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Abstract—This paper proposes a simultaneous de-
coupled dynamic linear translational and non-linear
rotational quaternion-based control of a Stewart plat-
form. For the translation of the platform, a mixed de-
sign composed by H∞, D-stability and internal model
control is presented. An augmented representation of
the system allows the controller design to be cast as an
optimization problem constrained by Linear Matrix
Inequalities (LMI). For the rotational control of the
end effector, a Lyapunov-LaSalle approach is used
to guarantee asymptotic stability of the closed loop
system. Numerical simulations are used to show that
the final solution is able to stabilize the system around
the reference vector and successfully reject external
periodic perturbations.

I. Introduction

The Stewart platform manipulator consists in a six de-
grees of freedom (6DOF) parallel kinematic system given
by a closed-kinematic chain (CKC) mechanism. While
this platform was originally designed as an aircraft simu-
lator motion base [1], the CKC structure that it possesses
have expanded its applicability to different areas [2].
In particular, when compared to open kinematic chain
mechanisms, CKC manipulators have a higher structural
rigidity, noncumulative actuator errors and a payload
that is proportionally distributed to the links, granting
a higher strength-to-weight ratio [3]. Therefore, there is
significant interest in parallel manipulators in general
and in the 6-DOF Stewart platform in particular [4],
[5], [6], whose modern applications range from industrial-
grade manipulators [7] to offshore cargo transfer mecha-
nisms [8].

This paper considers the scenario where a Stewart
platform is used as a stabilization device on the ocean
as, for example, an offshore cargo transfer mechanism.
In this case, it is desired that the effector (the top
reference frame in Fig. 1) remains as steady as possible,
negating the effects of waves perturbing the bottom
frame. Obviously, the system is subject to external peri-
odic and non-periodic perturbations, whose behavior and
mathematical description are partly known. In order to
minimize the effect of the unknown perturbations, the
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H∞ norm from the perturbation to the output can be
minimized. In the more specific case where it is known
that the perturbations have some periodicity, a controller
based on the Internal Model Principle (IMP) can be used
[9]. In few words, the IMP states that if the closed-
loop system is stable and if the nonvanishing modes
of the disturbance signal are replicated by the control
law, then asymptotic disturbance rejection is achieved. A
resonant controller makes use of the IMP to successfully
reject sinusoidal perturbations on a desired fundamental
frequency [10]. In order to reject disturbances with higher
harmonic content, multiple resonant controllers will be
used in this paper.

In order to implement the multiple resonant control
approach, this paper proposes a decoupled quaternion-
based model of the Stewart platform. As a result, the
task of controlling the position and the orientation of the
platform may be performed separately and the dynamics
describing the translational motion of the platform be-
comes that of a linear time invariant model. The linearity
of this subsystem is explored and dynamic feedback con-
troller is designed via an optimization problem subject
to constraints in the form of Linear Matrix Inequalities
(LMI). Finally, a non-linear controller able to minimize
the effects of disturbances is applied to the rotational
dynamics.

Notation: The ith component of vector x is defined as
xi, A

T denotes the transpose of matrix A and I denotes
the appropriately sized identity matrix, I the 3 × 3
identity matrix and 0 the appropriately sized zero-filled
matrix or vector. The operator ⊗ denotes the Kroenecker
product.
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Fig. 1. The Stewart platform.

2016 IEEE Conference on Control Applications (CCA)
Part of 2016 IEEE Multi-Conference on Systems and Control
September 19-22, 2016. Buenos Aires, Argentina

978-1-5090-0755-4/16/$31.00 ©2016 IEEE 1191



II. Quaternion-based Description of the
Stewart Platform

The Stewart platform consists in a six degrees of
freedom (6-DOF) parallel manipulator composed by a
static base and a movable platform, which are linked by
six variable-length actuators, as depicted Fig. 1.

A. Rigid Body Dynamics

The platform is a non-linear coupled system usually
modeled using Lagrange or Newton-Euler formalism. Fol-
lowing the classic description of a generic 3D rigid body
with respect to a coordinate frame whose origin coincides
with the center of mass of the body, the Newton-Euler
equations that represent the upper platform are given by

τ(ω, ω̇) = Imω̇ + S(ω)Imω,
F (v̇) = mv̇.

(1)

Here τ ∈ R3 is the torque vector, Im ∈ R3×3 is
the inertia tensor and ω ∈ R3 is the angular velocity
vector, all represented in the local body frame of the
upper platform. Also, F ∈ R3 is the force vector and
v ∈ R3 is the linear velocity vector, where these last two
are represented in the global inertial frame, and m is
the body mass of the end effector, whose center of mass
is described by point OT in Fig. 1. The term S(ω)Imω
represents the gyroscopic effect on the platform1.

In order to relate the dynamics of the velocities, posi-
tion and orientation of the upper platform, the following
mapping will be used,

q̇(η, ε, ω) = 1
2

[
−εT

ηI + S(ε)

]
ω

ṗ(v) = v,
(2)

Here, q(η, ε) = [η εT ]T ∈ R4 is the body orientation

unit quaternion [11] and p =
[
px py pz

]T ∈ R3 is the
position vector of the end effector regarding the global
inertial frame, with px, py and pz related to the x-, y-
and z-axis respectively.
Adding the gravity force on the system, the complete

dynamics of the upper platform can then be expressed
by

ẋ =


q̇
ẇ
ṗ
v̇

 =


1
2

[
−εT

ηI + S(ε)

]
ω

Im
−1(uτ + τext − S(ω)Imω)

v
m−1(uF + Fext) + g

 ,
(3)

where uτ ∈ R3 and τext ∈ R3 are the input and external
perturbation torques referenced to the local body frame,

1In (1) and in further equations, the skew-symmetric matrix

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , ∀x ∈ R3.

is used to represent the vector cross product.

uF ∈ R3 and Fext ∈ R3 are the input and external per-
turbation forces referenced on the global inertial frame
and g is the gravity vector. The external perturbations
represent some important disturbances that the platform
is subject to, such as: mass increase and center of mass
shift in load conditions, external forces and torques ap-
plied directly on the base and top platforms, unmodelled
elements and uncertain parameters.

B. Quaternion-based Jacobian

The Jacobian matrix J transforms the linear velocities
of the actuators l̇ to the linear and angular velocities
of the platform, ṗ and ω, respectively. This matrix can
also be used in order to relate the linear forces of the
six actuators f = [f1 . . . f6]

T to the forces and torques
applied on the top (FT and τT ) and bottom platform
(FB and τB), that is

Fx =


FT

τT
FB

τB

 = JT f. (4)

Consider the vectors involved in the inverse kinematics
of the platform, shown on Fig. 2.
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Fig. 2. Main vectors of the platform.

Let Li be a vector of the same length and direction of
the leg i, i = 1 . . . 6,

Li = RI
TTi + pT − (RI

BBi + pB), (5)

where RI
T and RI

B are the rotation matrices of the top
and bottom platforms, respectively, both regarding the
global inertial frame, and may be expressed as

Rj(ηj , εj) = I + 2ηjS(εj) + 2S2(εj), j = T, B. (6)

The vectors Ti and Bi are defined from the center
of the top and bottom platforms, to the ith top and
bottom links, relative to the top and bottom platforms,
respectively, and pT and pB are the position vectors of
the top and bottom platforms, respectively.

Let also ni be a unit vector with the same direction of
the leg i, i = 1 . . . 6, so that ni = Li/|Li| and ωT and ωB
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be the angular velocities of the top and bottom platforms
in the local body frames. Differentiate both sides of (5)
relative to time to obtain

L̇i = ṗT + S(ωT )(R
I
TTi)− ˙pB − S(ωB)(R

I
BBi), (7)

and define the velocity vector with the same direction of
the ith leg

l̇i = L̇i · ni. (8)

Substitute (8) in (7) and apply a series of cross- and
dot-product properties to obtain

l̇ = J


ṗT
ωT

ṗB
ωB

 , (9)

where

J =

n
T
1 (S(RI

TT1)n1)
T �nT

1 �(S(RI
BB1)n1)

T

...
...

...
...

nT
6 (S(RI

TT6)n6)
T �nT

6 �(S(RI
BB6)n6)

T

 .

(10)

From the energy conservation principle, if follows that
the power P produced by F and τ must equal that
produced by f , that is

P = FT
x


ṗT
ωT

ṗB
ωB

 = fT l̇. (11)

Substitute (9) in (11) and rearrange to obtain (4)2.

III. Control Strategies

Two decoupled control strategies are proposed: a lin-
ear, dynamic translation controller and a non-linear rota-
tion controller. To unify the outputs of both controllers,
the Jacobian J in (10) is used to compute the inputs of
the actuators. This approach simplifies the design of the
controllers and allows for the use of a mixed solution for
the linear and non-linear portions of the system.

A. Dynamic Translation Controller

The translation controller uF acts on the Cartesian
position p and linear velocities v of the platform, whose
dynamics around the equilibrium point is represented by
the system

S1 :=

{
ẋ1 = Ax1 +BuuF +BφFext

z1 = Cx1

(12)

where,

x1 =

[
p
v

]
, A =

[
0 I
0 0

]
, Bu = Bφ =

[
0

m−1I

]
,

C =
[
CT

x CT
y CT

z CT
ẋ CT

ẏ CT
ż

]T
= I,

(13)

2Provided the matrix J−T := (JT )−1 is invertible around the
equilibrium point, the controllers presented on Section III are able
to generate the inputs of the linear actuators that effectively control
the platform.

such that x1 ∈ R6, A ∈ R6×6, Bu ∈ R6×3, Bφ ∈ R6×3

and C ∈ R6×6.
The main goal of this control is to reject external

sinusoidal perturbations. As such, the use of a resonant
controller, which is based on the internal model principle
(IMP), is the starting point of the proposed design. It is
well known from the IMP that a perturbation signal can
be asymptotically rejected if its dynamics are reproduced
by the states of the controller.

If the periodic perturbation applied to the system is a
sinusoidal signal of fundamental frequency σr, the control
loop must include additional states in the form of

ẋr = Ārxr +Brer,
yr = xr,

(14)

where

Ār =

[
0 1

−(hσr)
2 0

]
, Br =

[
0
1

]
, (15)

er is the motion error, e.g., rx − px, and h = 1 for the
fundamental frequency and h > 1 ∈ I for the harmonics.
In addition to rejecting the fundamental frequency of the
perturbation, the second harmonic to this signal is also
rejected. For this purpose, we define matrices Ar and Ah

with h = 1 and h = 2 respectively. Since the platform
has 3 axis of linear movement and the resonant controller
has 2 states for each frequency at each axis, twelve states
have to be introduced in the control loop. Furthermore,
in order to deal with unknown load conditions, three
extra “integrator states” are introduced in the controller.

To better define the proposed control loop, consider
an augmented system Sa in the form of (12), where the
matrices and vectors denoted with subscript a are the
equivalent augmented counterparts of (13) given by

Aa =



A 0 0 0 0 0 0
−BrCx Ar 0 0 0 0 0
−BrCx 0 Ah 0 0 0 0
−BrCy 0 0 Ar 0 0 0
−BrCy 0 0 0 Ah 0 0
−BrCz 0 0 0 0 Ar 0
−BrCz 0 0 0 0 0 Ah

−Cx 0 0 0 0 0 0
−Cy 0 0 0 0 0 0
−Cz 0 0 0 0 0 0


,

Bu,a =
[
Bu 0

]T
, Bφ,a =

[
Bφ 0

]T
,

(16)
such that xa ∈ R21 encompasses the plant and controller
states, Aa ∈ R21×21, Bu,a ∈ R21×3, Bφ,a ∈ R21×3. That
is,

Sa :=

{
ẋa = Aaxa +Bu,auF +Bφ,aFext

z1 = Caxa

(17)

with Ca = [C 0].
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A state feedback is proposed in order to guarantee
closed-loop stability of Sa. In this sense, consider the
stabilization task as defined in Problem 1, together with
additional performance criteria.

Problem 1. Design a feedback gain K such that

ẋa(t) = Axa (18)

for A = (Aa+Bu,aK) is asymptotically stable and satisfy
the following performance criteria:

PC1. Place the closed loop eigenvalues λa of A inside
a stable subregion D of the complex plane.

PC2. Minimize the H∞ gain of the unknown pertur-
bation Fext to the output z1, i.e., minimize

µ̄ = sup
‖Fext‖2 6=0

‖z1(t)‖2
‖Fext(t)‖2

(19)

The solution of Problem 1 subject the performance
criteria PC1 and PC2 is presented in the next Theorem.

Theorem 1. Consider the linear augmented system Sa

and given constant matrices L and M defining an LMI
region D. If there are matrices P = PT = Q−1 > 0 and Y
with appropriate dimensions and a positive scalar µ > 0
subject to the following constraints



L⊗Q+M ⊗ Γ(Q,Y ) +MT ⊗ Γ(Q,Y )T < 0,

Γ(Q,Y ) + Γ(Q,Y )T ? ?

BT
φ,a −µ2I ?

CaQ 0 −I

 < 0

(20)

with Γ(Q,Y ) = (AaQ+Bu,aY ), then the control law uF =
Kxa, with K = Y Q−1, solves Problem 1 and satisfies
constraint PC1. Furthermore, if the above inequalities
are solved while minimizing µ, PC2 is also satisfied. �

The proof follows the same ideas presented in [12] and
will be omitted due to space constraints.

B. Rotation Controller

The rotation controller acts on the angular position
q and velocities w of the platform represented by the
system

S2 :=



[
q̇

ẇ

]
=

 1
2

[
−εT

ηI + S(ε)

]
ω

Im
−1(uτ + τext − S(ω)Imω)

 ,

z2 =

[
q

w

]
,

(21)
by applying torques uτ to the end effector. The control
law objective is to maintain the system at the origin
compensating the effects of external perturbations. We
introduce such control law in the following theorem.
Theorem 2. Consider the system S2 and control law

uτ = −k1εsgn(η)− k2w (22)

with positive scalars k1 and k2. The closed loop system is
bounded-input bounded-ouput stable from τext to ω with
an arbitrarily small L2 gain. Furthermore, in the absence
of external disturbances, control law (22) achieves global
asymptotic convergence of z2 to the set M := {z2 ∈ R7 |
z2 = [±1 0]T }. �
Proof. Consider the Lyapunov function candidate

V (z2) = k1ε
T ε+ k1(1− |η|)2 + 1

2ω
T Imω (23)

and compute V̇ (z2) substituting the control law (22) to
obtain,

V̇ (z2) = −k2ω
Tω + ωT τext, (24)

which is negative semi-definite for τext = 0. By defining
the sign function such that sgn(x) = 1 for nonnegative x
and sgn(x) = −1 otherwise, then

ω ≡ 0 ⇒ ω̇ ≡ 0 ⇒ ε ≡ 0 ⇒ η ≡ ±1 ⇒ q̇ ≡ 0,

where we have used the property that η2 + εT ε = 1.
From LaSalle’s invariance principle, it is clear that z2
converges to M, and from the fact that V (z2) is radially
unbounded, it follows that this convergence holds glob-
ally.

To see that the closed loop system is L2 stable,
take V (z2) as a storage function and note that (22)
renders S2 output strictly passive from τext to w.
This, in turn, implies bounded-input bounded-output
stability with an L2 gain less than or equal to 1/k2
[13]. Finally, by making k2 arbitrarily large one achieves
an arbitrarily small L2 gain, which completes the proof.�

IV. Numerical results

The proposed control was simulated in a MATLAB
environment on a platform modeled by (3) with param-
eters presented on Table I. The optimization problem
presented in Theorem 1 was solved using YALMIP and
SDPT3.
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TABLE I

Platform and simulation parameters

Parameter Symbol Value

Sampling period [s] T 0.01
Gravity [m/s2] g 9.85
Frequency of the perturbation [rad/s] σp 0.4π
Top platform mass [kg] m 1.36

Top platform tensor of inertia [kgm2] Im

1.705× 10−4

1.705× 10−4

3.408× 10−4


Top platform radius [mm] rT 125
Gap between two actuators [rad] aT π/2

Initial position, top platform [mm] po
[
0 0 180

]T
Initial orientation, top platform qo

[
1 0 0 0

]T

A. Simulation Procedure

The developed environment applies a linear and an-
gular perturbation at the center of mass of the bottom
reference frame:

pd =

 0
0

5 sin(wp)

 , rd =

0.125 sin(0.5wp)
0.25 sin(wp)
0.1 sin(0.2wp)

 (25)

where rd is the Euler angle equivalent to qd that is
applied on the system. These disturbances are then
naturally propagated to the top platform. For compari-
son purposes, Fig. 3 shows the system without control,
considering that the actuators apply just the necessary
reaction to gravity, where e1, e2 and e3 are the position

errors relative to pT =
[
px py pz

]T
and α, β and γ

are the equivalent Euler angles related to the rotation of
the top platform.

B. Controlled System

In order to evaluate the system response to unknown
load conditions, an added mass of 6.5 kg was applied to
the end effector. The resulting performance is depicted
in Fig. 4 where it is clear that, due to the IMP, the
LMI-based control on the translational motion is capable
of asymptotically rejecting the periodic and constant
perturbations applied to the system. The nonlinear con-
troller applied to the orientation of the platform shows a
good performance, reducing the rotational perturbations
by more than hundred fold. It is important to emphasize
that if the system had no disturbances applied to it, the
orientation error would also convergence asymptotically.

The resulting linear actuator forces depicted on Fig. 5
are obtained through the Jacobian J−T . Once in steady-
state, the actuators present a low magnitude response,
this is so because the proposed controllers are not high-
gain controllers. In particular, the position controller is
based on the IMP and, therefore, can achieve robust
asymptotic rejection of the disturbances without relying
on excessive input efforts.
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Fig. 3. States of the uncontrolled top platform subject to periodic
perturbations caused by the movements of the base.

V. Conclusion

This paper proposed a decoupled, quaternion based
dynamic model of the Stewart platform and a control
method that leverages the mathematical independence of
both models, allowing for two very different approaches
to be used on each subsystem. The quaternion based,
global inertial frame referenced Jacobian of the system
was also presented, describing a simple form of coupling
the outputs of both controllers. This technique avoids any
linearization, thus achieving an improved performance.

The proposed dynamic controller uses the IMP to
successfully reject periodic disturbances and constant
disturbances acting on the translational motion of the
platform. Furthermore, additional performance criteria
are met by achieving D-stability and H∞ norm min-
imization. Since the design method uses LMIs, this
approach has the benefits of providing a systematic
way for designing the controller, as well as allowing
for model uncertainties to be compensated (a theme to
be addressed in future works). The Lyapunov-LaSalle
based orientation control guarantees asymptotic stability
of the unperturbed system and orbital stability for the
perturbed system.
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Fig. 4. States of the controlled top platform.
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Fig. 5. Linear actuator forces effectively controlling the orientation and position of the top platform.
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