may
be misleading, and no valid conclusions may be drawn from the experimental outcome. A well-known
fact of multiprocessing is the troublesome change of programming models for programs to benefit
from their full potential. The use of older high-performance workloads does not fit this scenario since
it is based on smaller suites and sequential applications. This drawback is the main motivation for the
creation of the Princeton Application Repository for Sedhared-Memory Computers (PARSEC) suite
[BKSL08].

The first version of PARSEC was created by Intel in cooperation with the Princeton Univer-
sity [BL16]. The latest version available of PARSEC is 3.0 [Uni16]. It is a highly used benchmark,
it was employed for benchmarking in more than 55 papers in International Symposium on Computer
Architecture (ISCA) from 2010 to 2014 [SR15].

The PARSEC suite proposes five objectives as follows1:

Multi-threaded Applications: Shared-memory multiprocessors are present everywhere. Future pro-
cessors tend to deliver significant performance improvements by increasing the number of cores
while providing slight serial performance improvements. Consequently, applications that require
additional processing power will need to be parallel.

Emerging Workloads: The rapid increase of processing power enables the support of a new class of
applications whose computational requirements were beyond capabilities of earlier generation
processors. Future processors will be designed to meet the requirements of these applications,
and a reliable benchmark suite is necessary to represent them.

Diverse: A benchmark suite must be broad in its representative load of applications to represent the
significant diversification of existing applications. These may include offline applications, like
data-mining, graphic and interactive applications, like games, and a great variety of parallel
program models.

1The description presented on these items was based on [BKSL08]
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Employ State-of-the-Art Techniques: A benchmark suite must be up-to-date with current practice
in program model techniques.

Support Research: Benchmark suites intended for research usually go beyond pure scoring systems
and provide infrastructure to instrument, manipulate, and perform detailed simulations of the
included programs in an efficient manner.

The PARSEC benchmark suite meets all the presented requirements, providing a rich,
parallelized, memory-focused, state-of-the-art set of applications with diverse areas of research. The
areas vary between computer vision, computational finance, enterprise servers, media processing and
animation physics. The following table summarizes the main characteristics of each applications that
compose the PARSEC suite.

Table 5.1: Summary of PARSEC application characteristics. Source: adapted from [BKSL08].

Program Application Domain Parallelization Working Set Data Usage
Model Granularity Sharing Exchange

blackscholes Financial Analysis data-parallel coarse small low low
bodytrack Computer Vision data-parallel medium medium high medium
canneal Engineering unstructured fine unbounded high high
dedup Enterprise Storage pipeline medium unbounded high high
facesim Animation data-parallel coarse large low medium
ferret Similarity Search pipeline medium unbounded high high
fluidanimate Animation data-parallel fine large low medium
freqmine Data Mining data-parallel medium unbounded high medium
streamcluster Data Mining data-parallel medium medium low medium
swaptions Financial Analysis data-parallel coarse medium low low
vips Media Processing data-parallel coarse medium low medium
x264 Media Processing pipeline coarse medium high high

The benchmark suite provides multiple categories of input sets. The test and simdev are
small input sets that provide just an example of the execution of applications. The simsmall, simmedium
and simlarge are intended for deep analysis simulations, and vary progressively in size. It follows a
trend that large input sets present high parallelism. They approximately present the runtime execution
of 1, 5 and 15 seconds of the application, respectively [BL16]. Finally, the native input set is the most
interesting one because it resembles true program inputs. Although, this set might present a runtime
execution of 15 minutes, making it inapplicable in some scenarios.

5.1.0.1 PARSEC Benchmark

After an analytical analysis of the applications and input sets, this work chose the test input
for providing lower simulation times and a significant amount of memory accesses. The selected
applications from the PARSEC Benchmark are Blackscholes, Canneal, Dedup, Facesim, Ferret,
Fluidanimate, Swaptions and x264. Their selection was based on the work of N. Barrow-Williams
[BWFM09], which provides an individual analysis on the memory access characteristics for each
application. In this work, each application represents a separate client, and they do not share memory
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information between each other. The study of a system that considers shared-data spaces is left as
a future work. The purpose of this work is not to make a quantitative analysis of the system, but to
validate and evaluate the priority levels presented in Chapter 4.

For a better understanding of the characteristics of each chosen application, they are de-
scribed below. The following information is based on [BKSL08].

Blackscholes: Financial analysis application developed by Intel that calculates the prices for a port-
folio of European options considering the Black-Scholes partial differential equation. This
equation has no closed formula and must be computed numerically. This program is limited
by the amount of floating-point calculations a processor can perform. This application is the
simplest of all PARSEC benchmarks and has minimal communication.

Canneal: This application uses a cache-aware Simulated Annealing (SA) to minimize the routing cost
of chip design. SA is a common method to approximate the global optimum in a large search
space. The program was included in the PARSEC program selection to represent engineering
workloads, for the fine-grained parallelism with its lock-free synchronization techniques and
due to its pseudo-random worst-case memory access pattern.

Dedup: Combines global and local aspects to achieve high compression ratios of the data stream.
This compression is called "deduplication". Dedup is intended for enterprise storage servers,
where each input is an archive that contains a selection of files.

Facesim: Initially developed by Stanford University, the Facesim program computes a visually real-
istic animation of the underlying physics of a human’s face model undergoing a sequence of
muscle activations. An increasing number of computer games and movie animations employ
physical simulation to create a more realistic virtual environment.

Ferret: This application is based on the Ferret toolkit that is used for content-based similarity search
of feature-rich data such as audio and video. This program presents an emerging next-generation
desktop and Internet search engine for non-text document types. Ferret is parallelized using the
pipeline model with six stages.

Fluidanimate: Is an Intel mining and synthesis application that uses an extension of the Smoothed
Particle Hydrodyanmic method to simulate the behavior of a fluid for interactive animation
purposes. The input set comprises many particles and frames. Fluidanimate uses the largest
number of synchronization primitives.

Swaptions: This application uses the Heath-Jarrow-Morton framework to price a portfolio, which
describes how interest rates evolve for risk and asset liability management for a class of models.
Swaptions employs Monte Carlo simulation to compute the prices.

x264: Is an H.264/AVC video encoder application based on the ITU-T H.264 standard, which is
now part of ISO/IEC MPEG-4. It describes the lossy compression of a video stream, which
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employs new features that achieve a higher output quality with lower bit-rate. This program
leads to significantly increased encoding and decoding times. This benchmark presents intensive
memory communication.

5.2 Full-System Simulator

A full-system simulator is a fast architecture simulator capable of executing software stacks
from real systems (user and kernel code) without any modification [EAW10]. These tools can create
virtual platform designs that gather experimental data with workloads compatible with the running
software. Full-system simulators present high flexibility to explore different architectural designs
without the inherent hardware cost of manually doing so.

The simulation of computer architectures requires low-level descriptions, such as Register
Transfer Level (RTL), and detailed hardware simulation models, which leads to increased time for
design exploration and creates drawbacks for the full system simulation. Therefore, simulators often
use higher abstraction models that exchange precision for efficiency, and allow the simulation of
complex systems in a remarkably lower amount of time. Considering this premise, this work opted
for the Gem5 full-system simulator to extract the memory traces used during experimental evaluation.

5.2.1 The Gem5 Simulator

The Gem5 is a full-system simulator that employs a highly and flexible modular discrete
event model. It is the combination effort of multiple industrial and academic institutions such as
ARM, AMD, University of Michigan, University of Texas and others. Currently, Gem5 supports six
commercial Instruction Set Architectures (ISAs) (i.e., Alpha, ARM, MIPS, POWER, SPARC and x86)
and boots the Linux Kernel on at least three of them (ARM, Alpha and x86) [B+11]. Gem5 uses a
BSD-like license that allows academic and commercial use; including the distribution of source codes
and binary formats [B+11].

Gem5 focuses on being a community tool for the object-oriented design of architecture
models [B+11]. Utilizing standards and message buffer interfaces, Gem5 follows a semantic similar
to Transactional Level Modeling (TLM) systems, which enables broad support for community-based
changes on the simulator.

The tool supports two simulation modes: System-Call Emulation (SE) and Full-System (FS),
which present a simple and complex architecture abstractions, respectively. The SE mode handles
kernel and I/O accesses as straightforward system calls. Whenever the application requests a system
call, Gem5 emulates the expected result considering the actual host system. No effort is made to
model devices and OS services in this mode. On the other hand, the FS mode models a bare-metal
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environment suitable for running an OS. Due to the high complexity of this mode, not all ISAs available
are capable of running it. Currently, Alpha, ARM, SPARC and x86 are supported [B+11].

Additionally, Gem5 provides different levels of CPU simulation models. These are Atomic-
Simple, TimingSimple, In-Order and O3. The AtomicSimple and TimingSimple CPU models represent
a non-pipelined system and use a low-complexity processor model, inferring the lowest simulation
times of all models. The AtomicSimple emulates a CPU that executes all memory accesses instanta-
neously, while the TimingSimple enhances the execution by implementing timing to memory accesses.
The In-Order and O3 implement a pipeline execution of instructions, and emphasize timing and sim-
ulation accuracy. The In-Order model executes instructions in the order they are received, while the
O3 model emulates an out-of-order processor, and execute instructions according to the order defined
by the CPU dispatcher.

The Gem5 simulator allows the user to select adequate time parameters to achieve the
desirable trade-off between accuracy and efficiency. The work of Butko et al. [BGOS12], presented
an accuracy analysis of the tool concerning performance estimations. Experiments comparing a
hardware development kit and Gem5 have shown that the mismatch between both executions ranges
from 1.39% to 17.94%.

5.2.2 Trace Collection

The reduced simulation times, satisfactory accuracy levels and flexibility serve as motivation
for using the Gem5 Simulator for the collection of memory traces in this work. The tool has a tracing
mechanism for allowing the user to setup flags that enable the exhibition of system logs, which is
the most common way to record traces of processors, memory and/or I/O communications. Despite
this function being already implemented, it includes memory accesses other than processor requests.
Due to the community-like characteristic and open-source codes, it was possible to edit the tracing
mechanism and create an adequate system for memory access tracing.

The new tracing scheme records traces considering three tags: Timestamp, Read/Write and
Address. Timestamps are stored in picoseconds, which are the minimal time division supported by
Gem5; a read is represented by 0, and a write is represented by 1, and 32-bit hexadecimal represents
addresses. An example of a trace file was already presented in Table 4.2, back in Chapter 4.

In multi-processed systems, multiple clients require memory accesses, sometimes simulta-
neously. In the Gem5 architecture, multiple requests arriving at the memory controller cannot have
their original client distinguished, creating a dilemma to memory tracing. In our system, each client
requires its separate trace representation, and Gem5 multi-core simulations do not allow it. Therefore,
each trace collected in this work considers a system with a single memory client and no competition.
The delay tracking solution proposed in Section 4.5.1.1 tries to compensate for this problem by simu-
lating the delay caused by the interference of other clients in the system when gathering multiple trace
inputs.
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Each trace, or client, represents the behavior of a PARSEC application considering a mini-
mum number of four threads in each execution. They do not interact with each other, and they access
different address ranges to avoid conflicts. The Gem5 simulation for trace collection is configured
in FS mode with an ARM ISA2 using TimingSimple mode and a cache level (L1) divided into data
and instruction. The memory and cache sizes, and the memory type were left with the default values
provided by the tool. Table 5.2 presents the Gem5 configuration used for tracing.

Table 5.2: Simulation parameters used for the Gem5 simulation for trace extraction. Source: created by the author.

Sim. Mode FS
Processor ARM ISA 1GHz
CPU Type TimingSimple
L1-i size 64kB
L1-d size 32kB

Cache Block Size 64B
Memory Bus x64
Memory Type DDR3-1600
Memory Size 512MB
# of Ranks 1

# of Channels 1
Kernel Linux 2.6

The choice for a single level of cache may go against the characteristics of modern MPSoCs,
but it increases the rate of memory accesses of each client, enriching the analysis proposed in this work.
The increase of cache levels reduces the number of main memory requests, which may negatively
affect the evaluation proposed. Figure 5.1 presents the client architecture as created by Gem5 and
points out the data logging location of memory accesses.

ARM 
ISA

L1 Data 
Cache

L1 Inst. 
Cache

Memory 
Controller

Main 
Memory

Trace 
Logging

Client

Figure 5.1: System architecture as created by Gem5. The dashed outline box represents the trace extraction module.
Source: created by the author.

Finally, Table 5.3 presents the number of read and write accesses of each PARSEC appli-
cation traced using test input mode. These data do not consider kernel accesses; traces only present
memory accesses of the applications alone. The runtime row indicates the execution time of each ap-
plication, and the last row indicates the Memory Access Rate (MAR) , which is calculated considering
the number of memory accesses when compared to the total execution time. This value indicates how

2The choice for the ARM ISA relies on the fact that ARM architectures are a well-know Reduced Instruction Set
Computer (RISC) machine with more than 80 billion chips sold up to today in the world. [ARM17]
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memory-intensive each application can be under the test input mode. When analyzing the table, it is
possible to notice that most applications maintain a MAR of 0.49%, whereas, dedup presents to be
the most memory-intensive and ferret the least. Also, when analyzing runtime, fluidanimate presents
the highest execution time of all applications, while blackscholes presents the lowest.

Table 5.3: Traced applications characteristics for memory access. Source: created by the author.

Program blackscholes canneal dedup facesim ferret fluidanimate swaptions x264
# of Reads 130,738 134,482 228,653 135,472 273,856 465,434 129,841 146,168
# of Writes 83,021 90,817 172,486 103,743 164,670 360,575 87,789 101,831

Total 213,759 225,299 401,139 239,215 438,526 826,009 217,630 247,999
Runtime 43.36ms 45.25ms 71.52ms 50.02ms 105.92ms 193.73ms 43.68ms 51.76ms

MAR 0.49% 0.49% 0.56% 0.48% 0.41% 0.43% 0.49% 0.49%

In addition, memory sharing between traces is not considered since each trace needed to
be extracted separately, making it inviable to simulate the interaction between clients. Although,
if necessary, a shared-memory structure can be traced through Gem5 considering multiple cores
sharing a single cache memory. Therefore, the architecture proposed in this work considers clients
as independent structures regarding data exchange, but they can still share information between the
internal cores of each client.

5.3 DRAM Simulators

In recent years, we have witnessed an outbreak of new proposals for DRAM interfaces and
organizations. Some being evolutionary upgrades to existing standards (e.g., DDR4 and LPDDR4),
while others being pioneering implementations of die-stacking (e.g., WIO, HMC and HBM) [KYM16].
To follow this motion, DRAM simulators come as a reliable solution for researchers. These software
tools allow the evaluation of strengths and weaknesses of memory technologies, while accelerating
the research process for multiple architectures. They allow the researcher to avoid designing complex
protocols and interfaces for memory communication, with the drawback of minimum accuracy lost.

Many open-source DRAM simulators have been proposed, presenting various approaches to
achieve high-accuracy in a reliable amount of time. However, they have been lagging behind the rapid-
fire changes of DRAM technologies. For example, two of the most popular simulators (DRAMSim2
[RCBJ11] and USIMM [CBS+12]) provide support for only one or two DRAM standards (DDR2
and/or DDR3) [KYM16]. Most of them were not designed to support a wide variety of standards with
different organization and behavior. Instead, the implementation method used considers that specific
details of one or more standards are integrated tightly into their codebase. As a result, researchers
especially those who are not intimately familiar with the details of each existing simulator may find it
complicated to implement and evaluate new standards [KYM16]. Table 5.4 lists some of the existing
DRAM simulators in the literature.
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Table 5.4: Available SDRAM simulators. Source: created by the author.

Simulator DRAM Standards
DRAMSim2 (2011) [RCBJ11] DDR2, DDR3
USIMM (2012) [CBS+12] DDR3
DrSim (2012) [JYE12] DDR2, DDR3, LPDDR4
NVMain (2012) [PX12] DDR3, LPDDR3, LPDDR4

5.3.1 Simulator Validation

In Chapter 4, this work proposed a DRAM simulator that supports DDR4 devices. This pro-
gram was created to ensure the perfect integration with the memory controller architecture proposed.
It relies on access constraints that are controlled by timing parameters, and provide a transparent
communication with previous controlling levels.

This section validates the proposed simulator with the most-used DRAMSim2, which is a
cycle-accurate DRAM simulator that supports DDR2 and DDR3 devices [RCBJ11]. The validation
process is composed of comparing the execution of both simulators considering PARSEC applications
as input. Since DRAMSim2 only supports up to DDR3 devices, we modified the proposed simulator
to guarantee a fair analysis. Table 5.5 presents the arbitration characteristics considered for both
simulators during the experiments. Most parameters are the same for both programs. The Stats
Window indicates the time interval to collect latency, bandwidth, and overall memory information
during the simulation. The simulation time is defined by the runtime of each application.

Table 5.5: Simulation parameters used for the proposed simulator and DRAMSim2. Source: created by the author.

# of Clients 1
Processor Frequency 667MHz
Client Arbitration FCFS

Address Mapping Cache Block
Interleaving

Memory Scheduling FR-FCFS

Address Mapping DRAMSim2: Oldest-First
Prop. Sim.: Round-Robin

Page Policy Open-page
Stats Window 100,000

In addition, a DDR3-1333 memory device was used for this analysis. The timing parameters
referent to this memory module are presented in Table 5.6 below.

For this validation analysis, four out of the eight PARSEC applications selected in Section
5.1.0.1 were chosen. These applications present a significant variation in memory access rates
and execution time. They are: blackscholes, dedup, ferret and fluidanimate. Figure 5.2 presents
the memory access latency comparison for both the DRAMSim2 (dashed-grey) and the proposed
simulator (red), considering these four applications as input for each simulation.

All of the illustrated latency results of the proposed simulator present a significant resem-
blance with the DRAMSim2 results. The two implementations present different logic paradigms and
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Table 5.6: DDR3-1333 parameters and timing constraints measured in cycles. Source: data extracted from [Mic16b].

DDR3-1333
Frequency 667MHz Chip Bus Size x8 tRFC 107
Data Rate 1333MT/s Burst Length 8 tREFI 5200

Memory Size 2GB tCCD 4 tWR 10
# of Chips 8 tRCD 10 tRTP 5
# of Ranks 1 tCL 10 tRTW 3
# of Banks 8 tRP 10 tWTR 5
# of Rows 32,768x8 tWL 9 tRAS 24

# of Columns 1,024 tRRD 4
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Figure 5.2: Memory access latency comparison between the proposed simulator (red) and the DRAMSim2 (dashed-grey).
Source: created by the author.

different command scheduling algorithms, creating some slightly time discrepancies that may explain
the variations presented between both curves.

The bandwidth calculation of the proposed simulator is based on the formula presented by
DRAMSim2. It sums the number of bytes for all the transferred data within the stats window and
divides it by the time elapsed between windows, which results in the number of bytes that traveled on
the data bus for that period, thus, the bandwidth. Figure 5.3 presents the results for the four PARSEC
applications considering this factor. Due to the similar calculation methods, the bandwidth in all
simulations presented no variation.

Considering the results previously presented in Figure 5.2 and 5.3, it is possible to point
out that the accuracy level for the proposed simulator is similar to DRAMSim2. This creates a
foundation for further experiments including the complex memory controller proposed in this work.
As a final analysis, Table 5.7 presents a comparison between the DRAMSim2 and the proposed
simulator, considering the variation percentage between average latency and bandwidth values. The
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Figure 5.3: Memory bandwidth available for each application. Simulations with the proposed simulator and DRAMSim2
presented the same results. Source: created by the author.

table presents variations ranging from 1.28% to zero, proving the accuracy of the simulator when
comparing to DRAMSim2.

Table 5.7: Latency variation between the proposed simulator and DRAMSim2 for blackscholes, dedup, ferret and
fluidanimate applications. Source: created by the author.

Blackscholes Dedup Ferret Fluidanimate
Proposed 43.07ns 42.46ns 43.32ns 42.15nsSimulator

DRAMSim2 43.32ns 42.75ns 43.32ns 42.69ns

Variation 0.58% 0.67% none 1.28%

5.3.2 DDR4 Simulator

The proposed simulator was initially intended to simulate DDR4 architectures. The main
difference between DDR3 and DDR4, in the point of view of our simulator, is the consideration
for bank-groups. This feature includes extra timing parameters that, when respected, yield higher
bandwidth and lower latencies for clients. The DDR4 simulator proposed in this work supports any
device that comprises this technology. Although, for our experiments, we will consider the DDR4-
2400. More information about this module, including timing parameters, are presented in Table
5.8.
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Table 5.8: DDR4-2400 parameters and timing constraints measured in cycles. Source: data extracted from [Sam16].

DDR4-2400
Frequency 1.2GHz Burst Length 8 tFAW 26
Data Rate 2400MT/s tCCD_S 4 tRFC 421

Memory Size 4GB tCCD_L 6 tREFI 9,360
# of Chips 8 tRCD 17 tWR 18
# of Ranks 1 tCL 17 tWTR_S 3
# of Banks 16 tRP 17 tWTR_L 9

# of Bank-Groups 4 tWL 16 tRTW 7
# of Rows 32,768x8 tRRD_S 4 tRAS 39

# of Columns 1,024 tRRD_L 6 tRTP 24
Chip Bus Size x8

Finally, Figure 5.4 presents a comparison between latencies for DDR4-2400 (green) and
DDR3-1333 (dashed-red) considering the four PARSEC applications previously selected. This simu-
lation was entirely performed with the proposed simulator, and considers the configuration parameters
of Table 5.5.

26

30

34

38

42

46

50

0 20 40 60 80 100 120 140 160 180 200

L
at

en
cy

 (
ns

)

Time (ns)

Fluidanimate

DDR3 DDR4

30

32

34

36

38

40

42

44

46

0 5 10 15 20 25 30 35 40 45

L
at

en
cy

 (
ns

)

Time (ns)

Blackscholes

30

32

34

36

38

40

42

44

46

0 10 20 30 40 50 60 70

L
at

en
cy

 (
ns

)

Time (ns)

Dedup

30

32

34

36

38

40

42

44

46

48

0 10 20 30 40 50 60 70 80 90 100

L
at

en
cy

 (
ns

)

Time (ns)

Ferret

Figure 5.4: Latency comparison between DDR3-1333 and DDR4-2400 using 1.5GHz processors and the proposed
simulator. Source: created by the author.

In all of the illustrated charts, DDR4 presents overall lower latencies than DDR3, as expected.
The row-conflict time (tRCD+tCL+tRP), or worst-case access time, for the DDR3-1333 results in
45ns, while for the DDR4-2400 is 42.5ns. These results serve as an explanation for the difference in
performance. Still, one drawback of the DDR4 technology, as presented in Chapter 2, is the longer
refresh cycle time (tRFC) due to a higher number of banks. The DDR3-1333 takes about 160ns to
execute a refresh operation, while the DDR4-2400 takes about 350ns. These results explain the the
inconstant behavior of DDR4 curves, which can be clearly seen in the fluidanimate example. This
phenomenon is more notable in this example because fluidanimate presents a higher runtime than
other applications, being susceptible to a higher number of refresh interferences.
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The bandwidth for the DDR4 was not analyzed because, for these examples, it remained
unchanged. The processor frequency considered in these experiments is the same for both simulations,
as stated in Table 5.5. Therefore, the required bandwidth by each client remains invariable.
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6. EXPERIMENTS AND RESULTS

The experiments and results presented in this chapter describe the effects of the multi-client
two-level memory controller proposed in this work. The results were obtained through behavioral
simulations using the DDR simulator validated in Chapter 5. Each input client emulates memory
accesses of a PARSEC application represented as a trace file. Furthermore, arbitration latencies were
not considered by the evaluations presented in this chapter for not presenting relevant effects on the
latency results.

The set of experiments were divided into three sections: priority level evaluation, memory
level evaluation and scalability evaluation. The priority and memory level evaluations analyze the
effects of the memory controller considering the combination of four input clients and four priority
scenarios. The scalability evaluation aims to discuss the scalability of the proposed architecture under
eight input clients and four priority scenarios.

As mentioned in [Bon14], the latency of memory accesses is a serious drawback to high-
performance systems. The results here discussed present the latency analysis of memory requests
under the influence of the proposed memory controller with priority arbiter and bank privatization. It
proves that our work can be used to provide better performances to certain applications by significantly
minimizing memory access latencies and reducing execution times.

Due to the inflexibility of traces, the undergone experiments did not consider the bandwidth
analysis. The traces used in this work are time-driven, and they consider a timestamp tag to indicate
intervals between accesses. Since each trace file reflects a fixed processor execution, it is rather
difficult to adapt the timestamp tag to different simulation scenarios. Besides, due to the granularity
of the results logging, no variability in bandwidth was detected.

6.1 Priority Level Evaluation

The simulations for this evaluation considered a multi-client system with four input clients,
a memory controller with priority client arbitration, cache-block interleaving address mapping, FR-
FCFS and Read/Write reordering, and a DDR4-2400 memory module with fixed open-page policy.
Bank privatization is not considered in this section. The applications selected for these experiments
were chosen from the subset of 8 PARSEC Benchmark programs introduced in Section 5.1.0.1. This
selection was based on their runtime similarities to maintain a fair memory competition. Given this,
the chosen applications were Blackscholes, Canneal, Facesim and Swaptions, which have runtimes
between 43ms and 50ms.

Each simulation was executed during 55ms using 1GHz clients. In addition, four priority
scenarios were studied: no high-priority, 1 high-priority, 2 high-priority and 3 high-priority. All the
input parameters for the simulations are summarized in Table 6.1.
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Table 6.1: Simulation parameters considered for the priority level evaluation. Source: created by the author.

Simulation Parameters
# of Clients 4

Applications Blackscholes, Canneal, Facesim
and Swaptions

Processor Frequency 1GHz
Simulation Time 55ms
Scenario High-Priority Client
No High-priority none
1 High-priority Blackscholes
2 High-priority Blackscholes and Canneal
3 High-priority Blackscholes, Canneal and Facesim

Memory Controller Parameters
Client Arbitration Priority
Address Mapping Cache-block Interleaving
Memory Scheduling FR-FCFS and Read/Write Reordering

Memory Parameters
Memory Module DDR4-2400
Page Policy Open-page

6.1.1 Latency Evaluation

The purpose of the priority level is to provide an arbitration advantage to clients considered
as high-priority. This analysis can be directly reflected in the latency of requests. The idea is that, if
a client has a permanent advantage over others, its overall latency may present lower rates than the
other clients. Figure 6.1 presents the average latency comparison between the four clients. The chart
is divided into the four priority scenarios, presenting memory request latencies of each client divided
into reads and writes. The No High-priority scenario presents the behavior of the memory controller
considering round-robin as the arbitration technique when no client is granted higher priority.

Read Write Read Write Read Write Read Write

No High-priority 1 High-priority 2 High-priority 3 High-priority

Blackscholes 42.438 43.204 41.344 41.724 41.826 42.084 42.114 42.332

Canneal 42.240 44.416 42.445 44.042 41.703 42.536 42.037 43.429

Facesim 42.204 42.547 42.191 41.858 42.290 42.334 41.689 41.738

Swaptions 42.446 44.969 42.727 43.886 42.788 43.445 42.709 44.821
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Figure 6.1: Latency of memory requests over the effect of the priority level. Results are divided into four priority scenarios
and read/write. High-priority requests in each scenario present black-dashed outlines. Source: created by the author.
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The first signs of the priority level effect are observable when granting higher priority to the
Blackscholes client in the 1 High-priority scenario. When doing so, read and write average latencies
have dropped about 1ns each. Also, due to the non-deterministic behavior of dynamic memory
controllers, the reorganization of requests have provided variations in other clients latencies as well,
for example, write requests for Facesim and Swaptions also had a latency reduction of about 1ms.

In the 2 High-priority scenario, applications Blackscholes and Canneal are prioritized. Both
present slight reductions in the average read latencies of about 0.5ns and more significant reductions
in the average write latencies of about 1.5ns. Although, when compared to the 1 High-priority
scenario, Blackscholes presents a worsening performance. Finally, 3 High-priority scenario presents
the prioritization of Blackscholes, Canneal and Facesim. In this case, all three applications present a
modest reduction in average latency for both read and write. Blackscholes and Canneal performances
in this scenario are damaged when compared to previous ones.

In conclusion, the priority level provides a notable advantage to high-priority clients during
front-end-level client arbitration, reflecting in modest reductions in overall average latency. Although,
due to request competitions in further levels of memory scheduling, such as the FR-FCFS arbitration,
the memory controller controllability and determinism is minimal.

6.2 Memory Level Evaluation

This section discusses the experimental results of simulations considering all the memory-
controlling techniques proposed in this work. As seen in the previous analysis, the influence of
applications between each other when accessing the memory may degrade their performance. Guar-
anteeing a client advantage on higher arbitration levels provides slight latency reductions but minimal
controllability. Therefore, this section includes the analysis of the bank privatization technique early
proposed in this work. This technique, together with memory reordering, bank-group-aware schedul-
ing, and client prioritization, aims to provide lower average latencies while guaranteeing memory
access isolation.

The simulations evaluated in this section consider the same input parameters as presented in
Table 6.1, but modifying the address mapping technique to the bank privatization scheme proposed.
Application set, priority scenarios, simulation and memory controller parameters remain unchanged.
Table 6.2 presents an updated version of the memory controller parameters.

Table 6.2: Update of the memory controller parameters considered for the memory level evaluation. Source: created by
the author.

Memory Controller Parameters
Client Arbitration Priority
Address Mapping Bank Privatization
Memory Scheduling FR-FCFS and Read/Write Reordering
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This evaluation is divided into three separate parts that aggregate each other to provide a
better understanding of the memory controller effects over multiple scenarios. These parts are: latency
evaluation, row-hit, row-conflict and row-empty evaluation and runtime evaluation.

6.2.1 Latency Evaluation

Figure 6.3 presents a similar chart style as presented in the previous latency evaluation. The
average latency analysis is divided into priority scenario and read/write results. The No High-priority
scenario considers the execution of the memory controller without providing priority advantages to
any client. In this scenario, banks are not prioritized, and clients are arbitrated in a round-robin
fashion. In further simulations, bank privatization is considered; thus, some banks are privatized for
high-priority clients, while others are shared between low-priority ones. Figure 6.2 presents the bank
organization for each scenario considering the 16 banks available by the DDR4 module.

0 2 4 6 8 10 12 141 3 5 7 9 11 13 15

Low-priority
Shared

Blackscholes

1 High-priority

0 2 4 6 8 10 12 141 3 5 7 9 11 13 15

Low-priority
Shared

Blackscholes

0 2 4 6 8 10 12 141 3 5 7 9 11 13 15

Low-priority 
Shared

Canneal

Facesim BlackscholesCanneal

2 High-priority

3 High-priority

Figure 6.2: Bank division for high and low-priority clients in each priority scenario. Source: created by the author.

In 1 High-priority scenario, the client running Blackscholes is prioritized, and its average
latencies present significant reductions of about 3ns and 4ns for reads and writes, respectively. Mean-
while, most low-priority clients presented increased read latencies and decreased write latencies. This
behavior may be explained by the reduction in the number of available banks, increasing the compe-
tition between clients for memory access. The variation between read and write results is created by
the non-deterministic memory-scheduling algorithm that schedules requests according to the memory
status.
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Read Write Read Write Read Write Read Write

No High-priority 1 High-priority 2 High-priority 3 High-priority

Blackscholes 42.438 43.204 39.548 39.186 40.648 39.801 40.633 40.640

Canneal 42.240 44.416 43.679 43.713 40.219 39.528 40.760 39.629

Facesim 42.204 42.547 43.283 41.834 41.856 40.591 40.698 37.867

Swaptions 42.446 44.969 43.863 43.540 42.091 41.925 41.231 40.395
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Figure 6.3: Latency of memory requests over the effect of the two levels of the memory controller. Results are divided
into four priority scenarios and read/write. High-priority requests in each scenario present black-dashed bar outlines.
Source: created by the author.

With the priority also increased for the Canneal application in the 2 High-priority scenario,
Blackscholes latencies have slightly increased when compared to the previous scenario, although,
Canneal’s have notably decrease, improving this client’s performance. The same behavior is observed
when increasing the Facesim priority in 3 High-priority scenario. High-priority applications have
latency reductions when compared to the system without priorities, but not as well as scenarios with
a lower number of prioritized clients.

Now, comparing the No High-priority and 3 High-priority scenarios, our memory controller
presents the compelling behavior of providing lower latencies to all clients. In this last case, all
applications are granted with bank privatization since the system creates four client-priority groups
and there are only four inputs. Therefore, the analysis of the results presented by this scenario agrees
with the study of Moscibroda and Mutlu [MM07], which states that clients are not facing bank
competition present higher performances.

6.2.2 Row-hit, Row-Conflict and Row-Empty Evaluation

To provide a better understanding of the latency behavior just discussed, it is important to
analyze the variations between row-hit, row-empty and row-conflicts, which is only possible due to
the fixed open-page policy implemented. A row-hit provides the minimal latency value possible for a
memory request, row-empty is the second-best situation, where the row-buffer is empty and requires
only an activate operation and a read/write, and row-conflict is the worst-case scenario, which requires
precharge, activate and read/write operations. According to the memory time parameters, a row-empty
takes twice the row-hit time, and a row-conflict takes three times the row-hit time.
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Figure 6.4 analyzes the average percentage of row-hits, row-empty and row-conflicts varia-
tions when dividing clients into two groups: High-priority and Low-priority. The percentage variation
creates a comparison between the three priority scenarios and the system without priority.

-60.0%

-40.0%

-20.0%

0.0%

20.0%

40.0%

60.0%

80.0%
Row-hit Row-Empty Row-Conflict Row-hit Row-Empty Row-Conflict

High-Priority Low-Priority
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Figure 6.4: Row-hit, row-empty and row-conflict variations for the priority scenarios discussed. Source: created by the
author.

For the 1 High-priority scenario, the number of row-hits for low-priority clients have in-
creased about 55% against only 40% of high-priority ones. This result alone may indicate that
low-priorities would lead to better performances, although, this is not true since, for this same sce-
nario, the number of row-conflicts show a reduction of more than 40% for high-priority clients, while
the same parameter increases about 20% for low-priority ones. This behavior explains the significant
latency reductions of high-priority clients presented in the latency analysis.

The other two priority scenarios present similar results for high-priority and low-priority
clients. In both situations, the row-hit variation increases, the row-empty present minimal modifica-
tion, and the row-conflict decreases. Due to the characteristic of the chosen PARSEC applications,
subsequent memory accesses tend to access consecutive memory addresses. Therefore, the bank isola-
tion directly affects the average row-hits of the system. Since, in 3 High-priority scenario, applications
do not share memory banks, the row-hit variation is the highest, reaching an improvement of up to
60%.

6.2.3 Runtime Evaluation

This evaluation considers the runtime (or execution time) variation for the three proposed
priority scenarios. This data was analyzed considering the value of the delay solution proposed to
postpone trace accesses. Higher the delay value, longer the application took to execute, thus, higher
the runtime. The variation concept was analyzed comparing to the system without priority clients.

Figure 6.5 presents the runtime variation. Positive variations indicate a reduction in overall
execution time of the respective application, while negative variations indicate that the application
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took longer to execute. The horizontal axis indicates the number of high-priority clients applied
(scenario), and the vertical axis presents the variation percentage.

By analyzing the chart, it is possible to notice that, granting higher priority to the Blacksc-
holes client presented up to 7% application runtime reduction. On the other hand, low-priority
applications have shown worsening results reaching up to 5% increase in runtime. When prioritizing
Blackscholes and Canneal, the resultant runtime variation was minimized and Canneal achieved up
to 4.5% of improvement; Blacksholes have reduced to only 2%. Finally, when prioritizing three
applications, all clients were benefited. The low-priority client presented the lowest runtime variation
(2%), as expected, and Blackscholes presented the highest (over 4%).
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Figure 6.5: Runtime reduction percentage for each client. Source: created by the author.

6.3 Scalability Evaluation

Scalability is the capability of a system to handle a growing amount of work, or its potential
to be enlarged to accommodate that growth [Bon00]. Scalability can also be reflected in the ability
to increase system inputs without harming the main purpose of the system. In this work, we may
place scalability as the capability of increasing input clients while maintaining a reliable memory
communication and reduced latencies for high-priority clients.

Past evaluations considered the proposed memory controller with four input clients compet-
ing for memory accesses. This section evaluates the proposed work for eight clients, applying the same
priority scenarios already used to allow the comparison between both configurations. The simulations
conducted in this section considered Blackscholes, Canneal, Dedup, Facesim, Ferret, Fluidanimate,
Swaptions and x264 as input client traces. Other simulation parameters were maintained the same to
ensure a fair execution of the applications. Table 6.3 updates the simulation parameters used in this
section.
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Table 6.3: Update of the simulation parameters considered for the scalability evaluation. Applications with * indicate
that can present higher priority depending on the priority scenario. Source: created by the author.

Simulation Parameters
# of Clients 8

Applications Blackscholes*, Canneal*, Dedup, Facesim*, Ferret,
Fluidanimate, Swaptions and x264.

Processor Frequency 1GHz
Simulation Time 55ms

6.3.1 Latency Evaluation

This section presents a comparison between the latencies of high and low-priority clients as
two separate groups placed in the four priority scenarios. This analysis considers the average latency
values of read and write requests together. Figure 6.6 compares the proposed analysis between 4 and
8 clients.

Low-Priority High-Priority Low-Priority High-Priority 
4 Clients 8 Clients 

No High-Priority  43.058 43.058 52.713 52.713 
1 High-Priority  43.319 39.367 57.303 41.676 
2 High-Priority  41.616 40.049 56.202 42.642 
3 High-Priority  40.813 40.038 59.595 42.512 
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Figure 6.6: Comparison of the average latency for 4 and 8 clients, which are divided into two groups: low and high-priority.
Source: created by the author.

The effect of the two levels of arbitration provides more significant results when increasing
the number of input clients. In all three high-priority scenarios, the average high-priority latency
has presented reductions of about 10ns, or 20% off when compared to the system without priority.
This behavior is far more notable than the same effects for the system with four clients. On the other
hand, low-priority applications present significant higher latencies when increasing the number of
input clients, because, by providing bank privatization to high-priority clients, low-priorities have
their bank range reduced, and the memory access competition is increased. Greater the number of
accesses to the same banks, greater the latencies. This natural trade-off must be faced when seeking
for individual performance improvements.
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6.3.2 Runtime Evaluation

This assessment analyses the runtime variation of each application for the system scaled
with eight clients and considering the three high-priority scenarios proposed. Similar to the same
evaluation of the 4-client controller, here we will consider the value of the delay variable to determine
the execution time variation between applications.

Figure 6.7 plots the runtime variation for each application when compared to the system
execution without considering high-priorities. In this chart, positive values indicate application
improvements by reducing the runtime, and negative values indicate runtime increases. Similar to
the conclusions taken from the latency analysis, the runtime of high-priority clients for eight inputs
present considerable improvements in prioritized applications. When granting higher priority to the
Blackscholes client, it reaches about 18% of runtime reduction. On the other hand, it provides an
increase of about 15% for low-priority clients.
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Figure 6.7: Runtime reduction percentage for each client on a system with eight inputs. Source: created by the author.

The execution discrepancy of both priority groups is clearly notable when providing higher
priority to 3 clients. In this case, the chart presents a runtime reduction to high-priority applications
between 12% and 18%, against increases of up to 45% for low-priority clients.
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7. CONCLUSION AND FUTURE WORK

This dissertation proposes the implementation of a multi-client memory controlling system
capable of reducing access latencies of predefined clients through bank isolation techniques and
state-of-the-art memory reordering algorithms. This work compiles a solid and objective study
about state-of-the-art SDRAM modules, including a walk through many DDR generations and some
variations, such as LPDDR and GDDR. Moreover, this work presents a deep study on typical memory
controlling techniques and scheduling algorithms.

The memory controller proposed in this work is divided into two levels: Priority and
Memory. The priority level implements a front-end interface that arbitrates clients based on priority
groups that may be predefined by higher levels such as a kernel scheduling subsystem. This arbitration
is accompanied by a starvation-aware module that avoids low-priority clients to suffer from execution
deprivation. Meanwhile, the memory level implements the classic FR-FCFS and read/write reordering
algorithms to improve row-hits and reduce row-conflicts. Moreover, high-priority clients enjoy access
isolation through a bank privatization address mapping. This isolation guarantees that their memory
accesses rely directly on the behavior of the target addresses of each application.

The command scheduling solution proposed in this work supports the architectural modifi-
cations introduced by DDR4 devices, such as bank-groups. This module uses a round-robin technique
that considers DDR4 time restrictions when arbitrating available requests waiting to access the memory
device.

The experiments conducted in this work considered the behavioral analysis of the proposed
architecture through a simulator implemented in C++ language, in coordination with SystemC timing
libraries for clock attainment. As validation benchmark, we selected PARSEC suite for presenting
memory intensive characteristics. Results obtained so far show that the proposed memory controller
presented significant reductions in memory access latency for high-priority clients. Considering
an architecture with four clients compared between scenarios with and without high-priorities, the
solution presented latency reductions of about 9% for a scenario with one high-priority client, and
improvements of about 60% in row-hit rates for high-priority clients in a scenario with three high-
priority inputs. Furthermore, in a scenario with one high-priority client, the high-priority execution
time have been reduced about 6%.

Finally, when scaling the number of input clients to eight, we obtained even more evident
results. High-priority applications have reached up to 20% latency reduction when considering 1 high-
priority client. Moreover, this same high-priority client presented up to 18% reduction in application
execution time. Therefore, this data validates the scalability of the proposed memory controller.

Throughout this document, we have mentioned kernel modifications that might be necessary
for the proper functioning of the proposed solution. These are:
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Priority Assignment: The priority level of memory clients can be informed by higher software levels
such as the scheduling subsystem of a kernel. Therefore, the implementation of a signaling
system for priority assignment may be required.

Bank Isolation Support: The bank isolation solution serves as a favorable technique for performance
improvement, although, memory addresses are limited to each application since part of the
physical address is overwritten by the address mapping. Therefore, kernel adaptations are
necessary to accept this solution.

Shared Data: The experiments conducted in this work do not consider shared information between
memory clients. Shared cache levels can limit this sharing for each client, or, by applying a
kernel modification that redirects shared data requests to not privatized banks.

Additionally, the current work presents the implementation of a memory controller model
in a behavioral abstraction level implemented using high-level software languages and considering
trace inputs for validation. This modeling is the basis for a hardware implementation. Therefore,
the development of the proposed two-level memory controller in a lower abstraction level such as
System-C or even VHDL is one future project to be considered as a continuation of this work.

Finally, as presented in Chapter 3, dynamic memory controllers focus on high performances,
while static memory controllers aim for real-time support by guaranteeing predictability. Considering
this, the bank isolation technique proposed in this work is very susceptible for real-time support,
since it provides access isolation to clients, allowing timing determinism. Although, the proposed
command scheduling technique do not implement predictability levels. Therefore, we suggest the
implementation of a priority command scheduler that arbitrates command requests based on the
priorities of requests. This solution is similar to the client arbitration on the priority level, which
would create predictability to the system, allowing the calculation of worst-case execution times, thus,
establishing real-time guarantees.
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