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Abstract— In this work a modified Resonant Controller is

proposed to deal with the tracking/rejection problem of periodic

signals robust to period variations and parametric uncertainties

in the plant. The control strategy is based on a resonant

structure in series with a notch filter, which will be responsible

to improve the robustness to period variation. A robust state

feedback controller is designed by solving a linear matrix

inequality (LMI) optimization problem guaranteeing the robust

stability of the closed loop system. A numerical example is

presented to illustrate the method.

I. INTRODUCTION

Applications such as optical disk drives [1], [2], active

filters [3] and nanomotion positioning systems [4] have been

attracting increasing attention in the literature since they are

examples of systems where the signals to be tracked/rejected

are periodic or that at least can be considered periodic in

a particular timespan. In some of these examples authors

must also consider the design of control systems capable to

maintain an acceptable level of performance in the presence

of parametric uncertainties or period variations.

Robust tracking/rejection under parametric uncertainty can

be guaranteed by control techniques based on the Internal

Model Principle (IMP) [5] such as repetitive and resonant

controllers. Both approaches employ controllers with reso-

nance peaks on the signal fundamental frequency and its

harmonics. In the resonant controller [6], the introduction

of a second order system in the control loop is required

to compensate each harmonic component, leading to a high

order controller and an excessive number of tunning param-

eters. The repetitive approach [7] employs a delay element

in a positive feedback loop to achieve infinite gain at the

desired fundamental frequency and its harmonics. Despite the

simple controller structure, ensuring closed-loop stability is

not trivial, especially in the Multiple-Input, Multiple-Output

(MIMO) case.

A point in common in IMP based controllers lies in the

fact that tracking performance is highly compromised when

the period (or frequency) of interest differs from the one

considered in the control design [8]. To illustrate this point

lets consider the repetitive controller, which is well known

to present a severe loss of performance for small period
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variations such as 5% or 10% of its nominal value [9]. To

mitigate this effect we can point out the control strategy

known as High Order Repetitive Controller also presented

in [9], where multiple memory loops were employed to

“enlarge” the high gain region around the nominal frequency

and its harmonics. The main drawback of the High Order

Repetitive Controller is the so called waterbed effect [10],

i.e. attenuation of disturbances around the fundamental fre-

quency and its multiples is improved, while disturbances or

noise at intermediary frequencies are amplified. Also, to the

best of our knowledge, this control technique can only be

applied to MIMO systems by assuming all signals (reference

and disturbances) are multiples of the same fundamental

frequency.

In this work, the ideas presented in the High Order Repeti-

tive Controller formulation will be extended to resonant con-

trollers by the series interconnection of a resonant structure

and a notch filter. In this case, the first is responsible to

guarantee perfect tracking at the nominal frequency while the

latter improves robustness to frequency variation. Based on

a state space formulation, the controller design is addressed

by the solution of an optimization problem subject to Linear

Matrix Inequality (LMI) constrains that guarantee the robust

stability of the closed loop system as well as a desired level

of transient performance. In addition, the proposed approach

is capable of ensuring tracking/rejection in MIMO systems

for references/disturbances with non-multiple period. A nu-

merical example will be considered to illustrate the proposed

method.

Notation: The ith component of a vector x is denoted by

x(i). A(i) represents the ith row of a matrix A ∈ R
n×n,

A(i, j) is the element located in the ith row and jth column

of A and A′ means its transpose. diag{A1, A2} is a block-

diagonal matrix obtained from A1 and A2, Im denotes the

m-order identity matrix and 0m×n is the m×n null matrix.

∗ represents symmetric block elements in a matrix.

II. PRELIMINARIES

A. Open Loop System

Consider the continuous-time system described by:

ẋ(t) = (A+∆A(t))x(t) +Bu(t) +Bdd(t)
y(t) = (C +∆C(t))x(t)
e(t) = r(t) − y(t)

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the

control input, y(t) ∈ R
p is the output, d(t) ∈ R

l is a

vector of disturbances, r(t) ∈ R
p is a reference vector to be

tracked and e(t) ∈ R
p is the output tracking error. Matrices

2016 IEEE Conference on Control Applications (CCA)
Part of 2016 IEEE Multi-Conference on Systems and Control
September 19-22, 2016. Buenos Aires, Argentina

978-1-5090-0755-4/16/$31.00 ©2016 IEEE 1256



A, B, Bd and C are constant real matrices of appropriate

dimensions and suppose the pair (A,B) is controllable.

We also consider that uncertainty matrices ∆A(t) and

∆C(t) are defined by [11]:
[

∆A(t)
∆C(t)

]

=

[
H1

H2

]

Ξ(t)E

where Ξ(t) is a time-varying matrix such that {Ξ(t) ∈
R

nu×nu ; Ξ(t)′Ξ(t) ≤ Inu
} and with H1, H2 and E being

known real matrices of appropriate dimensions. In this case

nu denotes the number of uncertain parameters.

B. Resonant Controller

A common approach to the tracking (rejection) of periodic

references (disturbances) is the so called resonant control

which is based on the IMP and adds resonance peaks

to the control transfer function at frequencies of interest.

According to this principle, it is well known that sinusoidal

periodic references with a frequency of ω0 will be perfectly

tracked, just as disturbances with the same frequency will

be perfectly rejected, if complex poles with frequency ω0

are replicated either in the control law or the plant itself. In

terms of Resonant Controllers this can e accomplished by

the introduction of

Gr(s) =
ω2

0

s2+ω2

0

(2)

in the control loop. Signals that are periodic but not pure

sinusoids may still be dealt with based on their Fourier series

expansion. In these cases, a pair of complex poles must be

added to the controller transfer function for each frequency

ωk, k = 1, 2, · · · of the expansion. For signals with infinite

harmonic content, a usual practice is to consider only the

M most significant harmonics at an expense of a residual

tracking error which decreases as M increases. Hence, (2)

can be rewritten as

Gmr(s) =
M∏

k=1

ω2

k

s2+ω2

k

. (3)

A problem occurs, however, if the periodic signal is of

varying frequency. When this is the case no guarantees can

be provided regarding the tracking or rejection of the signal if

(3) alone is implemented in the control law. In the following

sections we will adapt the resonant structure to increase its

robustness with respect to small frequency variations.

III. NOTCH-RESONANT CONTROLLER

A. Proposed Controller

Here we propose a modified Resonant Controller that

is able to deal with variations of the fundamental refer-

ence/disturbance frequency by applying simple loop-shaping

techniques. Inspired by the High Order Repetitive Control,

the proposed controller “enlarges” the high gain region of

the frequency response, adding robustness to small variations

around the nominal frequency of the periodic signal. The

above methodology is implemented through the addition of

a notch filter

Gn(s) =
s2+2ζzω0s+ω2

0

s2+2ζpω0s+ω2

0

(4)

in series with (2), i.e.,

Gnr(s) =
s2+2ζzω0s+ω2

0

s2+2ζpω0s+ω2

0

· ω2

0

s2+ω2

0

(5)

with ζp < ζz < 1. The notch filter by itself can be tuned to

introduce enough high gain in the controller transfer func-

tion to produce a satisfactory tracking performance, but its

cascade implementation with the resonant controller results

in two desirable effects: null tracking error for the nominal

frequency and gain reduction in high frequencies since the

controller roll off frequency is -40 dB/dec. Henceforth the

controller defined in (5) will be called Notch-Resonant

Controller. Based on this formulation, the original resonant

controller will be recovered for ζz = ζp.

Fig. 1 shows the Bode diagram of both (2) and (5) for

ω0 = 10 rad/s and different values of ζz . As seen from the

figure, the proposed controller adds robustness to variations

of the frequency of interest by the “enlargement” of the high

gain region of the bode plot as ζz increases. On the other

hand, ζp has the contrary effect as depicted in Fig. 2, when

the robustness is increased for smaller values of ζp. We can

also point out that there is no noticeable gain in reducing

this parameter below ζp = 0.01.

It is also worth mentioning that a controller described by

(6) can ensure perfect tracking and rejection for ramp-like

signals since they can be expressed as a periodic signals with

fundamental frequency ω0 = 0. Finally, relations (3) and (5)

can be combined to define a Notch-Resonant Controller with

multiple frequencies as follows

Gmnr(s) =
M∏

k=1

(
s2+2ζzωks+ω2

k

s2+2ζpωks+ω2

k

· ω2

k

s2+ω2

k

)

(6)

which can be seen as a series interconnection of M Notch-

Resonant Controllers tuned at each frequency of interest. The

above controller is readily put in state space form for LMI

based design in the section that follows.

B. State space formulation

One may represent (4) with resonance peak at ωk in state

space form by

ẋnk(t) = Ankxnk(t) +Bnei(t)
ynk(t) = Cnkxnk(t) +Dnei(t)

(7)

where xnk(t) ∈ R
2 is the notch state, ei(t) = ri(t) −

yi(t), i = 1, · · · , p is the i−th error channel and

Ank =

[
0 ωk

−ωk −2ζpωk

]

, Bn =

[
0
1

]

Cnk =
[
0 2ωk(ζz − ζp)

]
, Dn = 1.

In the same way, a resonant controller in (2) in series with

the notch filter will be represented by

ẋrk(t) = Arkxrk(t) +Brynk(t)
yrk(t) = Crxrk(t)

(8)

with

Ark =

[
0 ωk

−ωk 0

]

, Br =

[
0
1

]

, Cr =

[
ω0

0

]
′

.
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Fig. 1. Resonant controller and the proposed Notch-Resonant Controller
for different values of ζz and ζp = 0.001.

From both (7) and (8), it follows that (5) can be defined in

terms of the augmented state xk(t) =
[
xrk(t)

′ xnk(t)
′
]
′ ∈

R
4 as

ẋk(t) = Akxk(t) + B̄ei(t)
yk(t) = xk(t)

(9)

where

Ak =

[
Ark BrCnk

02×2 Ank

]

, B̄ =

[
BrDn

Bn

]

.

Consequently the parallel interconnection of M Notch-

Resonant controllers (see Fig. 3) with frequencies ωk, k =
1, 2, · · · ,M in (6) is represented in state space by

ẋmn(t) = Amnxmn(t) +Bmnei(t) (10)

where xmn(t) ∈ R
4M and

Amn =








A1 04×4 · · · 04×4

04×4 A2 · · · 04×4

...
...

. . .
...

04×4 04×4 · · · AM







, Bmnr =








B̄
B̄
...

B̄








Finally, the MIMO nature of the open loop plant must be

taken into account. Hence, to verify the IMP, the state space

controller (10) must be inserted on each output error channel,

resulting in

ẋc(t) = Acxc(t) +Bce(t) (11)

where xc(t) ∈ R
4Mp and

Ac = diag{
p−tuple

︷ ︸︸ ︷

Amn, Amn, . . . , Amn}

Bc = diag{
p−tuple

︷ ︸︸ ︷

Bmn, Bmn, . . . , Bmn}
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Fig. 2. Resonant controller and the proposed Notch-Resonant Controller
for different values of ζp and ζz = 0.1.

In this case, (11) is a 4Mp−dimensional equation where

matrices Anm and Bnm are repeated p times in a block

diagonal structure [12]. To simplify notation along the paper

we will consider nc = 4Mp.

The augmented state space readily follows by defining

xa(t) = [x(t)′ xc(t)
′]′ ∈ R

n+nc , giving rise to

ẋa(t) = (Aa +∆Aa(t))xa(t) +Bau(t) +Bqq(t) (12)

where q(t) =
[
r(t)′ d(t)′

]
′

and

Aa =

[
A 0n×nc

−BcC Ac

]

, ∆Aa(t) = HaΞ(t)Ea

Ha =

[
H1

−BcH2

]

, Ea =
[
E 0n×nc

]

Ba =

[
B

0nc×m

]

Bq =

[
0n×p Bd

Bc 0nc×l

]

We may now consider the control law as a linear combi-

nation of plant, resonant and notch filter states such that

u(t) = Kpx(t) +Kcxc(t) (13)

with Kc = [Kc1 Kc2 · · · Kcp] and Kci =
[Kr1i Kn1i Kr2i Kn2i · · · KrMi KnMi], i = 1, 2, · · · , p.

In this case, it follows that

u(t) =
[
Kp Kc

]
[
x(t)
xc(t)

]

= Kxa(t). (14)

Applying (14) to (12), the closed loop system is given by

ẋa(t) = (Aa +BaK +∆Aa(t))xa(t) +Bqq(t). (15)

Remark 1: When the problem at hand involves only pe-

riodic and step-like signals, the introduction of a double

integrator in the control loop as proposed in Section III-A
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Fig. 3. Closed loop system for the i−th error channel.

may lead to stabilization problems. The usual solution in this

case is to augment the controller state xmn(t) with a single

integrator state given by

ẋi(t) = ei(t), (16)

i.e. xmni(t) = [xmn(t)
′ xi(t)

′]′ ∈ R
4M+1. In the develop-

ments presented above, it suffices to replace xmn(t), Amn

and Bmn in (11) with xmni(t), diag{Amn, 0} and [B′

mn 1]′,
respectively.

C. Stability Result

The first step towards our stability result is to deal with

the vector of exogenous signals q(t). Note that closed

loop system (15) is linear and therefore its robust internal

(asymptotic) stability also implies Bounded Input, Bounded

Output (BIBO) stability. Thus, for stabilization purposes the

term related to external signals q(t) in (15) can be ignored,

resulting in the following stabilization problem:

Problem 1: Determine a gain K such that

ẋa(t) = (Aa +BaK +∆Aa(t))xa(t) (17)

is robustly asymptotically stable.

It is also important to point out that while the solution

of Problem 1 deals only with the stabilization problem, the

tracking/rejection problem is implicitly taken into account by

the introduction of the resonant structure in the control loop.

Hence, it leaves room for additional performance criteria

such as:

PC1: Minimize the cost function

J(z(t)) := ‖z(t)‖22 =
∫

∞

0

z(t)′z(t)dt (18)

where z(t) is a performance output defined by

z(t) := Cpxa(t) +Dpu(t) (19)

with Cp, Dp being constant matrices with appro-

priate dimensions. By minimizing this cost function

it is possible to penalize the control effort necessary

to track/reject the periodic signal or the energy

associated to augmented system states.

PC2: Ensure a given exponential decay rate α for the

system trajectory such as:

‖xa(t)‖ ≤ β‖xa(0)‖e−αt, for t > 0 (20)

where β is some positive scalar [13]. This restric-

tion is directly related to the closed loop system

transient response.

The following theorem is presented to solve Problem 1

and address the two criteria above:

Theorem 1: Suppose there exist a symmetric and posi-

tive definite matrix Q ∈ R
(n+nc)×(n+nc), a matrix Y ∈

R
m×(n+nc) and the positive scalars ν and λ satisfying





Λ(Q, Y ) QE′

a Y ′D′

p +QC′

p

⋆ −νInu
0nu×m

⋆ ⋆ −λIm



 < 0 (21)

where Λ(Q, Y ) = AaQ+Q′A′

a+BaY +Y ′B′

a+νHaH
′

a+
2αQ. Then, the closed-loop system in (17) with K = Y Q−1

is asymptotically stable with decay rate α and cost function

(18) satisfies ‖z(t)‖22 ≤ λxa(0)
′Q−1xa(0), t ≥ 0. �

The proof of Theorem 1 follows the same ideas presented

in [13] and therefore will be omitted due to space constraints.

Note that for a given α, condition (21) is an LMI and,

therefore, we can obtain controller gains that satisfy perfor-

mance criteria PC1 and PC2 above by the solution of the

following optimization problem:

min
Q,Y,ν,λ

λ

subject to (21).
(22)

IV. NUMERICAL EXAMPLES

The numerical example considered is a MIMO plant

borrowed from [14] (disregarding the saturation nonlinearity)

whose dynamic matrices are given by
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A =







0 10 0 1
−100 −30 0 0
0 0 −37 1
0 0 0 −19






, B =







0 −51
17 0
0 −1
−1 1







Bd =







−1 7
11 0
3 23
1 0






, C =

[
10 20 0 0
0 10 0 0

]

, H1 =







0
0
25
0







H2 =

[
5
0

]

, E =
[
0 0 1 0

]

For simulation purposes both references are considered

step-like signals with amplitude r1 = 10 and r2 = 5.

Disturbance d1(t) is a sinusoidal signal with frequency

ωd1
= 2π

√
2/2, amplitude d1 = 10 and assumes a value

different from zero for t ≥ 11.2s. In the same manner,

disturbance d2(t) is a sinusoidal signal with frequency ωd2
=

2π
√
5/5, amplitude d2 = 5 and starts to act when t ≥ 22.4s.

Finally, Ξ(t) is assumed to be equal to zero for t < 42s and

unitary otherwise.

Hence, based on the IMP, to ensure the perfect rejection of

d1(t) and d2(t) it will be necessary to introduce a multiple

resonant controller with frequencies ωd1
and ωd2

at each

error channel. Also, an integrator is required to follow the

step-like references. From the reasoning presented in Section

II-B, the notch filter parameters necessary to implement the

proposed approach were set to ξz = 0.99 and ξp = 0.01.

With all parameters properly defined, controller gains were

obtained from the solution of optimization problem (22) with

α = 1 and null matrices Cp and Dp.

In Fig. 4 the tracking error for each error channel when

the disturbance frequencies are 5% greater than nominal

values ωd1
and ωd2

is depicted. When no disturbance is

acting (0 ≤ t < 11.2s) the perfect reference tracking is

achieved for both controllers. When disturbance d1(t) starts

to act (t = 11.2s), the maximum tracking error in steady

state for the Resonant Controller is around 2.3% while the

one associated to the Notch-Resonant remains under 0.1%.

When both disturbances are acting, the tracking error for

the resonant jumps to 3.4% while for the notch-resonant it

remains at 0.1%. Finally, a variation on the plant matrices

results in a tracking error of 0.7% for the proposed controller

which is 22 times smaller than the 16% obtained with the

Resonant Controller. In Fig. 5, the simulated outputs and con-

trol signals are presented, where it is clear that the proposed

controller achieves an improved tracking performance with

almost the same control effort as the resonant. Our final result

is presented in Table I where we compare the maximum

steady-state tracking error associated with variations on the

disturbance frequencies from 5% to 50%. For differences

under 20% the proposed approach is capable to maintain

the tracking error under 10% while the Resonant Controller

exhibits error around 68%. For variations of 50% the tracking

performance is heavily compromised for both controllers.

TABLE I

MAXIMUM STEADY-STATE TRACKING ERROR ASSOCIATED TO

VARIATIONS ON THE DISTURBANCE FREQUENCY.

Resonant Notch-Resonant

Freq. dev. e1max[%] e2max[%] e1max[%] e2max[%]
5% 6 16 0.2 0.7
10% 12 36 0.8 2.5
20% 24 68 3 9
50% 44 96 14 38
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Fig. 4. Tracking error for disturbances with frequency 5% greater than
nominal values ωd1 and ωd2 .

V. CONCLUSION

In this work we developed a control structure that com-

bined a Resonant Controller in series with a notch filter to

improve the tracking performance under period variation.

As presented in the Repetitive Control literature, the main

idea was to enlarge the high gain region around the nominal

resonance frequency. Notch filter parameters were deter-

mined from an analysis based on the controller frequency

response, while the robust stability of the closed loop system

was guaranteed by LMI conditions. The numerical example

was a MIMO plant with step-like references and sinusoidal

disturbances composed of non-multiple frequencies. It was

possible to conclude that the proposed approach maintained

the tracking error under 10% for frequency variations around

20% of its nominal value.

For future work we can point out the experimental vali-

dation of the proposed method in a rotating machine and a

direct comparison with High Order Repetitive Controllers in

terms of tracking performance, noise attenuation and mini-

mum hardware requirements to implement the techniques.
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