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Abstract: This paper presents a path planning algorithm to improve the localization estimate of
an autonomous underwater vehicle (AUV) based on bathymetry maps without the aid of external
landmarks. A particle filter is used in order to fuse the data from an Inertial Measurement Unit
(IMU), a downward pointing sonar and an a priori given bathymetry map. Since this method’s
performance is dependent on the rugosity of the map, a path planning algorithm is proposed in
order to avoid such regions and optimize the particle filter performance. By guiding the vehicle
to navigate in regions where the filter performance is acceptable, an efficient landmark-free
localization algorithm is devised.
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1. INTRODUCTION

The growing use of unmanned robotic vehicles is justified
through various advantages associated with this technol-
ogy in aerial, ground or under water environments. Inspec-
tion of areas with difficult access, oceanographic research
and military use are some of examples of where such
vehicles are being used. The significant growth of research
on the topic of Autonomous Underwater Vehicles (AUVs)
is a natural consequence of the fact that the ocean occupies
over 70% of Earth’s surface (Hyakudome, 2011).

Recent developments in embedded electronics have allowed
a wide range of autonomous vehicles to be designed and
manufactured, providing the research community with
challenging tasks. One of the most important is associated
with the localization of AUVs, since it is not possible to
use Global Navigation Satellite Systems (GNSS) under-
water. A classical example of underwater vehicle local-
ization comes from the work by Carreras et al. (2003),
which presents a method for estimating the position and
orientation of the AUV using a camera attached to vehicle.
Facing down, the camera seeks mosaics previously placed
at the bottom of a tank from which the vehicle position
is then determined. This method has proved efficiency in
controlled environments, where vision-based sensors’ lim-
itations, such as reduced range of cameras in underwater
environment, the lack of lighting and turbidity, do not
pose serious threats to the localization system (Paull et al.,
2014).

Other techniques based on acoustic sensors like Long Base
Line (LBL), Short Base Line (SBL), Ultra-Short Base
Line (USBL) and GPS Intelligent Buoys (GIB) came as
alternatives to avoid the use of underwater cameras. The
� : corresponding author: aurelio.salton@pucrs.br

position of the vehicle in these systems is given by the
acoustic return detected by a set of receivers (Caiti et al.,
2005). In LBL, SBL and USBL a perimeter is formed
with the transponders in the area where the AUV will
navigate. The difference between these methods lies in the
distances between the transponders and the distance from
the transponders to the vehicle (Wolbrecht et al., 2014).
For the LBL strategy, for example, the transponders are
placed on the seafloor, while for the SBL and USBL the
transponders are located in a ship that follow the vehicle.
The GIB system uses buoys situated on the surface of the
water equipped with DGPS: each buoy emits a ping with
its GPS position, from these signals the vehicle is able to
compute its own location (Alcocer et al., 2006).

The accuracy of the acoustic sensors are linked to factors
such as the choice of the place of attachment of transpon-
ders – e.g., fixed on the submarine body, on a support
ship or buoy at the water surface – and the depth where
the submarine is working (Kinsey et al., 2006). Another
important factor to be considered is related to the cost of
the peripherals necessary in these localization methods. In
this respect it is desirable to have an AUV able to navigate
without the aid of a surface ship following its position, and
without the necessity of previously fixed transponders and
buoys. The above facts have motivated the use of map
based techniques, that is, techniques that do not need any
peripherals while running the localization algorithm. Of
these, the most common form of determining the position
and orientation of underwater vehicles is through the use of
inertial sensors. However, the use of inertial sensors alone
results in an “open-loop” form of estimation, since this
technique estimates the location of the vehicle by integrat-
ing measurements given by accelerometers and gyroscopes.
Naturally, this approach suffers from drift errors generated
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by the integration of small biases over time (Stutters et al.,
2008).

It is clear that the use of only one specific sensor does
not guarantee the robustness and accuracy of a submerged
localization system. Rather, in practical terms it can be
said that data fusion from multiple sensors is mandatory
for a good estimation. In order to implement data fusion
two main classes of nonlinear filters are at the disposal of
practitioners: parametric or non-parametric filters. These
techniques use probability theory in order to estimate
the states of a system, with parametric filters designat-
ing those filters that parameterize probability functions
using, for example, their mean (µ) and variance (σ). In
this classification the most popular filters are part of the
Gaussian family, whose most widely used and accepted
technique is the famous Kalman Filter (KF) (Kalman,
1960) and its variations. Non parametric filters use numeri-
cal approaches to describe the probability function and are
particularly suited for nonlinear system estimation since
their probability function evolves to better fit the data.
In particular, the most known non parametric method is
based on Monte Carlo simulations and usually referred to
as Particle Filter (PF) (Gordon et al., 1993).

As presented by Maurelli et al. (2008), it is possible to
develop a PF based localization algorithm that only fuses
an IMU with one or more sonars, provided some form of
map of the environment is presented. In fact, methods
denominated Terrain Based Localization (TBL) are par-
ticularly suitable for AUV localization. These methods use
bathymetry maps (a map that gives depth information) as
a reference and a PF is used to fuse the inertial sensor with
the information coming from the sonar. The advantage
of this approach is that no external equipment such as
landmarks or transponders are necessary (Nakatani et al.,
2009). However, this approach may lead to the filter con-
vergence to incorrect estimates, specially in cases where
the terrain does not provide sufficient information for the
localization algorithm.

Given this scenario, this paper aims at the development
of a low cost localization method for an AUV with no
external peripherals. By making use of a Particle Filter
in order to fuse the data from the vehicle IMU with one
single downward pointing sonar and the terrain map, an
efficient localization algorithm is sought. Furthermore, this
paper proposes a simple path planing algorithm in order
to avoid navigation over flat terrains that do not provide
sufficient information to the PF. This work is structured
as follows: in Section 2 the problem definition is presented,
the particle filter approach and the path planing method
are described in Sections 3 and 4, respectively. Section 5
shows simulation results that illustrate the efficacy of the
proposed filter, and Section 6 present a brief conclusion.

2. PROBLEM DEFINITION

This paper considers the problem of determining the
location of an AUV in a given depth. Given the assumption
that the vehicle depth is constant and available online,
the AUV of interest may be described by its Cartesian
coordinates (x, y) and by its orientation, defined as the
angle θ between its heading direction and the abscissa.
These three variables determine the so called pose of the
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Fig. 1. Top view of a planar AUV depicting its pose (1).

vehicle, which is depicted in Fig. 1. At instant k, the pose
is denoted by

pk :=

[
xk

yk
θk

]
. (1)

In order to estimate pk the proposed algorithm assumes
two types of sensors are available: a noisy Inertial Mea-
surement Unit (IMU) from which a rough estimate of the
vehicle displacement between different instants of time
may be computed, and a noisy sonar that measures the
vehicle’s distance to the bottom of the sea. It is further
assumed that a map of the environment is available for the
localization algorithm. As explained below, particle filters
provide a systematic form of combining these sensors with
the map in order to achieve a good estimate of the pose of
the system.

3. PARTICLE FILTER APPROACH TO TERRAIN
BASED LOCALIZATION

Since particle filters are also based on the steps of predic-
tion and correction, they are classified as a particular type
of Bayes Filter (Thrun et al., 2005). Furthermore, they
are said to be non-parametric because their probability
distribution is computed numerically, and is not necessar-
ily parameterizable by, e.g., a mean and a variance. The
filter has at its core idea the use of the so-called particles:
virtual representations of the posteriori knowledge of the
states that must be estimated.

Let us define the set of all particles at instant k by
χk :=

{
p1k, p2k, ..., pMk

}
where M is the total number of

particles. Each, pik represents a possible state configuration
at instant k, i.e., a possible pose of the vehicle. Through
the particle group χk the filter generates an estimate p̂k of
the vehicle pose according to,

p̂k =
1

M

M∑
i=1

p̂ik , (2)

which is also referred to as the belief of the states. The
above may result in a good estimate provided that all
particles are converging to the same location. Advanced
forms of estimating p̂k from χk take into account the fact
that the denser a subregion of the state space is populated
by particles, the more likely it is that the true state falls
in that region.
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that the vehicle depth is constant and available online,
the AUV of interest may be described by its Cartesian
coordinates (x, y) and by its orientation, defined as the
angle θ between its heading direction and the abscissa.
These three variables determine the so called pose of the

x

y
θ

Fig. 1. Top view of a planar AUV depicting its pose (1).

vehicle, which is depicted in Fig. 1. At instant k, the pose
is denoted by

pk :=

[
xk

yk
θk

]
. (1)

In order to estimate pk the proposed algorithm assumes
two types of sensors are available: a noisy Inertial Mea-
surement Unit (IMU) from which a rough estimate of the
vehicle displacement between different instants of time
may be computed, and a noisy sonar that measures the
vehicle’s distance to the bottom of the sea. It is further
assumed that a map of the environment is available for the
localization algorithm. As explained below, particle filters
provide a systematic form of combining these sensors with
the map in order to achieve a good estimate of the pose of
the system.

3. PARTICLE FILTER APPROACH TO TERRAIN
BASED LOCALIZATION

Since particle filters are also based on the steps of predic-
tion and correction, they are classified as a particular type
of Bayes Filter (Thrun et al., 2005). Furthermore, they
are said to be non-parametric because their probability
distribution is computed numerically, and is not necessar-
ily parameterizable by, e.g., a mean and a variance. The
filter has at its core idea the use of the so-called particles:
virtual representations of the posteriori knowledge of the
states that must be estimated.

Let us define the set of all particles at instant k by
χk :=

{
p1k, p2k, ..., pMk

}
where M is the total number of

particles. Each, pik represents a possible state configuration
at instant k, i.e., a possible pose of the vehicle. Through
the particle group χk the filter generates an estimate p̂k of
the vehicle pose according to,

p̂k =
1

M

M∑
i=1

p̂ik , (2)

which is also referred to as the belief of the states. The
above may result in a good estimate provided that all
particles are converging to the same location. Advanced
forms of estimating p̂k from χk take into account the fact
that the denser a subregion of the state space is populated
by particles, the more likely it is that the true state falls
in that region.
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There are many variations of the particle filter, the one
used in this paper may be briefly described by the following
four steps.

(1) The filter is initialized with M particles with ran-
dom deviations from a known initial pose (which
may be acquired by a GPS signal before the vehicle
submerges). Each particle has its own pose p̂ik with

estimate values x̂i, ŷi and θ̂i at instant k.
(2) For each particle the filter uses the IMU measure-

ments and the past pose to make the prediction of
the new pose. These predictions are also perturbed
by random variables thus adding variation to the
particles in order to take into account uncertainty in
IMU measurements.

(3) A value representing the probability w that each
particle is at the right position is computed and
denominated importance factor. In order to compute
wi

k, the filter compares the distance of particle i to
the sea floor given by the map z̄i, with the actual
measurement zk acquired by the sonar. In particular,
the importance factor wi

k may be computed by a
Gaussian with covariance σw (a free parameter):

wi
k =

1

σw

√
2π

e−(z̄i−zk)
2/(2σ2

w) · wi
k−1 (3)

The importance factor is attributed for every particle
and computed recursively, with wi

0 = 1.
(4) The final step is called importance sampling where the

particles with low probability are replaced by copies
of particles with large probability, resulting in a new
set χk.

Remark 1. While at each instant k the filter iterates steps
two and three, the step of importance sampling is applied
with a lower frequency. This is necessary in order to
let the particles propagate through the environment and
differentiate among themselves.

4. TRAJECTORY GENERATION

A crucial step for a good performance of the filter is the
computation of the importance factor w in step three. In
this step the filter compares the distance to the seafloor of
each particle given by the map with the actual measure-
ment acquired by the sonar. It is important to point out
that all particles that lay in regions of the map with the
same depth will have the same value z̄i, being, therefore,
indistinguishable from one another. The only possibility
of differentiation is if the particles have passed through
different depths in previous instants, since wi

k−l for l > 1

will be eventually different from wj
k−l for j �= i. This

is yet another reason for following the resampling rule
stated in Remark 1. Nevertheless, given a terrain that
has sufficiently smooth floor, there will eventually come
an instant when all particles will be indistinguishable
from each other. This will become clear in the simulation
results of Section 5, where the path planning algorithm is
demonstrated.

Trajectory generation is a common research topic of au-
tonomous and non-autonomous vehicles. For example, Ga-
rau et al. (2005) presents a path planing algorithm for
underwater obstacle avoidance that seeks to minimizes
energy costs using an A* algorithm and the idea of gather-

Algorithm 1 Payoff Function

1: procedure (MI , α, λc, λG, xg and yg)
2: for all x and y do
3: if x=xg ∧ y=yg then
4: R(x, y)=λG

5: else if MI(x, y) > α then
6: R(x, y) = MI(x, y)− λc

7: else
8: R(x, y) = −λc

9: end if
10: end for
11: return R(x, y)
12: end procedure

ing information of the terrain for path planning has been
presented by Hausler et al. (2013). Here we propose an
algorithm that generates trajectories that avoid regions
where the terrain has small variations. A path planning
algorithm that defines an optimal action δ for each state
(x, y) based on a Markov Decision Process (MDP) is pro-
posed. In order to do so, a value function V is associated
with every policy the vehicle may take, representing its
cumulative payoff. In order to compute V , a local payoff
function R(x, y) that determines the movement costs for
each map position is necessary (Thrun et al., 2005). In
order to compute such function we start by computing the
maximum terrain variation in each coordinate:

MI(x, y) = max (|∇MB(x)|, |∇MB(y)|) (4)

where MB represents a 2D matrix containing the x and y
coordinates of the environment and their respective depth
values z̄. Furthermore, ∇MB(i), i = x, y represents the
gradient of the map in the i direction and the terrain
variation matrix MI(x, y) must then be normalized so
that it possesses bounded values between [0, 1] (high
values represent regions with greater depth variations).
For each position, a movement cost R(x, y) is computed
by Algorithm 1. There, xg and yg represent the goal
position with a respective payoff given by λg >> 1. Also,
0 < λc ≤ 1 denotes the cost to travel through any other
coordinate of the map. Line 5 in the algorithm avoids
chatter during the trajectory by considering the terrain
importance only when it passes a threshold determined by
0 < α < 1.

Once R(x, y) has been determined, the value function V ,
for all x, y ∈ MB , is given by,

Vk(x, y) = γmax
δ

[
R(x, y) + κ

]
(5)

where,

κ =
∑
x′, y′

Vk−1(x
′, y′)p(x′, y′|δ, x, y)− λM (δ) (6)

where x′ ∈ [1, 2, . . . xmax], y′ ∈ [1, 2, . . . ymax], λM is an
added direction cost and, since this function is computed
recursively until Vk(x, y) = Vk−1(x, y), γ < 1 is a con-
stant necessary for convergence. For deterministic cases
p(x′, y′|δ, x, y) = 1, otherwise this term represents the
probability that the action δ will be performed successfully.
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Only the deterministic case is studied in this paper,
therefore (5) is simplified to:

Vk(x, y) = γmax
δ

[
R(x, y) +

∑
x′, y′

Vk−1(x
′, y′)− λM

]

(7)

The set of movements the robot can follow, denoted by
π : (x, y) → δ, are assumed to be: north(N), south(S),
east(E) and west(W) and the diagonals northeast (NE),
southeast (SE), southwest (SW), and northwest (NW).
These motions are represented by the following values:

δN = [ 0 1] ↑ δS = [ 0 −1] ↓
δW = [−1 0] ← δE = [ 1 0] →

δNW = [−1 1] ↖ δNE = [ 1 1] ↗
δSE = [ 1 −1] ↘ δSW = [−1 −1] ↙

(8)

and define the direction cost as λM (δ) = ‖δ‖2.
Once V has converged, the optimal policies may be com-
puted for the whole map, or from any initial condition, by
simple hill climbing techniques:

δ(x, y) = argmax
δ∈π

[
V (x, y)

]
(9)

5. SIMULATION RESULTS

This section will present simulation results that show the
potentials of the developed path planning algorithm for the
aid in AUV localization. The vehicle under consideration
is the torpedo shaped Light Autonomous Underwater
Vehicle (LAUV) whose model and identification are given
by da Silva et al. (2007).

5.1 Mathematical Models

Since we are only interested in three degrees of freedom,
the original model is simplified to a version where only
the pose p is represented. Likewise, three velocities ν =
[u v r]T with respect to the body frame are considered
– respectively, surge, sway and yaw. The dynamic model
used in the simulations is fully described by the velocities
with respect to the body frame and the pose with respect
to the earth-fixed reference frame, that is,

pk+1 = pk + TsJ(θk) · νk , (10)

for some simulation sampling time Ts, and a rotation
matrix J(θk) given by,

J(θk) =

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]

Furthermore, the body fixed equations of motion are
determined by,

νk+1 = νk + TsM
−1(τk +D(νk) · νk) (11)

where M is the constant inertia mass matrix of the
vehicle and D(νk) is the damping matrix, both matrices’
parameters are given in da Silva et al. (2007). The input
vector τk := [F 0 τθ]

T comprises the body-fixed thrust
force on the u direction and rotation torque around θ.

The IMU sensor provides accelerometers in the body
frame directions u and v, and a gyroscope measuring the
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Fig. 2. Synthetic map used to test the proposed localiza-
tion oriented path generation method.

rotation velocity θ̇ = r. These sensors are simulated by the
following equations:

au = η̇(1) + εacc
av = η̇(2) + εacc
gθ = η(3) + εgy

(12)

where εacc and εgy represent gaussian noise related to the
accelerometer and gyroscope sensors, respectively. In order
to simulate the downward pointing sonar a bathymetry
map is used in association with the assumed known depth
of the vehicle. Thus, the sonar measurement z associated
to positions x and y is simulated according to the following
equation:

z(x, y) = m(x, y)− d+ εz (13)

where d and εz represent the submarine depth (down is
positive) and the sonar noise, respectively. The mean and
variance of each sensor are detailed in Table 1.

Table 1. Sensor noise parameters.

Noise Values (N (µ, σ))

εacc (accelerometer) N (0.01, 0.001)

εgy(gyroscope) N (0.01, 0.1)

εz(sonar) N (0.01, 0.2)

Two different bathymetry maps are used in order to
demonstrate the effectiveness of the proposed method. A
synthetic like map that considers a flat region with two
central bumps, as depicted in Fig. 2, and a real map
depicted in Fig. 5. Both maps are available as matrices
whose elements describe the depth at each (x, y) position.

5.2 Results

In what follows, several simulations considering a particle
filter with M = 200 particles will be shown in order
to illustrate and evaluate the proposed approach. During
these simulations, the AUV depth is fixed at d = 20 m
and the particles are initialized around the AUV assumed
known initial position. The importance resampling algo-
rithm occurs every 130 samples. In order to prioritize the
regions with suitable terrain variation, the terrain impor-
tance parameter was set to α = 0.3. The cost to reach the
goal position is λG = 100 and to reach any other position
is λc = −1. Finally, the value function is initialized with
V (xgoal, ygoal) = 100, and V = 0 otherwise.
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Only the deterministic case is studied in this paper,
therefore (5) is simplified to:

Vk(x, y) = γmax
δ

[
R(x, y) +

∑
x′, y′

Vk−1(x
′, y′)− λM

]

(7)

The set of movements the robot can follow, denoted by
π : (x, y) → δ, are assumed to be: north(N), south(S),
east(E) and west(W) and the diagonals northeast (NE),
southeast (SE), southwest (SW), and northwest (NW).
These motions are represented by the following values:

δN = [ 0 1] ↑ δS = [ 0 −1] ↓
δW = [−1 0] ← δE = [ 1 0] →

δNW = [−1 1] ↖ δNE = [ 1 1] ↗
δSE = [ 1 −1] ↘ δSW = [−1 −1] ↙

(8)

and define the direction cost as λM (δ) = ‖δ‖2.
Once V has converged, the optimal policies may be com-
puted for the whole map, or from any initial condition, by
simple hill climbing techniques:

δ(x, y) = argmax
δ∈π

[
V (x, y)

]
(9)

5. SIMULATION RESULTS

This section will present simulation results that show the
potentials of the developed path planning algorithm for the
aid in AUV localization. The vehicle under consideration
is the torpedo shaped Light Autonomous Underwater
Vehicle (LAUV) whose model and identification are given
by da Silva et al. (2007).

5.1 Mathematical Models

Since we are only interested in three degrees of freedom,
the original model is simplified to a version where only
the pose p is represented. Likewise, three velocities ν =
[u v r]T with respect to the body frame are considered
– respectively, surge, sway and yaw. The dynamic model
used in the simulations is fully described by the velocities
with respect to the body frame and the pose with respect
to the earth-fixed reference frame, that is,

pk+1 = pk + TsJ(θk) · νk , (10)

for some simulation sampling time Ts, and a rotation
matrix J(θk) given by,

J(θk) =

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]

Furthermore, the body fixed equations of motion are
determined by,

νk+1 = νk + TsM
−1(τk +D(νk) · νk) (11)

where M is the constant inertia mass matrix of the
vehicle and D(νk) is the damping matrix, both matrices’
parameters are given in da Silva et al. (2007). The input
vector τk := [F 0 τθ]

T comprises the body-fixed thrust
force on the u direction and rotation torque around θ.

The IMU sensor provides accelerometers in the body
frame directions u and v, and a gyroscope measuring the
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Fig. 2. Synthetic map used to test the proposed localiza-
tion oriented path generation method.

rotation velocity θ̇ = r. These sensors are simulated by the
following equations:

au = η̇(1) + εacc
av = η̇(2) + εacc
gθ = η(3) + εgy

(12)

where εacc and εgy represent gaussian noise related to the
accelerometer and gyroscope sensors, respectively. In order
to simulate the downward pointing sonar a bathymetry
map is used in association with the assumed known depth
of the vehicle. Thus, the sonar measurement z associated
to positions x and y is simulated according to the following
equation:

z(x, y) = m(x, y)− d+ εz (13)

where d and εz represent the submarine depth (down is
positive) and the sonar noise, respectively. The mean and
variance of each sensor are detailed in Table 1.

Table 1. Sensor noise parameters.

Noise Values (N (µ, σ))

εacc (accelerometer) N (0.01, 0.001)

εgy(gyroscope) N (0.01, 0.1)

εz(sonar) N (0.01, 0.2)

Two different bathymetry maps are used in order to
demonstrate the effectiveness of the proposed method. A
synthetic like map that considers a flat region with two
central bumps, as depicted in Fig. 2, and a real map
depicted in Fig. 5. Both maps are available as matrices
whose elements describe the depth at each (x, y) position.

5.2 Results

In what follows, several simulations considering a particle
filter with M = 200 particles will be shown in order
to illustrate and evaluate the proposed approach. During
these simulations, the AUV depth is fixed at d = 20 m
and the particles are initialized around the AUV assumed
known initial position. The importance resampling algo-
rithm occurs every 130 samples. In order to prioritize the
regions with suitable terrain variation, the terrain impor-
tance parameter was set to α = 0.3. The cost to reach the
goal position is λG = 100 and to reach any other position
is λc = −1. Finally, the value function is initialized with
V (xgoal, ygoal) = 100, and V = 0 otherwise.
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Fig. 3. Simulation with the toy-like map without path
planning.
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Fig. 4. Simulation with the toy-like map with path plan-
ning.

Figure 3 shows a top view of the particle filter localization
algorithm being applied to the map in Fig. 2. In this simu-
lation the vehicle is commanded to move from an initial po-
sition (15, 15) to the goal at (60, 25). This figure also shows
four snapshots of the particle distribution across the map.
In order to deal with uncertainty coming from the IMU
sensor, the particles disperse as the vehicle moves. How-
ever, since the filter cannot differentiate between “good”
and “bad” particles, the dispersion continues indefinitely
and the filter estimation worsens as time passes. It is clear
from this simulation that bathymetry based localization
algorithms are helpless in the presence of sea floors with
low variation.

The proposed path planning method was then applied to
the same map under the same particle filter algorithm,
as shown in Fig. 4. The trajectory generation method
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Fig. 5. Real world map used to validate the proposed
localization oriented path generation method.

takes into account the rugosity of the terrain, forcing
the vehicle to take a longer, but also safer, path. The
particles disperse in a first moment, but as soon as they
reach the terrain variations the filter is able to apply the
importance resampling algorithm efficiently. As a result,
the submarine location is safely estimated throughout the
whole trajectory.

The second set of simulations was applied to the real
world bathymetry map depicted in Fig. 5. The vehicle
was commanded to move from an initial pose of pk =
[90 110 0]T to the location at (250, 25). The results
comparing the shortest path trajectory to the proposed
path planning algorithm are depicted in Figures 6 and 7,
respectively. These plots show once again the advantages of
a localization oriented path planing algorithm. Note that
the direct route taken in Fig. 6 passes through long flat
regions of the map, and for a long time the localization
algorithm must rely solely on dead-reckoning, since no
useful sonar information is available. The same is not true
in the case of the trajectory depicted in Fig. 7, which is
clearly longer, but also safer, in the perspective of the
particle filter algorithm. Once again the vehicle position
is well estimated throughout the whole trajectory.

6. CONCLUSION

This work proposed a path planning algorithm to aid
the localization of AUVs under Particle Filters (PF) and
bathymetry maps. The resulting method presents itself as
a cost effective alternative to the use of triangularization
based methods that require external apparatus to the
UAV, such as a ship following the vehicle throughout the
mission, buoys previously deployed with DGPS sensors,
underwater anchors, etc. It has been noted that the
PF bathymetry approach is inefficient in the presence
of terrains with small variations, effectively turning the
algorithm in a dead-reckoning form of estimation. In order
to avoid these situations the present work has developed
a path planning algorithm that encourages the vehicles
to reach the goal target through trajectories that explore
the terrain variation. Simulation results including artificial
and real bathymetry maps have shown the efficiency of the
proposed method.
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Fig. 6. Real map simulation without path planning.
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Fig. 7. Real map simulation with path planning.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support by
FAPERGS 13/1896-1, CAPES and HP Brasil Ltda.

REFERENCES

Alcocer, A., Oliveira, P., and Pascoal, A. (2006). Underwa-
ter acoustic positioning systems based on buoys with
gps. In Proceedings of the Eighth European Conference
on Underwater Acoustics, volume 8, 1–8.

Caiti, A., Garulli, A., Livide, F., and Prattichizzo, D.
(2005). Localization of autonomous underwater ve-
hicles by floating acoustic buoys: a set-membership

approach. Oceanic Engineering, IEEE Journal of,
30(1), 140–152.

Carreras, M., Ridao, P., Garćıa, R., and Nicosevici, T.
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