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Abstract: This paper attempts to achieve time-optimal performance for servomechanisms
via a practical feedback control law. An improvement over the traditional Proximate Time
Optimal Servomechanism (PTOS) is proposed in order to eliminate the conservatism present
in the controller. The original PTOS switches from the nonlinear approximation of Time
Optimal Control (TOC) to a linear controller as the system approaches the reference point.
This switching results in a compromise in performance inasmuch as the linear controller is
not sufficiently aggressive to settle the system output with acceptable levels of overshoot. The
proposed controller eliminates the necessity of the switching function by making use of an
elaborate nonlinear control law. Simulations and experimental results show that the proposed
design achieves levels of performance comparable to that of the theoretical TOC.

1. INTRODUCTION

Nonlinear controllers have frequently been applied to lin-
ear systems in order to achieve performance enhancements.
This is particularly the case when it comes to fast tracking
response of servomechanisms because the theoretical Time
Optimal Control (TOC) itself is a nonlinear controller,
Bryson and Ho, [1975]. In fact, fast tracking response is one
of the most desirable performance criteria for servomech-
anism and, despite the vast amount of academic work in
the area and the decades of years since the development of
TOC, there still is a significant gap between the theoretical
limits imposed by TOC and the performance achieved
by practical controllers. Ideally, it would be preferable to
implement TOC itself (also known as bang-bang), but it is
well known that this controller is not implementable due to
chattering caused by disturbances, measurement noise and
model uncertainties, Khalil, [2002]. This paper proposes
a control method that significantly closes the gap between
the practical controllers and the time optimal one, while
eliminating problems due to chattering.

Arguably, the most important work towards time optimal
performance of servomechanisms is the Proximate Time
Optimal Servomechanism (PTOS) proposed by Workman
et al., [1987]. The general concept is to design a controller
that behaves like the bang-bang control law, but that does
not suffer from the adverse effects of chattering. Workman
proposed to saturate the controller only when it is practical
to do so, and, as the system approaches the reference point,
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the control law switches to a linear PD controller. As we
proceed in this paper we shall revisit the PTOS, analyze
its weaknesses and propose improvements where there is
room to do so.

Another nonlinear approach designed to improve the per-
formance of linear systems is provided by Lin et al., [1998]
and was later generalized and expanded by Chen et al.,
[2003] under the name of Composite Nonlinear Feedback
(CNF). This strategy proposes the design of a linear con-
trol law that provides the system with a small damping
ratio for a fast rise time, associated with a nonlinear con-
trol that adds damping to the system as it approaches the
reference point in order to eliminate the overshoot. This
controller is capable of excellent results, however, once
CNF does not explicitly include the input saturation in its
design, the tuning process associated with the controller
must necessarily be step-dependent in order to achieve a
good performance. As a result, tuning this controller may
become somewhat tedious and for very large steps the
performance drops.

Other control methods that achieve a good performance
for this class of systems include the LQG approach, Lewis
and Syrmos, [1995], nonlinear PID control methods such
as Su et al., [2005], sliding mode controllers, Utki., [1992],
forms of Model Predictive Control (MPC), among many
others. Some of these controller consider the saturation
levels in the design process, and others do not. In the
same form, some are switching controllers and others
computationally demanding, but none of them achieve
near or quasi-time optimal performance with a continuous
control law. The proposed controller, on the other hand,
presents no switching function and its tuning process is
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straightforward: only two parameters must be tuned and
they are not step dependent, that is, one set of parameters
performs extremely well for a wide range of step references.
Furthermore, this is a saturation oriented controller: the
control law is specifically designed to reach the saturation
levels both at acceleration and deceleration.

The rest of the paper is organized as follows. Section 2
will present the model of interest along with a short but
necessary discussion on the PTOS. Section 3 will present
the proposed controller. Section 4 will expose simulation
and experimental results and concluding remarks will be
given in Section 5.

2. ON THE PROXIMATE TIME OPTIMAL
SERVOMECHANISM

This section will be used to make some useful remarks on
the structure of the PTOS, for it is on this controller that
the proposed design stands. But first, let us present the
model of interest.

2.1 Rigid Body Equations of Motion

The system in hand is comprised of a body of mass M
subject to some friction f and disturbance d,

Mÿ = u− f − d.

Due to the frequent but undesired presence of friction and
disturbances, a model-based friction compensator must be
employed. Once it is beyond the scope of this paper to
provide a discourse on these compensators, the interest
reader shall be referenced to the vast academic work in the
are, such as the survey by Radke and Gao, [2006]. Such
compensators are at a mature level and are commonly
implemented in the literature: Zheng et al., [2009]; Salton
et al., [2010a] and Salton et al., [2010b].

With the adverse effects of friction and disturbance over-
come, the system is fully described by the rigid body
equations of motion given by:

ẋ1 = x2
ẋ2 = b sat(u)
y = x1

(1)

where x1 and x2 refer to the position and velocity, b :=
1/M and “sat” is the saturation function defined as:

sat(z) =

{

ū, z > ū
z, |z| < ū

−ū, z < −ū
(2)

with ū the saturation level of the control input.

2.2 The Construction of a PTOS

As previously mentioned, time optimal performance for
rigid body dynamics systems is achieved by the bang-bang
controller, a switching controller that applies maximal ac-
celeration followed by maximal deceleration. This control
strategy may be described in a feedback structure by a
switching curve given by,

uto(t) = sgn(
√

2bū|e| − x2)
e := x1 − yr

(3)

note that in this paper the sgn(·) function is defined as,

sgn(z) =

{

ū, z > 0
0, z = 0

−ū, z < 0
. (4)

Workman adapted the TOC law (3) to accommodate
measurement noise and plant uncertainties. The PTOS
design may be described in the following three different
steps.

Step 1: The effects of chattering are minimized by elimi-
nating the sgn(·) function (4) where possible, also, a free
parameter k is applied in order to scale the control input,

u(t) = k(−f(e)− x2),

where f(e) is defined as

f(e) = sgn(e)
√

2bū|e|.

This control law is, in fact, a high gain that saturates
the controller and drives the system to the time-optimal
switching curve x2 = −f(e), i.e., full acceleration is
achieved. However, when the system reaches the switching
curve, the control input goes to zero. Another term must
be added so that the input goes from one saturation level
to another (from ū to −ū or vice-verse).

Step 2: Saturation of the controller during deceleration
is achieved by adding the term sgn(e)ū to the nonlinear
function,

u(t) = k(−f(e)− x2) + sgn(e)ū.

Or, in a more familiar form,

u(t) = sat[k(−fpto(e)− x2)],

with fpto(e) defined as

fpto(e) = sgn(e)(
√

2bū|e| − ū/k). (5)

While this controller is able to saturate the system both
during acceleration and deceleration, it is not able to
asymptotically track the reference. In fact, the equilibrium
point is given by:

ẏ = ẋ2 = 0 → u = x2 = 0 → f(e) = 0, (6)

which implies

|e| =
ū

2bk2
. (7)

Step 3: Asymptotic stability is achieved by implementing
a switching control law. As the system approaches the
reference, the controller switches from the complex non-
linear function (5) to a simple Proportional Derivative
(PD) controller. The cost of using such nonaggressive
linear control law is that the PD controller is unable to
prevent the system from overshooting. To overcome this
problem, the so-called “acceleration discount factor” α was
included in the original nonlinear function fpto(e), adding
conservatism to the solution.

The control law becomes:

u(t) = k2(−fptos(e)− x2), (8)

with,

fptos(e) =

{

(k1/k2)e, for |e| ≤ yl,

sgn(e)(
√

2bαū|e| − ū/k2), for |e| > yl.
(9)
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A stability condition requires that 0 < α < 1, and the
following constraints guarantee a continuous switching of
the controller,

yl =
ū

k1
, k2 =

√

2k1
bα

. (10)

2

While this discussion only scratches the surface of the
PTOS it is sufficient for the understanding of the remain-
der of this paper. For full details the interested reader
should refer to the relevant literature.

The main objective of this paper is to improve the per-
formance of this controller by eliminating the switching
function and the discount acceleration factor α. While
theoretically α could take values arbitrarily close to one,
in practice it must be somewhat conservative in order
to prevent the system from overshooting. Notice that in
the linear region, |e| ≤ yl, the PD controller may be
parameterized as,

K =
1

b
[4π2ω2 4πωζ], (11)

with ω representing the undamped natural frequency of
the system and ζ the damping ratio. As pointed out in
Choi et al., [2006], the continuity conditions on the PTOS
limit the damping ratio of the system. From (11) and (10)
we have that,

ζ =

√

1

2α
,

and the larger the α, the smaller the damping and,
consequently, the larger the overshoot. If α is pushed to its
limit, α = 1, then ζ = 0.707 resulting in a large overshoot.
In order to eliminate the necessity of the acceleration
discount factor, two approaches might be taken: either an
aggressive control law is proposed in order to replace the
linear PD controller, Salton et al., [2011], or a different
nonlinear control law is proposed in order to eliminate the
switching function. The second approach is the one taken
in this paper, where an elaborate nonlinear control law will
be proposed in order to replace the switching function (8).

3. AN IMPROVED DESIGN

The following is useful result on the stability of system
(1) under a general nonlinear controller. Without loss of
generality, we assume yr = 0 and the problem reduces
to a stabilization problem of the equilibrium point x :=
[x1, x2]

T = 0.

Lemma 1. Consider the closed-loop system composed of
(1) and the control law

u = −h1(x1)− k2x2, (12)

where h1(·) is a piecewise continuously differentiable func-
tion with h1(0) = 0.

Suppose the following conditions 1 are satisfied for x1 ∈ T

with T a subset of R:

A1: h′1(x1) > 0 and limx1→±∞ h1(x1) = ±∞;

A2: k2 > 0;

A3: ū
(

h′1 − k22b
)

< h′1h1 < ū
(

bk22 − h′1
)

.

Then, the trajectory x(t) of the closed-loop system satisfies
limt→∞ x(t) = 0 if x1(t) ∈ T, ∀t ≥ 0.

Proof: This proof is long and elaborate and shall be
omitted. The full proof along with further details on the
proposed design may be encountered in Salton et al.,
[2010b]. 2

This result on itself provides a great deal of liberty when
designing a controller for system (1) because h1(x1) may
be any nonlinear function that satisfies the conditions
presented in the Lemma. With this in mind, we are
now ready to present the main result of this paper: a
nonswitching controller that outperforms the PTOS.

Theorem 2. Consider the closed-loop system composed of
(1) and (12), with

h1(x1) = k1sgn(x1)
(

√

2būψ(x1)|x1| − (ū/k1)ψ(x1)
)

ψ(x1) = (1 − e−µ|x1|) (13)

for any

k1 > 0, 2k21b/ū > µ > 0. (14)

Then, the closed-loop system is semi-globally asymptoti-
cally stable in the sense that, for any compact set Xo ⊂ R

2,
there exists a k2 > 0 (depending on Xo), such that any
trajectory with x(0) ∈ Xo satisfies limt→∞ x(t) = 0 .

Proof: First, we note the function h1(·) has the following
properties. It is a continuously differentiable odd function
with

h1(x1) = −h1(−x1), lim
x1→±∞

h1(x1) = ±∞. (15)

Its derivative satisfies h′1(x1) = h′1(−x1),

h′1(x1) = k1
√

bū/2

(

ψ(x1) + x1ψ
′(x1)

√

x1ψ(x1)

)

− ūψ′(x1)

= k1

√

būψ(x1)

2x1
+ k1

√

būx1
2ψ(x1)

ψ′(x1)− ūψ′(x1)

= k1

√

būψ(x1)

2x1
−
ū

2
ψ′(x1)

+

(

k1

√

būx1
2ψ(x1)

−
ū

2

)

ψ′(x1) > 0, ∀x1 > 0.(16)

1 We define h′

1
(x1) := dh1(x1)/dx1 as the derivative of h1. We drop

the dependency of the functions on x1 for ease of notation if it does
not cause any confusion.
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Furthermore,

h′1(0) = lim
x1→0

k1

√

būψ(x1)

2x1
+ k1

√

būx1
2ψ(x1)

ψ′(x1)− ūψ′(x1)

= k1

√

būµ

2
+ k1

√

bū

2µ
µ− ūµ = k1

√

2būµ− ūµ > 0.

In the last inequality of (16), we use the following facts:

(i) The inequality |x1|/ψ(x1) ≥ 1/µ implies

k1

√

būx1
2ψ(x1)

≥ k1

√

bū

2µ
>
ū

2
.

(ii) The inequality

k1

√

būψ(x1)

2x1
>
ū

2
ψ′(x1)

is equivalent to

2k21b

ū
>
ψ′2(x1)x1
ψ(x1)

which holds if

µ ≥
ψ′2(x1)x1
ψ(x1)

or

~(x1) := 1− e−µx1 − µe−2µx1x1 ≥ 0.

It is true because ~(0) = 0 and

~
′(x1) = µe−µx1 − µe−2µx1 + 2µ2e−2µx1x1 ≥ 0.

For the remaining of the proof we need to define the
unsaturated region U as,

U = {(x1, x2) ∈ R
2 | | − h1(x1)− k2x2| ≤ ū},

and the subset T ⊂ R. We first show that, there exists a
finite time T such that

x(T ) ∈ U, |x1(t)| ≤ x̄1, |x2(t)| ≤ x̄2, ∀t ∈ [0, T ] (17)

for some constants x̄1 and x̄2 depending on Xo. If x(0) ∈ U,
(17) is trivial with T = 0. Otherwise, we note that for
x(0) ∈ Xo and a finite T , ‖x(t)‖ is bounded for t ∈ [0, T ].
Then, we can define a finite constant x∗1 > 0 as

x∗

1
∫

0

h1(y)dy = V ([x̄1, x̄2]) =

x̄1
∫

0

h1(y)dy +
x̄22
2b
. (18)

and hence T = {x1 ∈ R | |x1| ≤ x∗1}. Clearly, we have
x∗1 ≥ x̄1.

It is ready to check the assumptions A1-A3 in Lemma 1.
In fact, A1 is satisfied from the aforementioned properties
of h1(·) and A2 is self evident. It remains to examine A3,
that is

ū(h′1(x1)− bk22) < h′1(x1)h1(x1) < ū(bk22 − h′1(x1)).

Due to the symmetry, it suffices to shows

h′1(x1)h1(x1) < ū(bk22 − h′1(x1)), ∀x
∗
1 ≥ x1 ≥ 0.

It is true if k2 is sufficiently large for

k22 > h′1(x1)h1(x1)/(ūb) + h′1(x1)/b, ∀x
∗
1 ≥ x1 ≥ 0.

It should be noted that x∗1 ≥ x1 is critical in the above
inequality. Actually, its right hand side term approaches
infinity as x1 goes to infinity, so it is impossible to find
a finite k2 for the inequality for all x1 ≥ 0. Now, A3 is
satisfied.

What is left to show is that x1(t) ∈ T, ∀t ≥ 0. From
the aforementioned definition of T, x1(t) ∈ T is true for
t ∈ [0, T ] as shown in (17). For any t > T , the trajectory
is inside U, we have,

x1(t)
∫

0

h1(y)dy ≤

x1(t)
∫

0

h1(y)dy +
x2(t)

2

2b

= V (x(t)) < V (x(T )),

because,

V̇ (x) = h1(x1)x2 + x2(−h1(x1)− k2x2) = −k2x
2
2 < 0.

On the other hand, (17) implies

|x1(T )| ≤ x̄1, |x2(T )| ≤ x̄2 (19)

and hence

V (x(T )) ≤

x̄1
∫

0

h1(y)dy +
x̄22
2b

=

x∗

1
∫

0

h1(y)dy.

As a result, we have

x1(t)
∫

0

h1(y)dy ≤

x∗

1
∫

0

h1(y)dy

or |x1(t)| ≤ x∗1, i.e., x1(t) ∈ T. The proof is thus complete.

2

Remark: Notice that the main difference between the
proposed controller and the traditional PTOS is on how
the controllers guarantee the asymptotic stability of the
system. In fact, the motivation for the proposed design
comes from the discussion on PTOS given in Section 2,
Step 2. Instead of proposing a switching function, as the
original controller does, the proposed design includes the
nonlinear function ψ(·) in order to achieve the equilibrium
point at the origin. In other words,

ẏ = ẋ2 = 0 → u = x2 = 0 → h1(x1) = 0, (20)

which implies

|x1| =
ū

2bk2
ψ(x1). (21)

Provided µ is chosen according to (14), this equality is
only satisfied for x1 = 0, and hence, the equilibrium point
at the origin is achieved.
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Fig. 1. Experimental set up of the electromagnetic motor.

4. SIMULATED AND EXPERIMENTAL RESULTS

In this Section simulated and Experimental comparisons
between the proposed design, the TOC and the traditional
PTOS will be made. Due to the impractical nature of
TOC, this controller was only simulated, but a comparison
between the implemented controllers and the simulated
TOC is presented in order to demonstrate how close to
the theoretical limit the proposed controller is.

The parameters of the system depicted in Fig. 1 and
described as in (1) are ū = 1 and b = 17000, so that
x1 units are given in millimeters. The TOC controller is
implemented via (3) and the PTOS parameters are given
by,

k1 = 2.09, α = 0.7, (22)

so that k2 = 0.019 and the damping ratio is ζ = 0.85.

The parameters chosen for the proposed controller, hence-
forth calledQuasi-Time Optimal Servomechanism (QTOS),
are given by,

k1 = k2 = 0.325, µ = 36. (23)

Notice the choice to fix k1 = k2 = k is done to simplify the
tuning process of the controller. By doing so, k becomes
a free parameter used to scale the input and is extremely
easy to be tuned online. In fact, in a practitioner point of
view, the controller may be rewritten as,

u=−k(h(x1) + x2)

h(x1) = sgn(x1)
(

√

2būψ(x1)|x1| − (ū/k)ψ(x1)
)

ψ(x1) = (1− e−µ|x1|) (24)

Fig. 2 shows the normalized response y/yr for steps of
1, 10, 25, 50 and 70 mm. One can clearly see that the
performance achieved by the proposed controller is closer
to the time-optimal one than the performance achieved
by the traditional PTOS. This is even clearer in Figure
3, where we focused at the 70 mm response. The top plot
shows the trajectories of the position and the bottom plot
shows the three different inputs. Notice how the proposed
QTOS input is very similar to that of the TOC, hence the
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Fig. 2. Normalized simulated responses (y/yr) for steps of
1, 10, 25, 50 and 70 mm for the three comparative
controllers.
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Fig. 3. Simulated response of TOC, PTOS and QTOS for
a 70 mm step reference.

aggressive performance achieved by the controller. In fact,
the performance achieved by the proposed controller and
that given by the time optimal one are indistinguishable
in Fig. 3.

The next plots presented in Fig. 4 and Fig. 5 come from
the actual plant response to the QTOS and the PTOS. As
mentioned before, the TOC responses in these plots were
obtained by simulation. In order to implement the con-
trollers a DSP system (dSPACE-DS1103) with sampling
frequency of 10 kHz was used. When tuning the control
parameters a limited overshoot of 30 µm was imposed
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Fig. 4. Plant responses (y/yr) for steps of 1, 10, 25, 50 and
70 mm for the three comparative controllers.
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Fig. 5. Plant response of TOC, PTOS and QTOS for a 70
mm step reference.

independently of the step size (the controller parameters
are the same as given in the simulation results). Moreover,
a conventional state observer was necessary once only
the position is available for feedback. It is important to
emphasize that for all the step responses we have used the
same set of parameters. This shows how simple it is to tune
the proposed controller, which only has two parameters to
be tuned, namely k and µ. Despite this tuning simplicity,
the proposed controller is able to achieve truly quasi-time
optimal performance.

5. CONCLUSION

A new form of near time optimal servomechanism was
proposed in this paper. The proposed desgin adapts the
original PTOS in order to eliminate the switching func-
tion present it that controller. Along with the switching
function, the necessity for the acceleration discount factor
and, hence, the conservatism present in the traditional
control law, are eliminated. Simulation and experimental
results have shown the effectiveness of the proposed design,
which achieves performances comparable to that of the
theoretical limits given by time optimal control.
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