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Resumo 

Mahanarva fimbriolata, M. spectabilis, M. liturata and M. posticata (Hemiptera: Cercopidae) são 

conhecidas como pragas de plantações de cana-de-açúcar e pastagem em todo Brasil. Por 

alimentarem-se diretamente da seiva das plantas, esses cercopídeos causam fitotoxicidade e devido 

a isso diminuem a produção. A modelagem da distribuição de espécies permite analisar a possível 

occurencia das quatro espécies na América do Sul e Central. Para criar modelos de distribuição de 

espécies foram utilizados em R, os algoritmos Bioclim, Domain, diferentes modelos lineares 

generalizados e Maxent. Nesses modelos foram utilizadas variáveis bioclimáticas atuais e futuras, 

além da elevação e outras variáveis agrícolas. As variáveis climáticas futuras são para os anos 2050 e 

2070 com diferentes repentant concentration pathways. As espécies apresentam habitats adequados 

em diferentes países da América do Sul e Central, onde as plantações de cana-de-açúcar são 

abundantes. Os resultados das análises climáticas futuras não apresentaram diferenças em relação às 

análises climáticas atuais. No geral, o algoritmo Maxent mostrou os maiores valores de AUC e o 

Bioclim os menores. As variáveis que mais contribuíram para os modelos são: elevação, isothermality 

e diferentes variáveis de precipitação. As mudanças climáticas e ciclos de vida de insetos adicionais 

não têm impacto em habitats adequados dos insetos. Em geral, o Maxent é o melhor algoritmo para 

realizar modelos de distribuição de espécies com um número baixo de pontos de ocorrência e 

análises de mudanças climáticas.  

Palavras chave: Spittlebug; Cana de açúcar; pastagem; Dano agrícola 
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Abstract 

Mahanarva fimbriolata, M. spectabilis, M. liturata and M. posticata (Hemiptera: Cercopidae) are 

known pests for sugarcane and pasture plantations throughout Brazil. By direct sap feeding on the 

plants they cause phytotoxicity and due to this they decrease the production of plantations. With 

species distribution modeling it is possible to analyze the possible occurence of the four species in 

South and Central America. To create species distribution models the algorithms Bioclim, Domain, 

different generalized linear models and Maxent were used in R. For those models current and future 

bioclimatic variables as well as elevation and other agricultural variables were used. The future climatic 

variables are for the years 2050 and 2070 with different repentant concentration pathways. The 

species show suitable habitats in different countries in South and Central America where sugarcane 

plantations are abundant. The results of the future climate analyzes do not show differences compared 

to the current climate analyzes. Overall the Maxent algorithm showed the highest AUC scores and 

Bioclim the lowest. The variables which contributed the most to the models are elevation, 

isothermality and different precipitation variables. Climate change and therefore additional insect 

lifecycles do not have an impact on the insect’s suitable habitats. Overall Maxent is the best algorithm 

to perform species distribution models with a low number of occurrence points and for climate change 

analyzes. 

Keywords: Spittlebug; Sugarcane; Pasture; Agricultural Damage 
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Presentation 

Mahanarva fimbriolata, M. spectabilis, M. Liturata and M. Posticata (Hemiptera: Cercopidae) are 

known pests on sugarcane and pasture plantations. Therefore those four species are causing high 

economic damage every year on the plantations throughout Brazil. In this study species distribution 

models were created to analyze where possible habitats of the four species in South and Central 

America are. Furthermore, possible habitats regarding the climate change are examined. With this 

project it was possible to show that there are different suitable habitats in South and Central 

America where the species still do not occur. The impact of the climate change on suitable habitats 

of the four species is minimal. The article will be send to the Journal “Diversity and Distributions”. 

Consequently the article is following the rules of the stated journal. 
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Niche Modeling of the economical important Mahanarva species in 

South and Central America (HEMIPTERA, CERCOPIDAE) 

 

Schöbel, C. & Carvalho, G. S. 

Laboratório de Entomologia, Faculdade de Biociências, Programa de Pos-Graduacão em Zoologia, Pontifícia 
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Abstract 

Aim 

Mahanarva fimbriolata, M. spectabilis, M. liturata and M. posticata (Hemiptera: Cercopidae) are 

known pests for sugarcane and pasture plantations and by direct sap feeding on the plants they cause 

phytotoxicity. The aim is to analyze the possible occurence of the four species in South and Central 

America. 

Location 

The four species are known in Brazil but whole South and Central America are analyzed. 

Methods 

To create species distribution models the algorithms Bioclim, Domain, different generalized linear 

models and Maxent were used in R. For those models current and future bioclimatic variables as well 

as elevation and other agricultural variables were used. The future climatic variables are for the years 

2050 and 2070 with different repentant concentration pathways. 

Results 

The species show suitable habitats in different countries in South and Central America where 

sugarcane plantations are abundant. The results of the future climate analyzes do not show differences 

compared to the current climate analyzes. Overall the Maxent algorithm showed the highest AUC 

scores and Bioclim the lowest. The variables which contributed the most to the models are elevation, 

isothermality and different precipitation variables. 

Main conclusion 

Climate change and therefore additional insect lifecycles do not have an impact on suitable habitats. 

Overall Maxent is the best algorithm to perform species distribution models with a low number of 

occurrence points and for climate change analyzes.  
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Introduction 

Mahanarva Distant, 1909 is one of 173 genera of the Cercopidae Leach, 1815 (Soulier-Perkins, 2016) 

and this family in turn, is the biggest of the Cercopoidea Leach, 1815 (Hemiptera – Auchenorrhyncha). 

Totally there are 44 species of Mahanarva. Their common name (spittlebug) is referred to the foamy 

excretion which the nymphs excrete for their protection (Carvalho & Webb, 2005). Generally 

Cercopidae is one of the most diverse families of the Cercopoidea. The species are characterized by a 

variability of bright colors.  

Studies of M. fimbriolata showed that the complete lifecycle of the species takes about 60 days (egg 

to adult). In about 37 of the 60 days the insect is in the nymph stage followed by an adult longevity of 

about 18 days in case of males and about 23 days in females (Garcia et al., 2006). Overall, factors like 

temperature, the availability of food or the day length have an influence on the development time of 

nymphs and also on the duration of the adult longevity (Simões et al. 2013).   

Spittlebugs are damaging plants by direct sap feeding. Therefore the foliage turns yellow due to a lack 

of sap and in general the development of the host plant is impaired (Carvalho, 1978). In 2016 38.9 

million tons of sugar were produced. With that Brazil is the world’s largest producer of sugar 

(International Sugar Organization, 2017). The sugarcane planted area in Brazil, in 2006, covered 8.6 

million hectares. Furthermore, in 2014 there were already 10.4 million hectares planted (IBGE, 2016). 

This is an increase of about 21% (1.8 million hectares) in eight years. This shows that the sugarcane 

production is an important and increasing part of the Brazilian agriculture in recent years. Some 

Mahanarva species are known agricultural pests. Especially the species Mahanarva fimbriolata (Stål, 

1854), M. posticata (Stål, 1855), M. spectabilis (Distant, 1909) and M. liturata (Le Peletier & Serville 

1825) are well known to damage sugarcane and pasture plantations (Alves & Carvalho, 2014; Resende 

et al., 2013; Almeida et al., 2003). Mahanarva fimbriolata has the largest distribution of the four 

species and is present in most of the Brazilian states. The other species have a more distinct 

distribution to the coastal and the central states. M. liturata and M. posticata occur only in the states 

at the Atlantic coast and M. spectabilis occurs mostly in the central Brazilian states.  

Following experiments of Almeida et al. in 2003 and 2006 significant savings in sugarcane plantations 

due to biological pest control of spittlebugs are possible. In the experiments, the fungus Metarhyzium 

anisopliae was applied to about 25 hectares of sugarcane plantation to reduce the sugarcane damage 

based on Mahanarva fimbriolata. This biological pest control is much cheaper than common chemical 

pest treatments. In these experiments it was possible to save about R$ 7 million. Furthermore the 

estimated profit of the biological control of the spittlebug is approximately R$ 212000 per hectare. 

These studies show that biological pest control is a cheap alternative to common chemical pest control. 



3 
 

Even more important is the possible profit that can be achieved due to the control of Mahanarva 

fimbriolata. An extrapolation of the R$ 212000 savings per hectare to the 2014 in sugarcane covered 

area of Brazil is very impressive. In theory a profit of about R$ 220.48 million each year, only because 

of a higher sugarcane production due to the biological pest control of Mahanarva fimbriolata is 

possible. This calculation has to be considered with caution due to a serious lack of information about 

the pests of sugarcane and pasture plantations. 

With distribution modeling it is possible to analyze if these species can spread and which regions can 

potentially be affected. This analyzes can be done by the study of the three main types of influences 

on species. Those are limiting factors like temperature barriers, disturbances (for example human 

influences) on the species and resources which are all compounds that can be assimilated by organisms 

(e.g. energy, water). In Geographical Information Systems (GIS) this set of data, including the known 

distribution of the species can be visualized in different layers (Guisan & Thuiller, 2005). By projecting 

this model onto an actual map, geographical regions inside and outside of the species niche are visible. 

Now evaluations of possible invasion can be made by the detection of accessible regions with similar 

conditions in comparison to the ecological niche of the species (Peterson, 2003).  

The distribution of the four mentioned spittlebugs is not well known and there is a lack of distribution 

records. With the species distribution modelling it is possible to discover suitable habitats in South and 

Central America to delimit areas with possible or already existing spittlebug infestation. Besides that 

the influence of the climate change on those habitats will be studied. This is the first ever attempt to 

use species distribution modelling on Mahanarva spittlebugs.  

Despite knowing that Maxent will probably outperform the other algorithms, the comparison with 

other algorithms within this study is necessary (Elith, et. al., 2006; Hijmans & Elith, 2017). Due to the 

low number of presence records and the aim to analyze the species distribution with the aspect of 

climate change it is not clear which algorithm would perform best and because of this also other 

algorithms will be carried out to achieve the best possible results. Bioclim is known to not perform very 

well in comparison to other algorithms but it is still used in cases when the climate change is analysed 

(Elith, et. al., 2006; Hijmans & Graham, 2006). The Domain algorithm is frequently used and therefore 

should be useful to compare the results to other studies (Hijmans & Elith, 2017).  
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Material & Methods 

The occurrence data was collected from the websites Species link and the Global Biodiversity 

Information Facility (GBIF, 2016; Species Link, 2017). Furthermore data was collected throughout Brazil 

by solicitation of Antonio Soares (Consultor de Desenvolvimento de Mercado – Bayer S.A.). Data 

without coordinates and only a city or region as occurrence were georeferenced using Global 

Gazetteer Version 2.3 (Falling Rain Software, Ltd 2017). For M. fimbriolata 19, for M. spectabilis 29, for 

M. liturata 17 and for M. posticata only 9 different occurrence points are available to analyze (Figure 

1; Attachments: Distribution Coordinates).  

 

Figure 1: Distribution records of M. fimbriolata (green), M. spectabilis (turquois), M. liturata (blue) and M. 
posticata (red) (Attachments:Table 3). 
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With R version 3.3.2 and RStudio version 1.0.136 including the packages dismo, sdm, sp, raster, rgdal 

and maptools it was possible to create species distribution models of the species following the guide 

Species distribution modeling with R (Bivand, et. al., 2017; Bivand, et. al., 2017; Hijmans, et. al., 2011; 

Hijmans & Van Etten, 2012; Naimi & Araújo, 2016; Pebesma & Bivand, 2005; R Development Core 

Team, 2008; RStudio Team, 2016). Climatic data of Worldclim was used for the algorithms. For the 

current climate data the Version 2 Bioclimatic variables with a spatial resolution of 2.5 minutes were 

selected (Fick & Hijmans, 2017; Attachments: Variable Layers). For future data WorldClim 1.4 

downscaled (CMIP5) data - as well with a spatial resolution of 2.5 minutes - was chosen and the 

bioclimatic variables of BCC-CSM1-1 for the representative concentration pathways 26, 45, 60 and 85 

for the years 2050 and 2070 were downloaded (Hijmans, et. al., 2005). Furthermore elevation data, 

global cover and agricultural land use data was used. Those maps present the global areas used as 

pasture and sugarcane plantations and as general croplands (Ramankutty, et. al., 2010a; Ramankutty, 

et. al., 2010b; Ramankutty, et. al., 2008; You, et. al., 2014; Attachments: Variable Layers). The 

GlobCover 2009 version 2.3 map was used and the selected elevation map is the Natural Earth I with 

Shaded Relief and has a scale of 1:10 million (Natural Earth, 2017; Arino, et. al. 2012; Attachments: 

Variable Layers). All maps were cut in the shape of South and Central America using Quantum GIS 

(QGIS Development Team 2009). 

Within R the collinearity – the correlation between two or more predictor variables - was analyzed. For 

this the Variance inflation factor with Pearson correlation coefficients was carried out. This method 

calculates the correlation coefficient between two variables and detects the pair with the highest 

coefficient. Afterwards the one variable with the highest correlation coefficient will be excluded and 

the method will be repeated until there are no remaining pairs with a high correlation coefficient 

(Naimi & Araújo, 2016). The models were generated using the algorithms Domain, Bioclim, Maxent 

and Generalized Linear Models executing linear, logistic and Poisson regressions (Phillips, et. al., 2006; 

Busby, 1991). With those presence only algorithms only the actual distribution data is used and no 

Absence Points are going to be created or analyzed. 

To analyze the performance of the models the dataset will be divided into a “training” and a “testing” 

group. Bootstrap models will be generated for every species to predict the accuracy of the model as a 

result of the training data. Probably 75% of the dataset will be used to train the model (training) and 

25% to estimate the performance (Franklin, 2009). Furthermore, the area under the curve (AUC) of all 

algorithms was calculated for each species. The AUC is an indicator for the quality of the model 

(Hijmans & Elith 2017). The AUC has a value between 0 and 1 by which a value of 1 indicates a perfect 
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model and 0.5 represents bad model, not better than a random guess (Elith, et al., 2006, Peterson, et. 

al, 2008). The results of the models for the four species are presented in maps. 

The maps using future climate data will be compared to the maps of the current climate using Quantum 

GIS v. 2.18 (QGIS Development Team 2009). With the raster calculator tool the future maps will be 

subtracted from the current climate maps. This shows positive values when the futures habitat 

suitability is higher compared to the current one. Vice versa negative values are the result. Afterwards 

they will be colorized using the singleband pseudocolor presentation with a coloration from red 

(negative values) to green (positive values) with unchanged values in white. In total fifteen same 

interval classes will be used to cover values from -60 to 60. The number of fifteen interval classes was 

chosen to still show distinctive classes. A higher number results in higher coloration which makes it 

even more difficult to distinguish different classes. Even if there are higher or lower values in the maps 

the same intervals of -60 to 60 are used to guarantee a bright coloring because very high or low values 

tend to be infrequent and not abundant. Afterwards the Raster layer statistics Tool of the QGIS Toolbox 

will be used to analyze the mean pixel value of each map. 
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Results 

Area Under the Curve 

A total of 216 analyzes were made. All AUC values are between 0.42 and 1 with a mean value of 0.88. 

Only one analysis shows a value beneath 0.7 (0.42) and therefore a bad performance. Sixty analyzes 

have an AUC of over 0.95 which shows a high performance and the remaining 155 analyzes with an 

AUC over 0.7 have a moderate performance. Throughout all analyzes the AUC of M. fimbriolata has an 

arithmetic mean of 0.81, M. spectabilis of 0.86, M. liturata of 0.96 and M. posticata of 0.92. M. liturata 

shows the best and M. fimbriolata the worst results in comparison between the four species. Only the 

Binomial and the Poisson GLMs reached values of 1, exclusively in the analyzes of M. liturata and M. 

posticata (AUC Attachments Table 2). 

Overall the Maxent algorithm performed best. Within the 36 analyzes 21 showed the highest AUC 

results at the Maxent algorithm. In case of the rcp26 and rcp45 future climate data of the year 2070 

and the rcp60 future climate data of 2050 two different algorithms have the same AUC value which 

was the highest. In those cases both algorithms are counted as the best performing algorithm. This 

only occurred in the analyzes of M. liturata and M. posticata. In the analyzes of 2070 Maxent and the 

Gaussian generalized linear model have the same values and in the one analyzes of the 2050 climate 

data the Binomial and the Poisson generalized linear model (GLM) share the same result. The Domain 

and the Binomial GLM have the highest AUC in each four analyzes, the Gaussian GLM in nine and the 

Poisson GLM in three analyzes. The Bioclim algorithm has the worst results without reaching the 

highest AUC in any analyzes. Furthermore in 20 of the 36 analyzes the algorithm scored the lowest 

AUC in comparison to the other algorithms. In all analyzes of M. spectabilis Maxent was the best 

performing algorithm. Within the results of the other species this is not so obvious. In as well six 

analyzes Maxent best performed for M. liturata. The other analyzes show the best results in one of the 

generalized linear models. M. fimbriolata, especially with the climate data of 2050, shows the best 

performance with the Domain algorithm in four cases, in each two cases with the Maxent and the 

Poisson GLM and once with the Binomial GLM algorithm. Finally M. posticata shows the best 

performance in five analyzes with the Gaussian GLM and in three cases with Maxent. One analysis 

shows – as mentioned before – both algorithms with the same, highest AUC value (AUC Attachments: 

Table 2).  
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Distribution Maps 

The different algorithms create maps with certain characteristic and repetitive schemes. The created 

maps do not show the species occurrence. They rather show more or less suitable habitats created 

with the used variables. There are color patterns with scales between 0 and 1, whereby 0 refers to a 

very low suitable habitat and 1 refers to a very high suitability. There are different scales within the 

created maps by different algorithms. All Maxent maps show a scale between 0 and 1 whereby the 

scales of Domain and Bioclim start with 0 but only reach 0.6 and 0.5. The three with GLM algorithms 

created maps have a lot of different scales. Many scales possess negative values and are far beyond 

the range of 0 to 1 (Figure 2, A-D). All maps created with the different GLM’s Binomial, Gaussian and 

Poisson show throughout all species and different climatic data nearly the same pattern of suitable 

habitats. Only the presented color changes but all three different colors refer to the same poor habitat 

suitability of about 0%. The colors vary due to the different scales used. One small patch in nearly every 

map presents a higher suitability approximately at the location of the state São Paulo, Brazil (Figure 2, 

C). In comparison to this the Bioclim maps tend to create only small areas of higher habitat suitability 

and the rest of the map presents very low habitat suitability (Figure 2, A). The patches created by the 

Domain algorithm are larger but still smaller than those of Maxent (Figure 2, B D).  
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Figure 2: Species Distribution Models of M. fimbriolata using the algorithms Bioclim (A), Domain (B), Generalized 
Linear model/Binomial (C) and Maxent (D). The scales show the habitat suitability, referring to a higher suitability 
with a higher score. 

 

Regarding the high AUC scores particularly the results of Maxent will be analyzed as this algorithm 

performed the best in comparison to the others. Only in case of some future climate analyzes of M. 

fimbriolata the Domain results will be shown due to the same reason. The M. fimbriolata results show 

patches with high suitable habitats at the Atlantic coast of Brazil until north to Paraiba, and within the 

states, Minas Gerais, São Paulo, Rio de Janeiro, Paraná, Santa Catarina and Rio Grande do Sul. There is 

also high habitat suitability in Uruguay and in the northeast part of Argentina as well as in middle Chile. 

Furthermore there are small patches in the center of Bolivia, Ecuador, Colombia and in the north of 

Venezuela. In Central America Nicaragua, Honduras, El Salvador and Guatemala small patches are 

present. In addition, at the Mexican Coast of the Gulf of Mexico there are as well some small patches 

located (Figure 3). The habitat suitability of M. liturata is quite similar to those shown by M. 

fimbriolata. The patch at the Atlantic coast in South Brazil to Argentina is more pronounced but only 

extends up to São Paulo. Further north only in the state of Bahia the habitat suitability is higher. The 

other states in the northeast of Brazil only show very low habitat suitability. In Ecuador and Peru the 

patch is bigger in comparison to M. fimbriolata. Central America has fewer suitable habitats for M. 

Domain Bioclim 

GLM/Binomial Maxent 

A B 

C D 
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liturata (Figure 6). The pattern of M. spectabilis is much smaller and different. The north tip of 

Argentina and central Chile bear low suitable habitats but further south there is no habitat suitability 

at all. Within Brazil the pattern is not distributed in the South and at the Atlantic Coast. Moreover the 

states Maranhão, Piauí, Tocantis, Mato Grosso, Goiás, Minas Gerais and São Paulo have a higher 

habitat suitability for this species. In the center of Bolivia, Peru and Colombia there is each a small 

stripe with medium to high habitat suitability. In Central America higher habitat suitability 

concentrates on Nicaragua, Honduras, El Salvador and Guatemala (Figure 4). M. posticata shows higher 

habitat suitability in the west and south of Mexico. Besides that there are patches with higher suitable 

habitats in Guatemala and Nicaragua. In South America Ecuador, the south of Chile, Paraguay, 

Uruguay, the north of Argentina and small patches in the east of Peru and in the center of Bolivia mark 

higher suitable habitats. The Atlantic coast in Brazil from the south to Rio de Janeiro and especially the 

states Minas Gerais, Goiás and Mato Grosso do Sul are showing higher habitat suitability (Figure 5). 

 

 

 

Figure 3: Maxent species distribution model of M. fimbriolata using current climate data. The scale shows the 
habitat suitability, referring to a higher suitability with a higher score. 
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Figure 4: Maxent species distribution model of M. spectabilis using current climate data. The scale shows the 
habitat suitability, referring to a higher suitability with a higher score. 

 

 

 

Figure 5: Maxent species distribution model of M. posticata using current climate data. The scale shows the 
habitat suitability, referring to a higher suitability with a higher score. 
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Figure 6: Maxent species distribution model of M. liturata using current climate data. The scale shows the habitat 
suitability, referring to a higher suitability with a higher score. 

Future Climate Data 

In comparison to the current climate results the future climate analyzes of M. fimbriolata are quite 

similar. Overall all different models for the years 2050 and 2070 only change the intensity of the colors 

shown on the map and thereby the habitat suitability a little bit. For example the rcp26 data of 2050 

shows minor habitat suitability in the northeast of Argentina. But the rcp45 data of 2050 already shows 

higher suitable habitats for this area. In total, the different maps vary little but the patches are basically 

the same. The colored areas within the maps of the Domain algorithm are in general smaller compared 

to Maxent. The comparison between the different maps shows that the colored area with higher 

habitat suitability is located very similar. Only habitats in Mexico, Peru, Ecuador and Venezuela seem 

less suitable using Domain. Furthermore the results of Maxent show bigger areas of low habitat 

suitability around patches with higher suitability. In Domain those low habitat suitability areas do 

mostly not exist. As in the results of M. fimbriolata, maps of M. spectabilis generated with future data 

do not differ very much from the results of the model with the current climate. Only minor changes of 

the color intensity and the suitability patterns are visible. The results of M. liturata and M. posticata 

show the same pattern. Only minimal differences are determinable. Across all analyzes it stands out 

that the rcp45 data year 2050 analysis shows minimal lower habitat suitability in the northeast of 

Argentina and south Brazil.  
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Future Climate Data Comparison 

By comparing the species distribution maps using future climate scenarios to the maps using current 

climate data the differences caused by different future climate scenarious will be visualized. In the 

resulting maps, green colored areas imply higher future habitat suitability compared to current 

climate habitat suitability for a given location. And the opposite, red colored areas denote lower 

future habitat suitability. All of the folowing explanations of changes of habitat suitability are refering 

to the comparison of future climate species distribution maps to current climate distribution maps. 

The resulting maps show different areas of increasing or decreasing habitat suitabilty. But a few 

changes seem to be present in all future scenarios of one species. The maps of M. fimbriolata show 

decrasing habitat suitability in the northwest of South America. Especially a strip north the amazon in 

Venezuela, Colombia and Ecuador. Furthermore the the habitat suitability seems to increase in 

central america especially in Mexico. Those changes are more visible in the representative 

concentration pathway (rcp) scenarios 26 and 45 than in the other ones. The rcp 85 scenario even 

does show a decreasing habitat suitability. Those changes are comprehensible in the comparisons of 

the years 2050 and 2070. The results of M. liturata are more uniform. All scenarios show increasing 

habitat suitability in Chile, northeast Brazil, South Colombia and Venezuela and in Central America 

Honduras, Nicaragua, Costa Rica and Panama. On the other hand suitable habitats in Uruguay, North 

Argentina, Peru, the central and in some parts of the southern Atlantic coast of Brazil will decrease 

throughout all future climate scenarios. Mahanarva posticata shows very irregular changes of 

suitable habitats, comparing future climate scenarios with the current climate. Only a decrease of 

habitat suitability in the Brazilian states Mato Grosso, Goiás, Minas Gerias e São Paulo is visible in all 

scenarios. In contrast the suitable habitats of M. spectabilis does not change very much between the 

analyses. Comparing the 2070 scenarios to the 2050 scenarios there are bigger areas of less suitable 

habitats in the year 2070 maps. In general all maps show more suitable habitats in Colombia and 

Venezuela as well as in Chile. In South Brazil the States Paraná and Santa Catarina also demonstrate 

more suitable habitats. On the other hand habitats at the Pacific Coast of Peru decrease their 

suitability. 
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  Mahanarva fimbriolata 

2050 

rcp 26 rcp 85 

rcp 26 rcp 85 

2070

Figura 7:  Figure 7: Mahanarva fimbriolata species distribution map comparison between future climate scenarios and 
current climate. For the years 2050 and 2070 the representative concentration pathway (rcp) scenarios 26 and 
85 are shown. Green areas illustrate positive changes of suitable habitats in comparison between the future 
climate scenario and current climate. Vice versa red areas indicate negative changes. 
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  Mahanarva liturata 

2050 

rcp 26 rcp 85 

rcp 26 rcp 85 

2070

Figura 8:  Figure 8: Mahanarva liturata species distribution map comparison between future climate scenarios and 
current climate. For the years 2050 and 2070 the representative concentration pathway (rcp) scenarios 26 and 
85 are shown. Green areas illustrate positive changes of suitable habitats in comparison between the future 
climate scenario and current climate. Vice versa red areas indicate negative changes. 
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  Mahanarva posticata 

2050 

rcp 26 rcp 85 

rcp 26 rcp 85 

2070

Figura 9:  Figure 9: Mahanarva posticata species distribution map comparison between future climate scenarios and 
current climate. For the years 2050 and 2070 the representative concentration pathway (rcp) scenarios 26 and 
85 are shown. Green areas illustrate positive changes of suitable habitats in comparison between the future 
climate scenario and current climate. Vice versa red areas indicate negative changes. 
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  Mahanarva spectabilis 

2050 

rcp 26 rcp 85 

rcp 26 rcp 85 

2070

Figura 10:  Figure 10: Mahanarva spectabilis species distribution map comparison between future climate scenarios and 
current climate. For the years 2050 and 2070 the representative concentration pathway (rcp) scenarios 26 and 
85 are shown. Green areas illustrate positive changes of suitable habitats in comparison between the future 
climate scenario and current climate. Vice versa red areas indicate negative changes. 
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Tabel 1: Mean pixel values of the Maxent Future climate maps in comparison to the actual climate maps. 

Species Year rcp Mean 

M. fimbriolata 2050 26 -0.239538847663 

M. fimbriolata 2050 45 -0.368699530546 

M. fimbriolata 2050 60 0.139328733263 

M. fimbriolata 2050 85 -0.283689115344 

M. fimbriolata 2070 26 -0.417242042611 

M. fimbriolata 2070 45 0.085014976799 

M. fimbriolata 2070 60 -0.262382677741 

M. fimbriolata 2070 85 -0.29218217623 

M. liturata 2050 26 -0.251832974849 

M. liturata 2050 45 -0.0823152003522 

M. liturata 2050 60 -0.277847202773 

M. liturata 2050 85 -0.289699402563 

M. liturata 2070 26 -0.357690851721 

M. liturata 2070 45 -0.21532392076 

M. liturata 2070 60 -0.183541365686 

M. liturata 2070 85 -0.204609173696 

M. posticata 2050 26 0.237824350805 

M. posticata 2050 45 -0.653312411404 

M. posticata 2050 60 -0.0402623121323 

M. posticata 2050 85 -0.20298115429 

M. posticata 2070 26 -0.533634651379 

M. posticata 2070 45 -0.51078916083 

M. posticata 2070 60 -0.63062988494 

M. posticata 2070 85 -0.128722914586 

M. spectabilis 2050 26 -0.0562127041142 

M. spectabilis 2050 45 0.0606828230846 

M. spectabilis 2050 60 0.0536032633601 

M. spectabilis 2050 85 -0.0524986530553 

M. spectabilis 2070 26 -0.0766607792299 

M. spectabilis 2070 45 -0.17760674566 

M. spectabilis 2070 60 -0.130360908183 

M. spectabilis 2070 85 -0.312027728801 

 

Nearly all mean values in the comparison between future climate maps and current climate maps 

show negative mean values. Those values indicate that because of future climate conditions the area 

of suitable habitats for the four Mahanarva species will be reduced in comparison to the area under 

current climate conditions. Only five out of 32 comparisons show a positive mean value and 

therefore more suitable habitats in future climate scenarios. Overall there is no clear increase or 

decrease of the mean values between the different future rcp climate scenarios of one species. Just 

in case of Mahanarva spectabilis a clear difference between the scenarios of 2050 and 2070 are 

visible. Excluding the rcp60 scenario of 2050 all 2050 mean values are lower than the 2070 values. 
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Variable Contribution Analysis 

The Variable Contributions Analysis of the Maxent algorithm shows that for every species and analysis 

there are a few important variables with the highest contribution percentages and furthermore about 

two thirds of the variables did not contribute anything to the analysis. The most important variable for 

Mahanarva fimbriolata is the elevation. Only in two of the nine analyzes the isothermality (mean 

monthly diurnal range (max temp – min temp) divided by the annual mean temperature) contributed 

more to the analysis but the elevation still stayed on the second place. The third most contributed 

variable is the precipitation of the warmest quarter. Mahanarva spectabilis shows not such a 

contribution of one variable. Overall the variables elevation, annual precipitation, precipitation of the 

coldest quarter and global land cover are contributing with different percentages in the different 

analysis. Using the future climate variables of 2050 the annual precipitation was the most important 

contributor and using the data of 2070 it was the precipitation of the coldest quarter. The elevation 

data always takes the second place only contributing more in the analysis of the current climate with 

almost identical contribution percentages like the global land cover variable. The precipitation 

seasonality variable is by far contributing the most in all analyzes of Mahanarva liturata. The 

isothermality variable is always on the second place. The most contributed variable for Mahanarva 

posticata analyzes is the precipitation of the coldest quarter followed by the isothermality. Regarding 

all species the elevation, the isothermality and the different variables of the precipitation are the most 

important variables used to analyze the distribution of these species. 
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Discussion 

The results show a distribution potential along areas where sugarcane plantations exist and no 

potential where plantations are non-existent. For example there is no chance for distribution in the 

Amazon rainforest (Leff, Ramankutty, & Foley, 2004; Ramankutty, et. al., 2010b). In total all results of 

the generated models show a slightly wider probable distribution area for M. fimbriolata than for the 

other species. This is not surprising because the species has the widest known distribution of all four 

species.  

The Variable Contribution Analysis shows that besides the elevation, the isothermality – a temperature 

variable – and the precipitation are the most important variables for the models. Temperature and 

precipitation are very important abiotic factors for insects. Insects are poikilothermic and therefore 

the activity of insects depends on the temperature of its habitat. The metabolism of insects works at 

higher rates at an optimal temperature. This also has an effect on the development of eggs, and 

juvenile life forms (Jaworski & Hilszczanski, 2013). The precipitation also can have a huge influence on 

spittlebugs. The nymph produces a foamy excretion for their protection (Carvalho & Webb, 2005). 

During a rainfall the introduced water can dilute the excretion which leaves the nymph unprotected 

against predators. Therefore higher precipitation can have a negative effect on spittlebug populations. 

Overall the most important variable for the models was the elevation which is not included in the 

WorldClim package. The other important variables are a part of WorldClim. Following Bucklin et. al. in 

2015 additional variables besides the bioclimatic variables provided by WorldClim only have a minor 

effect on the accuracy of climate based species distribution models. Because of this the authors 

suggest to only implement bioclimatic variables. But in this case with the high importance of the 

elevation and in some cases of the croplands variable it seems that those variables are necessary to 

create reliable results. Besides that the distribution of each species shows that they only occur in areas 

with sugarcane plantations. This shows the importance of the host plant for their distribution. But on 

the other side the other important variables are bioclimatic and therefore in total they seem to be 

more important. 

Following estimations, an up to 4.8°C temperature increase by 2081 – 2100 relative to 1986 – 2005 

caused by the climate change is possible (IPCC, 2013, RCP8.5). Due to this increase poikilothermic 

insects may experience up to five additional life cycles per season which would result in further pest 

infestation (Yamamura & Kiritani, 1998). In a habitat with limited food resources additional spittlebug’s 

life cycles per season would result in a further distribution of the species. The lack of food forces the 

spittlebugs to search for new habitats with adequate resources. This also depends on the availability 

of near, reachable and suitable habitats. Besides that, habitats which do not possess the adequate 

temperature for the spittlebugs could turn habitable due to the climate change. But the results do not 
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show a further distribution of the Mahanarva species due to the climate change in comparison to the 

current climate. Even decreased suitable habitats due to the climate change are shown for all species 

in nearly all future climate scenarios. Because of this it seems that the niche of the analyzed spittlebugs 

is not limited by temperature but rather by other abiotic factors like precipitation as shown in the 

Variable Contribution Analysis of the future climate data. Furthermore the populations probably will 

not reach the food limits of their habitats. The analyzed spittlebugs occur on sugarcane and pasture 

plantations which present an enormous amount of accessible food sources. The populations are more 

likely controlled by the use of pesticides or predators. Only in the period between the harvest and the 

next growth of the plantations, food is not abundant and the spittlebugs could be forced to search for 

a new habitat. Therefore food resources probably do not force the species to look for a new habitat. 

This may be an explanation for very similar distribution models with current and future climate data. 

A higher temperature and additional life cycles do not have an effect on the distribution of those 

spittlebugs. The other mentioned abiotic factors like rainfall can as well have a great impact on the 

spittlebugs life. Due to the climate change light rainfall events will decrease and heavy rainfall events 

increase (Das et. al., 2011).  Those heavy rainfalls have a higher chance to wash away the protecting 

foam of spittlebugs nymphs exposing them to predation.  

 

Which algorithm is the best? 

The Bioclim algorithm shows the worst results compared to the other algorithms. In other studies the 

algorithm as well did not perform well (Elith, et. al., 2006). Bioclim is mainly used for climate change 

analyzes. But in this area the algorithm is as well outperformed by Domain and Maxent (Hijmans & 

Graham, 2006). Therefore the, in this study presented poor results are not surprising. The Domain 

algorithm as well did not perform well in another study compared to Maxent and other algorithms but 

it was frequently used for species distribution modeling (Elith, et. al., 2006; Hijmans & Elith, 2017). The 

generalized linear models (GLM’s) scored intermediate AUC results in the study of Elith, et.al. in 2006 

but in the cited study the number of used presence records for the species is significantly higher than 

in the present study. Therefore it seems that the GLM algorithms are not performing well with a low 

number of presence records. Besides that GLM’s are the only algorithms with negative numbers on 

their scales. It is impossible to have a negative result. The algorithms are analyzing whether there are 

suitable areas for the distribution of the species. For this the niches of the species are analyzed and 

compared with habitats on the map. Not suitable habitats do not bear a chance of distribution. 

Therefore the minimal value of each scale should be zero. A negative value does not fit into this scale. 

In addition all equal high AUC values occur within the GLM algorithms (Attachments: Table 2 AUC). 
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Moreover only in the GLM’s AUC values of one were achieved which is as well unlikely regarding the 

same pattern on each map for each species. Because of this reasons it seems that despite the 

sometimes high AUC, those algorithms are not adequate to analyze the distribution of the four 

Mahanarva species. Maxent is the most used species distribution algorithm and performed very well 

in other comparison studies (Hijmans & Elith, 2017; Elith, et. al., 2006). In a comparison between GARP 

(genetic algorithm) models and Maxent using jackknife tests and only small numbers of species 

occurrence points the last mentioned algorithm was able to perform better with small sample sizes. 

Furthermore Maxent has a considerably higher ability to predict excluded localities. Therefore analyzes 

with a small sample sizes are best used to identify similar regions to where the species is known to 

occur and not to predict the range limits of species (Ashraf, et. al., 2017; Pearson, et. al., 2006). In 

general the AUC results of the algorithms regarding the distribution of the four Mahanarva species are 

quite similar compared to other studies. Maxent is the best performing algorithm not only using 

current but also future climate data. 

 

Small Number of occurrence points 

The small number of occurrence records of the species is problematic. As shown in a study in Africa a 

minimum number of 14 occurrence points for narrow-ranged and 25 for widespread species is 

necessary for the good quality of an algorithm. In some cases where species have a very low 

prevalence, the minimum number can also be lower than 14. Furthermore the researchers pointed out 

that model performance is increasing with an increasing number of occurrence records (Van Proosdij, 

et. al, 2016).The difficulty is to define what is a narrow-ranged and what is a widespread species. 

Especially regarding that the proper distribution of the four species and especially for M. posticata is 

not well known. All four species are found from south to central or northeast Brazil. Concerning the 

size of Brazil those species can be considered wide ranged species. Only M. spectabilis with 29 

occurrence records passed the minimum number of 25 and only for this species all analyzes showed 

the best performance using the Maxent algorithm. All other species are below the minimum number 

of occurrence records. M. posticata only has 9 occurrence records and is thereby far beneath the level 

of a good performance of an algorithm.  

Another study also shows decreasing model accuracy with a decreasing sample size. But none of the 

analyzed algorithms performed well with a sample size beneath 30. Nonetheless the Domain algorithm 

had an intermediate performance and Maxent was not very sensitive to the sample size which resulted 

in one of the best performances in comparison to the other algorithms studied (Wisz, et. al., 2008). 

Also the results of the 2006 study by Pearson, et. al. demonstrated that analyzes with a small sample 
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size have a great value because of significant predictive abilities in the jackknife test (Pearson, et. al., 

2006). 

Considering the comparison between the future and the current climate the maps of Mahanarva 

spectabilis show the most uniform results with very similar changes in habitat suitability. The maps of 

the other species with less distribution records are quite different. This results alone are no indicator 

for better results because all those analyses are based on the already present distribution maps. 

Further studies 

In further studies the aim is to implement the Maxlike algorithm. Maxlike is a simple likelihood-based 

alternative to Maxent (Chandler, Royle, & Kindt, 2017). The algorithm estimates the probability of 

occurrence unlike Maxent. Therefore Maxlike is a promising likelihood-based alternative to Maxent 

and it will be interesting how the algorithm performs with a low number of presence records.  

In general more presence records are necessary to create better analyzes. Especially M. posticata has 

a very low number of known occurrence points. Furthermore it would be interesting which algorithm 

performed the best with a sufficient number of occurrence records. Would Maxent score the highest 

AUC values for every species or would other algorithms score good values as well? Besides that 

analyzes with different sets of variables could be carried out to resolve the question if non bioclimatic 

variables have an influence on the quality and accuracy of the algorithms. 
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Attachments 

 

AUC 

 

Tabel 2: Area Under the Curve results of all four species regarding the different algorithms Bioclim, Domain, 
GLM Binomial, GLM Gaussian, GLM Poisson and Maxent. Separation of the tables by current, 2050 and 2070 
climate data and further distinction by the four rcp concentrations 26, 45, 60 and 85 in case of the future 
climate data. Yellow boxes each present the highest and red boxes the lowest AUC scores. 

     

 Current Climate  
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,715812 0,8432075 0,95 0,9166667 

Domain 0,8568376 0,8379245 0,9644068 0,9153846 

GLM Binomial 0,8739316 0,8701887 1 0,7384615 

GLM Gaussian 0,8397436 0,8539623 0,9864407 0,8410256 

GLM Poisson 0,8611111 0,8698113 0,98305 0,7692308 

Maxent 0,8824786 0,9358491 0,9966102 0,974359 

     

  2050 rcp26   
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,7222222 0,8252174 0,9459184 0,9166667 

Domain 0,8688889 0,8504348 0,9795918 0,9166667 

GLM Binomial 0,8111111 0,8752174 0,9693878 0,9070513 

GLM Gaussian 0,7266667 0,8704348 0,9979592 0,9839744 

GLM Poisson 0,7977778 0,8708696 0,9346939 0,7980769 

Maxent 0,7688889 0,9269565 0,9959184 0,9647436 

     

  2050 rcp45   
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,7222222 0,8721739 0,8181818 0,9166667 

Domain 0,88 0,8491304 0,9404959 0,9166667 

GLM Binomial 0,8666667 0,8826087 0,9603306 0,8621795 

GLM Gaussian 0,8355556 0,8504348 0,9768595 0,9775641 

GLM Poisson 0,84 0,8826087 0,9570248 0,8653846 

Maxent 0,4240359 0,9165217 0,9938776 0,974359 
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  2050 rcp60   
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,7077778 0,8476087 0,9306122 0,9166667 

Domain 0,86 0,8426087 0,9795918 0,9150641 

GLM Binomial 0,8022222 0,8565217 0,9591837 1 

GLM Gaussian 0,7666667 0,8513043 0,9938776 0,9839744 

GLM Poisson 0,8177778 0,8573913 0,9326531 1 

Maxent 0,7777778 0,9 0,9959184 0,9807692 

     

  2050 rcp85   
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,7222222 0,8341304 0,9306122 0,9166667 

Domain 0,8733333 0,8473913 0,9591837 0,9150641 

GLM Binomial 0,8733333 0,7365217 1 0,8557692 

GLM Gaussian 0,8466667 0,7082609 0,977551 0,9519231 

GLM Poisson 0,9 0,71 0,9673469 0,9102564 

Maxent 0,8555556 0,93 0,9959184 0,9775641 

     

  2070 rcp26   
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,7222222 0,88 0,9306122 0,9166667 

Domain 0,8533333 0,873913 0,9795918 0,9166667 

GLM Binomial 0,8733333 0,8904348 0,9306122 0,8269231 

GLM Gaussian 0,8155556 0,8813043 0,9959184 0,9807692 

GLM Poisson 0,8711111 0,886087 0,9591837 0,8076923 

Maxent 0,8577778 0,9169565 0,9959184 0,9423077 

     

  2070 rcp45   
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,7222222 0,8432609 0,9306122 0,9166667 

Domain 0,8236715 0,8513043 0,9795918 0,9166667 

GLM Binomial 0,8550725 0,8982609 0,9510204 0,9070513 

GLM Gaussian 0,7922705 0,8886957 0,9959184 0,9807692 

GLM Poisson 0,8067633 0,8969565 0,9102041 0,9038462 

Maxent 0,8574879 0,9378261 0,9959184 0,9807692 
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  2070 rcp60   
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,7222222 0,8265217 0,9459184 0,9166667 

Domain 0,8755556 0,8519565 0,9795918 0,9166667 

GLM Binomial 0,8288889 0,8617391 0,8979592 0,9775641 

GLM Gaussian 0,76 0,8547826 0,9795918 0,9839744 

GLM Poisson 0,8355556 0,8621739 0,9183673 0,9807692 

Maxent 0,8 0,9278261 0,9959184 0,9839744 

     

  2070 rcp85   
AUC 

  M. fimbriolata M. spectabilis M. liturata M. posticata 

Bioclim 0,7222222 0,8245652 0,9306122 0,9166667 

Domain 0,8244444 0,8495652 0,9571429 0,8974359 

GLM Binomial 0,8711111 0,8917391 0,965306 0,8685897 

GLM Gaussian 0,8311111 0,863913 0,9877551 0,9775641 

GLM Poisson 0,8933333 0,8747826 0,955102 0,8685897 

Maxent 0,8695652 0,9382609 0,9959184 0,9583333 
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Distribution Coordinates 

 

Tabel 3: Occurence records of Mahanarva fimbriolata, Mahanarva spectabilis, Mahanarva liturata and 
Mahanarva posticata. 

M. fimbriolata M. spectabilis M. liturata M. posticata 

longitude latitude longitude latitude longitude latitude longitude latitude 

-35.17 -7.9 -43.35 -21.75 -45.35 -22.45 -35.03 -8.28 

-40.23 -15.25 -43.36 -4.87 -49.72 -29.33 -42.80 -20.43 

-42.64 -21.53 -44.36 -6.37 -50.15 -25.08 -43.35 -21.76 

-42.80 -20.43 -47.37 -5.93 -51.18 -29.93 -48.54 -27.16 

-43.35 -21.76 -47.46 -7.33 -51.20 -30.03 -48.58 -27.59 

-43.96 -19.9 -47.65 -15.62 -51.23 -30.02 -48.83 -25.48 

-45.25 -20.47 -47.91 -15.76 -51.32 -30.11 -50.21 -29.68 

-47.38 -22.36 -48.03 -9.36 -51.33 -30.10 -51.98 -22.53 

-47.64 -22.36 -48.03 -9.37 -51.45 -29.10 -56.27 -16.17 

-48.54 -27.31 -48.08 -9.14 -51.51 -29.19   

-51.82 -30.85 -48.52 -6.54 -51.52 -29.17   

-51.98 -22.53 -48.55 -27.15 -51.98 -22.53   

-54.32 -27.62 -48.72 -23.39 -53.70 -29.70   

-54.38 -20.26 -49.36 -5.17 -53.89 -30.81   

-55.67 -28.25 -50.20 -22.42 -54.58 -18.08   

-55.75 -57.68 -50.33 -22.46 -55.50 -15.22   

-56 -28.65 -51.17 -23.28 -56.10 -15.60   

-57.68 -16.07 -51.26 -16.23     

-60.13 -12.74 -51.38 -22.12     

  -51.95 -6.56     

  -54.04 -24.54     

  -54.43 -23.84     

  -54.61 -20.37     

  -55.37 -7.14     

  -55.36 -7.12     

  -55.62 -11.85     

  -60.13 -12.74     

  -63.84 -8.81     

  -63.90 -8.77     
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Variable Layers 

Elevation 
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Globecover 
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Pasture 
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Croplands 
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Sugarcane Physical Area
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Bioclim Current Climate 

BIO1 = Annual Mean Temperature 

  



38 
 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

  



39 
 

BIO3 = Isothermality (BIO2/BIO7) (* 100) 

  



40 
 

BIO4 = Temperature Seasonality (standard deviation *100) 

  



41 
 

BIO5 = Max Temperature of Warmest Month 

  



42 
 

BIO6 = Min Temperature of Coldest Month 

  



43 
 

BIO7 = Temperature Annual Range (BIO5-BIO6) 

  



44 
 

BIO8 = Mean Temperature of Wettest Quarter 

  



45 
 

BIO9 = Mean Temperature of Driest Quarter 

  



46 
 

BIO10 = Mean Temperature of Warmest Quarter 

  



47 
 

BIO11 = Mean Temperature of Coldest Quarter 

  



48 
 

BIO12 = Annual Precipitation 

  



49 
 

BIO13 = Precipitation of Wettest Month 

  



50 
 

BIO14 = Precipitation of Driest Month 

  



51 
 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 

  



52 
 

BIO16 = Precipitation of Wettest Quarter 

  



53 
 

BIO17 = Precipitation of Driest Quarter 

  



54 
 

BIO18 = Precipitation of Warmest Quarter 

  



55 
 

BIO19 = Precipitation of Coldest Quarter 
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R Code 

#################################### 

#Based on Hijmans & Elith 2017 

#Hijmans, R.J. & Elith, J. (2017) Species distribution modeling with R. Available online at 

https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf (accessed May 30, 2017). 

 

library(dismo) 

library(raster) 

library(sp) 

library(rgdal) 

library(maptools) 

data("wrld_simpl") 

library(rJava) 

library(sdm) 

library(usdm) 

 

fimbriolata<-read.table("mahanarva_fimbriolata_coordinates_clean.txt", header=TRUE) 

 

#Deleting repeatetly coordinates. 

#Here all duplicates with the same coordinates are selected. The species name does not matter. 

fimbriolata_duplicate<-duplicated(fimbriolata[, c('lon', 'lat')]) 

sum(fimbriolata_duplicate) 

#Now creating a table with only one of every coordinate. 

fimbriolata_clean<- fimbriolata[!fimbriolata_duplicate, ] 

#fimbriolata_clean has only one of every coordinate! From now on only use fimbriolata_clean! 

 

 

#Bioclim Raster Layer and other Current Climate Variables (Bioclim Version 2.0). 

 

bio1_2.5min<-file.choose(); x <- GDAL.open(bio1_2.5min) 

bio2_2.5min<-file.choose(); x <- GDAL.open(bio2_2.5min) 

bio3_2.5min<-file.choose(); x <- GDAL.open(bio3_2.5min) 

bio4_2.5min<-file.choose(); x <- GDAL.open(bio4_2.5min) 

bio5_2.5min<-file.choose(); x <- GDAL.open(bio5_2.5min) 

bio6_2.5min<-file.choose(); x <- GDAL.open(bio6_2.5min) 
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bio7_2.5min<-file.choose(); x <- GDAL.open(bio7_2.5min) 

bio8_2.5min<-file.choose(); x <- GDAL.open(bio8_2.5min) 

bio9_2.5min<-file.choose(); x <- GDAL.open(bio9_2.5min) 

bio10_2.5min<-file.choose(); x <- GDAL.open(bio10_2.5min) 

bio11_2.5min<-file.choose(); x <- GDAL.open(bio11_2.5min) 

bio12_2.5min<-file.choose(); x <- GDAL.open(bio12_2.5min) 

bio13_2.5min<-file.choose(); x <- GDAL.open(bio13_2.5min) 

bio14_2.5min<-file.choose(); x <- GDAL.open(bio14_2.5min) 

bio15_2.5min<-file.choose(); x <- GDAL.open(bio15_2.5min) 

bio16_2.5min<-file.choose(); x <- GDAL.open(bio16_2.5min) 

bio17_2.5min<-file.choose(); x <- GDAL.open(bio17_2.5min) 

bio18_2.5min<-file.choose(); x <- GDAL.open(bio18_2.5min) 

bio19_2.5min<-file.choose(); x <- GDAL.open(bio19_2.5min) 

pasture<-file.choose(); x <- GDAL.open(pasture) 

croplands<-file.choose(); x <- GDAL.open(croplands) 

sugarcane<-file.choose(); x <- GDAL.open(sugarcane) 

elevation<-file.choose(); x <- GDAL.open(elevation) 

globcover<-file.choose(); x <- GDAL.open(globcover) 

 

#2050 Climate Data Bioclim 

#rcp26 

 

rcp26bi01<-file.choose(); x <- GDAL.open(rcp26bi01) 

rcp26bi02<-file.choose(); x <- GDAL.open(rcp26bi01) 

rcp26bi03<-file.choose(); x <- GDAL.open(rcp26bi03) 

rcp26bi04<-file.choose(); x <- GDAL.open(rcp26bi04) 

rcp26bi05<-file.choose(); x <- GDAL.open(rcp26bi05) 

rcp26bi06<-file.choose(); x <- GDAL.open(rcp26bi06) 

rcp26bi07<-file.choose(); x <- GDAL.open(rcp26bi07) 

rcp26bi08<-file.choose(); x <- GDAL.open(rcp26bi08) 

rcp26bi09<-file.choose(); x <- GDAL.open(rcp26bi09) 

rcp26bi10<-file.choose(); x <- GDAL.open(rcp26bi10) 

rcp26bi11<-file.choose(); x <- GDAL.open(rcp26bi11) 

rcp26bi12<-file.choose(); x <- GDAL.open(rcp26bi12) 

rcp26bi13<-file.choose(); x <- GDAL.open(rcp26bi13) 
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rcp26bi14<-file.choose(); x <- GDAL.open(rcp26bi14) 

rcp26bi15<-file.choose(); x <- GDAL.open(rcp26bi15) 

rcp26bi16<-file.choose(); x <- GDAL.open(rcp26bi16) 

rcp26bi17<-file.choose(); x <- GDAL.open(rcp26bi17) 

rcp26bi18<-file.choose(); x <- GDAL.open(rcp26bi18) 

rcp26bi19<-file.choose(); x <- GDAL.open(rcp26bi19) 

pasture<-file.choose(); x <- GDAL.open(pasture) 

croplands<-file.choose(); x <- GDAL.open(croplands) 

sugarcane<-file.choose(); x <- GDAL.open(sugarcane) 

elevation<-file.choose(); x <- GDAL.open(elevation) 

globcover<-file.choose(); x <- GDAL.open(globcover) 

 

#Repeat the procedure with the other variable for the different rcp’s and years. Don’t forget to 

#adjust the names. 

 

#2.5 Current Climate Data 

predictors_2.5min<-stack(bio1_2.5min, bio2_2.5min, bio3_2.5min, bio4_2.5min, bio5_2.5min, 

bio6_2.5min, bio7_2.5min, bio8_2.5min, bio9_2.5min, bio10_2.5min, bio11_2.5min, 

bio12_2.5min, bio13_2.5min, bio14_2.5min, bio15_2.5min, bio16_2.5min, bio17_2.5min, 

bio18_2.5min, bio19_2.5min, croplands, pasture, sugarcane, globcover, elevation) 

names(predictors_2.5min) 

 

#rcp 26 

predictors_2050rcp26<-stack(rcp26bi01, rcp26bi02, rcp26bi03, rcp26bi04, rcp26bi05, rcp26bi06, 

rcp26bi07, rcp26bi08, rcp26bi09, rcp26bi10, rcp26bi11, rcp26bi12, rcp26bi13, 

rcp26bi14,rcp26bi15, rcp26bi16, rcp26bi17, rcp26bi18, rcp26bi19, croplands, pasture, 

sugarcane, globcover, elevation) 

names(predictors_2050rcp26) 

 

#rcp 45 

predictors_2050rcp45<-stack(rcp45bi01, rcp45bi02, rcp45bi03, rcp45bi04, rcp45bi05, rcp45bi06, 

rcp45bi07, rcp45bi08, rcp45bi09, rcp45bi10, rcp45bi11, rcp45bi12, rcp45bi13, 

rcp45bi14,rcp45bi15, rcp45bi16, rcp45bi17, rcp45bi18, rcp45bi19, croplands, pasture, 

sugarcane, globcover, elevation) 

names(predictors_2050rcp45) 
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#rcp 60 

predictors_2050rcp60<-stack(rcp60bi01, rcp60bi02, rcp60bi03, rcp60bi04, rcp60bi05, rcp60bi06, 

rcp60bi07, rcp60bi08, rcp60bi09, rcp60bi10, rcp60bi11, rcp60bi12, rcp60bi13, 

rcp60bi14,rcp60bi15, rcp60bi16, rcp60bi17, rcp60bi18, rcp60bi19, croplands, pasture, 

sugarcane, globcover, elevation) 

names(predictors_2050rcp60) 

 

#rcp85 

predictors_2050rcp85<-stack(rcp85bi01, rcp85bi02, rcp85bi03, rcp85bi04, rcp85bi05, rcp85bi06, 

rcp85bi07, rcp85bi08, rcp85bi09, rcp85bi10, rcp85bi11, rcp85bi12, rcp85bi13, 

rcp85bi14,rcp85bi15, rcp85bi16, rcp85bi17, rcp85bi18, rcp85bi19, croplands, pasture, 

sugarcane, globcover, elevation) 

names(predictors_2050rcp85) 

 

v2 <- vifcor(predictors_2050rcp85, th=0.9) 

v2 

 

#Bioclim Current Cimate Data 

predictors<-stack(bio2_2.5min, bio3_2.5min, bio6_2.5min, bio8_2.5min, bio9_2.5min, bio12_2.5min, 

bio13_2.5min, bio14_2.5min, bio15_2.5min, bio18_2.5min, bio19_2.5min, croplands, 

pasture, sugarcane, elevation, globcover) 

 

#Bioclim Future Climate Data 

predictors<-stack(rcp85bi02, rcp85bi03, rcp85bi04, rcp85bi05, rcp85bi08, rcp85bi09, rcp85bi12, 

rcp85bi13, rcp85bi14, rcp85bi15, rcp85bi18, rcp85bi19, croplands, pasture, sugarcane, 

globcover, elevation) 

names(predictors) 

#Before the predictors were selected analysing the collinearity (vifcor) 

 

 

presvals <- extract(predictors, fimbriolata_clean) 

set.seed(0) 

background <- randomPoints(predictors, 500) 

absvals <- extract(predictors, background) 
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pb <- c(rep(1, nrow(presvals)), rep(0, nrow(absvals))) 

sdmdata <- data.frame(cbind(pb, rbind(presvals, absvals))) 

 

pred_nf <- predictors 

 

#Training and Testing sets 

 

group <- kfold(fimbriolata_clean, 5) 

pres_train <- fimbriolata_clean[group !=1, ] 

pres_test <- fimbriolata[group ==1, ] 

 

colnames(background) = c('lon', 'lat') 

group <- kfold(background, 5) 

background_train <- background[group !=1, ] 

background_test <- background[group ==1, ] 

 

# Within every algorithm I only created the first plot and not the second!  

# The second plot is based on the presence and absence data and for the four-  

# species there is only a small amount of present and nearly none absent data available. 

# I still left the second plot included for possible further analyzes.  

 

 

### Profile Methods using Bioclim algorithm ### 

 

bc <- bioclim(pred_nf, pres_train) 

plot(bc, a=1, b=2, p=0.85) 

 

e <- evaluate(pres_test, background_test, bc, pred_nf) 

e 

tr <- threshold(e, 'spec_sens') 

tr 

 

pb <- predict(pred_nf, bc, progress='') 

pb 
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par(mfrow=c(1,1)) 

plot(pb, main='Bioclim, raw values') 

plot(wrld_simpl, add=TRUE, border='Dark grey') 

plot(pb > tr, main='presence/absence') 

plot(wrld_simpl, add=TRUE, border='Dark grey') 

points(pres_train, pch='+') 

 

 

### Domain ### 

 

dm <- domain(pred_nf, pres_train) 

e <- evaluate(pres_test, background_test, dm, pred_nf) 

e 

pd = predict(pred_nf, dm, extent = extent, progress='') 

par(mfrow=c(1,1)) 

plot(pd, main='Domain, raw values') 

plot(wrld_simpl, add=TRUE, border='dark grey') 

tr <- threshold(e, 'spec_sens') 

plot(pd > tr, main='presence/absence') 

plot(wrld_simpl, add=TRUE, border='dark grey') 

points(pres_train, pch='+') 

 

### Regression models ### 

train <- rbind(pres_train, background_train) 

pb_train <- c(rep(1, nrow(pres_train)), rep(0, nrow(background_train)))   

envtrain <- extract(predictors, train) 

envtrain <- data.frame( cbind(pa=pb_train, envtrain) ) 

head(envtrain) 

 

testpres <- data.frame( extract(predictors, pres_test) ) 

testbackground <- data.frame( extract(predictors, background_test) ) 

 

### Generalized Linear models ### 

 

#At first select Future or Current Climate Data. Only then calculate pg. 
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#Current Climate Data 

 

#The Evaluate functions calculate the AUC for every model. 

 gm1 <- glm(pa ~ bio2 + bio3 + bio6 + bio8 + bio9 + bio12 + bio13 + bio14 + bio15 + bio18 + bio19 + 

croplands + pasture + sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, 

family = binomial(link ="logit"), data = envtrain) 

summary(gm1) 

coef(gm1) 

evaluate(testpres, testbackground, gm1) 

ge1 <- evaluate(testpres, testbackground, gm1) 

 

gm2 <- glm(pa ~ bio2 + bio3 + bio6 + bio8 + bio9 + bio12 + bio13 + bio14 + bio15 + bio18 + bio19 + 

croplands + pasture + sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, 

family = gaussian(link ="identity"), data = envtrain) 

evaluate(testpres, testbackground, gm2) 

ge2 <- evaluate(testpres, testbackground, gm2) 

ge2 

 

gm3 <- glm(pa ~ bio2 + bio3 + bio6 + bio8 + bio9 + bio12 + bio13 + bio14 + bio15 + bio18 + bio19 + 

croplands + pasture + sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, 

family = poisson(link ="log"), data = envtrain) 

evaluate(testpres, testbackground, gm3) 

ge3 <- evaluate(testpres, testbackground, gm3) 

ge3 

 

 

# Future Climate Data 

 

#rcp26 

gm1 <- glm(pa ~ rcp26bi02 + rcp26bi03 + rcp26bi05 + rcp26bi07 + rcp26bi08 + rcp26bi09 + rcp26bi12 

+ rcp26bi13 + rcp26bi14 + rcp26bi15 + rcp26bi18 + rcp26bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = binomial(link 

="logit"), data = envtrain) 

summary(gm1) 
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coef(gm1) 

evaluate(testpres, testbackground, gm1) 

ge1 <- evaluate(testpres, testbackground, gm1) 

 

gm2 <- glm(pa ~ rcp26bi02 + rcp26bi03 + rcp26bi05 + rcp26bi07 + rcp26bi08 + rcp26bi09 + rcp26bi12 

+ rcp26bi13 + rcp26bi14 + rcp26bi15 + rcp26bi18 + rcp26bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = gaussian(link 

="identity"), data = envtrain) 

evaluate(testpres, testbackground, gm2) 

ge2 <- evaluate(testpres, testbackground, gm2) 

ge2 

 

gm3 <- glm(pa ~ rcp26bi02 + rcp26bi03 + rcp26bi05 + rcp26bi07 + rcp26bi08 + rcp26bi09 + rcp26bi12 

+ rcp26bi13 + rcp26bi14 + rcp26bi15 + rcp26bi18 + rcp26bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = poisson(link 

="log"), data = envtrain) 

evaluate(testpres, testbackground, gm3) 

ge3 <- evaluate(testpres, testbackground, gm3) 

ge3 

 

 

#rcp45 

gm1 <- glm(pa ~ rcp45bi02 + rcp45bi03 + rcp45bi05 + rcp45bi08 + rcp45bi09 + rcp45bi12 + rcp45bi13 

+ rcp45bi14 + rcp45bi15 + rcp45bi18 + rcp45bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = binomial(link 

="logit"), data = envtrain) 

summary(gm1) 

coef(gm1) 

evaluate(testpres, testbackground, gm1) 

ge1 <- evaluate(testpres, testbackground, gm1) 

 

gm2 <- glm(pa ~ rcp45bi02 + rcp45bi03 + rcp45bi05 + rcp45bi08 + rcp45bi09 + rcp45bi12 + rcp45bi13 

+ rcp45bi14 + rcp45bi15 + rcp45bi18 + rcp45bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = gaussian(link 

="identity"), data = envtrain) 
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evaluate(testpres, testbackground, gm2) 

ge2 <- evaluate(testpres, testbackground, gm2) 

ge2 

 

gm3 <- glm(pa ~ rcp45bi02 + rcp45bi03 + rcp45bi05 + rcp45bi08 + rcp45bi09 + rcp45bi12 + rcp45bi13 

+ rcp45bi14 + rcp45bi15 + rcp45bi18 + rcp45bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = poisson(link 

="log"), data = envtrain) 

evaluate(testpres, testbackground, gm3) 

ge3 <- evaluate(testpres, testbackground, gm3) 

ge3 

 

 

#rcp60 

gm1 <- glm(pa ~ rcp60bi02 + rcp60bi03 + rcp60bi05 + rcp60bi07 + rcp60bi08 + rcp60bi09 + rcp60bi12 

+ rcp60bi13 + rcp60bi14 + rcp60bi15 + rcp60bi18 + rcp60bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = binomial(link 

="logit"), data = envtrain) 

summary(gm1) 

coef(gm1) 

evaluate(testpres, testbackground, gm1) 

ge1 <- evaluate(testpres, testbackground, gm1) 

 

gm2 <- glm(pa ~ rcp60bi02 + rcp60bi03 + rcp60bi05 + rcp60bi07 + rcp60bi08 + rcp60bi09 + rcp60bi12 

+ rcp60bi13 + rcp60bi14 + rcp60bi15 + rcp60bi18 + rcp60bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = gaussian(link 

="identity"), data = envtrain) 

evaluate(testpres, testbackground, gm2) 

ge2 <- evaluate(testpres, testbackground, gm2) 

ge2 

 

gm3 <- glm(pa ~ rcp60bi02 + rcp60bi03 + rcp60bi05 + rcp60bi07 + rcp60bi08 + rcp60bi09 + rcp60bi12 

+ rcp60bi13 + rcp60bi14 + rcp60bi15 + rcp60bi18 + rcp60bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = poisson(link 

="log"), data = envtrain) 



65 
 

evaluate(testpres, testbackground, gm3) 

ge3 <- evaluate(testpres, testbackground, gm3) 

ge3 

 

 

#rcp85 

gm1 <- glm(pa ~ rcp85bi02 + rcp85bi03 + rcp85bi04 + rcp85bi05 + rcp85bi08 + rcp85bi09 + rcp85bi12 

+ rcp85bi13 + rcp85bi14 + rcp85bi15 + rcp85bi18 + rcp85bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = binomial(link 

="logit"), data = envtrain) 

summary(gm1) 

coef(gm1) 

evaluate(testpres, testbackground, gm1) 

ge1 <- evaluate(testpres, testbackground, gm1) 

 

gm2 <- glm(pa ~ rcp85bi02 + rcp85bi03 + rcp85bi04 + rcp85bi05 + rcp85bi08 + rcp85bi09 + rcp85bi12 

+ rcp85bi13 + rcp85bi14 + rcp85bi15 + rcp85bi18 + rcp85bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = gaussian(link 

="identity"), data = envtrain) 

evaluate(testpres, testbackground, gm2) 

ge2 <- evaluate(testpres, testbackground, gm2) 

ge2 

 

gm3 <- glm(pa ~ rcp85bi02 + rcp85bi03 + rcp85bi04 + rcp85bi05 + rcp85bi08 + rcp85bi09 + rcp85bi12 

+ rcp85bi13 + rcp85bi14 + rcp85bi15 + rcp85bi18 + rcp85bi19 + croplands + pasture + 

sugarcane_physical_area_SPAM + Globcover_cut + NE_elevation, family = poisson(link 

="log"), data = envtrain) 

evaluate(testpres, testbackground, gm3) 

ge3 <- evaluate(testpres, testbackground, gm3) 

ge3 

 

pg1 <- predict(predictors, gm1, extent=extent) 

pg2 <- predict(predictors, gm2, extent=extent) 

pg3 <- predict(predictors, gm3, extent=extent) 
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#GLM Binomial 

par(mfrow=c(1,1)) 

plot(pg1, main='GLM/Binomial, raw values') 

plot(wrld_simpl, add=TRUE, border='dark grey') 

tr<-threshold(ge1, 'spec_sens') 

plot(pg1 > tr, main='presence/absence') 

plot(wrld_simpl, add=TRUE, border='dark grey') 

points(pres_train, pch='+') 

points(background_train, pch='-, cex=0.25') 

 

#GLM Gaussian 

par(mfrow=c(1,1)) 

plot(pg2, main='GLM/Gaussian, raw values') 

plot(wrld_simpl, add=TRUE, border='dark grey') 

tr<-threshold(ge2, 'spec_sens') 

plot(pg2 > tr, main='presence/absence') 

plot(wrld_simpl, add=TRUE, border='dark grey') 

points(pres_train, pch='+') 

points(background_train, pch='-, cex=0.25') 

 

#GLM Poisson 

par(mfrow=c(1,1)) 

plot(pg3, main='GLM/Poisson, raw values') 

plot(wrld_simpl, add=TRUE, border='dark grey') 

tr<-threshold(ge3, 'spec_sens') 

plot(pg3 > tr, main='presence/absence') 

plot(wrld_simpl, add=TRUE, border='dark grey') 

points(pres_train, pch='+') 

points(background_train, pch='-, cex=0.25') 

 

##### MAXENT ##### 

 

#Put the file maxent.jar into the java folder in the dismo directory 

 

system.file("java", package="dismo") 
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#Checking if the jar file is present 

jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='')  

if (file.exists(jar)) { 

  xm <- maxent(predictors, pres_train)  

  plot(xm)  

} else {  

  cat('cannot run this example because Maxent is not available')  

  plot(1)  

}   

 

# The 64bit Java Version is necessary!! 

 

 

if (file.exists(jar)) { 

  response(xm) 

}else{ 

  cat('Cannot run this example because maxent is not available') 

  plot(1)   

} 

 

 

if (file.exists(jar)) { 

  e <- evaluate(pres_test, background_test, xm, predictors)   

  e 

  px <- predict(predictors, xm, extend=extend, progress='') 

  par(mfrow=c(1,1)) 

  plot(px, main= substitute(paste(italic('Mahanarva fimbriolata')))) 

  plot(wrld_simpl, add=TRUE, border='dark grey') 

  tr <- threshold(e,'spec_sens') 

  plot(px > tr, main='presence/absence') 

  plot(wrld_simpl, add=TRUE, border='dark grey') 

  points(pres_train, pch='+') 

}else{ 

  plot(1) 

} 
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summary(xm) 

#html data with further information 

xm 
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