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Abstract 

Malignant brain tumors are highly lethal and aggressive. Despite recent advances in the 

current therapies, which include the combination of surgery and radio/chemotherapy, 

the average survival rate remains poor. Altered regulation of ion channels is part of the 

neoplastic transformation, which suggests that ion channels are involved in cancer. 

Distinct classes of calcium-permeable channels are abnormally expressed in cancer and 

are likely involved in the alterations underlying malignant growth. Specifically, 

cytosolic Ca2+ activity plays an important role in the regulation of cell proliferation, and 

Ca2+ signaling is altered in proliferating tumor cells. A series of previous studies 

emphasized the importance of the T-type low-voltage-gated calcium channels (VGCC) 

in different cancer types, including gliomas, and remarkably, pharmacological inhibition 

of T-type VGCC caused anti-proliferative effects and triggered apoptosis of human 

glioma cells. Other calcium permeable channels, such as Transient Receptor Potential 

(TRP) channels, contribute to changes in Ca2+ by modulating the driving force for Ca2+ 

entry, and some TRP channels are required for proliferation and migration in gliomas. 

Furthermore, recent evidence shows that TRP channels contribute to the progression 

and survival of the glioblastoma patients. Likewise, the purinergic P2X7 receptor acts 

as a direct conduit for Ca2+-influx and an indirect activator of voltage-gated Ca2+-

channel. Evidence also shows that P2X7R activation is linked to elevated expression of 

inflammation promoting factors, tumor cell migration, an increase in intracellular 

mobilization of Ca2+, and membrane depolarization in gliomas. Therefore, this review 

summarizes the recent findings on calcium channels and associated receptors as 

potential targets to treat malignant gliomas. 
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Introduction 

 Gliomas represent the most common type of malignant tumors of the central 

nervous system (Ganau et al., 2015), and they are the most aggressive and lethal 

(Robins et al., 2009; Van Meir et al., 2010; Wei et al., 2010) among the primary brain 

tumors (Noch and Khalili, 2009). Despite recent therapeutic advances in multimodality 

therapies, including surgery and radio/chemotherapy, the treatment of these malignant 

gliomas remains palliative with an average survival of about one year (Omuro and 

DeAngelis, 2013). The pathological features of glioblastoma (GBM), the most 

aggressive of malignant gliomas, are exemplified by uncontrolled cell proliferation, 

diffuse infiltration, intense resistance to apoptosis, genomic instability, giant cells, and 

cellular and nuclear pleomorphism (Wen and Kesari, 2008; Yamanaka and Saya, 2009). 

Gliomas are composed of a heterogeneous population of tumor-differentiated cells and a 

subpopulation with stem cell properties. Cancer stem cells are very aggressive as they 

are highly invasive, mobile, resistant to radiation and chemotherapy, and have the 

capacity to self-renew (Oh et al., 2012).  Recent studies have shown that calcium (Ca2+)  

channel signaling controls a variety of stem cells and cancer cell lines functions, such as 

proliferation and migration (Wee et al., 2014). Moreover, Ca2+  channel interference 

was able to drive liver tumor-initiating cells into apoptosis (Zhao et al., 2013) and 

glioma stem-like cells were more sensitive to Ca2+ disturbances compared to more 

mature differentiated glioma cells (Wee et al., 2014). 

 Evidence for the role of ion channels in cancer includes the altered regulation of 

ion channels during neoplastic transformation (Prevarskaya et al., 2011; Rao et al., 

2015). Ion channels mediate the transport of ions across the cell membrane, and the 

results of the transmembrane ion flux participates in the regulation of tumor cell 
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survival, death, and migration, especially in gliomas (Cuddapah and Sontheimer, 2011). 

Cytosolic Ca2+ activity in particular plays a decisive role in the regulation of cell 

proliferation, and intracellular Ca2+ signaling is altered in proliferating tumor cells 

(Becchetti, 2011). Several studies have revealed that voltage-gated ion channels 

(VGICs) can contribute significantly to cell mitotic biochemical signaling, cell cycle 

progression, and cell volume regulation, processes that are critical for cancer cell 

proliferation (Rao et al., 2015). Distinct classes of calcium-permeable channels are 

abnormally expressed in cancer, and are likely involved in the alterations underlying 

malignant growth (Lang and Stournaras, 2014). The main calcium channels described in 

cancer cells are voltage-gated Ca2+ channels (VGCC; L-type: Cav1.1–1.4; N-type: 

Cav2.2; T-type: Cav3.1–3.3; R-type: Cav2.3; P/Q-type: Cav2.1), purinergic receptors, 

and the Ca2+ permeable ion channels of the transient receptor potential (TRP) family 

(Leanza et al., 2016). Moreover, a wide variety of distinct Ca2+ permeable channels, 

such as TRP channels, have been linked to tumor proliferation and metastasis (Lang and 

Stournaras, 2014). Experimental modification of TRP channels activity impacts tumor 

cell function and motility, which suggests that the channels are a potential molecular 

target for tumor neovascularization control (Fiorio Pla et al., 2012).  

 Various studies have suggested that the ionotropic purinergic receptor, P2X7R, 

plays a role in GBM (Morrone et al., 2003; Morrone et al., 2005; Morrone et al., 2006; 

Gehring et al., 2012; Gehring et al., 2015), raising the possibility that calcium channels 

are involved in glioma progression. Thus, this review summarizes the recent findings on 

these calcium channels and associated receptors as potential targets to treat malignant 

brain tumors. 
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Voltage-gated calcium channels (VGCC) 

VGCC are a class of calcium-permeable channels divided into two different 

groups: low-voltage activated (T-type) and high-voltage activated (L, N, P/Q, and R-

types) (Catterall and Swanson, 2015). The VGCC are found in the membrane of 

excitable cells where they exert crucial physiological processes by converting the 

electrical signal in the cell surface to an intracellular key response (Dolphin, 2006). 

Different cell types evoke different VGCC subtypes that might mediate transient 

currents and membrane depolarization, which results in several regulatory properties for 

the channels. Calcium (Ca2+) is a second messenger participating in the regulation of 

fundamental biological events, and the Ca2+ influx through VGCC has been implicated 

in cell growth and proliferation, migration, and apoptosis (Chen et al., 2013; 

Prevarskaya et al., 2013). Many recent studies have also focused on the relevance of 

VGCC in the maintenance of several biological processes of malignant cells; the 

transformation of a normal cell into a tumor cell has been related to the Ca2+ 

oscillations, and the homeostasis misbalance can define the malignant phenotype. As in 

other kinds of cancer, brain tumors often present genetic mutations in tumor suppressors 

and oncogenes, and surprisingly, alterations in ion channel/transporter activity is linked 

to up or downregulation  of these encoding genes in most brain tumor cases (Ransom et 

al., 2001; Masselli et al., 2012). Furthermore, dysregulation in Ca2+ channel activity in 

the CNS is related to many types of neurological disorders, including epilepsy 

(Zamponi et al., 2010), Alzheimer’s disease (Amenta et al., 2009), and chronic pain 

(Rigo et al., 2013a).  

In the brain, the P/Q-, and N- (Cav2), and T-type (Cav3) Ca2+ channels are 

widely explored as targets to treat neuronal disease (Nimmrich and Gross, 2012). In 
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neuronal cells, VGCC are linked to electrical signals by modulating vesicular release of 

neurotransmitters, activation of several key enzymes and Ca2+-dependent ion channels 

(Dolphin, 2006; Prevarskaya et al., 2013). Among brain tumors, glioblastoma is highly 

lethal and aggressive (Omuro and DeAngelis, 2013). In the glioblastoma cells, as well 

in other cancers cells, Ca2+ channels are involved in uncontrolled proliferation, 

enhanced migration and invasion, sustained angiogenesis, and abnormal cell death. 

These glioblastoma-related Ca2+ channels comprise the VGCC family, especially the 

P/Q-type, N-type, and T-type channels that are abundant in the CNS and considered 

attractive therapeutic targets for several neurological disorders (Nimmrich and Gross, 

2012). Recently, studies have suggested that oscillations in intracellular calcium 

concentrations are linked with glioblastoma cell migration, which is positively 

correlated to glioma aggressiveness and malignancy (Montana and Sontheimer, 2011; 

Watkins and Sontheimer, 2012). It is tempting to suggest that the imbalance in Ca2+ 

signaling through altered VGCC might be involved in the mechanisms implicated in 

cancer progression. 

Evidence also suggests that N- and P/Q-type Ca2+ currents are involved in the 

pathology of Alzheimer’s disease and epilepsy. N- and P/Q- type channels blockers are 

suggested to lead to a clinical improvement of cognitive decline in Alzheimer’s patients 

(Amenta et al., 2009) and to an absence of seizures in epilepsy (Zamponi et al., 2010).  

Additionally, peptide neurotoxins found in animal venoms have received great interest, 

and have been related to neuropathic pain control (Souza et al., 2008; Rigo et al., 2013a) 

and the management of cancer-associated pain (Rigo et al., 2013b) in animal models 

during P/Q- and N-type modulation. Pinheiro et al. (Pinheiro et al., 2006; Pinheiro et al., 

2009) showed a neuroprotective role for a P/Q-type blocker in an in vitro model of 
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hippocampal ischemia induced by oxygen and glucose deprivation; the neurotoxins 

prevented neuronal death by inhibition of glutamate release. Accordingly, these peptides 

also decreased cell neuronal death in retina slices subjected to ischemic injury (Agostini 

et al., 2011). Taken together, these data give confidence that the development of P/Q- 

and N-type blockers could be a successful therapeutic strategy for multiple central 

nervous system diseases, including some forms of cancer.  

Recent studies involving T-type channels have focused on primary brain tumors. 

Zhang et al. (2012) demonstrated that T-type low-VGCC blockade decreased cell 

proliferation and migration in U87 human glioblastoma cells (Zhang et al., 2012), while 

another study using U-251MG and U87 human cell lines showed that T-type channel 

inhibition, induced by the anti-hypertensive drug mibefradil or siRNA down-regulation 

expression, disrupted Akt signaling and led to apoptotic death in glioblastoma cells 

(Valerie et al., 2013). In a murine xenograft model, mibefradil also inhibited human 

GBM growth and potentiated the effect of the cytotoxic agent temozolamide in resistant 

cells (Keir et al., 2013). These studies, which suggest that inhibition of VGCC T-type 

channel has an antitumoral effect, provide new insights regarding other VGCC channels 

as effective therapeutic targets for glioblastoma. It is known that the blood-brain barrier 

is a limitation for chemotherapy and  contributes to ineffective drug delivery in brain 

tumor therapy, but a temporary disruption of the blood-brain barrier can be achieved by 

ion channel modulation. Peptide neurotoxins act on Na+, K+ and Ca2+ channels and 

induce blood-brain barrier breakdown by stimulating glycoprotein P efflux and 

phosphorylation of functional proteins (Raposo et al., 2012) or by inducing changes in 

VEGF expression (Mendonca et al., 2014). Therefore, effective ion channel modulation 

via derived-neurotoxins is arising as a new strategy for brain tumor drug delivery. 
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Calcium Channel Associated Transient Receptor Potential (TRP) 

 Other calcium channels, such as the Calcium Channel Associated Transient 

Receptor Potential (TRP), provide Ca2+ entry pathways and modulate the driving force 

for calcium entry (Lang and Stournaras, 2014). These channels continuously emerge as 

important factors in several highly prevalent pathologies including cancer (Holzer and 

Izzo, 2014), increasing the potential of TRP therapies. It is well described how 

malignant transformation is often accompanied by changes in ion channels expression, 

including the altered expression of numerous members of the TRP family Ca2+ and Na+-

permeable channels in cancer cells (Arcangeli et al., 2009). It is unknown though 

whether these changes in TRP expression are central  to the success of the cancer or are 

a secondary step to other cellular modifications (Mistretta et al., 2014); the nature of 

cancer cells, tumor progression, and metastatic spreading might be implicated in 

mutations and in the altered expression of numerous key signaling proteins, such as 

TRP channels (Prevarskaya et al., 2007). 

 There is accumulating evidence for the expression of the TRP channel in cancer 

cells and tissues, and the channel’s role in malignant cell processes during cancer 

progression (Holzer and Izzo, 2014). The Ca2+-permeable transient receptor potential 

cation channel 1 (TRPC1) is required for cytokinesis in proliferation and migration in 

gliomas (Bomben and Sontheimer, 2008; Cuddapah et al., 2013), and TRPC1 also 

regulates endogenous glioma Cl− channels (Cuddapah et al., 2013). Additionally, in 

gliomas, the overexpression of TRPC6 and its inhibition led to human glioma cell 

alternation (Ding et al., 2010; Simon et al., 2015), and TRPC6 regulates metabolism 

that affects HIF-1α stability in human glioma cells under hypoxia (Li et al., 2015). In 
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addition, menthol, a transient receptor potential melastatin-subfamily member 8 

(TRPM8) agonist, stimulated an increase in [Ca2+]i and increased the ability of GBM 

cells to migrate (Wondergem and Bartley, 2009). 

 The expression of other TRP channels such as TRPM8, TRPC1, TRPC3, TRPC5 

and TRPC6 has been observed in gliomas, and the expression levels of TRPM8 has 

been correlated with tumor progression (Tan et al., 2008; Yee, 2015, Bomben and 

Sontheimer, 2008). Additionally, TRP vanilloid-1 (TRPV1) is highly expressed in high-

grade astrocytomas and weakly expressed in the tumor-free brain. Neuronal precursor 

cells, which are a source of the TRPV1 agonists endovanilloids, lead to tumor cell death 

through the activation of transcription factor-3 (ATF3) (Stock et al., 2012). In a recent 

study, the expression of TRP channel genes was investigated in 33 patients with GBM. 

The TRPC1, TRPC6, TRPM2, TRPM3, TRPM7, TRPM8, TRPV1 and TRPV2 

channels were significantly higher in GBM patients, and there was a positive 

association between TRP genes overexpression and the enhanced survival of these 

patients (Alptekin et al., 2015). Several recent studies have also suggested the potential 

of TRP channels as pharmacological targets for cancer treatment.  The co-

administration of  cannabidiol, a TRPV2 agonist, potentiated the activity of cytotoxic 

drugs temozolomide, carmustine or doxorubicin, and increased drug uptake in human 

glioblastoma cells (Nabissi et al., 2013). Interestingly, in malignant human gliomas, the 

chronic application of the TRPC inhibitor SKF96365 caused near total growth arrest 

(Bomben and Sontheimer, 2008).  

 Other proteins, such as the store-operated calcium channels, STIM1 and Orai, 

play a minor role in gliomas, yet they have been suggested to participate in migration 

and proliferation in different cancer cells (Zhu et al., 2014; Leanza et al., 2016). 
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The ionotropic ATP-gated P2X7 receptor  

 Purinergic signaling was first proposed in 1972 (Burnstock and Di Virgilio, 

2013).  Extracellular adenosine 5′-triphosphate (ATP) is one of the main ligands of the 

P2 purinergic class receptors, which were later subdivided into ionotropic P2X and 

metabotropic P2Y subtypes (White and Burnstock, 2006).  

 The P2X7 receptor (P2X7R), an ATP-gated cation permeable (Na+, Ca2+ and K+) 

channel and member of the purinergic ionotropic receptors family (Bianco et al., 2009; 

Costa-Junior et al., 2011; Volonte et al., 2012), has attracted considerable attention 

during the last years in the context of cancer (Gartland et al., 2001; White and 

Burnstock, 2006). The primary intracellular signal triggered by ATP acting at P2X7R 

consists of a fast influx of Ca2+ and Na+ and an efflux of K+. This leads to intracellular 

signaling pathways that are associated with numerous physiological processes 

correlated to inflammatory cascade induction and cell survival and proliferation (Bianco 

et al., 2009; Roger et al., 2015). In contrast, upon repeated and/or prolonged ATP 

stimulation, P2X7R induces the opening of nonspecific larger pores that allow 

permeation of molecules up to 900 Da generally associated with cell death, such as 

ethidium bromide (EtBr) and Yo-Pro-1 (Bianco et al., 2009; Volonte et al., 2012; Roger 

et al., 2015). Recently, it has been suggested that pore formation does not depend on the 

recruitment and clustering of P2X7R subunits, but rather involves the opening of a 

distinct membrane protein, pannexin-1, which can form hemichannels (Pelegrin and 

Surprenant, 2006; Bianco et al., 2009). The P2X7 receptor C terminus has been 

implicated in the regulation of receptor functions involving cellular localization, 

protein-protein interactions, signaling pathway, and post-translational modifications 
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(Costa-Junior et al., 2011). At least in humans, the P2X7R gene is highly polymorphic, 

and P2X7R genetic differences affect receptor pore formation and channel function (Di 

Virgilio and Wiley, 2002; Saunders et al., 2003; Sluyter et al., 2004; Fuller et al., 2009; 

Volonte et al., 2012). Typical carboxyl tail features are suggested to allow for the 

formation of the large pores, however, a naturally occurring truncated P2X7R splice 

variant, isoform B (P2X7B), also has been identified. Since it lacks the carboxy 

terminus, this isoform is deficient in pore formation, but it maintains the ability to 

respond to ATP with cation movement (Cheewatrakoolpong et al., 2005; Adinolfi et al., 

2010). The P2X7B isoform is highly expressed in several human tissues and participates 

in the cell growth induction (Adinolfi et al., 2010).  

 In most cells, pharmacological activation of P2X7R is associated with 

membrane permeabilization, blebbing, cell swelling, an increase in Ca2+ intracellular 

levels, and  mitochondrial damage (Roger and Pelegrin, 2011). P2X7R expression and 

activity, which has been reported in several cancers, has been suggested as a potential 

cancer cell biomarker (Baricordi et al., 1999; Adinolfi et al., 2012; Amoroso et al., 

2015). However, the role of P2X7R in oncology is still unclear and two opposite 

hypothesis have been proposed. One hypothesis suggests that P2X7R is an antitumor 

protein that induces cancer cell death, and the other proposes that P2X7R is an 

aggressive protein that promotes cancer cell survival and growth or invasiveness (Roger 

and Pelegrin, 2011). P2X7R is expressed at both the mRNA and protein level in human 

and in mouse glioma cells (Roger et al., 2015).  

 In the tumor microenvironment, ATP acts as a trophic factor, a danger signal, 

and the main source of the immunosuppressant adenosine (Amoroso et al., 2015). High 

levels of extracellular ATP can inhibit proliferation and induce apoptosis/necrosis in 
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mouse GL261 cells and in human M059J glioma cells (Tamajusuku et al., 2010; 

Gehring et al., 2012; Bian et al., 2013; Gehring et al., 2015). It is important to note that 

tumor cells that respond to ATP-stimulate P2X7-mediated cytotoxicity express higher 

levels of P2X7R, when compared to a subpopulation that is less sensitive to ATP-

mediated cytotoxicity (Tamajusuku et al., 2010, Gehring et al., 2012). Accordingly, 

P2X7R silencing drastically reduced ATP-induced cell death, suggesting that the 

receptor is necessary for an ATP effect (Tamajusuku et al., 2010; Gehring et al., 2015), 

whereas other glioma cell lines (U-87 MG, U-373 MG, U-138MG, U-251MG and C6) 

are resistant to ATP-P2X7R-induced cell death (Morrone et al., 2003; Jacques-Silva et 

al., 2004). It is known that high concentrations of ATP (>100 µM) are required to 

activate P2X7R (Wiley et al., 2011). 

 Interestingly, in human glioma (Gehring et al., 2015), lung (Boldrini et al., 

2015), and breast (Ghiringhelli et al., 2009) biopsies, high P2X7R expression has been 

correlated with progression-free survival and overall survival.  Patients harboring the 

P2X7R gene polymorphism associated with the P2RX7 loss-of-function allele have a 

significantly greater risk of metastatic disease progression (Ghiringhelli et al., 2009).  

Cells that express a functional P2X7R (P2X7A) are sensitive to death induced by the 

receptor (Tamajusuku et al., 2010; Gehring et al., 2012), while cells that do not respond 

to ATP-P2X7R-induced cytotoxicity may express the P2X7R isoform B correlated to 

cell growth (Adinolfi et al., 2010). The expression of accessory proteins that are 

required for mediating ATP toxic effects, such as pannexin, are also lacking, another 

cause for the different responses observed after P2X7R stimulation (Pelegrin and 

Surprenant, 2006). Furthermore, a study showed that GL261 P2X7R silenced-bearing 

mice presented a negligible response to radiotherapy, while GL261 WT-bearing mice 
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that constitutively express P2X7R presented a pronounced response after radiotherapy 

with a significant reduction in tumor volume, showing that functional P2X7R 

expression is essential for an efficient radiotherapy response in gliomas (Gehring et al., 

2015).  

 P2X7R activation is also linked with inflammatory factors; chronic exposure of 

C6 rat glioma cells to BzATP led to increased mobilization of [Ca2+]i, large pore 

induction, and increased expression of pro-inflammatory factors such as MCP-1, IL-8 

and VEGF (Wei et al., 2008). Similar data was observed upon P2X7R activation on 

human glioma cells, which caused MCP-1 and IL-8/CXCL8 secretion in a P2X7-

dependent manner (Braganhol et al., 2015), and P2X7R regulates C6 glioma cell 

mobility and tumor cell migration (Wei et al., 2008; Ryu et al., 2011; Braganhol et al., 

2015). Regarding signal pathways activated in malignant brain tumors, P2X7R 

mediated ERK1/2 activation in human 1321N1 astrocytoma cells via an increase in 

[Ca2+]i. This was linked to the phosphorylation of the proline-rich/Ca2+-activated 

tyrosine kinase Pyk2, c-Src, phosphatidylinositol 3′-kinase, protein kinase Cδ activities, 

and was dependent on extracellular Ca2+ (Gendron et al., 2003). Figure 1 summarizes 

the main calcium channels and their potential mechanisms in malignant brain tumors. 

 

Conclusion 

 An important issue to consider is the difference between various GBM subtypes 

that are classified by their histopathological and molecular profile (Verhaak et al., 

2010). In fact, The Cancer Genome Atlas (TCGA) has established the existence of four 

subtypes of GBM: proneural, neural, classical, and mesenchymal (Tomczak et al., 

2015). Although many of the results in this review do not discuss this apparent 
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diversity, it is important to mention that tumor cell lines often have phenotypic and 

genetic alterations (Ledur et al., 2016) that may limit their translation to patient tumors. 

 Recent evidence indicates that modulating ion channels or ion channel regulators 

impairs the growth of some tumors. On Table 1, we summarize the main calcium 

channels and the possible mechanisms/effectors involved in malignant brain tumors 

growth. In fact, the potential role of high- and low-VGCC modulation is emerging as a 

feasible and attractive approach in pharmacological and clinical application of 

malignant brain tumors. Additionally, emerging evidence attributes the role of TRP 

channels in the regulation of homeostasis, growth control, cell survival, and describes 

their promising implications in glioblastoma therapy. Furthermore, P2X7R activation is 

linked with elevated expression of inflammation promoting factors, tumor cell 

migration (Wei et al., 2008; Ryu et al., 2011; Braganhol et al., 2015), an increase in 

intracellular mobilization of Ca2+, and membrane depolarization in malignant gliomas. 

Further studies are required though to assess which other calcium channels are 

associated with the development and progression of malignant brain tumors, and the 

roles that these channels play in the process. 
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Figure legend 

Figure 1. Altered regulation of calcium channels in brain tumors are part of 

neoplastic transformation. In the brain, the transformation of a normal cell into a 

tumor cell might be related to Ca2+ oscillations, and the homeostasis misbalance can 

define the malignant phenotype, which includes uncontrolled proliferation, enhanced 

migration and invasion, and abnormal cell death. The activation of P2X7R leads to 

ERK1/2, PI3K and MEK1/2 activation. High P2X7R functionality and pore activity are 

linked to apoptosis/necrosis in glioma cells and better progression-free survival. 

Abbreviations: TRP, Calcium Channel Associated Transient Receptor Potential; VGCC, 

Voltage-gated Calcium Channel; P2X7R, Purinergic Ionotropic Receptor 7. 
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Table 1. Summary of calcium channels and their possible mechanisms/effectors in 
malignant brain tumors as discussed in this article. 

Ca2+ channel Cell type/Tumor 
model 

Mechanisms/effectors References 

VGCC 
channels 
 
T-type 
low-voltage-
activated  
 

Human 
astrocytoma cells 
Human 
neuroblastoma 
cells 

• Decrease expression of 
α1G and α1H 

• Increase levels of cyclin D1 
• Decrease cell proliferation 
 

Panner et al., 2005 
 

Human 
glioblastoma cells 

 

• Decrease cell proliferation 
and migration 

Zhang et al., 2012 

• Reduce mTORC2/Akt 
signaling 

• Increase apoptosis 

Valerie et al., 2013 

Murine xenograft 
model 

• Inhibit tumor growth 
• Potentiate the effect of 

temozolamide in resistant 
cells 

Keir et al., 2013 

TRP 
channels 

Glioblastoma  
Patient tissues 

• Overexpression of  TRPC 
1,6; TRPM2,3,7,8 and  
TRPV1,2 increase survival 

• Expression TRPC1, 3, 5, 6 
in GBM- biopsies 

Alptekin et al., 
2015 
 
Bomben, 
Sontheimer, 2008 

Human 
glioblastoma cells 

 

• TPRC1 inhibition impairs 
cytokinesis and 
proliferation by regulation 
of Ca+2 signaling 

• TRPC1 activates  Cl− 
channel 

Bomben, 
Sontheimer, 2008 
 
Cuddapah et al., 
2013 

• TRPC6 affects glucose 
metabolism and HIF-1α 
stability under hypoxia 

Li et al., 2015 

• TRPM8 stimulation 
increases [Ca2+ ]i and  cell 
migration 

Wondergem, 
Bartley, 2009 

Mouse xenograft 
model  

• TRPC6 inhibition reduces 
tumor volume 

Ding et al., 2010 

High-grade 
astrocytoma cells 

• TRPV1  stimulation leads 
to cell death via ATF3 

Stock, et al. 2012 

P2X7R 

P2X7 
Receptor 

Human 
astrocytoma cells 

• ERK1/2 phosphorylation 
and activation of c-Src, 
PI3K and MEK1/2 

Gendron et al., 
2003 

Rat glioma cells • Mobilization of [Ca2+]i and 
large pore induction 

• Expression of MCP-1, IL-8 

Wei et al., 2008 
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and VEGF 
Murine syngeneic 
model 

• P2X7R suppression induces 
glioma growth through 
EGFR signal pathway 

Fang et al., 2013 

Murine 
neuroblastoma 
model 

• Activation of  EGFR 
enhance P2X7R expression 
through PI3K/Akt/PKCζ 
signaling pathway 

Gómes-
Villafuertes et al., 
2015 

Human and mouse 
glioblastoma cells 

• Apoptosis/necrosis in 
glioma cells with high 
P2X7R expression / pore 
activity 

Tamajusuku et al., 
2010; Gehring et 
al., 2012 

Human glioma 
biopsies 

• Decreased P2X7R activity 
leads to greater risk of 
metastatic disease 

• High P2X7R expression is 
correlated with better 
progression-free survival 

Ghiringhelli et al., 
2009  

Gehring et al., 
2015  
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