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Abstract—Consensus algorithms are implemented over Wire-
less Sensor Networks (WSN) for computing a distributed variable
measurement or performing Data Fusion (DF). In a previous
work the main idea of the MESA algorithm presented, but with
no mathematical formalization. The MESA approach is a novel
consensus algorithm that implements the transmission censoring
technique aiming to reduce the energy used for reaching consen-
sus. Moreover, it makes use of neighborhood data, which allows it
to perform estimations over unknown distributed variables. This
condition renders the proposed approach more efficient than the
existing censoring techniques found in the literature.

In this article a formalization of the MESA algorithm over
cluster based WSN is presented. It is addressed from the
statistical point of view of the algorithm, which gives us a better
understanding of the consequences of transmission censoring and
leads us to predict the results of its utilization.

I. INTRODUCTION

This work is focused on Wireless Sensor Networks (WSN)

with a Cluster Head (CH) and N nodes around it. Each node

performs a measurement and a Consensus Value (CV) is

achieved after that:

xc = f(X) (1)

where X = [X1X2 . . . XN ]T , Xi is the i’s node measurement

and xc is the CV. This is called Data Fusion (DF).

In this work it will be presented the statistical model that

describes this process when the censoring technique is used.

Section I-A will explain in more detail the measurement

process and the differences between performing an estimation

or a detection, and its difficulties. In section II the theoretical

derivation of the algorithm is performed. The simulations, their

results and the comparison with the theoretic derivation is

shown in section III. Finally, conclusions are stated in section

IV.

A. The measurement

The consensus process starts with the measurement of

a set of initial values named initial vector or initial state.

Though it is common to talk about a measurements, this is

not necessarily precise. The initial vector can be obtained

by measuring an environment variable with an actual sensor,

for example in cognitive radios, where cooperative spectrum

sensing is performed to detect the presence of a carrier by

measuring its power [3] [2], but these initial values can also

be obtained, for example as a node internal variable that can

represent the remaining energy stored in its battery [1]. This

allows the node to discover if its battery level is above or

below the average value of the other nodes in the network.

Such information if of prime importance, if one desires to

extend the network lifetime as a whole, as long as possible.

We will consider each of the measurements a Gaussian

distributed Random Variable (RV) with mean µ and variance

σ2. The Probability Density Function (PDF) of them may have

the following characteristic:

Xi
Hh∼ N

�

µh,σ
2)
�

, with h ∈ {0, . . . , hmax} (2)

or

Xi ∼ N
�

µ,σ2)
�

, with µ ∈ R (3)

for a detection or a estimation scheme respectively.

B. Different cases

Different schemes are shown in Table I. Cases I and IV are

the standard consensus algorithms for clustered and distributed

WSN respectively. Case II is the one studied in Rago’s work

[4]. In this article the analysis will be focused on cases I to

III.

Case I provides no innovation at all, but it is derived to

be used as a benchmark in this work. Case II is also not

innovative, but in this work it is addressed in a different way,

not from the likelihood ratio test as done by Rago [4], but

from its statistics. Case III is the one that provides a new way

of facing the consensus problem by using neighborhood data.

II. THEORETICAL ANALYSIS

A. Case I

Consider a WSN with a CH and N nodes, that performs an

initial measurement and X = [X1, X2, . . . , XN ]T is obtained,

with Xi ∼ N (µ,σ2) ∀i ∈ {1, . . . , N} and Xi, Xj are

Independent Identically Distributed (IID) RVs ∀i = j.

Every node transmits its value to the CH, where the DF is

performed as

XCHI
=

N
�

i=1

wi Xi = w
T
X (4)
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TABLE I
CASES CLASSIFICATION ACCORDING THE CENSORING TECHNIQUE. knw,
unkwn, ngbhd AND N/A, ARE USED FOR known, unknown, neighborhood

AND Not Applicable RESPECTIVELY.

Case
WNS Consensus Distribution Data Estimation

type strategy type usage Detection

I

Cluster

standard kwn/unkwn N/A Both

II censoring kwn local Detection

III censoring kwn/unkwn ngbhd Both

IV

Distributed

standard kwn/unkwn N/A Both

V censoring kwn local Detection

VI censoring kwn/unkwn ngbhd Both

XCHI
is the new random variable in the CH and is obtained

as a Linear Combination (LC) of the X’s elements. In this

case the the average consensus is considered, which means

that wi = 1/N ∀i and it is easy to demonstrate that

XCHI
∼ N

�

µ,
σ2

N

�

(5)

This consensus scheme is useful for performing estimations

or detections.

B. Case II

As well as in case I, in case II the initial values are measured

and X is obtained, again with Xi, Xj ∈ IID RV ∀ i = j and

Xi distributed as in (2) with h ∈ {h0, h1}. X̂IIi is defined as

X̂IIi =

�

Xi if xi ∈ Ri

XestH
IIi

if xi ∈ R̄i

(6)

where Ri and R̄i are two disjoint regions, in which the data

is sent and censored respectively. Both are define by thL and

thH , the two limits between them

Ri = {x | thL ≤ x < thH} (7)

R̄i = {x |x < thL ∨ thH ≤ x} (8)

In (6) XestH
IIi is the estimated value, when no transmission is

received and it differs according to the hypothesis H taken.

This estimation can be performed in several ways. As follows

two examples are shown:

1) X
estH0

IIi = E[Xi |xi ∈ R̄i,H0]: This is an unbiased

estimator for H0, but biased for H1. By exchanging H0

y H1 and adjusting thL and thH accordingly, the same

scheme is reached.

2) X
estH0

IIi = E[Xi |xi ∈ R̄i,H0]P(H0) + E[Xi |xi ∈
R̄i,H1]P(H1): This estimator is biased in both cases

(but less biased than in 1). Again H0 and H1 may be

exchanged for getting the symmetric case.

Fig. 1 shows a a simple example of the distribution Xi y X̂IIi .
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Fig. 1. Example of the X̂IIi
PDF. In this case thL = −2, thH = 0, µ = 0

y σ = 1.
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Fig. 2. Example of the errorIIi PDF. In this case thL = −2−cte, thH =
0− cte, µ = 0, σ = 1 and cte = E(x|thL < x < thH).

1) Considering the H0 hypothesis: By taking the first es-

timator previously explained (X
estH0

IIi
= E[Xi |xi ∈ R̄i,H0])

we may say

µ
X̂IIi

= µ (9)

The CH receives the i’s X̂IIi RV and performs de DF as

X̂CHII
=

N
�

i=1

X̂IIi

N
=

1

N
1
T
X̂II (10)

The X̂IIi RV may be expressed as X̂IIi = Xi + errorIIi ,
which lead to

X̂CHII
=

N
�

i=1

Xi

N
+

N
�

i=1

errorIIi
N

= XCHI
+ errorII (11)

where XCHI
is the RV obtained in case I and errorII =

N
�

i=1

errorIIi
N

. The errorIIi RV PDF is shown in Fig. 2.

By applying the Central Limit Theorem (CLT), we may say

that

X̂CHII

aprox.
∼ N

�

µ
X̂CHII

,σ2
X̂CHII

�

(12)

or that

errorII
aprox.
∼ N

�

µerrorII ,σ
2
errorII

�

(13)
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We may now say that

errorIIi = X̂IIi −Xi (14)

and

errorII = X̂CHII
−XCHI

(15)

both RV have zero mean because µ
X̂CHII

= µXCHI
= µ, and

by using CLT and considering that N is big enough:

σ2
X̂CHII

≈
σ2
X̂IIi

N
(16)

and

σ2
error ≈

σ2
errorIIi

N
(17)

The variance of the RVs are related by their correlation

ρ
X̂IIi

Xi
and ρXierrorIIi

respectively.

σ2
errorII

=
σ2
X̂IIi

+ σ2
Xi

− 2 ρ
X̂IIi

Xi
σ
X̂IIi

σXi

N
(18)

σ2
X̂CHII

=

σ2
Xi

+ σ2
errorIIi

+ 2 ρXierrorIIi
σXi

σerrorIIi

N
(19)

the correlation can be calculated if it is desired and it is easy

to see that ρ
X̂IIi

Xi
≥ 0 and ρ

X̂ierrorIIi
≤ 0.

2) Considering the H1 hypothesis: Again taking the first

estimator named before (X
estH1

IIi
= E[Xi |xi ∈ R̄i,H1]) the

error is

errorIIi = X̂IIi −Xi (20)

and

errorII = X̂CHII
−XCHI

(21)

which now does not have a zero mean, because µ
X̂IIi

= µ+

biasH1
and biasH1

= 0, so the RV means are

µ
X̂CHII

= µ+ biasH1
(22)

µerrorII = biasH1
(23)

with variances

σ2
X̂CHII

≈
σ2
X̂IIi

N
(24)

σ2
errorII

≈
σ2
X̂errorIIi

N
(25)

respectively.

It worth to remark that the PDFs for X̂CHII
and errorII

differ according to the H considered and of course this leads

to different σ2
X̂CHII

and σ2
errorII

.

3) Conclusions for the case II: The efficiency of the

algorithm can be measured by means of the metrics presented

in II-E and hangs on the estimator used when the transmissions

are censored:

• Unbiased for H0 and biased for H1.

• Unbiased for H1 and biased for H0.

• Both biased but less than in the two previous cases.

The bias is a function of P(H0) and P(H1) and R̄i region

should be on the side of the most probable hypothesis, so that

the bias obtained will be smaller with the same amount of

censored transmissions.

In [4] it is proved that for minimizing the miss or the false

detection probabilities in the detection, thL should be equal to

−∞, but should be different if we want to minimize another

metric.

4) Problems to be solved in case II: In this section some

useful ways of using the censoring technique are enumerated

now:

• Given:

– a transmission constraint, that is equivalent to an area

limitation:

∗ thc ≥ P(xi ∈ R̄i|H0), or

∗ thc ≥ P(xi ∈ R̄i|H1), or

∗ thc ≥ P(xi ∈ R̄i|H1) +P(xi ∈ R̄i|H0).

where thc is the threshold value of the constraint.

– µ and σ for H0 and H1.

find the thL y thH , so that one of the metrics named in

section II-E is minimized. Equivalent to find the optimum

DR.

• Given:

– a constraint in one of the metrics in section II-E.

– µ and σ for H0 and H1.

find the DR (thL and thH ) so that the number of censored

transmissions is maximized:

– P(xi ∈ R̄i|H0), or

– P(xi ∈ R̄i|H1), or

– P(xi ∈ R̄i|H0) +P(xi ∈ R̄i|H1)

C. Case III

As well as in case I and II the initial values are measured.

The Xis RV may be distributed as in (2) or (3). The initial

vector X is obtained, where Xi, Xj are IID RV ∀i = j.

In this work the following assumptions and restrictions are

considered for limiting the scope and the length of this article.

• The nodes are synchronized and they transmit in order,

one node per Time Slot (TS) as in [5]. In each realization:

– The first node is randomly selected.

– In the next TS the corresponding node decides whether

to transmit or to censor the data according to the DR.

– The realization ends when the N nodes had their TS,

including the first one.

• The nodes are able to hear the data transmitted only from

the previous node.
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Fig. 3. This figures shows the CH and the N nodes around it and how they
communicate. The i is able to send data to the CH and to hear data from the
i− 1 node.

k=1 k=2 k=3 k=4

a a a

b b b

TX TX TX TX

NO-TX NO-TX NO-TX

k=...

Fig. 4. Graph representing the algorithm and the transmission probability in
each TS.

TABLE II
PROBABILITY IN EACH TS

Turn (k) 1 2 3 4 5 . . .

P(TXk) 1 a a2 + b a3 + 2 ab a4 + 3 a2 + b2 . . .

P(NO-TXk) 0 b ab a2b + b2 a3b + 2 ab2 . . .

Fig. 3 shows the corresponding communication diagram used

in this section. In section II-D other interesting variations to

be considered are named.

The algorithm may be resumed in the following way:

• Node in the first TS sends its data.

• The k node sends it if the k − 1 has not send its data.

• The k node sends it if the k−1 has send its data and the

DR in k is fulfilled.

• The k node does not sends its data if k − 1 sent it and

the DR in k is not fulfilled.

by saying ‘k node’, it means the ‘the corresponding node in

the k TS’. A good way of representing the algorithm is shown

in Fig. 4, where the horizontal axis represents the TSs. In

each TS the corresponding node has a probability P(TXk)
of performing the transmission and a probability P(NO-TXk)
of censoring it, except in the first where the transmission is

mandatory.

In the first TS, it is mandatory for the node to transmit, after

that, in the second TS, the probability of transmitting is a and

the probability of censoring is b. Each time the previous node

has transmitted, there exist a probability a for a transmission

and a probability b for a censorship. If the previous node

has censored the data, then is mandatory to perform the

transmission, this is that the transmission probability is 1. The

probabilities for each of the firsts 5 TSs is shown in Table II.

The DR used is defined as:

a

b = 1− a1

TX

NO-TX

Fig. 5. The Markov chain representing the communication scheme in Fig. 4.
The initial state of the chain shall always be the ‘TX’ state.

• If (Xi −Xi−1) > th then the transmission is performed.

• If (Xi −Xi−1) ≤ th then the transmission is censored.

it uses th as parameter and a = f(σ, th) = P(Xi −Xi−1 >
th), b = 1−a and P(NO-TXk) = 1−P(TXk). The Xi−1 PDF

is considered Gaussian in both situations (TX and NO-TX).

This is a valid approximation used in this work for small values

of th, thus a and b may be considered constant for every k
There exists different ways of finding the probabilities in each

TSs. As follows two of them are shown:

1) Through recurrence equations. We know:

P(TXk) = aP(TXk−1) +P(NO-TXk−1) (26)

P(NO-TXk) = bP(TXk−1) (27)

combining (26) and (27) leads us to the recurrence

equation (28) with the initial conditions in (29).

P(TXk) = aP(TXk−1) + bP(TXk−2) (28)

P(TX1) = 1, P(NO-TX1) = 0 (29)

This particularly equation is homogeneous and with con-

stant coefficients and thus has a very simple solution:

P(TXk) = Axk
0 +B xk

1

x0 and x1 are the characteristic polynomial roots of (28)

(t2−a t− (1−a) = 0) A and B are found through (29).

2) Through Markov chains. The process in Fig. 4 may be

considered as the Markov chain showed in figure 5. The

Markov operator may be defined as:

K =

�

a 1
b 0

�

=

�

a 1
1− a 0

�

(30)

and the probability in the k TS can be calculated as:

Pk =

�

P(TXk)
P(NO-TXk)

�

= Kk−1
P0 , P0 =

�

1
0

�

Both solutions leads as to the same result showed in Fig.

6, that shows P(TXk) and P(NO-TXk), as a function of k. It

can be seen that process converges and the convergence rate

is ∝ a.

These probabilities are needed for computing the RV ob-

tained in the CH after the DF. In each TS, the CH incorporates

a new X̂IIIi to the set used to perform the DF:

X̂IIIi =

�

Xi if xi ∈ Ri

Xi−1 if xi ∈ R̄i

(31)
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Fig. 6. The evolution of the process of Fig. 4 for a = 0.5 and a = 0.2 and
N = 40.
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Fig. 7. The error PDF for the case III.

Calculating the variance of X̂CHIII
=

N
�

i=1

X̂IIIi is not easy

because of the complex correlation that exists between X̂IIIi

and X̂IIIj . For dealing with this problem we rewrite

X̂IIIi = Xi + errorIIIi (32)

with

errorIIIi =

�

0 if xi ∈ Ri

Xi −Xi−1 if xi ∈ R̄i

(33)

for small values of th its PDF can be considered as a delta in

0 with area P(TXi) and the rest of the area is a trimmed

Gaussian RV in ±th with area P(NO-TXi). The original

Gaussian PDF has a zero mean and variance equal to 2σ2. The

RVs errorIIIi and errorIIIj are not independent, but because

of nature of the algorithm it is possible to demonstrate that

ρerrorIIIierrorIIIj = 0. The errorIII PDF is shown in Fig. 7.

By doing this, we may calculate the X̂CHIII
value in the

CH as:

X̂CHIII
=

�

1

N

N
�

i−1

Xi

�

+

�

1

N

N
�

i−1

errorIIIi

�

=

= XCHI
+ errorIII (34)

where XCHI
is the one from case I, the ‘ideal case’. With

these approach we may say, that in the CH we compute the

mean of every Xi plus an error. This error (errorCHIII
) is

known and we are able to present its statistics:

errorIII = X̂CHIII
−XCHI

(35)
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0 0.2 0.4 0.6 0.8 1

P
,
N

→
∞

a

P(TX)
P(NO-TX)

Fig. 8. The convergent values of P(TX) and P(NO-TX) as a function of a
probability, when N → ∞.

which has zero mean because µ
X̂i

= µ, and by using CLT

and considering that N is big enough:

σ2
errorIII

≈
σ2
errorIIIi

N
(36)

The variance of the RVs are related by their correlation

ρ
X̂IIIi

Xi

σ2
errorIII

=
σ2
X̂IIIi

+ σ2
Xi

− 2 ρ
X̂IIIi

Xi
σ
X̂IIIi

σXi

N
(37)

It is easy to see that ρ
X̂IIIi

Xi
≥ 0.

To conclude this section, Fig. 8 shows the convergence val-

ues for P(TX) =
N
�

i=1

P(TXi) and P(NO-TX) =
N
�

i=1

P(TXi)

as a function of a probability, when N → ∞. It can be

interpreted as the superior limit of the Censored Transmission

Rate (CTR) as a function of a. For N < ∞, the CTR

decreases, the first mandatory and the subsequent ones do not

influence too much in the convergence.

D. Case III variations

Possible variations of case III are: a) The asynchronous

case III. b) The case III, when two or more previous nodes

can be heard. c) The case III, when the amount of nodes than

can be heard depends on i. d) The case III, when there exists a

hearing probability of others node’s transmissions (depending

on the distance, energy, etc.), becoming random graphs. e) Any

combination of the previous cases.

They will not be be analyzed in this work.

E. Metrics

The following metrics are suggested for evaluating the

algorithm performance:

• Statistic distance between distributions d
�

fXCH
, f

X̂CH

�

.

• The ‘miss’ and ‘false detection’ probabilities.

• Mean Square Error (MSE) as in [6].

• CTR.

• Time or iterations needed for reaching consensus.
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Fig. 9. The relative variance of the error with respect to the variance of the
case I as function of N . Theoretic results plotted with lines and markers,
simulated ones only with markers.

III. SIMULATIONS AND RESULTS

This section deals with the validation of the proposed

mathematical analysis. The considered network topology is

the one presented in section II.

The first results to be shown are the ones that validates the

theory, this is the error variance in Fig. 9, where it can be seen

that the predicted results are in accordance with the simulated

ones. This figures shows the relative variance of the error wrt.

the variance in case I (
σ2

error

σ2

CHI

).

The most interesting results from the point of view of

the algorithm performance are show in Fig. 10. The aim

of performing DF is to obtain a better measurement, this

is the measurement with the smallest possible variance. In

the standard case σ2
CH ∝ 1/N . In this figure, the following

convention is adopted: In case I, no transmission is censored,

so the variance should not depend on CTR, it should be

interpreted as having less quantity of sensors. For example,

given N nodes and CTR = r, is equivalent to have (r N)

nodes, which leads to a σ2
CH = σ2

r N
. The only objective of

doing this, is to have a benchmark value to compare the rest

of the results.

From Fig. 10 the following results may be extracted:

• σ2
CHIII

= σ2
CHI

for r ∈ {0, 0.5}: The algorithm becomes

dummy for those values of r, no DR is evaluated. For r =
0 every node performs the transmission and for r = 0.5
every odd node performs the transmission, being the same

as having
�

N
2

�

nodes.

• σ2
CHIII

< σ2
CHI

for 0 < r < 0.5. In this region is where

the algorithm achieves better results, between 0.10 to 0.35

the σ2
CHIII

remains almost the same, while the censored

transmissions increase. Moreover, the performance is

similar to the one in case II.

• For CTR above 0.35, the algorithm derates and case II

outperforms it. This is clearly because case II has the

advantage of knowing the distribution a priori, but at the

same time case II is not able of performing estimations.
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III,N=16
I,N=32

II,N=32
III,N=32

Fig. 10. The XCH variance as a function of the CTR. Case I works as
benchmark, in it no transmission is censored and this rate shall be interpreted
as having less sensor data to perform the DF. For example, when CTR r =
0.25 and N = 8, the result for case I is the same as having 6 sensors.

IV. CONCLUSIONS

MESA is a novelty consensus algorithm over WSN for

performing distributed detection or estimation, while using a

censoring technique. The preliminary theoretic model of the

MESA algorithm, has been successfully derived.

In particular the scheme presented in this work, where

only one previous transmission can be heard by the nodes,

the maximum CTR can rise up to
�

N
2

�

1
N

. The algorithm

demonstrated to have the better performance when the CRT

is not close to zero or close to its upper limit, but around

rates between 0.10 and 0.35. This rates may increase for other

topologies.

The results of the work encourage us to develop the theory

for the variations presented in II-D, which are left for future

works.
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