
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

RAFAEL CAUÊ CARDOSO

A DECENTRALISED ONLINE MULTI-AGENT PLANNING FRAMEWORK FOR
MULTI-AGENT SYSTEMS

Porto Alegre

2018

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

A DECENTRALISED ONLINE
MULTI-AGENT PLANNING

FRAMEWORK FOR
MULTI-AGENT SYSTEMS

RAFAEL CAUÊ CARDOSO

This Thesis has been submitted in
partial fulfillment of the requirements
for the degree of Doctor of Computer
Science, of the Graduate Program in
Computer Science, School of Technology
of the Pontifícia Universidade Católica
do Rio Grande do Sul.

Supervisor: Prof. Dr. Rafael Heitor Bordini

Porto Alegre
2018

Rafael Cauê Cardoso

A Decentralised Online Multi-Agent Planning Framework for Multi-Agent Systems

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Doctor of

Computer Science, of the Graduate Program in

Computer Science, School of Technology of the

Pontifícia Universidade Católica do Rio Grande do

Sul.

Sanctioned on March 27, 2018.

COMMITTEE MEMBERS:

Prof. Dr. Luís Alvaro de Lima Silva (UFSM)

Prof. Dr. Sebastian Sardina (RMIT)

Prof. Dr. Luiz Gustavo Leão Fernandes (PPGCC/PUCRS)

Prof. Dr. Rafael Heitor Bordini (PPGCC/PUCRS - Supervisor)

A DECENTRALISED ONLINE MULTI-AGENT PLANNING
FRAMEWORK FOR MULTI-AGENT SYSTEMS

ABSTRACT

Multi-agent systems often contain dynamic and complex environments where
agents’ course of action (plans) can fail at any moment during execution of the system.
Furthermore, new goals can emerge for which there are no known plan available in any
of the agents’ plan library. Automated planning techniques are well suited to tackle both
of these issues. Extensive research has been done in centralised planning for single-
agents, however, so far multi-agent planning has not been fully explored in practice.
Multi-agent platforms typically provide various mechanisms for runtime coordination,
which are often required in online planning (i.e., planning during runtime). In this con-
text, decentralised multi-agent planning can be efficient as well as effective, especially
in loosely-coupled domains, besides also ensuring important properties in agent systems
such as privacy and autonomy. We address this issue by putting forward an approach
to online multi-agent planning that combines goal allocation, individual Hierarchical
Task Network (HTN) planning, and coordination during runtime in order to support the
achievement of social goals in multi-agent systems. In particular, we present a planning
and execution framework called Decentralised Online Multi-Agent Planning (DOMAP).
Experiments with three loosely-coupled planning domains show that DOMAP outper-
forms four other state-of-the-art multi-agent planners with regards to both planning
and execution time, particularly in the most difficult problems.

Keywords: multi-agent planning, multi-agent systems, hierarchical task network, goal
allocation, online planning.

UM FRAMEWORK DE PLANEJAMENTO MULTIAGENTE
ONLINE E DESCENTRALIZADO PARA SISTEMAS

MULTIAGENTES

RESUMO

Sistemas multiagentes freqüentemente contêm ambientes complexos e dinâmi-
cos, nos quais os planos dos agentes podem falhar a qualquer momento durante a exe-
cução do sistema. Além disso, novos objetivos podem aparecer para os quais não existem
nenhum plano disponível. Técnicas de planejamento são bem adequadas para lidar com
esses problemas. Há uma quantidade extensa de pesquisa em planejamento centrali-
zado para um único agente, porém, até então planejamento multiagente não foi com-
pletamente explorado na prática. Plataformas multiagentes tipicamente proporcionam
diversos mecanismos para coordenação em tempo de execução, frequentemente necessá-
rios em planejamento online. Neste contexto, planejamento multiagente descentralizado
pode ser eficiente e eficaz, especialmente em domínios fracamente acoplados, além de
garantir algumas propriedades importantes em sistemas de agentes como privacidade
e autonomia. Nós abordamos esse problema ao apresentar uma técnica para planeja-
mento multiagente online que combina alocação de objetivos, planejamento individual
utilizando rede de tarefas hierárquicas (HTN), e coordenação em tempo de execução
para apoiar a realização de objetivos sociais em sistemas multiagentes. Especificamente,
nós apresentamos um framework chamado Decentralised Online Multi-Agent Planning
(DOMAP). Experimentos com três domínios fracamente acoplados demonstram que DO-
MAP supera quatro planejadores multiagente do estado da arte com respeito a tempo
de planejamento e tempo de execução, particularmente nos problemas mais difíceis.

Palavras-Chave: planejamento multiagente, sistemas multiagentes, rede de tarefas
hierárquicas, alocação de objetivos, planejamento online.

LIST OF FIGURES

Figure 2.1 – Traditional architecture for offline planning [89]. 26

Figure 2.2 – Step-by-step solution to SHOP2 basic example. 31

Figure 2.3 – Conceptual model for online planning [89]. 32

Figure 2.4 – A generic agent architecture [106]. 35

Figure 2.5 – Generic BDI model, adapted from [145]. 36

Figure 2.6 – The JaCaMo MAS development platform overview [13]. 43

Figure 2.7 – JaCaMo runtime model and the standard set of artifacts avail-
able [13]. 44

Figure 2.8 – Jason overview [15]. 47

Figure 2.9 – Overview of how focus works [103]. 49

Figure 2.10 – Using operations in artifacts [103]. 49

Figure 2.11 – CArtAgO A&A meta-model [103]. 50

Figure 2.12 – Moise GroupBoard and SchemeBoard artifacts [13]. 51

Figure 3.1 – Elements found in the Floods domain. 62

Figure 3.2 – A simple problem in the Floods domain. 63

Figure 4.1 – DOMAP design overview. 74

Figure 4.2 – Possible plan trees: (a) recursive distinct plan tree; (b) non-recursive
distinct plan tree; (c) recursive similar plan tree; (d) non-recursive simi-
lar plan tree. 84

Figure 4.3 – An 8x8 node grid with two agents and their respective paths. 94

Figure 5.1 – DOMAP runtime overview. 96

Figure 5.2 – (a) The task board artifact; (b) The CNP board artifact. 99

Figure 5.3 – The artifact for social laws. 101

Figure 6.1 – (a) Minimum time spent planning; (b) Maximum time spent plan-
ning; (c) Average time spent planning. 107

Figure 6.2 – (a) Minimum plan size; (b) Maximum plan size; (c) Average plan
size. 108

Figure 6.3 – (a) Minimum plan size variance between all agents; (b) Maximum
plan size variance between all agents; (c) Average plan size variance
between all agents. 108

Figure 6.4 – (a) Minimum time spent executing solutions; (b) Maximum time
spent executing solutions; (c) Average time spent executing solutions. . . 109

Figure 6.5 – (a) Planning and execution times for the first 5 problems in the
Rovers domain; (b) Planning and execution times for the last 5 problems
in the Rovers domain. 109

Figure 6.6 – (a) Minimum time spent planning; (b) Maximum time spent plan-
ning; (c) Average time spent planning. 112

Figure 6.7 – (a) Minimum plan size; (b) Maximum plan size; (c) Average plan
size. 113

Figure 6.8 – (a) Minimum plan size variance between all agents; (b) Maximum
plan size variance between all agents; (c) Average plan size variance
between all agents. 114

Figure 6.9 – (a) Minimum time spent executing solutions; (b) Maximum time
spent executing solutions; (c) Average time spent executing solutions. . . 114

Figure 6.10 – (a) Planning and execution times for the first 5 problems in the
Floods domain; (b) Planning and execution times for the last 5 problems
in the Floods domain. 115

Figure 6.11 – Locations in the Petrobras domain [135]. 117

Figure 6.12 – (a) Minimum time spent planning; (b) Maximum time spent plan-
ning; (c) Average time spent planning. 119

Figure 6.13 – (a) Minimum plan size; (b) Maximum plan size; (c) Average plan
size. 119

Figure 6.14 – (a) Minimum plan size variance between all agents; (b) Maximum
plan size variance between all agents; (c) Average plan size variance
between all agents. 120

Figure 6.15 – (a) Minimum time spent executing solutions; (b) Maximum time
spent executing solutions; (c) Average time spent executing solutions. . . 121

Figure 6.16 – (a) Planning and execution times for the first 5 problems in the
Petrobras domain; (b) Planning and execution times for the last 5 prob-
lems in the Petrobras domain. 121

Figure 7.1 – A still image of Lutra Prop on the left, and an image of it in our
first field work. 126

LIST OF TABLES

Table 2.1 – Mappings from BDI to HTN entities [109]. 33

Table 2.2 – Comparisons between single-agent planning and multi-agent plan-
ning. 34

Table 4.1 – Factored representation and HTN formalism equivalences. 81

Table 5.1 – Correlations between different representations. 98

Table 6.1 – Features of multi-agent planners used in the experiments. 103

Table 6.2 – Rovers problem configurations. 106

Table 6.3 – Floods problem configurations. 112

Table 6.4 – Petrobras problem configurations. 118

Table C.1 – Plan size results collected from 20 runs per problem in the Rovers
domain; best values are in bold font. 151

Table C.2 – Parallelism results collected from 20 runs per problem in the Rovers
domain; best values are in bold font. 151

Table C.3 – Planning time results collected from 20 runs per problem in the
Rovers domain; best times are in bold font. 152

Table C.4 – Execution time results collected from 20 runs per problem in the
Rovers domain; best times are in bold font. 152

Table D.1 – Plan size results collected from 20 runs per problem in the Floods
domain; best values are in bold font. 153

Table D.2 – Parallelism results collected from 20 runs per problem in the Floods
domain; best values are in bold font. 153

Table D.3 – Planning time results collected from 20 runs per problem in the
Floods domain; best times are in bold font. 154

Table D.4 – Execution time results collected from 20 runs per problem in the
Floods domain; best times are in bold font. 154

Table E.1 – Plan size results collected from 20 runs per problem in the Petro-
bras domain; best values are in bold font. 155

Table E.2 – Parallelism results collected from 20 runs per problem in the Petro-
bras domain; best values are in bold font. 155

Table E.3 – Planning time results collected from 20 runs per problem in the
Petrobras domain; best times are in bold font. 156

Table E.4 – Execution time results collected from 20 runs per problem in the
Petrobras domain; best times are in bold font. 156

LIST OF ACRONYMS

A&A – Agents and Artifacts

AI – Artificial Intelligence

BDI – Belief-Desire-Intention

BNF – Backus–Naur Form

CDM – Centre for Disaster Management

CODMAP-15 – 2015 Competition of Distributed and Multi-Agent Planners

DMAP – Distributed and Multi-Agent Planning

DOMAP – Decentralised Online Multi-Agent Planning framework

ICAPS – International Conference on Automated Planning and Scheduling

IPC – International Planning Competition

HTN – Hierarchical Task Network

MA-HTN – Multi-Agent Hierarchical Task Network

MAP – Multi-Agent Planning

MAPC – Multi-Agent Programming Contest

MAS – Multi-Agent Systems

MDP – Markov Decision Process

PDDL – Planning Domain Definition Language

PRS – Procedural Reasoning System

UAV – Unmanned Aerial Vehicle

UGV – Unmanned Ground Vehicle

USV – Unmanned Surface Vehicle

XML – eXtensible Markup Language

CONTENTS

1 INTRODUCTION . 21

1.1 MOTIVATION . 23

1.2 OBJECTIVES . 24

1.3 THESIS OUTLINE . 24

2 BACKGROUND AND RELATED WORK . 25

2.1 AUTOMATED PLANNING . 25

2.1.1 CLASSICAL PLANNING . 27

2.1.2 HTN PLANNING . 28

2.1.3 MULTI-AGENT PLANNING . 33

2.2 INTELLIGENT AGENTS . 35

2.2.1 MULTI-AGENT SYSTEMS . 37

2.2.2 MULTI-AGENT PROGRAMMING . 39

2.2.3 JACAMO . 42

2.3 RELATED WORK . 53

2.3.1 ONLINE PLANNING . 53

2.3.2 OFFLINE MULTI-AGENT PLANNING . 55

2.3.3 ONLINE MULTI-AGENT PLANNING . 58

3 FLOODS DOMAIN . 61

3.1 HTN REPRESENTATION . 64

3.2 JACAMO MAS . 65

4 DECENTRALISED ONLINE MULTI-AGENT PLANNING 73

4.1 DOMAP’S DESIGN . 73

4.1.1 INPUT LANGUAGE . 76

4.1.2 GOAL ALLOCATION . 81

4.1.3 INDIVIDUAL PLANNING . 88

4.1.4 COORDINATION MECHANISM . 91

5 DOMAP’S IMPLEMENTATION . 95

5.1 OVERVIEW . 95

5.2 MULTI-AGENT FACTORED REPRESENTATION . 97

5.3 CONTRACT NET PROTOCOL . 98

5.4 SHOP2 . 100

5.5 SOCIAL LAWS . 100

6 DOMAP’S EVALUATION . 103

6.1 ROVERS DOMAIN EXPERIMENTS . 105

6.1.1 SETTING . 105

6.1.2 RESULTS . 106

6.1.3 DISCUSSION . 110

6.2 FLOODS DOMAIN EXPERIMENTS . 110

6.2.1 SETTING . 111

6.2.2 RESULTS . 112

6.2.3 DISCUSSION . 115

6.3 PETROBRAS DOMAIN EXPERIMENTS . 116

6.3.1 SETTING . 118

6.3.2 RESULTS . 118

6.3.3 DISCUSSION . 120

7 CONCLUSION . 123

7.1 SUMMARY OF RESULTS . 123

7.2 FUTURE WORK . 124

REFERENCES . 127

APPENDIX A – Remaining descriptions of the Floods domain 141

APPENDIX B – DOMAP planner scripts . 149

APPENDIX C – Additional results for the Rovers domain 151

APPENDIX D – Additional results for the Floods domain 153

APPENDIX E – Additional results for the Petrobras domain 155

21

1. INTRODUCTION

Intelligent Agents are rational agents that perceive the environment and act
upon it in pursuit of their goals. Multi-Agent Systems (MAS) are composed of multi-
ple interacting agents that work to solve problems that are beyond the capabilities or
knowledge of each individual agent [48]. MAS are often situated in dynamic, unpre-
dictable environments where new plans of action may need to be devised if the overall
system’s goals are to be achieved successfully. For example, agents that join an organi-
sation can pursue social plans (i.e., groups of structured social/global goals), which may
fail at any point, prompting the creation of new social plans. Automated Planning is the
act of formulating a plan of action in order to achieve some goal. Therefore, employing
planning techniques at runtime of a MAS can improve agents’ plans using knowledge
that was not previously available before execution, or allow them to create new plans
to achieve some goal for which there was no known effective course of action at design
time, or even replan for social goals that had their social plans fail during execution.

Using agents as first-class abstractions in planning can be characterised, ac-
cording to [49], into: single-agent planning for a single agent, single-agent planning
for multiple agents, multi-agent planning for a single agent, and multi-agent planning
for multiple agents. The latter is what we refer to when we use the term Multi-Agent
Planning (MAP), that is, planning is done by multiple agents, and results in plans for
multiple agents.

Research on Automated Planning has been largely focused on single-agent plan-
ning over the years. In centralised single-agent planning, agents are not considered as
first-class abstractions, they are instead treated just like any other object described in
the planning formalism. On the other hand, MAP has received increasing attention re-
cently [50, 131, 93], tackling new and complex multi-agent problems that require decen-
tralised solutions. One such problem is to combine planning and execution [91]. By al-
lowing agents to do their own individual planning, the search space is effectively pruned,
which can potentially decrease planning time on loosely-coupled domains. Agents also
get to keep some privacy within the system, and maintain their autonomy. However,
for individual planning to be feasible, goals have to be be efficiently preallocated, and
agents have to coordinate before or after planning, or during runtime.

MAS development platforms also changed the focus from agent- to organisation-
centred approaches. Recent research, as evidenced in [13, 118], shows that considering
other programming dimensions such as environments and organisations as first-class
abstractions (along with agents) allow developers to create more complex MAS. Multi-
agent programming languages and platforms that cover the social and environmental
dimensions of multi-agent systems, as well as the agent dimension [14], are what make

22

multi-agent oriented programming especially suited for solving complex problems that
require highly social, autonomous software.

To demonstrate an application of some of these concepts of MAP and MAS, as
applied in this thesis, consider this setting. There is a group of multiple robots that are
working together in search and rescue operations after a natural disaster, wherein high-
level control of each robot is done by a different agent directly integrated into the robot’s
hardware. These robots are heterogeneous, with each robot containing its own set of
private knowledge, goals, and plans. These robots are all part of the same organisation,
thus sharing the same social goals that they cooperate to fulfil. Search and rescue en-
vironments are dynamic, constantly changing, which requires agents to be able to find
solutions at runtime.

Our main contributions in this thesis are the design, implementation, and
evaluation of the Decentralised Online Multi-Agent Planning framework (DOMAP).
DOMAP is divided into several main components: i) multi-agent system factored repre-
sentation, a multi-agent planning formalism that contains information about the world
according to each agent’s point of view; ii) a contract net protocol mechanism for goal
allocation; iii) individual Hierarchical Task Network (HTN) planning; iv) social laws to
coordinate agents at runtime. Solutions found by DOMAP are generally sub-optimal,
since planning at runtime often requires fast response, although finding optimal solu-
tions are possible and usually reliant on an optimal goal allocation. Although approaches
to online single-agent planning usually involve some kind of interleaving planning and
execution (e.g., lookahead planning), in our approach to online multi-agent planning
we focus on domains that allow agents some time to plan while the system is still in
execution.

We implemented DOMAP in JaCaMo [13], a platform for the development of
MAS with the environment, Belief-Desire-Intention (BDI) agents, and organisation as
first-class programming abstractions. Our approach combines MAP with MAS, allow-
ing for dynamic execution of solutions found through planning, and making it easier
to transition from planning to execution and vice-versa. We use three domains in our
experiments, the classical Rovers domain, our novel Floods domain, and the well es-
tablished Petrobras domain [135]. Our experiments have fully cooperative and norm-
compliant agents that aim to achieve their organisations’ social plans. To evaluate our
implementation, we selected four state-of-the-art planners that took part in the 2015
Competition of Distributed and Multi-Agent Planners (CoDMAP-15) [138]. DOMAP out-
performs those other planners in the largest planning problems, and is the best overall
when considering planning and execution together.

23

1.1 Motivation

Although it is possible to adapt centralised single-agent techniques to work in a
decentralised way, such as in [36], decentralised computation is not the only advantage
of using MAP. By allowing agents to do their own individual planning the search space
is effectively pruned, which can potentially decrease planning time on domains that are
naturally distributed. This natural decentralisation also means that agents get to keep
some (or even full) privacy from other agents in the system, as they might have beliefs,
goals, and plans that they do not want to share with other agents.

Combining automated planning with autonomous agents results in online (con-
tinual) planning, where agents can consecutively plan and execute during the system’s
runtime. Multiple approaches to single-agent planning in this context (i.e., centralised
planning generating plans for single agents) can be found in a recent survey [80]. Our
approach however, combines MAP with MAS, resulting in a decentralised online multi-
agent planning framework for multi-agent systems.

Much work has already been done to add planning into autonomous agents. For-
mal semantics for adding HTN planning in the BDI agent programming language CAN
generated the CANPLAN language, described in [109] and further extended in [40, 111,
41, 39], which provides operational semantics and constructs for HTN planning that
can be used in BDI-based agent programming languages. IndiGolog [57] is an extension
of Golog [76], an agent-oriented programming language based on the situation calcu-
lus and implemented in Prolog, that adds planning in the form of high-level program
execution, allowing planning to be incrementally realised by interleaving planning and
execution. The GOAL [60] agent oriented programming language was also extended to
include planning in [61], where it is shown that GOAL can also act as a planning formal-
ism and can solve a subset of PDDL (Planning Domain Definition Language) problems.

There is also some older work found in RETSINA [123], TAEMS [45], and Ma-
chinetta [112]. RETSINA has no goal allocation mechanism, they plan for pre-allocated
goals; their approach to coordination problems is to monitor and replan, while we use
social laws with the possibility of replanning. TAEMS and Machinetta both have no
explicit planning component, instead they focus on the use of scheduling techniques to
coordinate tasks. These three approaches were discontinued and are no longer being
developed, which limits their practical use (especially their use in new experiments).

Our work in this thesis differs from all of these other approaches in that we fo-
cus on multiple agents and their interaction in the agent, environment, and organisation
dimensions of the MAS. We also provide a quantitative comparison of our implementa-
tion against other implemented multi-agent planners, something that is lacking in all
of the aforementioned work.

24

1.2 Objectives

The main objectives addressed in this thesis are:

1. Design the Decentralised Online Multi-Agent Planning (DOMAP), a framework for
formulating plans of action for social goals at runtime of a MAS;

2. Implement the framework by integrating it with a MAS development platform
(JaCaMo);

3. Evaluate our framework against other state-of-the-art and recently developed multi-
agent planners;

1.3 Thesis Outline

This thesis is structured as follows. In the next chapter, some background on
Automated Planning and Intelligent Agents is presented, with an emphasis on the top-
ics relevant to better understand the contributions of our work, as well as a discussion
on related work, explaining some of the key differences between other approaches and
DOMAP. In Chapter 3, introduces our Floods domain, a novel domain designed specifi-
cally for online multi-agent planning. Chapter 4 contains the design of the Decentralised
Online Multi-Agent Planning framework (DOMAP), followed by detailed information
about each of the major components in the framework: input language, goal allocation,
individual planning, and coordination mechanism. Chapter 5 provides DOMAP imple-
mentation details into how we implemented it in the JaCaMo MAS development plat-
form. In Chapter 6 we describe our experiments’ settings, show results of the evaluation
of DOMAP against four other state-of-the-art multi-agent planners, and then discuss
some of the more important results. This thesis concludes in Chapter 7, with a sum-
mary of our contributions and discussion of future work.

25

2. BACKGROUND AND RELATED WORK

In this chapter, we cover the background on some fundamental topics related to
our approach. We start by describing automated planning and its applications, followed
by a more detailed view on HTN planning, HTN planning in agent-oriented program-
ming languages, and on multi-agent planning. Next, basic concepts of intelligent agents
are introduced, followed by some additional information on MAS, multi-agent program-
ming, and JaCaMo (the MAS development platform we used to implement DOMAP).
Finally, the most relevant related work is discussed.

2.1 Automated Planning

Automated planning is the computational study of planning, which is an ab-
stract deliberation process on choosing and ordering actions in order to achieve goals [89].
This is done by anticipating the outcome of these actions, which in turn can cause the
deliberation process to take some time to find the best possible solution. Thus, in do-
mains that require fast planning times, returning a sub-optimal solution can be the
best approach.

Planning can be applied to a myriad of problems, and as such, there are many
forms of planning available: path and motion planning, perception planning, commu-
nication planning, task planning, and several others [89]. Even though most planning
techniques can be applied in many of these forms, in the framework presented in this
thesis we focus on task planning. This does not mean movement cannot be considered,
as long as it can be represented symbolically, for example, if a robot has the goal of
moving from place A to place C and the solution found is to move from A to B and from
B to C. then this is a movement task. How the robot moves from A to B is left for the
underlying system (e.g., a path-finding algorithm).

There are two approaches that planners can take regarding domains [89], domain-
independent and domain-specific planning. Domain-specific usually outperforms domain-
independent planning, but it is restricted to that specific domain and will not work if
there are any deviations from it. Our framework, DOMAP, is domain-independent and
can be used in a variety of loosely-coupled domains, though the use of domain-specific
knowledge can be used to improve its performance on more tightly-coupled domains via
social laws.

In Figure 2.1 [89], we show a simple conceptual model for a traditional planner.
Σ represents the state-transition system, it is governed by a state-transition function
according to the events and actions that it receives. The controller outputs an action
according to some plan and the related state of the system (observations). A planner

26

uses the description of the system Σ, the initial state, and the goals (objectives) to for-
mulate a plan for the controller in order to achieve its goals. It is worth noting that
offline planners do not include a controller (i.e., the execution component) and thus the
implementation and execution of the plans that were found is up to the developer. In
our approach the planner is inherently integrated with the controller, thus allowing it
to find and execute plans.

Figure 2.1 – Traditional architecture for offline planning [89].

Even though the computational cost of automated planning is still high for com-
plex and dynamic domains, there has been several success stories of real-world applica-
tions. As an example there is the control of spacecraft Deep Space I, that successfully
completed its goal by encountering the Comet Borrelly and capturing several images and
other scientific data. The control was done by the Autonomous Remote Agent, based on
automated planning techniques. The Hubble Space Telescope also uses planning tech-
niques [83], the SPSS is its short-term planning system and Spike its long-term.

To deal with these various forms of planning and different application needs,
many types of planning techniques emerged through the years. The most popular is
Classical Planning, also known as STRIPS-like planning, which was an early planner
for restricted state-transition systems [53]. STRIPS action theory is still used in many
recent planners, and is the foundation of most classical planners, including the well
known formalism for representing planning problems, PDDL [79]. There are many other
types that aim to discard some of the assumptions made in classical planning, such as in
temporal planning, where temporally overlapping actions are possible, and probabilistic
planning, allowing partial observability of the environment.

Regarding search algorithms for planning, there are mainly two different ap-
proaches: state-space and plan-space. In state-space search [90], each node corresponds

27

to a state of the world, each arc corresponds to a state transition, and the plan corre-
sponds to the path taken in the search space. The previously discussed STRIPS planner
uses this type of search, as well as most classical planners. In a plan-space search [90],
nodes are partially specified plans. Arcs are plan refinement operations intended to fur-
ther complete a partial plan, i.e., to achieve an open goal or to remove a possible incon-
sistency. A refinement operation avoids adding to the partial plan any constraint that
is not strictly needed for addressing the refinement (least commitment principle). Plan-
ning starts from an initial node corresponding to an empty plan, until arriving in a final
node containing a solution to achieve the required goals.

The difference between plan-space and state-space is not only in its search
space, but also in its definition of a solution. Plan-space search algorithms use a more
intricate plan structure than just a sequence of actions as in search-space. The solution
of a plan-space search is comprised of the choice of actions, causal links, and partial
ordering of those actions.

2.1.1 Classical Planning

Classical STRIPS planning consists in sequences of actions that transition the
world from an initial state to a state satisfying a goal condition. States are modelled
as sets of propositions that are true in those states, and actions can change validity of
certain propositions.

A formal definition of classical planning, from [7], is as follows: let P be a set
of all propositions modelling properties of world states. Then a state S ⊆ P is a set of
propositions that are true in that state, while every other proposition is false. Each ac-
tion a is described by four sets of propositions (B+

a , B
−
a , A

+
a , A

−
a), where B+

a , B
−
a , A

+
a , A

−
a ⊆

P,B+
a ∩ B−a = ∅, A+

a ∩ A−a = ∅. Sets B+
a and B−a describe positive and negative precondi-

tions (before constraints) of action a, that is, propositions that must be true and false
right before the action a. Action a is applicable to state S iff B+

a ⊆ S ∧ B−a ∩ S = ∅. Sets
A+
a and A−a describe positive and negative effects (after constraints) of action a, that is,

propositions that will become true and false in the state right after executing the action
a. If an action a is applicable to state S then the state right after the action a is

γ(S, a) = (S \ A−a) ∪ A+
a . (2.1)

If an action a is not applicable to state S then the state transition γ(S, a) is undefined.

A classical planning problem consists of a set of actions A, a set of proposi-
tions S0 called an initial state, and disjoint sets of goal propositions G+ and G− that
are required to be true and false in the goal state. A solution to the planning prob-

28

lem is a sequence of actions a1, a2, . . . , an such that S = γ(...γ(γ(S0, a1), a2), ..., an) and
G+ ⊆ S ∧G− ∩ S = ∅. This sequence of actions is called a plan.

2.1.2 HTN Planning

Similarly to classical planning, in HTN planning [89, Chapter 11] each state
of the world is represented by a set of atoms and each action results in a deterministic
state transition. The difference is that besides the operators (action description) present
in both approaches, HTN planning also includes a set of methods. Methods are recipes on
how to decompose tasks into smaller subtasks. These methods are applied to the initial
task network (goals) until a primitive task is reached, that is, some planning operator
can be applied. This convenient way of writing recipes is more closely related to how a
human expert would think about solving a problem, thus making HTN planning more
suited for practical applications. Furthermore, the extra domain information contained
in methods usually results in better performance when compared to typical classical
planners.

Domains in HTN planning contain a set of operators and a set of methods. Op-
erators are action descriptors that can be executed given some preconditions, causing a
list of postconditions to become true. They can cause a state transition to occur in the
system, while methods can only decompose tasks into smaller subtasks, which can even-
tually lead to primitive tasks. Methods are non-primitive tasks that impose constraints
into the domain, in order to guide the search for solutions by effectively pruning some
states. An HTN problem description contains a list of atoms that are true during the
initial state of the system, as well as the initial task network.

There are two cases where a plan π can be the solution for a problem P , as
described in [89]. It depends if the initial task network is primitive or non-primitive. If
it is primitive, then a plan π with actions (a1, a2, ..., ak) is a solution for P if there is a
ground instance w′ of the task network w and a total ordering of the task nodes where
the plan π is executable in state s0, and every constraint between the task nodes of the
task network holds. Otherwise, if the initial task network is non-primitive, then π is
a solution for P if a sequence of task decompositions can be applied to w in order to
produce a primitive task network w′ such that π is a solution for w′.

Algorithm 2.1 [89] contains the main function of an abstract HTN planner. The
parameters are: s state-transition system, U set of task nodes, C set of constraints, O set
of operators, and M set of methods. Line 4 checks if task nodes are primitive, and if so
they are decomposed. Otherwise, in line 11, if task nodes are non-primitive then a viable
method that was not previously applied is selected and calls the function again with the

29

new subtasks and relevant constraints generated. Every task in U must eventually be
decomposed. The mgu reference on line 15 is a simple unification function.

Algorithm 2.1: An abstract algorithm for HTN planning [89].
1 Function Abstract-HTN (s, U , C, O, M)
2 if (U ,C) can be shown to have no solution then
3 return failure;
4 else if U is primitive then
5 if (U ,C) has a solution then
6 non-deterministically let π be any such solution;
7 return π;
8 end
9 else

10 return failure;
11 end
12 else
13 choose a non-primitive task node u ∈ U ;
14 active← {m ∈M | task(m) is unifiable with tu};
15 if active 6= ∅ then
16 non-deterministically choose any m ∈ active;
17 σ ← call mgu for m and tu that renames all variables of m;
18 (U ′,C ′)← δ(σ(U ,C),σ(u),σ(m));
19 return Abstract-HTN(s, U ′, C ′, O, M);
20 end
21 else
22 return failure;
23 end
24 end
25 end

The SHOP2 planner1 [90] is a well-known implementation of HTN planning.
SHOP2 is written using the Lisp high-level programming language. Although there are
versions of it available in Java (JSHOP2) and in Python (Pyhop), SHOP2 contains more
features than any other version. Some of these features include different search strate-
gies: depth-first stopping at the first plan found (the only one available in all versions);
depth-first search for the shallowest (lowest-cost) plan, and iterative-deepening search.
Another important feature present in SHOP2 is the time-limit argument, which allows
us to set a time-limit for the search, and can be especially useful in online planning,
where the system might require fast action responses. This time-limit argument is in-
spired by the notion of anytime planning as defined by [44]. SHOP2 also has internal
operators (denoted by double exclamation points) that are used internally in the plan-
ning process, but do not correspond to any action in the solution, such as book keeping
operators to mark places visited in a path.

To illustrate some of the basic concepts of HTN planning, consider the example
in Listing 2.1. The domain is defined on lines 1 through 10. An operator has a precon-

1https://www.cs.umd.edu/projects/shop/

https://www.cs.umd.edu/projects/shop/

30

dition list, a delete list, and an add list. In this domain there are two operators, the
first is !pickup ?a, it has an empty precondition and delete list, and an add list where
it adds the fact have ?a, with ?a being a variable that is unified by the planner. The
second operator, !drop ?a, contains a precondition and a delete list, but no add list. If the
precondition have ?a holds, then the fact have ?a is removed, i.e., the item is dropped.
A method has a precondition list and a task list (containing substasks such as primi-
tive and non-primitive tasks). The method swap ?x ?y in this example is branched into
two, in the first case if the precondition have ?x does not hold then the second branch
is activated, where the precondition is have ?y. In other words, if it has the first object
it will drop and pickup the second, otherwise it drops the second and pickup the first.
The problem is defined on lines 11 through 13, and contains the fact have guitar and
the initial task network (goal) swap guitar violin. Both are used by the planner to unify
with method’s and operator’s variables during planning.

Listing 2.1 – Basic example of SHOP2 planning formalism.
1 (defdomain basic−example (
2 (:operator (!pickup ?a) () () ((have ?a)))
3 (:operator (!drop ?a) ((have ?a)) ((have ?a)) ())
4 (:method (swap ?x ?y)
5 ((have ?x))
6 ((!drop ?x) (!pickup ?y))
7 ((have ?y))
8 ((!drop ?y) (!pickup ?x))
9)

10))
11 (defproblem problem1 basic−example
12 ((have guitar)) ((swap guitar violin))
13)

Figure 2.2 shows the task decomposition dony by the SHOP2 planner for the
basic example provided in Listing 2.1. The initial task network is decomposed into a
non-primitive subtask where the variables are instantiated and checked against the
precondition of the swap method. Because the precondition holds, the task list of the
method is further decomposed into two new primitive subtasks, that when executed in
order (first drop and then pickup), achieve the goal task. The swap method has two
possible branches, and because the precondition from the first branch holds, SHOP2
does not need to expand the second branch unless it exhausted the first branch and
found no solution. Depending on the search method used in SHOP2, it can also keep
trying to search for a plan with least cost. Either way, the planner would then backtrack
and try to expand the second branch.

The various versions of SHOP have been widely used in many different appli-
cations [88]. Some government projects include: the US Naval Research Laboratory’s
Hierarchical Interactive Case-Based Architecture for Planning (HICAP) - a system for
helping experienced human planners develop evacuation plans; and the Naval Research

31

Figure 2.2 – Step-by-step solution to SHOP2 basic example.

Laboratory’s Analogical Hypothesis Elaboration for Activity Detection (AHEAD) - a sys-
tem for evaluating terrorist threats. As for industry projects: the Smart Information
Flow Technologies company uses SHOP2 to control multiple Unmanned Aerial Vehicles
(UAVs); and the Infocraft company uses SHOP2 in their system for materials selection
in a manufacturing process.

HTN Planning in Agent-Oriented Programming Languages

In dynamic systems it is not feasible for a planner to know all details of the
dynamics in the system, but it cannot completely ignore how they can evolve overtime. It
needs to check online if a solution remains valid, and if it does not, then revise or replan.
Figure 2.3 [89] expands on Figure 2.1 by adding the feedback of the plan’s execution
status from the controller to the planner. This allows for a more realistic model, with
plan supervision, plan revision, and re-planning mechanisms [89].

32

Figure 2.3 – Conceptual model for online planning [89].

Online planners are much harder to benchmark then offline planners, as per-
formance no longer depends only on the planner, but on the system as a whole, includ-
ing the controller. Many domain-independent planning algorithms have been integrated
into agent programming languages, but most real world applications make use of online
planners that are domain-specific, as they can achieve the best performance. A recent
survey [80] shows some of these integrations between planning algorithms and BDI
(Belief-Desire-Intention) agents. These, however, are single-agent approaches that do
not consider the decentralised nature of MAP and MAS.

An HTN-method, as defined in [39], m = Jτ(t), [S, φhtn]K ∈ Me — where τ(t) is
either a primitive or non-primitive task, S is a task list, φhtn is the set of constraints,
and Me is the set of methods — can be transformed into a BDI plan ρm = em : ψm → Pm,
where the event goal em = τ(t), the context condition ψm = {l|(l, n1) occurs in φhtn} ∪
{¬l|¬(l, n1) occurs in φhtn}, and the plan body P = (P1|| . . . ||Pm). The event goal using
the corresponding HTN non-primitive task terms t. The context condition contains the
conjunction of literals that need to hold before the first task from the task list. Finally,
the plan body consists of tasks translations from the task list into subgoals/subplans if
the task is non-primitive, or actions if the task is primitive. In our approach, however,
we do the opposite, transforming a BDI plan ρ into an HTN method mρ. A summary of
these translations from BDI to HTN entities is shown in Table 2.1 [109].

The work done with the CANPLAN language [40, 111, 41, 39] has laid much of
the formal work for using HTN planning in BDI agents. CANPLAN2 [110], a modular
extension of CANPLAN [109], is a BDI-based formal language that incorporates an HTN
planning mechanism. This approach was further extended in [111] to address previous
limitations, adding features such as failure handling, declarative goals, and lookahead

33

Table 2.1 – Mappings from BDI to HTN entities [109].
BDI entities HTN entities

belief base B state I
action primitive task
belief operations +b and −b primitive tasks
event goal !e compound task
test goal ?φ state constraints
plan context condition ψ state constraints
plans in sequence P ;P ′ ordering constraints
plans in parallel P ||P ′ no ordering constraints
plan body P task network d = [S, φ]
plan ρ = e : ψ → P m = Jτ, dK
plan library Π set of methods Me

planning. The CAN programming languages are not implemented, although its formal-
ism could be used to augment existing BDI-based agent languages. Similarly, in [40]
they proposed an approach to obtain new abstract plans in BDI systems for hybrid plan-
ning problems, where both goal states and the high-level plans already programmed are
considered, bringing classical planning into BDI hierarchical structures.

2.1.3 Multi-Agent Planning

Over the years, Multi-Agent Planning (MAP) has been interpreted as many dif-
ferent things, but they can be characterised into two main concepts. Either the planning
process is centralised and produces distributed plans that can be acted upon by multiple
agents, or the planning process itself is multi-agent. Recently, the planning community
has been favouring the concept that MAP is actually both of these things, that is, the
planning process is done by multiple agents, and the solution’s plans are for multiple
agents.

Planning with/for agents can be characterised into [49]: single-agent planning
for a single agent — a centralised planner searches for a centralised solution; single-
agent planning for multiple agents — a centralised planner searches for a solution and
then distributes it among agents; multi-agent planning for a single agent — agents coop-
erate to form a centralised plan; and multi-agent planning for multiple agents — agents
cooperate to form individual plans, dynamically coordinating their activities along the
way. The latter is what we refer to when we use the term Multi-Agent Planning (MAP),
that is, planning is done by multiple agents, and results in distributed plans for multiple
agents.

Durfee also establishes some stages of multi-agent planning in [49], further
extended in [43]:

34

1. Global goal refinement: decomposition of the global goal into subgoals;

2. Task allocation: use of task-sharing protocols to allocate tasks (goals and sub-
goals);

3. Coordination before planning: coordination mechanisms that avoid conflicts
before planning;

4. Individual planning: planning algorithms that search solutions for the problem;

5. Coordination after planning: coordination mechanisms that solve conflicts af-
ter planning;

6. Plan execution: agents carry out plans from the solution found.

Not all of these phases are mandatory, and some may even be combined into
one. Our DOMAP framework, includes phases 2, 3, and combines 5 and 6.

In Table 2.2 we characterise and summarise the differences between single-
agent planning and multi-agent planning. While multi-agent planning could have no
privacy, even in fully cooperative domains it is fairly trivial to allow at least some sort
of partial privacy. Full privacy, on the other hand, is quite difficult because of the coordi-
nation usually required in some multi-agent planning problems. Single-agent planning
can have no privacy, since the planner needs all the information available. Agent ab-
stractions in single-agent planning are usually represented as any other object or fact
in the environment. In multi-agent planning agents are treated as first-class abstrac-
tions, where each agent can have its own domain and problem specification.

Table 2.2 – Comparisons between single-agent planning and multi-agent planning.

computation privacy agent
abstraction

single-agent planning for a
single agent centralised not needed not needed

single-agent planning for
multiple agents centralised none objects

multi-agent planning for a
single agent decentralised none or partial not needed

multi-agent planning for
multiple agents decentralised partial or full first-class

When considering multiple agents, planning can become increasingly more com-
plex, giving rise to several problems [50]. Actions that agents choose to execute may
cause an impact in future actions that other agents could take. Likewise, if an agent
knows what actions other agents plan to take, it could change its own current choices.
When dealing with multiple agents, concurrent actions are also a possibility that can

35

cause major impact in performance and consequently in planning for optimal or subop-
timal solutions. These are some of the problems that drive the research on MAP.

MAP can be used in various application areas [89] such as multi-robots envi-
ronments, cooperating software distributed over the Internet, logistics, manufacturing,
disaster management, evacuation operations, and games.

2.2 Intelligent Agents

Russel and Norvig state [106] that “An agent is anything that can be viewed as
perceiving its environment through sensors and acting upon that environment through
actuators”. Therefore, sensor data, i.e. perceptions, are the input of an agent and the ac-
tions its output [144]. This concept, illustrated in Figure 2.4 [106], resembles a similar
concept of robots, which are also known to be equipped with sensors and actuators. The
question mark represents the reasoning that the agent performs using perceptions cap-
tured by the sensors, and the appropriate action output that is executed by its actuators.

Figure 2.4 – A generic agent architecture [106].

The reasoning mechanism represented by the question mark in Figure 2.4 can
be, for example, the Procedural Reasoning System (PRS) [56]. In this system an agent
has a library of pre-compiled plans that are composed of:

• goal: postcondition of the plan;

• context: precondition of the plan;

• body: the course of action to carry out.

Another important feature of PRS is the intention stack. It contains all goals
that have not yet been achieved, and it is used by the agent to search its library for plans

36

that match the goal on the top of the stack. If the precondition of a plan is satisfied, then
it becomes a possible option to be executed by the agent.

The PRS was largely based in the BDI architecture. First described in [19] and
further extended by [101], the BDI architecture tries to model the process of deciding
which action to perform to achieve certain goals. It has three primary mental attitudes:
belief — what the agent believes to be true about its environment and other agents;
desire — the desired states that the agent hopes to achieve; and intention — a sequence
of actions that an agent wants to carry out in order to achieve a goal. These mental
attitudes respectively represent the information, motivational, and deliberative states
of the agent. Figure 2.5 [145] illustrates the workflow in a generic BDI architecture: the
belief revision function receives input information from the sensors, and it is responsible
for updating the belief base. This update can generate more options that can become
current desires based on the belief base and the intentions base. The filter is responsible
for updating the intentions base, taking into account its previous state and the current
belief base and desire base. Finally, an intention is chosen to be carried out as an action
by the agent.

Figure 2.5 – Generic BDI model, adapted from [145].

37

According to Wooldridge in [145], an agent has the following characteristics:

• pro-activeness: goal-directed behaviour, agents take the initiative;

• reactivity: agents react to changes in their environment as they happen;

• social ability: agents are capable to communicate and interact with other agents.

These three characteristics complement nicely the requirements in online multi-
agent planning. Pro-activeness is necessary by agents to decide when is the best moment
to start planning. Reactivity is needed to adapt to changes in the environment while
planning is underway. Social ability is vital for coordination in order to avoid any con-
flicts that may arise during planning.

Systems that require the use of intelligent agents will seldom need only a single
agent. In the next section we briefly go through MAS and some of their applications.

2.2.1 Multi-Agent Systems

Multi-Agent Systems (MAS), as defined in [144], “are systems composed of mul-
tiple interacting computing elements, known as agents”. These agents usually take part
in an organisation or a society, interacting together and often cooperating to achieve
some organisational goal [51].

Organisations in a multi-agent system are complex entities in which agents
interact in order to achieve some global purpose [48]. They provide scope for these inter-
actions, reduce or manage uncertainty, and coordinate agents to improve efficiency. They
are especially relevant to MAS in complex, dynamic, and decentralised environments.
These environments are very similar to domains found in multi-agent planning.

For example, if we think of an university as a MAS organisation, it has its
own goals (e.g., searn prestige and/or money), plans (e.g., admit students, teach classes,
make research), and group roles (e.g., deans, professors, students, staff). But in order to
achieve its goals, it needs individuals (agents) to fulfil group roles that can then pursue
the university (organisation) goals [48]. Agents may also have private goals that can
only be achieved through the organisation, e.g., a student pursuing a degree in computer
science needs to join an university.

Environments also play a fundamental part in agent-based systems. They can
be virtual or physical, or both in some cases, as it can be beneficial to simulate parts of
a physical environment as virtual elements. There are two main different views on the
concept of environments in MAS. In classical Artificial Intelligence (AI), environments
represent the external world that is perceived and acted upon by agents in order to
achieve their goals [106]. A more recent view, shows the environment as a first-class

38

abstraction that encapsulates functionalities to support agent activities [142]. The latter
shows the environment as not just being the target of agent actions and a generator of
perceptions, but a part of the MAS just as important as any agent. Thus, this first-
class abstraction of the environment in MAS can be considered as endogenous, while
the classical AI environment is exogenous [103].

These endogenous environments can be considered to have three different levels
of support, as identified in [142]:

i. basic level: provide support for resources that the MAS can interact with (e.g.,
sensors, actuators, printer, network);

ii. abstraction level: bridge the conceptual gap between agents and low level details
regarding deployment of the environment, making them transparent to the pro-
grammer;

iii. interaction-mediation level: mediate the interaction between agents in the envi-
ronment and regulate the access to shared resources.

This view allows the development of environments that can include some com-
mon MAS concepts, such as shared data objects, shared resources, and communication/-
coordination services, all while keeping them domain-independent [103]. For example,
the stigmergic coordination strategy in MAS cannot involve any communication. Con-
sidering only the agent abstraction it could be very difficult to develop such a strategy,
but by including the environment abstraction it is possible to model, for example, a
pheromone ground, such as the one described in [132].

Thus, multi-agent systems are composed of multiple interacting agents that
work to solve problems that are beyond the capabilities or knowledge of each individual
agent [48]. Sycara describes, in [122], MAS as systems with the following attributes:

• agents have incomplete knowledge or capabilities for solving the problem;

• there is no global control;

• information is decentralized;

• computation is asynchronous.

These are attributes that also classify distributed problem solvers, of which
multi-agent planners are also a part of.

There are many examples [48] of possible applications of MAS. For instance, a
logistics system where agents coordinate to transport and store a variety of goods, or
a network of sensory agents that coordinate their activities to monitor traffic in busy
intersections. In the next section we discuss some of the tools available to develop multi-
agent systems. One of the first known uses [86] of robots in disaster management was

39

during the World Trade Center disaster, where several robots were deployed in urban
search and rescue missions. More recently [87], several unmanned aerial vehicles were
used in conjunction with social media to aid in the 2015 Memorial Day weekend floods
in Texas, and to illustrate the need for decision-making support.

2.2.2 Multi-Agent Programming

Traditional software engineering and programming languages are generally
not made with autonomy in mind, especially when there is a need for multiple soft-
ware to work together to achieve the system’s goals [14]. Shoham first introduced agent
programming in 1993 [115], and over the years the agent community has been improv-
ing what were mainly theoretical approaches back then, into practical agent-oriented
programming languages.

Many practical agent-oriented programming languages exist and continue to be
developed and improved upon nowadays. Some examples include Jason [15], JACK [64],
2APL [38], GOAL [60], and the Agent Factory Framework [95]. More recently, there
have been several new agent languages emerging, such as ALOO [102], ASTRA [33],
and SARL [105].

Several studies indicate that Jason has better performance when compared
with other agent-oriented programming languages. Jason was included in a qualitative
comparison of features available in Erlang, Jason, and Java [67]; in a universal crite-
ria catalogue for agent development artifacts [20]; in a quantitative analysis of 2APL,
GOAL, and Jason regarding their similarity and the measured time it takes to reach
specific agent states [9]; a performance evaluation of Jason when used for distributed
crowd simulations [52]; an approach to query caching and a performance analysis of its
usage in Jason, 2APL and GOAL [2]; an implementation of Jason in Erlang and a bench-
mark for evaluating its performance [47]; a quantitative comparison between Jason and
two actor-oriented programming languages (Erlang and Scala) using a communication
benchmark [26, 27]; and finally a performance evaluation of several benchmarks be-
tween agent programming languages (Jason, 2APL, and GOAL) and actor programming
languages (Erlang, Akka, and ActorFoundry) [29]. In cases where performance was con-
sidered, Jason had excellent results. Jason controls the agent abstraction in the JaCaMo
MAS development platform, which was one of the reasons for selecting JaCaMo as our
agent platform implementation.

According to Bordini and Dix in [14], they state that:
Originally agent programming languages were mostly concerned with

programming individual agents, and very little was available in terms of pro-
gramming abstractions covering the social and environmental dimensions of multi-
agent systems as well as the agent dimension.

40

These multiple abstraction layers make multi-agent oriented programming es-
pecially suited for solving complex problems that require highly social, autonomous soft-
ware.

Before describing some of the options available for the development of multi-
agent oriented programming, we compiled some of the features that are expected to be
present in these platforms, as reported in [14]:

• Reacting to events vs long-term goals: An agent needs to be able to appropri-
ately react to events in the environment without compromising their long-term
goals.

• Courses of action depend on circumstances: Ability to specify multiple courses
of actions for a specific event, as it can often be triggered in many different circum-
stances.

• Choosing courses of action only when about to act: Environments in multi-
agent applications are highly dynamic, thus, agents should only choose a particular
course of action when they are about to act.

• Dealing with plan failure: Dynamic environments often result in many plan
failures. Agents should be able to detect and deal with these failures.

• Rational behaviour: Agent applications require rationality. An agent should be
able to reason on how to accomplish a goal, and to keep trying until it believes the
goal to be accomplished, or otherwise impossible to accomplish at all.

• Social ability: Communication between agents is crucial for both cooperative and
self-interested agents that need to share resources. As established in the previous
section, organisations are very important in MAS.

• Code modification at runtime: Other agents, humans, or entities, should be able
to send new plans to be added to an agent’s plan library during execution. Thus,
an agent’s plan library should be able to be modified at runtime. This can also be
allowed in organisations, so that norms can be created or modified on-the-fly.

Below we present some of the more robust MAS development platforms, containing mul-
tiple abstraction levels, found in the literature.

JADE2 [10] is an open source platform for the development of peer-to-peer agent
based applications. Besides the agent abstraction, it also provides: task execution and
composition model, peer-to-peer agent communication based on asynchronous message
passing, and a yellow page service that supports the publish and subscribe discovery

2http://jade.tilab.com/

http://jade.tilab.com/

41

mechanism. JADE-based systems can be distributed across machines with different op-
erational systems, and has been used by many languages (e.g., Jason and JaCaMo) as a
distribution infrastructure.

Jadex3 [99] allows the programming of intelligent software agents in Java. The
agent abstraction is based on the BDI model, and provides several features such as: a
runtime infrastructure for agents, multiple interaction styles, simulation support, auto-
matic overlay network formation, and an extensive runtime tool suite.

The TAEMS framework [45] provides a modelling language for describing task
structures, i.e., tasks that agents may perform. These structures are represented by
graphs, containing goals and subgoals that can be achieved, along with the methods re-
quired to achieve them. Each agent has its own graph, and tasks can be shared between
graphs, creating relationships where negotiation or coordination may be of use. The
TAEMS framework does no explicit planning, but provides some scheduling techniques.
Its focus is on coordinating tasks of agents where specific deadlines may be required.
The development has been discontinued since 2006.

Machinetta [112] is a coordination framework that uses a proxy-based inte-
gration infrastructure for coordinating teams of heterogeneous entities such as robots,
agents, and persons. The use of proxies allows reusable teamwork capabilities across
different domains and high-level team-oriented programming as lightweight Java pro-
cesses. Proxies serve to initiate and terminate team plans, failure handling, sharing in-
formation, and coordination tasks allocation. It has no explicit planning component, but
uses scheduling techniques to coordinate tasks. Machinetta is no longer in development.

Magentix24 [121], an upgraded version of the original Magentix [1], provides
support in three different abstraction levels: i) organisation level, with technologies
and techniques related to agent societies; ii) interaction level, with technologies and
techniques related to communications between agents ; and iii) agent level, with tech-
nologies and techniques related to individual agents. These are provided by multiple
building blocks that can be used for the development of MAS such as communication
infrastructure, tracing, conversational agents, argumentative agents, Jason agents, and
a HTTP interface.

JaCaMo5 [13] is composed of three technologies, Jason, CArtAgO, and Moise,
each representing a different abstraction level. Jason is used for programming the agent
level, CArtAgO is responsible for the environment level, and Moise for the organisation
level. JaCaMo integrates these three technologies by defining a semantic link among
concepts in different levels of abstraction (agent, environment, and organisation). The
end result is the JaCaMo MAS development platform. It provides high-level first-class

3http://www.activecomponents.org/
4http://www.gti-ia.upv.es/sma/tools/magentix2/
5http://jacamo.sourceforge.net/

http://www.activecomponents.org/
http://www.gti-ia.upv.es/sma/tools/magentix2/
http://jacamo.sourceforge.net/

42

support for developing agents, environments, and organisations, allowing the develop-
ment of more complex multi-agent systems.

The Multi-Agent Programming Contest (MAPC) is an annual international
competition, initiated by Jürgen Dix, Mehdi Dastani, and Peter Novak in 2005. Its
purpose is to stimulate research in multi-agent programming by introducing complex
benchmark scenarios that required coordinated action and can be used to test and com-
pare multi-agent programming languages, platforms, and tools. The winners of MAPCs
in 2013 [151], 20146, and in 2016 [28] used JaCaMo to program their agents. Thus, Ja-
CaMo’s performance and its multiple abstraction levels were the reasons why we chose
it to implement our distributed online multi-agent planning framework. A more detailed
discussion about JaCaMo and its functionalities is presented in the next section.

2.2.3 JaCaMo

JaCaMo7 [13] is a MAS development platform that explores the use of three
MAS programming dimensions: agent, environment, and organisation. According to the
authors of [13], “the agent-based development of complex distributed systems requires
design and programming tools that provide first-class abstractions along the main lev-
els or dimensions that characterise multi-agent systems”. A JaCaMo MAS (i.e., a soft-
ware system programmed in JaCaMo) is given by an organisation specification in Moise,
wherein autonomous agents programmed in Jason can assume roles in the organisation,
and work in a shared distributed artifact-based environment programmed in CArtAgO.

Jason [15] handles the agent dimension. It is an extension of the AgentSpeak(L)
language [100], based on the BDI agent architecture. Agents in Jason react to events in
the system by executing actions on the environment, according to the plans available in
each agent’s plan library. One of the extensions in Jason is the addition of Prolog-like
rules to the belief base of agents.

CArtAgO [104] is based on the A&A (Agents and Artifacts) model [96], and
manages the environment dimension. Artifacts are used to represent the environment,
storing information about the environment as observable properties (beliefs that are
added to the agent’s belief base) and providing actions that can be executed through op-
erations. Agents can focus on specific artifacts in order to obtain information contained
on that artifact, agents then receive the observable properties as beliefs and are able to
execute the artifact’s operations.

Moise [65] operates the organisation dimension, regulating the specification of
organisations in the MAS. Moise adds first-class elements to the MAS such as roles,

6https://multiagentcontest.org/2014/
7http://jacamo.sourceforge.net/

https://multiagentcontest.org/2014/
http://jacamo.sourceforge.net/

43

groups, social goals, missions, and norms. Agents can adopt roles in the organisation,
forming groups and subgroups. Missions are defined to achieve social goals. The be-
haviour of agents that adopt roles to accomplish these missions is guided by norms.

An overview of how JaCaMo combines these different levels of abstraction and
how they interact with each other can be observed in Figure 2.6 [13]. In the top-most
level, the organisation dimension is composed of a scheme, a set of missions, and a set
of roles. These roles are adopted by agents that inhabit the agent dimension. In the
bottom-most dimension, the environment houses artifacts that relate information about
the environment, grouped into workspaces that agents can access. These workspaces
can be distributed across multiple network nodes, effectively distributing the MAS.

Figure 2.6 – The JaCaMo MAS development platform overview [13].

JaCaMo integrates these three technologies by defining a semantic link among
concepts of the different abstractions (agent, environment, and organisation) at the
meta-model and programming levels, in order to obtain a uniform and consistent pro-
gramming model that simplifies their combination for the development of MAS. This
platform provides high-level first-class support for developing agents, environments,
and organisations, allowing for the development of more complex MAS.

44

Figure 2.7 – JaCaMo runtime model and the standard set of artifacts available [13].

45

The structure of a JaCaMo MAS runtime is shown in Figure 2.7 [13]. Starting
at the platform level, above the operating system and the Java platform, are CArtAgO,
Jason, and NOPL engine (Moise implementation). At the execution level, we have sev-
eral standard artifacts that are executed in every JaCaMo MAS application. The upper
rectangle in artifacts contain the list of observable properties, while the bottom rectan-
gle shows the available operations. For example, the GroupBoard has the Specification,
Scheme, and Goals of an organisation’s group listed as observable properties. Agents
that focus on this artifact will gain access to this information, and will be able to exe-
cute the actions (operations) adoptRole, leaveRole, addScheme, and removeScheme. At
the conceptual level we have the dimensions previously discussed in Figure 2.6.

Before we go into detail on each of JaCaMo’s technologies, consider an example
that we use to show code snippets for each technology.

JaCaMo MAS example — Build-a-House

We use the Build-a-House example that comes with the JaCaMo distribution,
also described in [13]. In this JaCaMo MAS example, an agent called Giacomo wants
to build a house on a piece of plot that he owns. First, he will have to hire various
specialised companies, each represented by a company agent. Second, Giacomo needs to
ensure that the various tasks required to build the house are coordinated and executed
by the contractors.

In the first phase, Giacomo has to hire one company for each of the several tasks
involved in building the house, such as site preparation, laying floors, building walls, and
building the roof. An auction-based mechanism is used by Giacomo to select the best
company for each of the tasks — the best company is the one that offers the cheapest
service for a specific task. Giacomo starts an auction for a task with the maximum price
that he is willing to pay. Companies that are suitable for the job can place bids. After a
certain deadline, Giacomo selects the lowest bid at the time that the auction ended, and
awards the contract for that task to the company that placed the bid.

In the second phase, after companies have been hired, the contractors have to
execute their assigned tasks. Some kind of coordination needs to be employed here, since
tasks can depend on other tasks being completed first, and some tasks can be done in
parallel. This coordination is done via social schemes in the Moise organisation.

The .jcm file contains the initial configuration used to start the MAS, defining
the names and number of agents that will be created, the artifacts, and the organisa-
tion specification. In this file it is also possible to define groups, assign initial roles to
agents, and much more. In Listing 2.2, we show the .jcm for the Build-a-House example,
limiting it to agent definition only in order to keep it simple. Giacomo is the agent that

46

Listing 2.2 – JaCaMo .jcm code snippet for the Build-a-House example.
1 mas house_building {
2 agent giacomo
3 agent companyA
4 agent companyB
5 agent companyC {
6 instances: 5
7 }
8 }

wants to build a house, and the others are company agents, with companyC creating five
instances of the agent (companyC1,. . . ,companyC5).

Agent Abstraction Level — Jason

Jason8 [15] is an agent-oriented programming language for the development
of MAS based on the BDI architecture. Jason is an implementation of the AgentSpeak
language, with some new and unique extensions. AgentSpeak, initially conceived by
Rao [100], represents an abstraction of implemented BDI systems like PRS which allows
agent programs to be written and interpreted similarly to horn-clause logic programs,
hence the resemblance to the logic programming language Prolog. A plan in AgentSpeak
is triggered when events (internal or external) occur, followed by checking if the context
of the plan is applicable; the body of the plan is composed of basic actions and/or subgoals
that need to be achieved in order for the plan to be successful.

In Jason, an agent is an entity composed of a set of beliefs, representing the
agent’s current state and knowledge about the environment in which it is situated; a set
of goals, tasks that the agent aims to achieve; a set of intentions, tasks that the agent is
committed to achieve; and a set of plans, courses of actions that are triggered by events.
Events in Jason can be related to changes in the agent’s belief base, or to the addition or
removal of goals. The agent reacts to these events by creating new intentions, provided
that there are applicable plans for reacting to that event.

Thus, an agent program is a set of initial goals, beliefs, rules, and plans. Goals
are preceded by !, plans assume the form te : c <- b, where te is a triggering event
that the plan can react to; c is the context (optional), a conditional formula that must
be true for the plan to be applicable; and b is the body of the plan, a sequence of actions
and subgoals.

In Figure 2.8 [15], the reasoning cycle of a Jason agent is illustrated. When
an agent receives a perception from the environment, it goes through the BRF (Belief
Revision Function in step 1) that adds, update, or remove, a belief from the belief base.

8http://jason.sourceforge.net/

http://jason.sourceforge.net/

47

This causes an external event to be generated and added to the set of events (in step 2).
An event is chosen and unified with all relevant plans from the plan library (step 3). The
context of all relevant plans are tested (step 4), and the ones which passed are separated
as applicable plans (step 5) and added to the stack of intentions. An intention from the
stack of intentions is chosen (step 6), and then its corresponding action is executed (step
7).

Figure 2.8 – Jason overview [15].

Listing 2.3 shows a snippet of the Giacomo agent code from the Build-a-House
example. The initial goal !have_a_house creates a goal addition event as soon as Gi-
acomo is created. The plan +!have_a_house has an empty context, and thus, imme-
diately reacts to this event by adding two additional subgoals, !contract to initiate
the contract phase, and !execute to build the house. By default, these subgoals are
triggered in the order that they appear, that is, the contract subgoal has to be com-
pleted first, and then goal execute is added. The +!contract plan adds a subgoal to
create auction artifacts for the tasks to be auctioned, and then adds a subgoal to wait
for bids from company agents. The +!wait_for_bids plan (line 15) uses the .wait in-
ternal action to wait 5000 milliseconds, and then adds a subgoal to show the winners of

48

Listing 2.3 – Agent code snippet for the Build-a-House example.
1 !have_a_house.
2

3 +!have_a_house
4 <−
5 !contract;
6 !execute.
7

8 +!contract
9 <−

10 !create_auction_artifacts;
11 !wait_for_bids.
12

13 +!wait_for_bids
14 <−
15 .wait(5000);
16 !show_winners.
17

18 +!execute
19 <−
20 makeArtifact("hsh_group","GroupBoard",["house-os.xml", house_group],GrArtId);
21 adoptRole(house_owner)[artifact_id(GrArtId)];
22 focus(GrArtId);
23 !contract_winners("hsh_group");
24 makeArtifact("bhsch", "SchemeBoard",["house-os.xml", build_house_sch], SchArtId);
25 focus(SchArtId);
26 ?formationStatus(ok)[artifact_id(GrArtId)];
27 addScheme("bhsch")[artifact_id(GrArtId)].

each auction. The +!execute plan creates the organisational artifacts GroupBoard and
SchemeBoard, focuses on both, adopts the role of house_owner, waits until all companies
have adopted their roles, and finally, adds the scheme that will coordinate the execution
to build the house.

Environment Abstraction Level — CArtAgO

CArtAgO9 [104] is a framework that provides the infrastructure for environment-
oriented programming and execution in multi-agent systems. The underlying idea is
that the environment can be used as a first-class abstraction for designing MAS. It
serves as a computational layer that encapsulates functionalities and services that the
agents can explore at runtime. CArtAgO is based on the A&A meta-model [96]. In this
model, environments are designed and programmed as a dynamic set of computational
entities called artifacts, dispersed into several workspaces, and possibly distributed
among various nodes of a network.

Artifacts in CArtAgO are programmed using the Java language. The current
state of the environment is represented by observable properties. When an agent focuses

9http://cartago.sourceforge.net/

http://cartago.sourceforge.net/

49

on a particular artifact, it gains access to the observable properties of the artifact, that
are directly represented as beliefs in that agent’s belief base. If the value of an observ-
able property is changed (e.g., another agent executed an action that caused a change
in the environment), the belief base of all agents that have focused on that artifact are
updated accordingly. This process is shown in Figure 2.9 [103].

Figure 2.9 – Overview of how focus works [103].

The agent’s actions in the environment are mapped as operations in the arti-
facts. Operations can cause changes in the observable properties that dynamically up-
date the belief base of all agents that are observing the artifact. As long as an agent
focuses on an artifact, he will have access to that artifact’s operations and will be able
to carry out the actions associated with it. The use of operations is depicted in Fig-
ure 2.10 [103].

Figure 2.10 – Using operations in artifacts [103].

In Figure 2.11 [103], the A&A meta-model of CArtAgO is shown. A workspace
can represent a place in the world, a location where one or multiple activities involving
a set of agents and artifacts can happen. The execution of an operation can also gener-
ate signals that are perceived by agents. Differently from observable properties, signals
are useful to represent non-persistent observable events that occurred, conveying some

50

useful information to the agents. Artifacts can be linked together, in which case an ar-
tifact can execute the operations of another linked artifact. Linked operations cannot
be accessed by agents, but only by artifacts that are linked together. Finally, an artifact
can be equipped with a manual, a document that can be consulted by agents, with a
description of the resources and tools provided by the artifact.

Figure 2.11 – CArtAgO A&A meta-model [103].

Listing 2.4 shows a code snippet for the AuctionArt artifact from the Build-a-
House environment. This artifact represents the auction-based mechanism that is used
by Giacomo to select the best company for each of the tasks, and it is also used by
company agents to place bids to a task. The init function is where initial values for
observable properties can be assigned.

Four observable properties are created for this artifact: task, the task descrip-
tion; maxValue, maximum bid value that agent Giacomo is willing to pay; currentBid,
value of the currently lowest bid, it starts with the maximum possible value; and cur-
rentWinner, stores the name of the agent with the best bet. The AuctionArt artifact also
has the bid operation. Company agents that focus on this artifact are able to execute the
bid action for that specific task. The bid operation retrieves values from currentBid and
currentWinner observable properties and update their values if the bidValue proposed
by the agent is lower than the current best value (lines 12–15).

51

Listing 2.4 – Environment auction artifact for the Build-a-House example.
1 public class AuctionArt extends Artifact {
2 public void init(String taskDs, int maxValue) {
3 defineObsProperty("task", taskDs);
4 defineObsProperty("maxValue", maxValue);
5 defineObsProperty("currentBid", maxValue);
6 defineObsProperty("currentWinner", "no_winner");
7 }
8 @OPERATION
9 public void bid(double bidValue) {

10 ObsProperty opCurrentValue = getObsProperty("currentBid");
11 ObsProperty opCurrentWinner = getObsProperty("currentWinner");
12 if (bidValue < opCurrentValue.intValue()) {
13 opCurrentValue.updateValue(bidValue);
14 opCurrentWinner.updateValue(getOpUserName());
15 }
16 }
17 }

Organisation Abstraction Level — Moise

Moise10 [65] includes a specification language, a management infrastructure,
and support for organisation based reasoning mechanisms at the agent level. The or-
ganisation is specified in an eXtensible Markup Language (XML) file, divided in three
sections: structural specification, where groups, roles, and links between roles are spec-
ified; functional specification, where schemes are specified containing a group of goals
and missions, along with ordering constraints for goals establishing which have to be
executed in parallel and which have to be executed in sequence; and normative specifi-
cation, where obligations and permissions of missions can be set to certain roles.

Figure 2.12 – Moise GroupBoard and SchemeBoard artifacts [13].

10http://moise.sourceforge.net/

http://moise.sourceforge.net/

52

The management infrastructure of organisations in JaCaMo works through
CArtAgO artifacts, another example of the synergistic behaviour between JaCaMo com-
ponents. These organisational artifacts are used to help coordinate agents in order to
achieve their social goals, and also control the adoption of roles, group creation, among
others. These artifacts are illustrated in Figure 2.12 [13]. The GroupBoard was already
previously covered. The SchemeBoard is responsible for managing social schemes, or
goal trees. In these schemes, goals are attributed to missions, which are then assigned
to roles.

In Listing 2.5 we show a code snippet with a few lines from each Moise spec-
ification for the Build-a-House MAS example. Moise contains many more useful con-
cepts (e.g., links, formation constraints, etc.) that can be used, which we omit here for
simplicity, check the full code of this example in the JaCaMo distribution. In the struc-
tural specification, the top role house_owner is defined, while roles plumber and painter
are defined as extensions of the building_company top role. In the functional specifi-
cation, a scheme for building the house determines that goals plumbing_installed and
exterior_painted can be executed in parallel, and only when both are finished can the
achievement of goal interior_painted proceed (as determined by the sequence operator
in line 10). Also in the functional specification, goals are attributed to missions which
can have cardinalities. Finally, in the normative specification, a norm of type obligation
is set connecting the mission paint_house to the role of painter.

Listing 2.5 – Organisation code snippet for the Build-a-House example.
1 <structural−specification>
2 <role−definitions>
3 <role id="house_owner" />
4 <role id="building_company" />
5 <role id="plumber" > <extends role="building_company"/> </role>
6 <role id="painter" > <extends role="building_company"/> </role>
7

8 <functional−specification>
9 <scheme id="build_house_sch">

10 <plan operator="sequence">
11 <plan operator="parallel">
12 <goal id="plumbing_installed" />
13 <goal id="exterior_painted" />
14 </plan>
15 <goal id="interior_painted" />
16

17 <mission id="paint_house" min="1" max="1">
18 <goal id="exterior_painted" />
19 <goal id="interior_painted" />
20 </mission>
21

22 <normative−specification>
23 <norm id="n10" type="obligation" role="painter" mission="paint_house" />

53

2.3 Related Work

This section describes some important and relevant research in automated
planning, including recent multi-agent planners and related research in single-agent
planning. As described in Section 2.1, automated planning can have many classifica-
tions. As such, there have been several surveys over the years describing advancements
in particular areas of planning. Of interest and related to this research there are, for
example: in [46], a survey on distributed online planning is presented, with the state
of the art in distributed and online planning at the time (1999), and a design for a dis-
tributed online planning paradigm; a survey [80] that presents a collection of recent
techniques (2013) used to integrate single-agent planning in BDI-based agent-oriented
programming languages, focusing mostly on efforts to generate new plans at runtime;
and a multi-agent planning survey in 2009 [43], describing common multi-agent plan-
ning stages and listing approaches from the literature used in each stage, or even in a
combination of multiple stages.

To make the description of related work unambiguous, we classify them into
three different sections: online single-agent planning, offline multi-agent planning, and
online multi-agent planning. Although the work presented in this thesis is based on
online multi-agent planning, many of its components can be seen in both online single-
agent planning and offline multi-agent planning.

2.3.1 Online Planning

Besides CANPLAN, already discussed in previous sections, there are several
other approaches that try to integrate planning into agent-programming languages.
A modification of the X-BDI agent model [84] is presented in [82] that describes the
relationship between propositional planning and means-end reasoning of BDI agents.
Graphplan was used as the planning algorithm, and applied to a scenario of a produc-
tion cell controlled by agents.

RETSINA [123] is a multi-agent system infrastructure that contains four dif-
ferent types of agents: interface agents that interact with users, task agents to formulate
and carry out plans, information agents that store and provide information from vari-
ous sources, and middle agents to match agents that require services with those that
provide. Each agent has four modules for communicating, planning, scheduling, and
monitoring execution of tasks. Differently from DOMAP, RETSINA does not provide
any domain-independent goal allocation mechanism, they plan for pre-allocated goals.
Its development has been discontinued.

54

In [81], by extending the AgentSpeak(L) interpreter, agents are able to call a
classical planner to create new plans at runtime, in order to respond to unforeseen cir-
cumstances at design time when achieving its goals. Annotating the expected effects of
plans at design time, allows them to be used during the creation of new plans. The trans-
lation between the planner’s world view and the agents’ action theory is very limited,
effectively losing information that could potentially be used in planning and execution.

Markov Decision Process (MDP) [11] are used for modelling non-deterministic
environments, providing value-oriented methods to coordinate agents. These methods
deal with settings where action’s outcomes are uncertain, and can even be extended to
deal with partially observable environments, known as Partially Observable Markov De-
cision Processes (POMDP) [119]. For example, in [146], an online algorithm for planning
under uncertainty in multi-agent settings that are modelled as decentralised POMDPs,
requiring little to no communication. While in [18], qualitative decentralised POMDP is
proposed as a a qualitative, propositional model for multi-agent planning under uncer-
tainty with partial observability. This model is based on classical planners, allowing it
to handle multi-agent planning problems significantly larger than other decentralised
POMDP algorithms. And in [126, 125], Earley graphs are used to shown that it is pos-
sible to bridge the gap between HTNs and MDPs, allowing the use of probabilistic HTN
for planning in an MDP environment. Although we do not cover non-deterministic plan-
ning, the existence of a bridge between HTNs and MDPs could facilitate an extension of
DOMAP to allow multi-agent planning in these types of domains.

IndiGolog [57], an extension of Golog [76], is a programming language for au-
tonomous agents that opted not to use classical planning, based on the premise that it
often ends up being computationally costly. Instead, they used a high-level program exe-
cution [75] as a middle ground between classical planning and agent programming. The
general idea of this approach is to give the programmer more control over the search
effort: if a program is almost deterministic then very little search effort is required; on
the other hand, the more a program has non-determinism, the more it resembles tradi-
tional planning. Because this language is not BDI-based, plans are not associated with
goals and events, which, for example, makes it difficult to find an alternative plan when
a selected plan fails.

The planning extension of the GOAL [60, 61] agent oriented programming lan-
guage allows it to be used as a planning formalism as well. They show that a PDDL
subset containing axioms, the action description language, and plan constraints can be
compiled into GOAL and serve as an interface between BDI agent programs and plan-
ners. However, it is not clear how it compares against traditional PDDL planners, since
no quantitative or qualitative comparison was shown.

55

These approaches were directed to single-agent planning in the context of agent-
oriented programming languages, but they do not address the features found in multi-
agent planning.

2.3.2 Offline Multi-Agent Planning

Kovacs proposed an extension for PDDL3.1 that enables the description of
multi-agent planning domains and problems [71]. This extension of the formalism cov-
ers planning for agents in temporal, numeric domains. It is specifically designed to cope
with the exponential increase in the number of actions, and the constructive and de-
structive synergies found in concurrent actions. Only the formalism is provided, it has
not yet been implemented in any planner/system.

MAP-POP (Multi-Agent Planning based on Partial Order Planning) [74, 129,
130] is a cooperative multi-agent planner. It uses plan-space search, where agents con-
secutively refine an initially empty partial plan, until arriving at a solution. POP-based
planners [4] work over all the planning goals simultaneously, maintaining partial order
relations between actions without compromising a precise order among them until the
plan’s own structure determines that it is necessary. The model builds upon the concept
of refinement planning [69], where agents propose successive refinements to a base plan
until a consistent joint plan that solves the problem is obtained.

The MAP-POP algorithm, as described in [74, 129, 130], starts with an initial
communication stage in which agents exchange information in order to generate data
structures that will be used during planning. The planning itself is composed of two
different stages that are interleaved: an internal planning process, where agents refine
the current base plan individually with an internal POP system; and a MAS coordi-
nation process, where agents exchange the refinement plans generated and collectively
select the next base plan to be refined. These stages repeat themselves until a solution is
found. As the complexity of the problem increases, so does the time required for finding
a solution, since the number of plans required to be refined, and the number of messages
exchanged, increases. This results in a noticeable increase in planning time, especially
when increasing the number of agents, as communication takes a considerable amount
of time.

FMAP [131], an iteration of MAP-POP, is a general-purpose multi-agent plan-
ner with an advanced notion of privacy that was lacking from MAP-POP. Like MAP-
POP, it uses an internal POP procedure to calculate all possible ways to refine a plan,
and agents exchange plans and their evaluations by communication. In FMAP, this com-
munication is governed by a coordinator agent. Agents will only communicate relevant
information that they believe they can share with the rest of the agents, in order main-

56

tain privacy. Similarly to MAP-POP, the communication overhead from partial order
planning in multi-agent settings does not scale very well when dealing with a large
number of agents.

Another POP-based planner, FLAP [108] is a hybrid planner that combines
partial-order plans with forward search and uses state-based heuristics. FLAP imple-
ments a parallel search technique that diversifies the search. Unlike the other plan-
ners, FLAP exploits delaying commitment to the order in which actions are applicable.
This is done to achieve flexibility, reducing the need of backtracking and minimizing
the length of plans by promoting parallel execution of actions. These changes come at
an increase in computational cost, though it allows FLAP to solve more problems than
other partial-order planners.

In [17], the CSP+planning methodology is introduced, separating public and
private aspects of planning problems. This methodology is used to quantify the coupling
level of a multi-agent planning problem, and facilitate coordination during planning.
It quantifies coupling by using two parameters: the tree-width of the agent interaction
graph; and the number of coordination points required per agent. Planning-First [94] is
a general, distributed MAP algorithm, based on the CSP+planning methodology and the
MA-STRIPS [17] planning formalism. Planning-First uses Distributed Constraint Sat-
isfaction Problem (DisCSP) [150] to coordinate agents, and the Fast-Forward planning
system [63] for local planning.

Using DisCSP in Planning-First was too much of a performance hindrance,
thus the authors developed a new iteration called MAD-A* [92]. It is a multi-agent plan-
ning adaptation of one of the most well-known search algorithms, A*. By distributing
the work among different agents, it removes symmetries and reduces the overall work-
load. Moreover, it reduces exactly to A* when there is only a single agent. MAD-A* uses
heuristics to help coordinate agents during planning, and a multi-agent extension of
the Fast Downward [59] planner. These different options for coordination mechanism
and individual planner achieved a much better performance than Planning-First had
obtained.

In [93], the authors propose a heuristic forward search for classical multi-agent
planning that respects the natural distributed structure of the system, preserving agent
privacy. According to the experiments, their system had the best performance (in most
cases) in regards to planning time and communication, as well as the quality of the
solution, when compared to other offline multi-agent planning systems. They can deal
rather well with tightly-coupled domains, but add a communication overhead that slows
their planning time performance on loosely-coupled domains.

57

CODMAP-15 Planners

In this section we describe four state-of-the-art multi-agent offline planners
that participated in the 2015 Competition of Distributed and Multi-Agent Planners
(CoDMAP-15) [138]. These are the planners that we use to compare our approach in
the experiments reported in Chapter 6. An extension of MA-PDDL [71], based on pri-
vacy notions from MA-STRIPS [17], was used as the official planning formalism11 for
the competition. This extension focuses on two concepts: factorisation separates domain
information available for each agent, effectively limiting which STRIPS actions agents
can use; and privacy determines which STRIPS facts are private, i.e., it is not affected
and cannot affect more than one agent. The input accepted by planners had two ver-
sions: factored description, allows the definition of a separate domain and problem for
each agent; and unfactored description, allows the definition of factorised privacy in a
single domain and problem description.

SIW+ -then-BFS(f) [85] was the top performing planner with regards to plan-
ning time (and second overall when considering all metrics), out of a total of 12 planners
(and 17 configurations). It is a single-agent agile planner that converts the multi-agent
domain into a classical planning domain in such a way that privacy is respected. Thus,
planning is done using a centralised classical planner that encodes the factorisation and
creates a classical planning problem containing all of the necessary information. Be-
cause the privacy of objects and fluents used in the competition’s formalism are static,
their encoding technique is based on only allowing valid grounding that respects pri-
vacy by modifying the domain description. It uses two planners, first it tries to solve the
problem with SIW+, and if it fails to find a solution then BFS(f) is invoked. The goal
behind this approach is to find a solution as fast as possible, while still being complete
and sound.

CMAP-t [16] obtained second place (third overall), it starts with the compilation
of MA-PDDL into normal PDDL, extracting agent types and private predicates. Then,
it obfuscates the private parts of domains and problems, and assign goals to agents
following the subset strategy. This strategy computes the relaxed plan for each goal and
the subset of agents that appear as arguments of any action in each of them. These are
the agents that could potentially be needed to solve the goal. After goals are assigned,
CMAP-t merges all domain and problem representations from agents that were assigned
goals into a single obfuscated file, and calls a single agent planner to solve it.

ADP-legacy [37, 35] achieved third place (first overall), and is a centralised
single-threaded planning algorithm implemented in the Fast-Downward planning sys-
tem [59]. ADP deduces agent decompositions from standard PDDL encodings and then
generates a heuristic to exploit these decompositions for efficient planning, ignoring the

11The complete BNF definition of MA-PDDL with privacy can be found at http://agents.fel.cvut.cz/
codmap/MA-PDDL-BNF.pdf

http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF.pdf
http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF.pdf

58

agent factorisation and privacy from MA-PDDL. It decomposes the problem into an en-
vironment and a number of agents who can interact with it, but not directly effect each
other. The heuristic used adapts the Fast-Forward [63] relaxation heuristic to consider
multi-agent information. The legacy version adds some randomness in the search pro-
cess through non-deterministic agent assignment in each run of the same problem.

PMR [77] obtained eighth place, but was different from other planners. PMR
uses three planners: the first uses goal allocation followed by individual planning; if the
resulting plan is empty, then it uses a centralised single-agent planner to attempt to
solve it; and if the solution is still not sound, then another planner capable of applying
plan reuse is used. PMR also translates from MA-PDDL to PDDL, and it obfuscates
private parts, similar to CMAP-t.

2.3.3 Online Multi-Agent Planning

In [78], de-commitment penalties and a Vickrey auction mechanism are applied
in an airport domain to solve the problem of de-icing and anti-icing aircrafts during
winter. Agents in this domain are self-interested and often have conflicting interests.
Performance on both of these mechanisms were positive, although they are restricted to
this domain, since they use domain-specific knowledge.

The TAEMS framework [45], mentioned in Section 2.2.2, provides a high-level
modelling language for describing the tasks that agents may perform. Although TAEMS
does no explicit planning, we included it here since it allows for online scheduling, and
tries to solve time-constraints often required in real-world applications.

In [31], multi-agent planning algorithms were proposed to exploit summary in-
formation to coordinate agents before planning. The authors claim that by associating
summary information with abstract operators in plans, plan correctness can be ensured,
while still gaining in efficiency. The general idea is to annotate each abstract opera-
tor with summary information about all of its potential needs and effects. This often
resulted in an exponential reduction in planning time compared to a flat representa-
tion, but might lead to an exponential increase in the summary information size. Their
approach depends on some specific conditions and assumptions, limiting it to certain
domains.

A Multi-Agent Planning Language (MAPL) is proposed in [21]. Agents expressed
in this language interleave planning, acting, sensing, and communication. Their ap-
proach is based on sharing knowledge in order to ensure the synchronous execution of
joint plans. It is different from our approach, where agents keep their knowledge private
and are coordinated by the organisation via social laws.

59

There have been several studies regarding the temporal decoupling problem in
MAP. In this context, the temporal decoupling problem happens when agents that are
collaborating on a set of temporally dependent tasks need to coordinate the execution of
those tasks by applying additional temporal constraints in order to ensure that agents
working on a different set of related tasks may operate independently. Techniques for
temporal decoupling are especially useful for scheduling execution of tasks that involve
management of resources at runtime.

In [133], an algorithm is used to determine the minimum number of resources
an agent requires to accomplish its ground handling task in an airport application; later
in [98], the Simple Temporal Problem (STP) is discussed, reporting that finding an op-
timal decoupling for STP is NP-hard, and that it can only be solved efficiently if all
agents have linear valuation functions; in [143], the authors propose a characterisation
of weakly-coupled problems and quantify the benefits of exploiting different forms of
interaction structure between agents; and finally, in [68], a new algorithm is proposed
for temporal decoupling and its efficiency is evaluated against other multi-agent STP
algorithms; its results show that it still maintains the same computational complexity
as the others, but also manages to surpass them in efficiency.

To the best of our knowledge there are no other recently implemented multi-
agent online planner that takes advantage of the various programming dimensions in
MAS, such as the ones available in JaCaMo.

In this chapter, we provided the necessary background and related work on
automated planning and intelligent agents. In the next chapter, we introduce the Floods
domain.

60

61

3. FLOODS DOMAIN

Past editions of International Planning Competitions (IPCs) have contributed
with many robust single-agent planning domains and problems. Recently, the ICAPS
(International Conference on Automated Planning and Scheduling) community has been
exploring multi-agent planning further, as evidenced by the workshop series on Dis-
tributed and Multi-Agent Planning (DMAP). In the 2015 Competition of Distributed and
Multi-Agent Planners (CoDMAP-15), held in conjunction with DMAP 2015, the organis-
ing committee described it as a possible test run for future IPCs focused on multi-agent
planning.

The lack of robust and complex multi-agent domains led us to design a new
domain, which we call Floods [24, 25, 22, 23], in order to best exploit the advantages of
MAP and MAS. The inspiration for this specific domain came from the classical Rovers
domain and a real-world scenario, on using computer science technology (e.g., a team
of autonomous robots) to help mitigate and prevent natural disasters. This scenario is
specifically targeted at search and rescue during flood disasters, often caused by intense
hydro-meteorological hazards that can lead to severe economic losses, and in some ex-
treme cases even deaths.

In the Floods domain, a team of autonomous robots are dispatched to monitor
flood activity in a region with multiple areas that can be affected by floods. Social goals
come from Centres for Disaster Management (CDM) that are located in the region be-
ing monitored. Water samples can be requested to be collected from certain areas, and
during flood events victims may be detected and in need of first aid kits. There are three
different types of autonomous vehicles operated by heterogeneous agents:

• Unmanned Aerial Vehicle (UAV): are vehicles (e.g., drones) that are mostly used
for taking aerial images of objectives. In our domain, UAVs are only used for cap-
turing images, but are much faster than other vehicles for this task since they do
not have any movement restrictions.

• Unmanned Ground Vehicle (UGV): are vehicles that operate in contact with the
ground and without an on-board human presence. In the Floods domain, UGVs are
used for ground surveillance in areas that are connected via ground paths. They
are also used to provide assistance to victims by transporting first aid kits to first
responders located in areas affected by floods.

• Unmanned Surface Vehicle (USV): are vehicles that operate on the surface of
the water without a crew on-board. These vehicles are very useful to scout areas
that other vehicles might not be able to go (or might be too risky/costly). In our
domain, USVs can move through areas connected by water paths. Besides being

62

able to capture images, USVs also have the ability to collect water samples for the
CDM, by using a variety of water sensors and actuators.

Figure 3.1 – Elements found in the Floods domain.

All of these elements from the Floods domain are illustrated in Figure 3.1. A
simple problem in the Floods domain is represented in Figure 3.2. There are four areas
in a region where flood events are common when under the effects of heavy rain. In this
problem, there are four flood events occurring, flood2 and flood4 visible from area4 and
flood1 and flood3 visible from area3. There is a ground path between area1 and area3.
There are water paths between area1 and area2, and between area2 and area4. The
CDM has established a base of operations in area1. The agents uav1, ugv1, and ugv1 all
start at area1, with the goals to take a picture of flood1, flood2, flood3, and flood4. This
problem is used in the subsequent sections as a running example.

63

Figure 3.2 – A simple problem in the Floods domain.

64

3.1 HTN representation

In Listing 3.1, we show an example1 of the floods UAV domain in SHOP2’s HTN
formalism. Because each agent has its own domain and problem representation, there
is no need to specify which vehicle is going to be using an action. Thus, the layout is
much cleaner than in usual planning formalisms, the planner has less conditional tests
to do (slightly improving performance), and the search is effectively pruned since each
planner will only expand their own agent’s path, instead of trying all agents for all goals
(greatly improving performance).

Listing 3.1 – HTN domain specification of an UAV agent.
1 (defdomain floods−uav (
2 (:operator (!navigate ?from ?to)
3 ((area ?from) (area ?to) (at ?from))
4 ((at ?from))
5 ((at ?to))
6)
7 (:operator (!take_picture ?area ?disaster)
8 ((area ?area) (disaster ?disaster) (visible_from ?disaster ?area) (at ?area))
9 ()

10 ((have_picture ?disaster))
11)
12 (:operator (!communicate_data ?cdm ?disaster ?area1 ?area2)
13 ((disaster ?disaster) (cdm ?cdm) (at ?area1) (cdm_at ?cdm ?area2) (area ?area1) (area ?area2) (

have_picture ?disaster) (in_range ?area1 ?area2))
14 ((have_picture ?disaster))
15 ((communicated_data ?disaster))
16)
17 (:method (navigate ?to)
18 ((at ?from))
19 ((navigate_uav ?from ?to))
20)
21 (:method (navigate_uav ?from ?to)
22 ((at ?to))
23 ()
24 ()
25 ((!navigate ?from ?to))
26)
27 (:method (get_picture ?disaster)
28 ((disaster ?disaster) (visible_from ?disaster ?area))
29 ((navigate ?area) (!take_picture ?area ?disaster) (send_data ?disaster))
30)
31 (:method (send_data ?disaster)
32 ((disaster ?disaster) (have_picture ?disaster) (cdm_at ?cdm ?area2) (area ?area2) (in_range ?

area1 ?area2))
33 ((navigate ?area1) (!communicate_data ?cdm ?disaster ?area1 ?area2))
34)
35))

1The complete HTN and PDDL specifications of the Floods domain can be found at https://github.com/
smart-pucrs/floods-domain

https://github.com/smart-pucrs/floods-domain
https://github.com/smart-pucrs/floods-domain

65

The navigate operator is the move action for UAVs. It is different from UGVs
and USVs because UAVs are not limited to move only through ground or water paths.
The remaining operators are pretty straightforward: take_picture takes a picture of
a flood disaster if that area is visible from where the agent is; and communicate_data

sends the image of a disaster to a CDM, if it is in range of the area that the agent is
located in.

There are two methods for navigation, navigate and navigate_uav. The lat-
ter has two branches: the first checks if the agent is already in the destination, while the
second moves to the destination. The get_picture method tests if there is evidence of
a disaster, and where it can be viewed from. Then it navigates to that area, captures an
image of the disaster, and calls the send_data method, which moves to an area that is
in range of a CDM, and finally transmits the data.

We show an example for a problem specification of an UAV in Listing 3.2. The
:unordered flag in SHOP2 formalism indicates that there is no particular order for the
goals to be achieved. Domain and problem specifications for UGVs and USVs are located
in Appendix A.

Listing 3.2 – HTN problem specification of an UAV agent.
1 (defproblem uav1 floods−uav (
2 (area area1)
3 (area area2)
4 (area area3)
5 (area area4)
6 (disaster flood1)
7 (disaster flood2)
8 (cdm cdm1)
9 (cdm_at cdm1 area1)

10 (at area1)
11 (visible_from flood1 area1)
12 (visible_from flood2 area4)
13 (in_range area2 area1)
14 (in_range area1 area1)
15)
16 (:unordered
17 (:task get_picture flood2)
18 (:task get_picture flood1)
19)
20)

3.2 JaCaMo MAS

Listing 3.3 contains the necessary information for starting the MAS that rep-
resents the problem described in Listing 3.2, Listing A.3, and Listing A.4. The cdm is
represented as an agent, to simulate the input provided by humans in a real world sce-

66

nario, such as creating new social goals for the robots. This agent descriptor contains
the name and code filename of the agent, which workspaces they should join; and what
artifacts they should focus.

Listing 3.3 – The jcm file for the Floods MAS.
1 mas floods {
2 agent cdm1 : cdm.asl {
3 join: env
4 focus: env.cdm1
5 }
6 agent uav1 : uav.asl {
7 join: env, robots
8 focus: env.area1, env.area2, env.area3, env.area4, env.flood1, env.flood2, env.flood3, env.

flood4, env.cdm1, robots.uav1
9 }

10 agent ugv1 : ugv.asl {
11 join: env, robots
12 focus: env.area1, env.area2, env.area3, env.area4, env.flood1, env.flood2, env.flood3, env.

flood4, env.cdm1, robots.ugv1
13 }
14 agent usv1 : usv.asl {
15 join: env, robots
16 focus: env.area1, env.area2, env.area3, env.area4, env.flood1, env.flood2, env.flood3, env.

flood4, env.cdm1, robots.usv1
17 }
18 workspace env {
19 artifact area1: floods.Area(["area2"],["area3"])
20 artifact area2: floods.Area(["area1,area4"],[""])
21 artifact area3: floods.Area([""],["area1"])
22 artifact area4: floods.Area(["area2"],[""])
23 artifact flood1: floods.Disaster(["area3"])
24 artifact flood2: floods.Disaster(["area4"])
25 artifact flood3: floods.Disaster(["area3"])
26 artifact flood4: floods.Disaster(["area4"])
27 artifact cdm1: floods.Cdm("area1",["area2","area1"])
28 }
29 workspace robots {
30 artifact uav1: floods.VehicleUav("area1")
31 artifact ugv1: floods.VehicleUgv("area1")
32 artifact usv1: floods.VehicleUsv("area1")
33 }
34 organisation org: floods−os.xml
35 }

The next block from the .jcm file is the workspace definitions. They are followed
by the name assigned to the workspace and the definition of all artifacts that are inside
this particular workspace. Each artifact has a unique name, and the initial parameters
that are assigned to their respective observable properties. For instance, the Area arti-
facts receive two different lists as initial parameters, one list for each of its observable
properties: water path and ground path. For example, area1 has a water path with area2
and a ground path with area3. Finally, the last block is the definition of the organisation.

67

In this case, only the filename is informed, but groups and schemes could also have been
instantiated.

Jason Agents

In Jason, as in most agent platforms, communication between agents is based
on speech-act theory. Formal semantics of speech-act for AgentSpeak can be found in [137].
For example, the cdm1 agent executes the action:

.send(uav1, achieve, get_picture(flood2))

to send a message to agent uav1 with the achieve performative, directing it to adopt a
new goal and causing a goal addition event +!get_picture(Disaster)[source(A)],
where A is unified with the name of the message’s sender, cdm1. Basically, cdm1 is ask-
ing uav1 to capture an image of the flood2 event.

Listing 3.4 – UAV agents’ code snippet.
1 +!navigate(To)
2 : at(From)
3 <−
4 !navigate(From,To).
5

6 +!navigate(From,To)
7 : at(To).
8

9 +!navigate(From,To)
10 : .my_name(Name)
11 <−
12 navigate(From,To)[artifact(Name)].
13

14 +!take_picture(Area,Disaster)
15 : visible_from(Areas)[artifact(Disaster)] & .my_name(Name) & cdm_at(CdmAt)[artifact(Cdm)]
16 <−
17 !navigate(Area);
18 take_picture(Area,Disaster,Areas)[artifact(Name)];
19 !communicate_data(Cdm,Disaster,Area,CdmAt).
20

21 +!communicate_data(Cdm,Disaster,At,To)
22 : cdm_at(CdmAt)[artifact(Cdm)] & in_range(Areas)[artifact(Cdm)] & .my_name(Name)
23 <−
24 !navigate(To);
25 communicate_data(At,To,CdmAt,Disaster,Areas)[artifact(Name)].

We show an excerpt of the Jason agent code for UAVs in Listing 3.4, containing
some of the methods found in Listing 3.1. The ! symbol, inside of a plan body, represents
the addition of a goal, which will activate another plan. In the HTN formalism, ! rep-
resent operators (i.e., actions), which in JaCaMo are identified by the suffix containing
the artifact name that where that action should be executed.

68

Differently from SHOP2 methods, Jason allows the use of plans with the same
name. There are three different navigate plans, all with the same name but each has
different purposes. The Jason interpreter will try each one, in a top-to-bottom order.
The first navigate plan (line 1) is the same as the first navigate method from line 17
in Listing 3.1. The .my_name internal action returns the name of the agent, which is
then used to invoke the artifact associated with that agent, whenever an action from
the agent’s artifact is to be executed. The other two navigate plans (lines 6–12) are
the two branches from lines 21–26 in Listing 3.1. Finally, plans for taking a picture
and communicating data are also shown. The remaining codes for UGVs and USVs are
shown in Appendix A.

CArtAgO Environment

Next, we show the artifact classes that were instantiated in the jcm example
from Listing 3.3. Listing 3.5 is the artifact that contains information about flood events.
The observable property visible_from denotes from which area (or a list of areas) that
flood event is visible from.

Listing 3.5 – The disaster artifact.
1 public class Disaster extends Artifact {
2 void init(String area) {
3 defineObsProperty("visible_from", area);
4 }
5 }

In Listing 3.6, we show the artifact for storing information about areas. The
area artifact has two observable properties, water_path and ground_path, both are able
to store string lists containing areas that are connected to an area artifact instance. It
also has four operations that are linked to another artifact (to the cdm artifact), to add
or remove water and ground paths between two areas.

Listing 3.6 – The area artifact.
1 public class Area extends Artifact {
2 void init(String wpath, String gpath) {
3 defineObsProperty("water_path", wpath);
4 defineObsProperty("ground_path", gpath);
5 }
6 }

Listing 3.7 has the code for the CDM artifact. This artifact is linked to the four
instances of the area artifact (area1, area2, area3, and area4). It has the observable

69

properties at_cdm, that contains the area where the CDM is situated, and in_range,
that has a list of areas that are in range of the CDM for data transmission. The four
operations are used to call upon the linked operations from area artifacts. They repre-
sent the ability of the CDM to inform agents of changes caused by flood events, since the
vehicles do not possess any advanced sensory capabilities. For example, a flood event
can be so disastrous that it can simply wipe out any ground paths between two areas.
A flood event could also create water paths that did not previously exist between two
areas. Similarly, when a flood recedes, the ground paths that were wiped out can be
traversed again, and the water paths that were created would no longer exist.

Listing 3.7 – The cdm artifact.
1 public class Cdm extends Artifact {
2 void init(String area) {
3 defineObsProperty("cdm_at",area);
4 defineObsProperty("in_range",range);
5 }
6 @OPERATION void addWaterPathArea(o,a) { execLinkedOp(o,"addWaterPath",a); }
7 @OPERATION void removeWaterPathArea(o,a) { execLinkedOp(o,"removeWaterPath",a); }
8 @OPERATION void addGroundPathArea(o,a) { execLinkedOp(o,"addGroundPath",a); }
9 @OPERATION void removeGroundPathArea(o,a) { execLinkedOp(o,"removeGroundPath",a)

; }
10 }

The box artifact, Listing 3.8, has the observable property box_at defining the
current location of the box. This artifact has a linked operation to update the location of
the box which can only be executed by an UGV agent’s artifact, which are the only ones
equipped with the capabilities to move boxes.

Listing 3.8 – The box artifact.
1 public class Box extends Artifact {
2 void init(String location) {
3 defineObsProperty("box_at", location);
4 }
5 @LINK
6 void updateLoc(String location){
7 getObsProperty("box_at").updateValue(location);
8 }
9 }

In Listing 3.9, we show the artifact for UAV agents. The at observable property
represents the current location of the agent. Actions are the same from operators in List-
ing 3.1, with some minor differences to work in JaCaMo’s environment representation.
Similarly, the artifact for UGV and USV agents are described in Appendix A.

70

Listing 3.9 – The UAV artifact.
1 public class VehicleUsv extends Artifact {
2 void init(String area) { defineObsProperty("at",area); }
3 @OPERATION void navigate(String from, String to) throws InterruptedException {
4 ObsProperty cond1 = getObsProperty("at");
5 if (cond1(from)) {
6 getObsProperty("at").updateValue(to);
7 } else { failed("Action navigate has failed."); }
8 }
9 @OPERATION void take_picture(String area, String disaster, String areas) throws

InterruptedException {
10 ObsProperty cond1 = getObsProperty("at");
11 if (cond1(area) && areas.contains(area)) {
12 defineObsProperty("have_picture", disaster);
13 } else { failed("Action take_picture has failed."); }
14 }
15 @OPERATION void communicate_data(String at, String to, String cdmAt, String disaster,

String areas) throws InterruptedException {
16 ObsProperty cond1 = getObsProperty("at");
17 ObsProperty cond2 = getObsPropertyByTemplate("have_picture", disaster);
18 if (cond1(at) && cond2(disaster) && to.equals(cdmAt) && areas.contains(to)) {
19 defineObsProperty("communicated_data", disaster);
20 removeObsPropertyByTemplate("have_picture", disaster);
21 } else { failed("Action communicate_data has failed."); }
22 }
23 }

Moise Organisation

Listing 3.10 shows the structural specification for the floods organisation. Five
roles are defined, with three of them being specialisations of the vehicle role. The group
specification defines the cardinality for each role that is required to fully form the group,
which reflects the number of agents in the system in our example. Group specifications
also contain the designation of links. In this case there are two links, an authority link
from the cdm to vehicle roles, and an acquaintance link from vehicle to vehicle. The
authority link means that the cdm can send goals and command directives to vehicles,
while the acquaintance link allows vehicles to communicate with each other. In the
Floods MAS, the other two Moise specifications (functional and normative, described in
Section 2.2.3) are created at runtime by DOMAP, our planning framework.

71

Listing 3.10 – The structural specification of the floods MAS organisation.
1 <structural−specification>
2

3 <role−definitions>
4 <role id="cdm" />
5 <role id="vehicle" />
6 <role id="uav" > <extends role="vehicle"/> </role>
7 <role id="ugv" > <extends role="vehicle"/> </role>
8 <role id="usv" > <extends role="vehicle"/> </role>
9 </role−definitions>

10

11 <group−specification id="floods">
12

13 <roles>
14 <role id="cdm" min="1" max="1"/>
15 <role id="uav" min="1" max="1"/>
16 <role id="ugv" min="1" max="1"/>
17 <role id="usv" min="1" max="1"/>
18 </roles>
19

20 <links>
21 <link from="cdm" to="vehicle" type="authority" scope="intra-group"

extends−subgroups="false" bi−dir="false"/>
22 <link from="vehicle" to="vehicle" type="acquaintance" scope="

intra-group" extends−subgroups="false" bi−dir="false"/>
23 </links>
24

25 </group−specification>
26 </structural−specification>

In the next chapter, we introduce the design of DOMAP.

72

73

4. DECENTRALISED ONLINE MULTI-AGENT PLANNING

In this chapter, we define the design of our Decentralised Online Multi-Agent
Planning framework (DOMAP) [23, 22, 25, 24], a general-purpose domain-independent
framework for multi-agent planning in MAS, and describe our implementation of The
DOMAP framework in the JaCaMo MAS development platform.

DOMAP consists of several main components: input language — a formal de-
scription of the language that is used as input for planning and the output plans that
are sent for execution; goal allocation — a mechanism used to allocate goals to agents;
individual planning — the planner to be used during each agent’s planning phase; and
coordination mechanism — used during execution to avoid possible conflicts that can
occur when agents interact. For each of these components, we describe possible options
that could be used and go into detail about the one we incorporated in the framework.

4.1 DOMAP’s Design

Multiple agents (a1, a2, ..., an) interact with an environment to obtain informa-
tion and carry out their actions. These agents are part of an organisation where they
can adopt roles, follow norms, and work towards social plans (structured courses of ac-
tions for achieving social goals). In this thesis, we explore the use of coordination at
runtime, but show where coordination after or before planning would fit in DOMAP’s
design, as shown in Figure 4.1. DOMAP is most useful when used in a MAS at runtime
that contains the three MAS programming abstractions discussed in Section 2.2.1 —
agent, environment, and organisation.

Centralised planners usually assign goals to agents during the search for a so-
lution to a planning problem. In a multi-agent setting, this would constrain the auton-
omy of the agents, and potentially violate their privacy. Thus, by using task allocation
protocols [114], the agents themselves can compete to decide who is better suited to take
each goal, then later plan individually (provided coordination mechanisms are in place),
giving a higher degree of autonomy and privacy during planning.

Plans that are independently generated by different agents can lead to an in-
feasible joint solution. According to [148], coordination mechanisms can be viewed as an
attempt to achieve a conflict-free joint plan given a set of cooperative or self-interested
agents participating in multi-agent planning. Coordination in DOMAP is enforced at
runtime when social plans have joint plans involving multiple agents, or plans where
an agent’s actions can cause conflicts in other agents’ plans.

DOMAP is initiated if any of the following situations occur:

74

Figure 4.1 – DOMAP design overview.

• New social goals are created for which there are no known social plans.

• The execution of a social plan fails, prompting the drop of all current social goals
and intentions related to that social plan. All of the remaining social goals that are
still active in that plan are announced as new social goals.

In case of a social plan failure, instead of only replanning for the social goal that
has failed, we opted to replan for all social goals related to the plan that has failed. In our
experiments, failure would often result from an unforeseen change in the environment,
which often have an impact on the whole system, and its effects are not limited to only
one goal. Thus, replanning for all of them was more reliable than replanning for only
one. However, the performance cost of this choice depends on the domain used and on
the effects that these environment changes can cause.

DOMAP can also be used to plan for private goals, which is reduced to single-
agent planning and only uses the individual planner component. However, DOMAP does
not provide scheduling between private and social goals, so they will be executed in the
order that solutions were originally found.

When the MAS is running, if DOMAP is called during any of the situations
listed above, the following steps are taken (as summarised in Algorithm 4.1):

75

1. Create factored representation interface: Each agent creates its own repre-
sentation, containing all the information about the MAS that it has access to at
the time. Before starting the planner to search for a solution, the input needs to be
translated into a planning formalism that the planner can understand.

2. Allocate goals: Agents receive the announcement of social goals that require plan-
ning. A mechanism is used to allocate goals to agents that have the best (estimated)
chance of finding a potential solution for the goal.

3. Agents start their individual planner: Each agent runs a planner to search
for a plan to achieve all of the goals it has been allocated. Because planners work
individually, and each planner only has access to its own agent’s interface, the
information that a planner has access to is limited to the information that an agent
is allowed to access in that particular moment of the execution, providing some
privacy to all agents involved.

4. Replanning: If an individual agent’s planner fails, the goals it was allocated are
re-announced, along with a list of all "banned" agents (i.e., agents that have failed
to find any solution for those goals), returning to step (2).

5. Plan execution and coordination: Agents execute their newly found plans,
while following coordination norms.

Algorithm 4.1: DOMAP main function.
1 Function plan (Social_Goals)
2 foreach agent ∈∈∈ Agents do
3 create_factored_representation_interface;
4 end
5 banned← ∅← ∅← ∅;
6 allocate_goals (Social_Goals, banned);
7 individual_planning (Allocated_Goals, banned);
8 execution_and_runtime_coordination;
9 end

DOMAP is a general-purpose planning framework, although due to the com-
plexity and variety found in multi-agent planning problems some assumptions are made:

i. Agents are cooperative: Agents that are a part of an organisation in the MAS
are expected to comply with that organisation’s norms and to pursue social goals
according to social plans specified in the organisation.

ii. Planning is deterministic: Planning state transitions are deterministic, this is a
common assumption that is present in many classical planners and traditional HTN
planners. However, execution is not necessarily deterministic, the determinism of an

76

agent’s actions in the environment are entirely dependent on how that particular
environment was designed in the MAS. If the environment is non-deterministic, it
may eventually cause a solution found by DOMAP to fail, at which point agents
should be able to automatically recover from it by replanning.

iii. Planning domains are loosely-coupled: The number of interactions between
agents’ actions are low.

iv. Sufficient social laws are in place: We assume that the priority law is enough to
solve coordination problems in loosely-coupled domains and that conflicting actions
were properly identified before execution.

In the following sections, we describe each of the main components of DOMAP
represented in Figure 4.1, discussing some of the options found in the literature related
to DOMAP’s main functionalities, and then detailing the approaches we use and how
they were adapted to work in DOMAP.

4.1.1 Input Language

Finding a solution to a planning problem consists of the following process: given
a description of the initial state of the world (e.g., agents, environment), a description
of desired goals, and a description of possible actions, a planning problem consists of
finding a set of plans (i.e., sequence of actions) that when executed from the initial state
will lead to the achievement of the desired goals. Therefore, it is beneficial to have a
planning formalism in order to formally represent these problems, defining the syntax
of the languages that are used for these descriptions. Describing planning domains using
a standard formalism promotes greater reuse of research, allowing a fairer comparison
between different planners and approaches.

The choice of a planning formalism is usually dependent on which planner is
being used. The reason behind this is that most planners have their own formalism, or
at least a variation of one that was previously developed and accepted by the planning
community.

STRIPS is an early automated planning system from 1971 [53] whose action
theory and formalism still provide the basis for many classical planners. However, there
were a number of problems with this formulation, such as the difficulty of providing
formal semantics for it [89]. PDDL contains STRIPS-like operators, and has been the
formalism of choice in several past IPCs. The latest version of PDDL is 3.11. The SHOP2
planner [90] formalism is a well-established and accepted formalism in HTN planning.

1https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf

https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf

77

It differs from PDDL mainly by the use of methods as constraints to prune the search
space.

Although it is possible to represent multiple agents using those formalisms,
there is no distinction between agents and any other object from the world. This makes
it difficult to add important features of MAP, such as privacy, goal allocation, and decen-
tralised planning. Thus, there have been a few extensions of these formalisms to allow
for the explicit description of agents.

For example, in MA-STRIPS [17] the authors propose a multi-agent extension
of STRIPS formalism for cooperative multi-agent planning. Besides adding the notion of
agents containing their own set of actions, dependencies can be identified to classify an
agent’s action as internal or public.

There is also a multi-agent extension of PDDL 3.1 [71] which is designed to
cope with the agents’ different abilities and the constructive and destructive nature
of concurrent actions. Its design is based on several requirements, such as: modelling
concurrent actions with interacting effects; agents can have different actions and goals;
straightforward association of agents and actions; distinction between agents and non-
agent objects; and inheritance of actions and goals. This extension can also represent
problems in temporal, numeric domains.

There are some approaches in MAP that use HTN, such as in [31] and [124],
though they do not consider other MAS elements, such as environments and organisa-
tions.

This thesis introduces two different input languages that can be used in DOMAP,
our novel Multi-Agent Hierarchical Task Network (MA-HTN) and the Factored Repre-
sentation. We used MA-HTN initially, but we still had to translate a lot of information
between the MAS and all of the DOMAP components (goal allocation, individual plan-
ner, coordination mechanism). Thus, we designed an interface that collects all of the
information available to an agent, which can then be accessed by any DOMAP com-
ponent without any extra translation. In the experiments shown in this thesis we use
factored representation, but we still introduce MA-HTN here since it can be useful in
multi-agent HTN planning.

Multi-Agent Hierarchical Task Network (MA-HTN)

Our Multi-Agent Hierarchical Task Network (MA-HTN) formalism is an exten-
sion of the centralised single-agent HTN formalism used in SHOP2 planner [90]. MA-
HTN can be used to describe multi-agent planning domains and problems. MA-HTN is
intended to represent online multi-agent planning problems, since domain and problem
information are collected at runtime. Thus, unlike in offline planning, where they can
be specified before execution (e.g., by a system designer or a computer script), we need

78

a mechanism to collect all of the necessary data and translate it to an input that is
accepted by the planner.

We call this mechanism translator, and agents use it to translate their informa-
tion about the world into domain and problem specifications that can then be passed on
to their own individual planner. The translator obtains information about the current
state of the world from the MAS in execution, using it to generate the problem repre-
sentation. The domain representation is generated from the possible actions and plans
that agents can use. Each agent has their own problem and domain specification. This
provides a decent level of privacy on its own, since each individual planner will only
have access to their respective agent domain and problem specifications.

Actions (translated to operators in HTN) from other agents can cause conflicts,
either at the moment that action is executed (e.g., concurrent actions) or in the future
(e.g., durative actions). For this reason, MA-HTN supports the description of actions that
can cause conflicts. The recognition of conflicting actions is not automated and should
be pre-identified as such before execution, though an external mechanism for that pur-
pose [127] could be used.

Likewise, dependencies between actions can also exist, either as a concurrent
action that requires another agent, or actions that depend on actions of other agents to
happen first. Similarly to conflicts, MA-HTN also supports the use of dependency blocks
to identify actions that depend on actions from other agents. These dependency relations
also have to be annotated by the MAS developer, so that the translator can automatically
add them to the specification.

The notation usually preferred to specify context-free grammars for planning
formalisms is the Backus–Naur Form (BNF) [3]. We use BNF grammars to define the
specifications of MA-HTN domain and problem representations. A BNF specification
is a set of derivation rules, <symbol> ::= __expression__, where <symbol> is a
non-terminal symbol, and __expression__ is one or more sequences of non-terminal
symbols and/or terminal symbols. A symbol is considered terminal, iff it never appears
on the left side of a rule. Symbols that appear on the left side of a rule are non-terminal
symbols, and enclosed between a pair of <>. The | symbol represents a choice, for exam-
ple, if __expression1__ | __expression2__ appears on the right side of a rule, it
means that either __expression1__ or __expression2__ has to be chosen.

We provide a simplified grammar to improve readability, where each single
quote pair that encloses a symbol is considered a string that is expected by the plan-
ner. Symbols enclosed by brackets are optional, and symbols preceded by $ are variables
obtained from the MAS and represent terminal symbols. Symbols that end with the ∗

signal, represent that zero or more instances are possible. Symbols that end with the
+ signal, represent that one or more instances are possible. Because MA-HTN is an ex-
tension of the SHOP2 HTN formalism [90], the language itself is LISP-like, though we

79

omitted many of the necessary parenthesis that the planner would expect in order to
improve readability.

In Listing 4.1, we show our simplified BNF grammar for multi-agent HTN do-
mains. The $domain-name variable is defined dynamically by the agent during execu-
tion of the MAS, and since there could be multiple calls to the same domain and the
specification can be different from the previous call (e.g., a method could be deleted,
added, or modified), agents use a counter ID that increments each time planning is
invoked. The name of the agent, $agent-name is included in the specification to repre-
sent which agent this domain belongs to. The conflict-list and dependency-list are added.
Conflicts represent actions that can cause negative interactions between agents, while
dependencies are actions that require actions from other agents to succeed. The rest of
the definitions are similar to SHOP2 HTN, operators are primitive-tasks, and methods
are non-primitive-tasks that can eventually be decomposed into operators.

Listing 4.1 – MA-HTN BNF grammar for representing domains.
1 def−domain ::= ‘ defdomain’ $domain−name ;
2 agent ::= ‘ agent’ $agent−name ;
3

4 task ::= primitive−task | non−primitive−task ;
5 primitive−task ::= ‘!’ $primitive−task−name ‘?’$variable∗ ;
6 non−primitive−task ::= $non−primitive−task−name ‘?’$variable∗ ;
7

8 def−operator ::= ‘: operator’ primitive−task pre−list del−list add−list con−list dep−list ;
9 pre−list ::= precondition∗ ;

10 precondition ::= (‘ not’ $precond−name ‘?’$variable∗) | ($precond−name ‘?’$variable∗) ;
11 del−list ::= delete∗ ;
12 delete ::= $delete−name ‘?’$variable∗ ;
13 add−list ::= add∗ ;
14 add ::= $add−name ‘?’$variable∗ ;
15 con−list ::= conflict ∗ ;
16 conflict ::= $action−name ;
17 dep−list ::= dependency∗ ;
18 dependency ::= $action−name ;
19

20 def−method ::= ‘: method’ non−primitive−task (pre−list task−list+) ;
21 task−list ::= task+ ;

Listing 4.2 shows our simplified BNF grammar for multi-agent HTN problems.
Similarly to the domain grammar, the $problem-name is specified, along with a refer-
ence to its respective $domain-name. We also have the explicit agent symbol on line 2.
Facts can be used to establish types and characteristics of things in the world, for ex-
ample, location kitchen establishes that kitchen is a location in the world. While initial-
states are used to represent what is true in the world at that specific moment in the
execution, for example, kitchen dusty represents that the kitchen is dusty. Goals can be
listed as either ordered — when the order in which the goals have to be achieved needs

80

Listing 4.2 – MA-HTN BNF grammar for representing problems.
1 def−problem ::= ‘ defproblem’ $problem−name $domain−name ;
2 agent ::= ‘ agent’ $agent−name ;
3

4 def−facts ::= fact−list ;
5 fact−list ::= fact∗ ;
6 fact ::= $fact−name $fact−parameter+ ;
7

8 def−initial−states ::= initial−state−list ;
9 initial−state−list ::= initial−state+ ;

10 initial−state ::= $initial−state−name $initial−state−parameter+ ;
11

12 def−goals ::= (‘: ordered’ | ‘: unordered’) goal−list ;
13 goal−list ::= goal+ ;
14 goal ::= $goal−name $goal−parameter+ ;

to be strictly followed; or unordered — when order is not important and the planner is
free to find any order between goals.

Factored Representation

Planning input (i.e., domain and problem representation) and output (i.e., the
solution) in DOMAP are regulated by a factored representation of each agent’s knowl-
edge. Each agent’s factored representation serves as an interface between the MAS and
DOMAP. This interface groups all of the information that can be relevant to DOMAP.
Before planning starts, each agent calls its interface, generating up-to-date planning
input that contains all the information it has access to. A translator between this fac-
tored representation and the input language used as the individual planner has to be
provided. For example, if we were using a classical planner, we would need a translator
that can parse from our factored representation to PDDL domain and problem files.

We use a translator from DOMAP’s factored representation to the HTN for-
malism. This is pretty straightforward and follows much of the formal work already de-
scribed in [109], plus a few additions specific to DOMAP shown in Table 4.1. In summary,
plans are translated into non-primitive tasks, actions become primitive tasks, beliefs are
turned into initial states, and social goals are parsed as the initial task list. Because in-
dividual planning starts after goal allocation, the list of social goals for each agent has
already been updated to contain only the goals that have been allocated to them. The
solution, a sequence of actions, found by each individual planner is then translated back
into plans.

We assume that there are mechanisms in place, provided either by the MAS
developer or the development platform, that ensure that an agent cannot access infor-
mation that it is not privy to. We do not impose any restrictions in agent communication,
agents can freely exchange information via message passing, if they want to. Thus, al-

81

Table 4.1 – Factored representation and HTN formalism equivalences.
factored representation HTN formalism
belief state
plan non-primitive task
plan’s preconditions non-primitive task constraints
action primitive task
action’s preconditions primitive task’s precondition list
action’s effects primitive task’s add and delete list
social goals initial task network

though we do not enforce privacy, our agents also do not violate it unless specifically
programmed to do so. If the system requires any level of privacy, our factored represen-
tation interfaces can serve as a foundation, assuming each agent is restricted to its own
interface.

4.1.2 Goal Allocation

Task/goal allocation mechanisms and protocols have been extensively researched,
many options can be found in the literature. A Vickrey [136] auction is an example of an
auction protocol that is frequently used in MAS. In this protocol, each agent can make
one closed bid (i.e., other agents in the system do not have access to this value) for a
particular goal. The task of achieving that goal is assigned to the highest bidder for the
price of the second-highest bidder. This means that each bidding agent should bid their
true values (i.e., exactly what they think it’s worth to them), since this will provide them
with the best chance of winning without overspending. An example of its use in MAP
can be found in [78], and it is discussed in Section 2.3.

Market simulations and economics can also be used to allocate large quantities
of resources to agents [141]. For example, in [139], a decentralised market protocol for
allocating tasks and scarce resources among agents is presented. The authors of [30],
suggest how costs and money can be turned into a coordination device. In the work
of [140], a market-oriented programming approach to distributed problem solving is
proposed, along with an algorithm for distributed computation of competitive equilibria.
In the context of self-interested agents and value-oriented environments, there is also
the work done in [107], where agents reason about the cost of their decision making in
the dispatch and routing of vehicles.

Contract Net Protocol (CNP) [120] is also frequently used both in MAS and
MAP. According to Smith’s original concept from his work in 1980 [120], the contract
net protocol “has been developed to specify problem-solving communication and control
for nodes in a distributed problem solver”. In this protocol nodes enter a negotiation

82

process involving auctions, where the winner is awarded the task. Nodes in the CNP
can assume one of two possible roles, initiator (manager) or bidder (contractor). The
initiator is responsible for announcing new tasks in the CNP (i.e., create new auctions),
monitoring its activity, awarding tasks to winners, and processing the results of the
task’s execution. Bidders decide which auctions to take part in, calculate their bids, and
execute the tasks that they are awarded.

The original protocol contained the following stages:

1. task announcement: The initiator starts a contract negotiation by contacting
bidders and sending them the announcement specification. There are four main
elements in the announcement specification:

• eligibility: list of criteria that a bidder must meet to be eligible to submit a
bid;

• task abstraction: a description of the task;

• bid description: the expected format of a bid;

• expiration time: a deadline for receiving bids.

2. Announcement processing: Bidders process the announcement and check if
they are eligible to bid.

3. Bidding: Bidder nodes decide on their bid, according to the bid description of the
task.

4. Bid processing: The initiator awards the contract to the best bid, either after the
deadline of the auction, or if it finds any of the bids to be satisfactory.

5. Termination: Bidders that were awarded a task have to report about the task
conclusion back to initiators. An initiator can terminate a contract at any moment,
by sending a termination message.

Using Contract Net Protocol as a goal allocation mechanism

We use a variation [22] of the original CNP design [120] for goal allocation in
DOMAP. The organisation acts as the initiator, responsible for starting new contracts
for social goals that have not been previously assigned to any agent. Agents from that
organisation can then place bids for each contract. Some modifications were also made
on the goal announcement, bid, and award specifications. Notably, some unnecessary
elements have been removed. For example, there is no need to describe how a bid should
be specified, since this information is strictly domain-dependent.

In Listing 4.3, we show an overview of the specification for a social goal an-
nouncement. The to field allows the announcement to be sent either to all agents in the

83

organisation (broadcast), or to a specific group of agents within the organisation (multi-
cast). Each announcement is identified through a unique ID. The goal contains both the
name of the goal and the goal specification, such as preconditions for example. The eli-
gibility field can be used for restricting goals to certain roles, and/or to agents that have
specific plans in their plan library. Finally, the deadline limits the time, in milliseconds,
that the initiator will accept bids for the social goal.

Listing 4.3 – Goal announcement specification.
1 to ::= all | groupid ;
2 from ::= organisation ;
3 id ::= announcementid ;
4 goal ::= goal−name, goal−spec ;
5 eligibility ::= role &/| plans ;
6 deadline ::= time (in milliseconds) ;

A high-level description of DOMAP’s goal allocation is shown in Algorithm 4.2.
Agents place a multi-valued bid, a 5-tuple containing the following criteria: recursion (0
or 1), total number of actions expanded, total number of plans expanded, and maximum
tree depth and width found while expanding their goal-plan tree. The “recursion” criteria
indicates if any recursion was present in the agent’s plan library, that is, whether any
recursive plan was expanded during the bid calculation for a social goal. If an agent did
not expand any recursive plan, then this indicates that the agent may potentially solve
the social goal in less steps than agents with recursive plans. These criteria are used as
heuristics by the organisation to allocate social goals to agents with the best (according
to the heuristic chosen for that application) bids.

Algorithm 4.2: DOMAP goal allocation.
1 Function allocate_goals (Social_Goals, banned)
2 announce (Social_Goals, banned);
3 foreach agent ∈∈∈ Agents do
4 foreach socialgoal ∈∈∈ Social_Goals do
5 if (agent, socialgoal) /∈/∈/∈ banned then
6 bid (agent, socialgoal, bid);
7 end
8 end
9 end

10 award (Social_Goals, bids);
11 end

Although domain-dependent algorithms for determining an agent’s bid will of-
ten provide better results, we provide a domain-independent function that agents can
use to calculate their bid (line 6 in Algorithm 4.2). This function performs a breadth-first
expansion of a social goal using the agent’s plan library, essentially exploring structures
similar to goal-plan trees in the process. Goal-plan trees [127] are tree structures of goals

84

whose children are the plans that achieve it, and the children of a plan are subgoals. For
the purpose of comparing goal-plan trees between agents as used in our approach, we
ignore goals and subgoals from the tree. We also opted for not saving the whole goal-
plan tree, instead, we update the measurements that will be part of the bid, and save
only the plans that need to be immediately expanded. This makes the expansion process
faster and uses less memory.

When comparing plan trees between agents, we can classify them according to
their topology into four different types: recursive distinct plan tree, when a recursive
plan was used and plan trees are sufficiently distinct from each other; non-recursive dis-
tinct plan tree, when no recursive plan was used and plan trees are sufficiently distinct
from each other; recursive similar plan tree, when a recursive plan was used and plan
trees are similar or identical to each other; and non-recursive similar plan tree, when no
recursive plan was used and plan trees are similar or identical to each other.

(a) (b)

(c) (d)

Figure 4.2 – Possible plan trees: (a) recursive distinct plan tree; (b) non-recursive dis-
tinct plan tree; (c) recursive similar plan tree; (d) non-recursive similar plan tree.

85

In Figure 4.2, we can observe some examples for all four plan tree topologies.
Figure 4.2(a) shows the recursive distinct plan tree comparison, where plan trees con-
tain recursive plans and the trees are different from each other, which is evident by
comparing the maximum width of both trees: 3 for agent1 and 1 for agent2. Figure 4.2(b)
shows the non-recursive distinct plan tree, where plan trees do not contain any recur-
sive plans and the trees are once again different from each other. Figure 4.2(c) shows
the recursive similar plan tree, where plan trees contain recursive plans and the trees
are very similar to one another (same maximum width). Figure 4.2(d) shows the non-
recursive similar plan tree, where plan trees do not contain any recursive plans and the
trees are again very similar.

We do not show the variations when some plan trees contain recursive plans
and some do not, because if there is at least one agent that has a plan tree with recursive
plans, then it can be considered to belong in the recursive distinct plan tree type.

During the expansion of a social goal, our algorithm ignores the preconditions
of plans, that is, we do not apply an action theory. This would involve performing looka-
head, which is essentially planning, and would have a high computational cost. Instead,
we opted for a quick expansion of the plan library, selecting all plans that are related
to the social goal, while ignoring the context of these plans. This relaxation allows for
quick computation of the statistics for the goal allocation phase, sacrificing allocation
quality for faster allocation times.

AgentSpeak-like plan libraries often contain several recursive plans, which
leads to infinite expansion of goal-plan trees [127]. Agents with recursive plans can get
stuck in a loop during execution, either because actions on real-world applications are
non-deterministic, or because the MAS programmer made a mistake. Although we con-
sidered limiting or ignoring these recursive plans, we found out from our experiments
that this can be a valuable information to have, and the disadvantage of infinite loops
are surpassed by using deadlines.

Contract nets have a deadline in order to prevent initiators to wait indefinitely
for bids. We use it to stop the infinite expansion that can happen when agents get stuck
in a loop, or when agents have large plan libraries. Agents expand the social goal up
until they are close to the deadline, at which point they stop the expansion and use
measurements of the expanded tree to form their bid.

While testing breadth-first against depth-first, we found that breadth-first pro-
vided better results, especially when dealing with plan libraries containing recursive
plans. Breadth-first avoids getting stuck in an infinite loop by expanding only recursive
plans. Instead, it tries to expand other available plans, providing better information and
more coverage of the plan library. Our algorithm for domain-independent bid calculation
is shown in Algorithm 4.3.

86

Algorithm 4.3: Breadth-first expansion of a social goal.
1 Function expand(goal, deadline)
2 Plans← relevant_plans(goal);
3 if Plans = ∅ then
4 return “not eligible”;
5 end
6 rec, n_actions, n_plans,m_depth← 0;
7 m_width← |Plans|;
8 Subplans← ∅;
9 while there exists {plan} ∈ Plans do

10 if time() ≥ deadline then
11 return (rec, n_actions, n_plans,m_depth,m_width);
12 end
13 if {plan} is recursive then
14 rec← 1;
15 end
16 n_actions← n_actions+ count_actions(plan);
17 n_plans← n_plans+ 1;
18 Goals← goals(plan);
19 Subplans← Subplans ∪ relevant_plans(Goals);
20 Plans← Plans \ {plan};
21 if Plans = ∅ then
22 if |Subplans| > m_width then
23 m_width← |Subplans|;
24 end
25 m_depth← m_depth+ 1;
26 Plans← Subplans;
27 Subplans← ∅;
28 end
29 end
30 return (rec, n_actions, n_plans,m_depth,m_width);
31 end

The expansion starts with the social goal at the root of the tree. The agent uses
a relevant_plans function that returns all plans in the agent’s plan library that can be
used to achieve that particular goal. If the set of such Plans is empty, then the agent is
not eligible to bid for this contract. Otherwise, the information used for determining the
agent’s bid is initialised: rec is the presence of recursion; n_actions is the total number
of actions found in all of the plans that were expanded; n_plans is the total number
of plans that were expanded; m_depth is the maximum depth of the tree; and m_width
is the maximum width of the tree, which initially receives the cardinality of the Plans
set, indicating the initial width of the tree. The Subplans set is initially empty. Parameter
deadline is the maximum time after the start of expansion that the algorithm can run for.
It is expected that when calling the expand function, the deadline given for the algorithm
is slightly lower than the CNP deadline, so that the agent has time to communicate its
bid to the organisation.

87

At the start of a plan’s expansion, the agent uses a function time() to get the
time that has passed since the start of the expand function, and checks if that value is
greater than or equal to deadline. If it is, then the algorithm stops the expansion and
returns the bid measurements found up to that moment.

While there remains any plan in the Plans set, we check if the plan contains re-
cursion, increase the counter of total plans expanded, add the number of actions found in
the body of the plan to the total number of actions, and assign all the subgoals found in
the body of the plan to the Goals set. Then, the agent uses once again the relevant_plans
function to get all relevant plans, but now for each of the subgoals in the Goals set.
The plan that was expanded is removed from the Plans set. If this was the last plan
and the Plans set is now empty, then the agent checks if the cardinality of the Subplans
set is higher than our current m_width, in which case the cardinality of the Subplans

set becomes the current maximum width of the tree. After that, we increase the maxi-
mum depth counter, and move the Subplans set to the Plans set (this effectively give us
breadth-first search, but doing it in this particular way allows us to take all bid mea-
surements that we need).

When both sets are empty, or the deadline is past, the algorithm returns the
multi-valued bid with relevant information collected during the expansion of the goal-
plan tree for the given social goal.

We also allow concurrent contract net announcement and bidding. This, in turn,
can cause an agent to win all social goals. To avoid that, we added priorities to the bid
selection heuristics used by initiators. The award function from line 10 in Algorithm 4.2
works as follows: after bidding has finished for all active contract nets, the initiator first
prioritises processing the results of contracts that had agents not eligible to accomplish
the task, since contracts that had valid bids from all agents are easier to allocate, thus,
possibly increasing fairness and resulting in a more even distribution of goals between
all agents. The first bidding attribute to be processed is recursion, giving priority to
agents that did not expand any recursive plans. If there are any such agents, then the
contract is awarded to the agent with the lowest total number of actions among those
that did not use recursion. Otherwise, the contract goes to the agent with the higher
maximum tree width. In both cases agents that have not been awarded any social goal
yet are prioritised, and in case of any ties, the first bid that was processed wins.

Agents with higher total number of expanded plans represent agents with the
best computing power available (assuming that they expanded plans up until the dead-
line). A higher number of actions represent agents that may require longer steps in order
to solve a social goal. When compared to other agents, agents with a lower maximum
depth often represent that there were no expansion of recursive plans. Agents with a
higher maximum depth can represent either very linear plan trees (few options), or the

88

presence of recursive plans. Higher maximum width often indicates that the agent has
more options available to accomplish the social goal.

After all social goals have been allocated, that is, each social goal has a contrac-
tor agent in charge of achieving it, then the next phase of DOMAP can start. We assume
here that every goal will eventually be allocated, meaning that there is at least one eli-
gible agent for each social goal. Allocating a goal to an agent does not guarantee that the
agent will be able to find a solution (this depends on the results of the planning phase)
and execute it successfully (which depends on the execution phase). Instead, goals are
allocated to agents that have shown a better chance of doing so according to bid selection
heuristics.

An interesting property of CNP, is that it allows for bidders to partition the task
that was awarded to them into subtasks, which can then be announced as new contracts.
In our approach, it could be interesting to allow agents to become initiators of tasks that
they believe they can only do a part of the task, subcontracting the rest. This would be
especially useful for solving social goals in tightly-coupled domains, i.e., where actions
required to achieve the goals have many dependencies.

Furthermore, the authors of [147] propose some interesting extensions that
could provide several benefits if integrated with our CNP mechanism. Two main ideas
are discussed. First, the authors suggest adding a threshold to limit the number of con-
tracts that each bidder can participate, which could be useful in domains with many
social goals where agents can only (practically) pursue some of these goals. And second,
a degree of availability is suggested to allow the initiator to also consider availability of
the bidders, along with their respective bid.

4.1.3 Individual Planning

Planning has already been widely covered in Section 2.1. We use an HTN plan-
ner for the individual planning phase of DOMAP. In a HTN planner, planning occurs
by using methods to decompose tasks recursively into smaller subtasks. For each non-
primitive task, the planner chooses an applicable method, uses it to decompose the task
into subtasks, and then chooses other methods to decompose the remaining subtasks,
until it reaches primitive tasks that can be performed using operators [90]. If no solu-
tion is found, then the planner backtracks and try other methods.

Anytime planning algorithms can be interrupted and resumed with little over-
head, can provide increasingly good answers over a range of response times [44]. DOMAP
requires a similar, but simpler mechanism, that is able to stop the search for a solution
if it takes longer than a time limit, and return the best plan found up to that point.

89

Although we do not cover non-deterministic planning domains in this thesis
(Assumption ii from Section 4.1), we refer the interested reader to an extension of
SHOP2 to support non-deterministic domains that was proposed in [73]. Their algo-
rithm combine the search control of HTN planning with the state abstraction of sym-
bolic model-checking based on binary decision diagrams. Their argument is that by us-
ing symbolic model-checking they can exploit search control heuristics for pruning the
search space. And using HTN planning allows them to use propositional formulas for
a compact representation of states and transformations over such formulas for efficient
exploration in the search space.

As for supporting probabilistic domains, in [72], the authors describe adapta-
tions of SHOP2 to work in probabilistic domains such as the ones represented by MDPs.
The authors achieve that by describing how to include the search control algorithms
from SHOP2 into any forward-chaining MDP planner. Their experiments show that this
results in better performance for MDP planning algorithms.

Using SHOP2 as the individual planner

HTN planning and SHOP2 [90] were already discussed in Section 2.1.2, though
in this section we provide more details about our use of SHOP2 in DOMAP. No modifi-
cations were made to the actual planning algorithm and search techniques of SHOP2,
only its interaction with the other DOMAP components.

SHOP2 has several search algorithms that can be set with the following pa-
rameters:

• first: depth-first search that stops at the first plan found.

• shallowest: depth-first search for the shallowest plan, or the first such plan if
there are more than one.

• id-first: iterative-deepening search that stops at the first plan found.

There is also an all option for each of these values, which searches for all possi-
ble plans. These usually take a long time to finish, and thus, given the nature of online
planning, are not very relevant to DOMAP. The default value for the search used in
SHOP2 within DOMAP is shallowest, since it is the most useful when used with the
time-limit in planning that DOMAP requires. The best search algorithm will depend on
the domain used, and may require experimentation to discover.

The next important parameter for DOMAP in SHOP2 is the time-limit, which
can be either nil or a number. If nil, then no time limit is imposed on planning. If the
argument is a number, SHOP2 checks the elapsed time at the start of each planning
step, and if the number of seconds elapsed is greater than the argument value, SHOP2

90

immediately terminates and returns the plan with the lowest cost found within the
given time limit.

The high-level function for individual planning is shown in Algorithm 4.4. DOMAP
also has a replanning mechanism. If the individual planning of one (or more) allocated
social goal(s) fail, the agent sends the respective social goal(s) back to the organisation.
When all agents finish their individual planning, the organisation will either start a
new round of goal allocation and individual planning (if it received at least one social
goal back), or allow agents to start their execution (if no social goals were received back
as having failed individual planning). The name of agents who have failed planning are
added to a banned list, which is sent together with the social goal when it is announced
again in a new round. The number of replanning rounds will depend on the efficiency of
the bid selection heuristics that are being used, and how restrictive the domain’s goals
are (e.g., goals that can only be completed by a select handful of agents can cause a
negative impact on performance).

Algorithm 4.4: DOMAP individual planning.
1 Function individual_planning (Allocated_Goals, banned)
2 foreach agent ∈∈∈ Agents do
3 start_HTN_planner (agent, Allocated_Goals);
4 if planning_failed (agent, Allocated_Goals) then
5 foreach socialgoal ∈∈∈ Allocated_Goals do
6 banned←←← banned ∪∪∪ {(agent, socialgoal)};
7 end
8 end
9 end

10 if banned 6= ∅6= ∅6= ∅ then
11 allocate_goals (Allocated_Goals, banned);
12 end
13 end

Alternatively, our replanning mechanism can also take advantage of roles de-
fined in the organisation, by supporting the banning of roles instead of agents; that is,
all agents that have the same role as the agent who failed planning for a goal will be
considered ineligible to bid for that goal in any subsequent round. This is useful if there
is some prior knowledge about the domain that indicates that if an agent fails planning
for a social goal, then any other agent of the same role will also fail. If this is not the
case, banning of roles should not be used, as it can cause DOMAP to no longer be able
to find a solution. The advantage of using roles is that the worst case in goal allocation
is R − 1, with R the number of roles, which is typically much smaller than the number
of agents. The worst case of banning agents instead of roles in goal allocation is A − 1

rounds, with A being the number of agents, but it has the advantage that it is complete
(if there is a solution, it will eventually find one).

91

In the experiments reported in this thesis we obtained similar results for both
approaches in the Floods domain, but banning roles was not useful in either Rovers or
Petrobras domain. Thus, our DOMAP results from Chapter 6 use agent bans.

Execution of the solution starts only when all agents who were awarded social
goals finish their individual planning. This includes any replanning rounds that might
be necessary.

4.1.4 Coordination Mechanism

As established by Cox and Durfee in [34], “agents that share an environment
and that want to achieve collective (as opposed to selfish) goals need to coordinate their
planned actions at least to avoid interfering with each other, and preferably to help each
other”. They also establish a particular class of coordination problems, which they call
the multi-agent plan coordination problem. Plans in this classification are represented
by partial-order causal-link plans, in order to capture temporal and causal relations
between steps. There are some limitations to their classifications though, as some co-
ordination problems cannot be modelled, such as problems where agents would have to
reallocate their activities, or problems where additional action choices are available if
agents work together.

There are coordination mechanisms that focus on how to coordinate agents be-
fore they even start creating their plans, by defining rules or constraints for agents to
prevent them to produce conflicting plans [?]. Below we describe some techniques that
can be used when coordination is performed before planning, namely temporal decou-
pling and summary information.

Scheduling problems can often be found as a subset of multi-agent planning
problems, and require specific coordination techniques aimed at solving them. Tempo-
ral decoupling can be used to efficiently find and represent the complete set of consis-
tent joint schedules in a decentralised and privacy-maintaining manner. When dealing
with large problems, summary information can be annotated into each abstract operator
about all of its potential needs and effects, such as conflicts. Approaches for both tempo-
ral decoupling and summary information have already been discussed in Section 2.3.

Coordination mechanisms that are focused on how to coordinate agents after
planning, aim at the construction of a joint plan, given the individual subplans of each
of the participating agents [43]. Below we describe some techniques that can be used
when coordinating after planning, namely plan merging and plan repair.

Plan merging techniques, as described in [149, 55], usually involve generating
plans for each goal individually, ignoring how the solution might affect other goals, and
then merge together all solutions, handling the interactions that appear during this

92

process. The idea behind multi-agent plan merging, as described in [42], is that each
agent creates a plan for its own goals, then these plans are analysed to detect and resolve
conflicts, and possibly to exploit positive interactions.

Plan repair can be seen as planning with the re-use of fragments of the old
plan, and can be used to effectively simplify coordination. The authors of [70] argue that
in decentralised systems where coordination is required to achieve joint objectives, at-
tempts to repair failed multi-agent plans should lead to lower communication overhead
than re-planning from scratch. Thus, this coordination mechanism is especially useful
in domains that require coordination with limited to no communication between agents.

Coordination techniques in MAS may also be broadly categorised by whether
they are online or offline. Online techniques aim to equip agents with the ability to
dynamically coordinate their activities, for example by explicitly reasoning about coor-
dination at runtime. In contrast, offline techniques aim at developing a coordination
mechanism at design time. Online is potentially more flexible, and may be more robust
against unanticipated events. Offline benefits from reasoning about coordination before
execution, thus reducing the decision-making time that agents would have to spend in
runtime [144].

In systems with multiple agents, certain rules (e.g., laws, protocols, norms) can
be imposed upon the agents in order to regulate their interactions and communication,
so as to enable agents to achieve the desirable goals of the system [58]. When these
conventions are widespread, they are called social laws. According to [62], “a social law
can be understood as a set of rules imposed upon a multi-agent system with the goal
of ensuring that some desirable global (coordination) behaviour will result”. These laws
will on the one hand constrain the plans available to the agents, but on the other hand
will guarantee certain behaviours.

Our coordination mechanism is online, that is, coordination is done at runtime
of the MAS via social laws.

Using social laws to coordinate agents at runtime

The model of social laws that we based our coordination mechanism for DOMAP
is the one established by Shoham and Tennenholtz in [116, 117]. In that model, social
laws were used to restrict the activities of agents so as to ensure that all individual
agents are able to accomplish their personal goals. We follow a similar idea, although
agents here aim to achieve social goals, and thus, are compelled when joining the organ-
isation to follow these social laws.

Social laws can coordinate agents by placing restrictions on the activities of the
agents within the system. One of the advantages of using social laws is that agents can
solve some coordination problems without having to communicate directly with each

93

other. The purpose of these restrictions are twofold: they can be used to prevent some
destructive interaction from taking place (conflict); or they can be used to facilitate some
constructive interaction (dependency).

Shoham and Tennenholtz model of social law is still adopted as the basis for
many studies that seek to further extend it with additional capabilities. For instance,
in [62], the model was generalised to allow for the objective of a social law (i.e, what the
designer intends to accomplish with the social law) to be specified as a logical formula.
And in [32], a model for non-deterministic social laws is proposed, applicable to a set of
probability distributions that describe the expected behaviors of agents in the system.

Thus, we formally define social laws in our model as:

Definition 3.1. Given a set of agents Ag, a set of actions Ac, a set of states S, a set
of preconditions P, and a behaviour β, a social law is a tuple (ag,ac,s,P,β) where ag ∈
Ag, ac ∈ Ac, and s ∈ S.

A social law sl constrains a specific action ac of agent ag, considered to be
a possible point of conflict (as established in the action description), when the state
s satisfies each precondition ρi ∈ P. The agent ag then has to follow the behaviour
described by β.

As a practical example on the use of social laws, consider a domain consisting
of a grid traversed by a group of mobile robots in which agents are responsible for their
high-level control. A social law for this domain might institute traffic regulations to
insure that agents never collide or get stuck, allowing them to reach whichever nodes
they needed.

Figure 4.3 contains an instance of such possible conflict. At each time-step an
agent can move to a neighbouring node or stay in the same place. The robots have limited
sensory capabilities, meaning that they can only detect other robots located in their
immediate proximity (one step away). This means that in three time steps, agents 1 and
2 will collide at coordinate (3,4) if they follow their designated paths. A simple social law
that would solve this conflict is to allow only one robot to move in the third time step,
while the other holds its action for the next time step.

We call this type of social law, the priority law. This is a default social law that
DOMAP uses and that can work on many loosely-coupled domains. The behaviour β in
the priority law is the following: when two or more agents are trying to execute conflict-
ing actions in the same time step, one of the agents is arbitrarily chosen to continue its
execution, while all remaining involved agents hold their actions (null action, e.g., do
nothing) until the next time step. This process continues until there are no longer any
conflicting actions trying to be executed in the same time step.

94

Figure 4.3 – An 8x8 node grid with two agents and their respective paths.

An alternative to alleviating Assumption iv., presented in Section 4.1, is the use
of an external mechanism for social law synthesis. Several studies have been conducted
on social law synthesis by the community. For example, in [54], an automatic method
for the synthesis of minimal social laws in restricted settings is described, where the
algorithm starts from a useful social law and decrements the set of constraints until
arriving in a minimal form. There is also a social law framework that uses alternating-
time temporal logic to synthesise new social laws in [62], by posing it as an alternating-
time temporal logic model checking problem.

In this chapter, we discussed the design overview of DOMAP, as well as de-
scribed each of the main components of DOMAP. In the next chapter, we provide imple-
mentation details for each of these components, and describe how they interact with the
MAS.

95

5. DOMAP’S IMPLEMENTATION

This chapter describes the implementation of DOMAP1 and each of its mains
components. DOMAP is designed for online systems, thus applying the use of plan-
ning techniques whilst the MAS is running. We use the MAS development platform
JaCaMo2 [13] in order to implement and evaluate DOMAP. It combines three different
technologies (Jason, CArtAgO, and Moise) into programming abstractions that we found
to be a good match for implementing DOMAP — agent, environment, and organisation
abstractions. Agents in Jason follow the BDI-model and react to events in the system
by executing actions on the environment, according to plans available in each agent’s
plan library. CArtAgO uses artifacts to represent the environment, storing information
about it as observable properties and providing actions that can be executed through
operations. Moise adds organisation elements to the MAS such as roles, groups, social
schemes (i.e., social plans), and norms.

5.1 Overview

To illustrate the runtime of DOMAP in JaCaMo, consider the overview provided
in Figure 5.1. When new social goals emerge, phase 1 activates the contract net protocol
mechanism to allocate social goals to agents. In phase 2, the factored representation
(containing the agent’s knowledge about the world) is translated into the SHOP2 syntax,
and used as input for the individual planner (phase 3). If any replanning is necessary,
that is, if an agent was not able to find a solution to an allocated goal, the process returns
to phase 1 to reallocate any remaining social goals that have failed. After all social goals
have been allocated and their plans found, phase 4 starts, where the solution found
by each agent’s planner goes through an inverse translator, parsing it into plans, and
adding them to their respective agent’s plan library. Finally, the solution is executed by
the agents, in accordance with the social laws (phase 5) embedded into the coordination
artifacts.

The CArtAgO infrastructure artifacts (e.g., workspace management) are omit-
ted from the figure. To experiment with privacy levels and to facilitate the translation
of the agents’ knowledge, we added one artifact per agent (Artifact a1 ... an) that
would contain the information and actions that only its associated agent would have.
Note that this is not how MAS are traditionally programmed in JaCaMo. These informa-
tion and actions would either be directly represented within the agent’s code or in a pub-

1DOMAP’s source code can be found at https://github.com/smart-pucrs/DOMAP
2http://jacamo.sourceforge.net/

https://github.com/smart-pucrs/DOMAP
http://jacamo.sourceforge.net/

96

Figure 5.1 – DOMAP runtime overview.

97

lic environment artifact. Artifact e1 ... em represent environment artifacts. The
GroupBoard and SchemeBoard artifacts have already been discussed in Section 2.2.3.

As mentioned in Section 4.1.1, we assume that agents will not try to access
information that was not expressively assigned to them. This is relevant to our imple-
mentation because of some of the limitations in the latest version of CArtAgO that we
used. CArtAgO artifacts are public, thus, if an agent tries to focus on an artifact, it
will succeed and be able to access it. Furthermore, an artifact cannot generate different
perceptions for different agents.

There are three internal actions available to start DOMAP’s planning — inter-
nal actions are actions that Jason agents can execute internally, as opposed to external
actions that are related to the environment. The following internal actions are available:

• DOMAP.plan(SG,TO,OG): where SG are social goals, TO is the time-limit (timeout)
for planning, and OG is the organisation group that will participate. DOMAP only
starts when all agents that belong to this group execute this action.

• DOMAP.replan(SP,SG,TO,OG): drops all social goals from the social plan SP and
their related intentions. All remaining social goals that have not yet been achieved
are announced as new social goals.

• DOMAP.privateplan(PG,TO): This action initiates only the individual planner of
DOMAP for this agent in order to solve its private goals OG, while still respecting
the time-limit TO. This is effectively single-agent planning.

In the following sections we discuss the specifics on each of the new elements
introduced in Figure 5.1, categorising them into their respective mechanisms.

5.2 Multi-Agent Factored Representation

Agents’ use their factored representation interface in order to extract informa-
tion from plans in its plan library and from CArtAgO environment artifacts. The cor-
relations between JaCaMo elements, our factored representation, and HTN entities are
expressed in Table 5.1, an extension of Table 4.1.

We use an HTN translator to parse information from the factored representa-
tion interfaces to SHOP2. The translator generates a problem and domain representa-
tions for each agent based on information available in their factored representation in-
terface. Environment information is collected from CArtAgO artifacts observable prop-
erties into facts and initial states in SHOP2 syntax. Social goals are retrieved from
their respective announcements by the organisation, which may come from failed so-
cial schemes in Moise. Operators are created from all of the artifact operations that the

98

Table 5.1 – Correlations between different representations.
JaCaMo elements factored representation HTN formalism
observable property belief state
plan plan non-primitive task
plan’s preconditions plan’s preconditions non-primitive task constraints
operation action primitive task
operation’s preconditions action’s preconditions primitive task’s precondition list
operation’s effects action’s effects primitive task’s add and delete list
missions social goals initial task network

agent has access to; their preconditions are obtained from any conditional tests in an ar-
tifact operation; and their delete and add lists are acquired from deletion and addition of
observable properties, respectively. Methods are generated from all relevant plans found
in that agent’s plan library, with the preconditions parsed from the context of the plan,
and the task list parsed from actions and subgoals found in the body of the plan.

5.3 Contract Net Protocol

Contract net protocol artifacts [28] mediate the goal allocation phase of DOMAP,
with two artifacts: TaskBoard and ContractNetBoard. Agents that will participate in the
goal allocation take the roles of bidders. The bidders should always focus (agents that fo-
cus on an artifact automatically receive any new beliefs/observable properties from that
artifact) on the TaskBoard, as that is the artifact where social goals are announced.
When the initiator announces a contract for a new social goal, it creates a ContractNet-
Board associated with that goal.

We show the observable properties and operations of the TaskBoard artifact
in Figure 5.2a. When a new new task is announced by the initiator, a task observable
property is created, which is then added as a belief to any agents that are focusing on
the artifact. Consequently, a Jason belief addition event is generated that activates the
associated plan to focus on the new artifact for the auction of that goal, by using the
name value obtained from the observable property, that is, the value is the name of
the ContractNetBoard created. The TaskBoard artifact is linked with the GroupBoard
artifact, allowing the organisation to perform linked operations described in the link
interface.

A link interface includes the set of operations that can be executed by other
artifacts. Thus, link operations cannot be accessed by agents, but only by linking arti-
facts. Therefore, only the GroupBoard artifact, operated by the initiator, can announce
goals in the TaskBoard. Once the auction process is finished, the initiator performs the
clear operation to delete the observable property associated with that goal. This gener-

99

(a) (b)

Figure 5.2 – (a) The task board artifact; (b) The CNP board artifact.

ates a belief deletion event in Jason, to allow agents to perform clean-up and any other
necessary activities.

The observable properties and operations of the ContractNetBoard artifact can
be observed in Figure 5.2b. A ContractNetBoard is created for each goal announced by
the initiator. The observable properties of ContractNetBoard are as follows:

• task_description contains a social goal that is the auction’s prize.

• deadline is the time, in milliseconds, that the auction will run for.

• state informs if the auction is open or closed, it starts with the open value.

• winner is created by the initiator once the auction ends, containing the ID of the
bid that won the auction.

The operations of ContractNetBoard are as follows:

• bid is executed by bidders in order to place a bid for the goal associated with the
artifact.

• award is a linked operation executed by the initiator, it updates the winner observ-
able property, based on a value function (described in Section 4.1.2).

• getBids is another linked operation executed by the initiator, it returns all bids
currently placed.

The creation of the winner observable property results in a Jason belief addition
event to all of the agents that are currently focusing on the artifact. The parameter of

100

winner is the bid ID of the agent who won the auction. The bid ID is shown instead of
the winner’s name in order to preserve privacy, since agents only know their own bids’
ids. Thus, an agent needs to compare the ID from the winner parameter to his bid ID,
for that particular artifact, in order to determine if it won.

There are also two internal operations, checkDeadline and checkAllBids. The
checkDeadline operation closes bidding if the deadline is past. The checkAllBids opera-
tion closes bidding if all agents have already placed their bid. Both internal operations
update the state observable property to closed.

5.4 SHOP2

We have shown the basics of HTN planning and SHOP2 in Section 2.1.2 and
Section 4.1.3. The SHOP2 planner is written in Common Lisp and requires a Common
Lisp implementation in order to work. We use the Allegro CL Free Express Edition3 to
run SHOP2 in DOMAP. Although other implementations are also supported by SHOP2
(such as Steel Bank CL, Clozure CL, and GNU clisp) we only provide Java functions
and Allegro scripts to run SHOP2 in DOMAP with JaCaMo. These scripts are listed in
Appendix B.

5.5 Social Laws

We discussed our model of social laws in Section 4.1.4, now we discuss how
we implemented it as a CArtAgO artifact. This artifact is responsible for coordinating
agents at runtime in order to avoid any conflicts.

In Figure 5.3, we show the observable properties and operations of the So-
cialLaws artifact. This artifact is created during the system’s initialisation, one instance
for each of the social laws. Agents consult the SocialLaw artifact associated with the ac-
tion that they are about to execute. This process is only necessary for actions that are
part of social plans, and only if those actions are annotated with conflict flags in the
factored representation.

Its observable properties are the following:

• social_law contains the name of the social law.

• action_name is the name of the action that is associated with this social law.

• precondition_list is the list of preconditions that make this social law applicable.

3https://franz.com/downloads/clp/download

https://franz.com/downloads/clp/download

101

• action_options contains the behaviour that an agent has to follow in order to avoid
any conflicts.

Figure 5.3 – The artifact for social laws.

We also provide operations related to the synthesis of social laws; although
there is no mechanism implemented to make use of these operations, it allows external
mechanisms for synthesis of social laws to be used. The create operation allows the cre-
ation of another instance of SocialLaws. The delete operation erases the current instance
of SocialLaws. And the modify operation permits to alter the values of the observable
properties in the instance of SocialLaws that the operation was invoked.

In this chapter, we described how we implemented the DOMAP framework us-
ing the JaCaMo MAS development platform. In the next chapter, we show the evaluation
of DOMAP across three different domains and against four state-of-the-art multi-agent
planners.

102

103

6. DOMAP’S EVALUATION

To the best of our knowledge, DOMAP is the only recently developed multi-
agent online planner that is able to take advantage of the different programming ab-
stractions in MAS (agent, environment, and organisation). Thus, in order to evaluate
our framework, we isolated the online components of DOMAP, and ran offline experi-
ments comparing against four state-of-the-art multi-agent offline planners (described in
Section 2.3.2), all of which took part in the 2015 Competition of Distributed and Multi-
Agent Planners (CoDMAP-15) [138]. SIW+ -then-BFS(f) [85] was the top performing
planner with regards to planning time, out of 17 planners. CMAP-t [16] obtained second
place, ADP-legacy [37, 35] third place, and PMR [77] eighth place.

We summarise differences between some features of these planners in Table 6.1.
Planning in PMR depends on the planner selected, it is decentralised if the first plan-
ner succeeds in finding a plan, otherwise (i.e., if replanning is required) it uses a cen-
tralised single-agent planner. DOMAP is decentralised even when replanning is neces-
sary. DOMAP and ADP-legacy are the only ones that can result in different goal alloca-
tions for the same problem, and as such, can offer different solutions depending on these
allocations. Although DOMAP is the only one to use HTN rather than PDDL, which can
benefit from extra domain information, we limited it to contain only information that
was also available in the PDDL descriptions of the other planners. Both DOMAP and
SIW+ -then-BFS(f) decouple domain and problem information from these formalisms
and use “agnostic” data structures to represent them as well (DOMAP uses the factored
representation).

Table 6.1 – Features of multi-agent planners used in the experiments.
planning multi-core formalism goal allocation replan

ADP-legacy centralised no PDDL yes (non-deterministic) no
CMAP-t centralised yes PDDL yes no
DOMAP decentralised yes HTN yes (non-deterministic) yes
PMR both yes PDDL yes yes
SIW centralised no PDDL no no

All of the multi-agent domains used in CodMAP-15 were simplistic adaptations
of single-agent planning domains from past editions of the IPCs, thus not the kind of
domains that are usually found in MAS. We chose one of their adaptations, which was
the classical Rovers domain, and ran some experiments. Our results were very similar
to all other planners from the competition; since their problems were all relatively small
scale, planning would often finish very quickly. When the difference between results are
a few milliseconds, it is hard to claim that one planner is really faster than the others.

Thus, we chose 10 of the 20 problems in the Rovers domain from the competi-
tion, and scaled them up appropriately, increasing the number of agents and goals. The

104

lack of complex multi-agent domains also led us to design a new domain, we call it the
Floods domain (Chapter 3), with more characteristics of MAP and MAS, such as hetero-
geneous agents and multiple types of goals. The third domain used in our experiments
was selected from ICKEPS1 2012, the Petrobras domain [135].

Each domain had 10 problem variations, increasing the number of agents, goals,
and initial state literals. We gave all planners a time limit of 60 minutes for each prob-
lem. We ran each of the five planners 20 times for the 10 problems in each domain,
resulting in a total of 2000 executions, 400 for each planner. For time measurements, we
extracted the average, minimum, and maximum time spent planning (goal allocation
times included). We used real time rather than CPU time, since some planners required
extra translations and data preparation before planning, and also because some plan-
ners used multiple cores, so CPU time would not be appropriate unless we used only the
highest time from one of the cores.

We also extracted the average, minimum, and maximum plan cost for all solu-
tions found, as a possible measurement of plan quality. Plan cost is equal to plan size,
since all actions are assumed to have unit cost. Our third measurement is what we
call parallelisation, which we also use to measure plan quality. Given that agents will
concurrently execute the plans, this is a very important measure to be considered in
multi-agent execution. Parallelisation is defined by the variance of the plan cost of each
individual agent, thus indicating how much the actions are spread across all agents (i.e.,
if the loads are balanced). Depending on the domain, either plan size or parallelisation
will be the most indicative measure of plan quality. Plan size works best for measuring
plan quality in domains with single, or a low number of, agents and domains that re-
quire sequential actions. Parallelisation, as the name suggests, is best in domains with
many parallel or concurrent actions. For the three domains used in this thesis we will
show that parallelisation is the most important metric for plan quality, however, we
include results for plan size as a comparative.

Our final measurements are the average, minimum, and maximum time spent
executing the generated plans. Because the other four planners do not offer any means
for executing their solutions, we translated them into JaCaMo and ran the solutions
found by each planner as a MAS. Only the floods domain contains conflicts, and to keep
this process fair we removed it from the domain description of other planners, and used
DOMAP coordination mechanism to solve conflicts at runtime for all planners. Since we
are not using any temporal planner, we set the same execution time of 500 milliseconds
to all actions.

The environment in the planning phase is assumed to be deterministic, how-
ever, in the execution phase the environment can be non-deterministic and actions can
fail, in which case it may be necessary to replan accordingly. Each agent has its own

1http://icaps12.icaps-conference.org/ickeps.html

http://icaps12.icaps-conference.org/ickeps.html

105

perspective of the environment, and thus a single agent might not have complete infor-
mation about the environment. The computer we used to run the experiments2 has the
following specification: Intel Xeon Processor E5645 (12M Cache, 2.40 GHz, 6 cores, 12
threads), 32 GB of memory, Ubuntu 16.04 operating system, and Java 8. In the following
sections we describe the settings, results, and discussion regarding our experiments in
these three domains.

6.1 Rovers Domain Experiments

Rovers is a classical domain in automated planning, dating back to 2002 when
it first appeared in the 3rd International Planning Competition (IPC). It is inspired
by rover vehicles, commonly used by NASA in space missions on Mars during that pe-
riod. In the Rovers domain, these rover vehicles are equipped with different capabilities
to explore Mars’ surface collecting samples and taking pictures of objectives, and then
transmitting all data back to a lander spaceship. This domain does not have any con-
flicting actions or dependencies. Problems in the Rovers domain can have three different
types of goals: communicate soil, rock, or image data from a specific waypoint.

There are nine different actions available to rover vehicles. A navigate action
that can move a rover from waypoint W to W ′, as long as the vehicle is able to traverse
from W to W ′. An action to sample soil and an action to sample rock, requiring that the
vehicle be equipped with the appropriate tools and have an empty store (a store is full if
it has any type of sample on it). There is an action to drop any sample that is in the store.
An action to calibrate a camera using an objective as focus, which requires the vehicle
to be equipped for imaging, have a camera, be located in a waypoint from where the
objective is visible from, and for the objective to be a calibration target for the camera.
The action to take an image of an objective using a specific camera mode (low resolution,
high resolution, or coloured) needs for the vehicle to be equipped for imaging, have a
calibrated camera that supports the appropriate mode, and for the vehicle to be located
in a waypoint from where the objective is visible from. The last three are communication
actions that can send rock, soil, or image data back to a lander spaceship, if the vehicle
has the data and is in range of the lander.

6.1.1 Setting

Rovers’ multi-agent adaptation from CodMAP-15 was restricted to defining
which predicates were private and could not be shared between agents, and establishing

2The source code for these experiments can be found at https://github.com/smart-pucrs/DOMAP

https://github.com/smart-pucrs/DOMAP

106

that each rover vehicle is an agent. From the 20 problems used in the competition, the
largest had 10 agents and 20 goals. For a loosely-coupled domain, this is too low, since
multi-agent planners are especially fast in these domains, where coordination can be
kept at a minimum. We chose 10 of their 20 problems, and increased considerably the
number of agents and goals per problem. Problem 1 starts with 4 agents and 8 goals,
and each problem after it adds 2 agents and 4 goals, hence Problem 10 has 22 agents
and 44 goals, more than double the size of the biggest problem used in the competition.
The configuration of each problem is shown in Table 6.2.

Table 6.2 – Rovers problem configurations.

Rovers Waypoints Cameras Soil data
goals

Rock data
goals

Image data
goals

p01 4 7 6 3 3 2
p02 6 8 4 4 4 4
p03 8 10 5 6 5 5
p04 10 12 4 7 6 7
p05 12 20 7 5 9 10
p06 14 25 7 10 10 8
p07 16 40 11 12 10 10
p08 18 25 10 12 14 10
p09 20 30 7 18 12 10
p10 22 45 15 18 15 11

6.1.2 Results

In Figure 6.1, we show the results for minimum, maximum, and average plan-
ning time in the Rovers domain. Time in seconds is on the y-axis and in logarithmic
scale to improve readability. The first five problems have a slow increase in planning
time across all planners, but they all have similar performances, with differences in the
order of milliseconds. One of the 20 runs from DOMAP for the first, fourth, fifth, and
sixth problem suffered from poor goal allocation, which increased the average, but most
other runs were much faster, which can be observed in the minimum results graph.

SIW+ -then-BFS(f) could not solve problem 8 under the time limit of 60 minutes.
ADP-legacy had some of the best times for the first six problems, but it is followed closely
by most other planners. SIW+ -then-BFS(f) scales poorly when increasing the number
of agents and goals in each problem. In the last four problems, ADP-legacy and PMR
performances drop considerably, while CMAP-t stays competitive with DOMAP, but does
not seem to scale quite as well.

The size of plans found in solutions from each planner can be observed in Fig-
ure 6.2. DOMAP has good plan sizes in problems 1–5, but in problems 6, 9, and 10,

107

0.125
0.25
0.5
1
2
4
8

16
32
64

128

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Rovers — Planning Time Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0.25
0.5
1
2
4
8

16
32
64

128
256

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Rovers — Planning Time Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0.25
0.5
1
2
4
8

16
32
64

128
256

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Rovers — Planning Time Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.1 – (a) Minimum time spent planning; (b) Maximum time spent planning; (c)
Average time spent planning.

DOMAP’s plan length scales very poorly, while the other planners remain competitive
across all problems.

In Figure 6.3, DOMAP achieves the best performance in regards to parallelism,
especially when considering the minimum values found in 20 runs. SIW+ -then-BFS(f)
has good parallelisation in problem 6, with the minimum plan variance of 72 against
DOMAP’s second best 91.

The time spent in execution is shown in Figure 6.4. DOMAP once again shows
excellent scalability and the best performance overall, while other planners are incon-
sistent and their execution times fluctuate depending on the problem.

Finally, in Figure 6.5, time spent planning is combined with time spent execut-
ing in bar graphs. SIW+ -then-BFS(f) is not included in Figure 6.5b because its total
time was much higher than other planners and would affect readability. In the first five
problems, performance is comparable across all planners, but in problems 8, 9, and 10
(i.e., the largest problems), DOMAP has the best results.

Appendix C contains tables with all values used to generate each of the graphs
found in this section.

108

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

P
la

n
S

iz
e

Problem Instance

Rovers — Plan Size Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0
50

100
150
200
250
300
350
400
450

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

P
la

n
S

iz
e

Problem Instance

Rovers — Plan Size Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0
50

100
150
200
250
300
350
400

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

P
la

n
S

iz
e

Problem Instance

Rovers — Plan Size Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.2 – (a) Minimum plan size; (b) Maximum plan size; (c) Average plan size.

0

100

200

300

400

500

600

700

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

M
in

im
um

 P
la

n
V

ar
ia

nc
e

Problem Instance

Rovers — Parallelism Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0

100

200

300

400

500

600

700

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

M
ax

im
um

 P
la

n
V

ar
ia

nc
e

Problem Instance

Rovers — Parallelism Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0

100

200

300

400

500

600

700

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

A
ve

ra
ge

 P
la

n
V

ar
ia

nc
e

Problem Instance

Rovers — Parallelism Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.3 – (a) Minimum plan size variance between all agents; (b) Maximum plan size
variance between all agents; (c) Average plan size variance between all agents.

109

0

10

20

30

40

50

60

70

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Rovers — Execution Time Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0
10
20
30
40
50
60
70
80

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Rovers — Execution Time Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0
10
20
30
40
50
60
70
80

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Rovers — Execution Time Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.4 – (a) Minimum time spent executing solutions; (b) Maximum time spent
executing solutions; (c) Average time spent executing solutions.

0

5

10

15

20

25

30

35

40

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

p01 p02 p03 p04 p05

planning execution

(a)

0
10
20
30
40
50
60
70
80
90

100

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

p06 p07 p08 p09 p10

planning execution

(b)

Figure 6.5 – (a) Planning and execution times for the first 5 problems in the Rovers
domain; (b) Planning and execution times for the last 5 problems in the Rovers domain.

110

6.1.3 Discussion

The Rovers domain is not a particularly good domain for DOMAP because
agents are very homogeneous, their capabilities often overlap, and many goals can only
be solvable by a handful of specific agents, due to each rover having their own traversable
paths. Problems 5 and 6 had the highest maximum planning time for DOMAP, since all
20 runs in both problems required replanning; problem 5 varied between 2 and 3 rounds
of replanning, and problem 6 between 3 and 4 rounds. Regardless of this disadvantage,
DOMAP outperforms other planners in the last four (largest) problems, even though
there were some runs where DOMAP had to replan a few times.

DOMAP’s poor performance in some of the first problems are mainly because
it requires some initial start-up time, since it is started as a MAS. Another factor is the
use of CNP; while it allows for decentralised goal allocation, it also requires a certain
amount of time for agents to be able to calculate and place their bids, and then select
the winners. We used a deadline of 50 milliseconds for agents to calculate their bids, but
because we are running agents in the same computer, the actual time spent calculating
bids may vary depending on thread scheduling.

DOMAP’s high plan size is a consequence of the fairness heuristic used in goal
allocation, and since it is non-deterministic, it is possible to have large variations in
each different run. By prioritising fairness in goal allocation (allocating goals to agents
as evenly as possible), plan size tends to increase as more agents are used and they have
to do more actions than if using less agents. However, as our execution results have
demonstrated, plan size is not the best plan quality metric for multi-agent planning. Al-
though many multi-agent planners, including CMAP and PMR, present makespan (the
largest plan size found in any individual agent) as an alternative metric for plan qual-
ity, it is not representative of execution performance, where the most important factor
is to have as many concurrent actions as possible. Our parallelisation metric captures
this factor, and as shown in our results have a direct impact in execution performance,
where DOMAP excels.

As previously stated, ADP-legacy and DOMAP use non-deterministic goal al-
location mechanisms that can vary significantly across runs. Thus, 20 runs might not
have contained the best- and worse-case allocations.

6.2 Floods Domain Experiments

The Floods domain was introduced in Chapter 3, in this section we provide a
brief summary. Our domain was inspired by a real-world scenario on using a multi-
robot team for search and rescue operations after flooding disasters. Differently from

111

the Rovers domain, we designed Floods to have pre-established roles, which are usually
found in MAS organisations. In the Floods domain, a team of heterogeneous autonomous
robots are dispatched to monitor flooding activity and execute search and rescue oper-
ations within a geographical region, which is divided into several interconnected areas.
The Centre for Disaster Management (CDM) establishes bases of operation in the re-
gion that is being monitored. These bases are used to receive and interpret data about
floods and victims found by the robots. The CDM is usually operated by humans, but
in our JaCaMo+DOMAP implementation we simulate them by using agents, capable of
creating dynamic goals at runtime.

There are three different roles of autonomous vehicles: Unmanned Aerial Ve-
hicle (UAV): aerial units that have no movement restrictions, but are only equipped to
capture images of flooded areas; Unmanned Ground Vehicle (UGV): ground units that
can only move through areas connected by ground paths, they can capture images, and
are also capable of delivering first aid kits; Unmanned Surface Vehicle (USV): naval
units that can move through areas connected by water paths, they can capture images,
and also collect water samples. During flood events, these vehicles are required to cap-
ture images and transmit them back to a CDM. Analysis of these images can identify
potential victims that are stranded or in danger, and deploy first responders who may
request additional first aid kits to be sent to their location to help these victims. Water
samples may also be requested to be collected from certain flooded areas.

When more than one USV tries to move from an area A to an area A′, it causes
a conflict. This conflict represents the narrowness of water paths, where only one USV
may pass through a path at a time. We use our domain-independent priority law to solve
this conflict. When the social law artifact detects the conflict (two or more USV agents
sent their move action from A to A′), an agent is chosen arbitrarily to proceed with its
action, while the others adopt the behaviour specified in the social law, to hold their
action.

6.2.1 Setting

Because we created Floods problems from scratch, we had a lot more control
over how each problem scaled. Problem 1 starts with 9 agents (3 UAV, 3 UGV, and 3
USV), 15 areas, 2 CDMs, and 9 goals (a combination of taking pictures of flooded ar-
eas, delivery of first aid kits, and collection of water samples). Each subsequent problem
added 3 agents (1 of each role), 5 areas, and 3 goals. Every other problem had one CDM
added. The last problem, p10, has 36 agents, 60 areas, 6 CDMs, and 36 goals. The con-
figuration of each problem is shown in Table 6.3.

112

Table 6.3 – Floods problem configurations.

UAVs UGVs USVs Areas CDMs Flood
disasters Boxes Water

samples
p01 3 3 3 15 2 5 2 2
p02 4 4 4 20 2 6 3 3
p03 5 5 5 25 3 7 4 4
p04 6 6 6 30 3 8 5 5
p05 7 7 7 35 4 9 6 6
p06 8 8 8 40 4 10 7 7
p07 9 9 9 45 5 11 8 8
p08 10 10 10 50 5 12 9 9
p09 11 11 11 55 6 13 10 10
p10 12 12 12 60 6 16 10 10

6.2.2 Results

In Figure 6.6, we show the results for planning time across 20 runs of each
problem. Time in seconds is on the y-axis and in logarithmic scale to improve readability.
SIW+ -then-BFS(f) had very large planning times, up to an average of 3135 seconds for
problem 10. CMAP-t has lower planning times for most of the problems, except for the
largest problems, where DOMAP performs best.

0.25

1

4

16

64

256

1024

4096

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Floods — Planning Time Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0.5

2

8

32

128

512

2048

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Floods — Planning Time Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0.25

1

4

16

64

256

1024

4096

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Floods — Planning Time Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.6 – (a) Minimum time spent planning; (b) Maximum time spent planning; (c)
Average time spent planning.

113

Plan size is shown in Figure 6.7. CMAP-t, ADP-legacy, and PMR found some of
the lowest cost plans. PMR does much worse on problems 6 and 9, when it has to use
multiple planners, but it is able to find the lowest cost plan for the largest problem (p10).
DOMAP and SIW+ -then-BFS(f) have mediocre average plan lengths when compared to
other planners for the largest problems. Results of plan length were much more spread
out than the planning time results, with each planner generating the lowest cost plan for
at least one problem. When considering minimum plan length found, DOMAP manages
to improve its plan size considerably.

0
50

100
150
200
250
300
350
400

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

P
la

n
S

iz
e

Problem Instance

Floods — Plan Size Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0
50

100
150
200
250
300
350
400
450

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

P
la

n
S

iz
e

Problem Instance

Floods — Plan Size Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0
50

100
150
200
250
300
350
400

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

P
la

n
S

iz
e

Problem Instance

Floods — Plan Size Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.7 – (a) Minimum plan size; (b) Maximum plan size; (c) Average plan size.

DOMAP’s goal allocation, of prioritising fairness among agents pays off when
we consider concurrent actions, as can be seen in Figure 6.8. Our results show that
DOMAP has excellent parallel solutions to all problems, dominating other planners on
most of the problems.

Time spent in execution is shown in Figure 6.9. DOMAP is the only one that
scales reliably, possibly due to its good use of fairness during goal allocation. Even
though DOMAP solutions had, on average, some of the longest plans, because it dis-
tributed social goals as evenly as possible, it still managed to finish execution faster
than all other planners in most of the problems.

Figure 6.10 combines the time spent planning and executing for all ten prob-
lems in the Floods domain. We removed SIW+ -then-BFS(f) from these graphs for read-
ability, as its planning times for these problems were too high. The results for the first

114

0
50

100
150
200
250
300
350
400
450

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

M
in

im
um

 P
la

n
V

ar
ia

nc
e

Problem Instance

Floods — Parallelism Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0

100

200

300

400

500

600

700

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

M
ax

im
um

 P
la

n
V

ar
ia

nc
e

Problem Instance

Floods — Parallelism Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0

100

200

300

400

500

600

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

A
ve

ra
ge

 P
la

n
V

ar
ia

nc
e

Problem Instance

Floods — Parallelism Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.8 – (a) Minimum plan size variance between all agents; (b) Maximum plan size
variance between all agents; (c) Average plan size variance between all agents.

0

5

10

15

20

25

30

35

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Floods — Execution Time Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0

10

20

30

40

50

60

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Floods — Execution Time Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0

5

10

15

20

25

30

35

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Floods — Execution Time Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.9 – (a) Minimum time spent executing solutions; (b) Maximum time spent
executing solutions; (c) Average time spent executing solutions.

115

five problems (Figure 6.10a) were very similar across the other four planners, since they
had comparable planning and execution times. When combining planning and execu-
tion, DOMAP appears to scale well, obtaining the best results. CMAP-t, for the most
part, is able to follow closely in some problems, while the other planners do not perform
as well.

0
2
4
6
8

10
12
14
16
18

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

p01 p02 p03 p04 p05

planning execution

(a)

0
10
20
30
40
50
60
70
80
90

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

ad
p

cm
ap

do
m
ap

pm
r

p06 p07 p08 p09 p10

planning execution

(b)

Figure 6.10 – (a) Planning and execution times for the first 5 problems in the Floods
domain; (b) Planning and execution times for the last 5 problems in the Floods domain.

Appendix D contains tables with all values used to generate each of the graphs
found in this section.

6.2.3 Discussion

SIW+ -then-BFS(f), the winner of CoDMAP-15 with regards to planning time,
performed the worst in our planning time experiments. This makes sense since it is the
only planner that does not separate goal allocation and planning, thus being unable to
cope with the increasing planning complexity each time the number of agents and goals
increase. Their results in the Floods domain were even worse than their results in the
Rovers domain (which had a smaller number of agents).

PMR and ADP-legacy are very close for some of the first problems with regards
to planning time, but PMR seems to scale better since it makes use of multiple cores,
while ADP-legacy does not. In problems 6 and 9, PMR had to switch planners and ap-
ply plan reuse, which explains its poor performance when compared to other planners.
CMAP-t and DOMAP presented the best planning time results; the former is better in
the first problems, while the latter has better results for the last problems. DOMAP
again appears to scale better than all other planners, at least for experiments in loosely-
coupled domains.

We also ran experiments with DOMAP banning roles instead of individual
agents. In both cases the maximum amount of replanning rounds were only 1 across
all 400 executions (200 for DOMAP with role ban, 200 for DOMAP with agent ban).

116

Agent bans had at most 1 round because of our bid selection fairness heuristic that
gives priority to agents that have not expanded recursive plans, which in this domain
are UAVs, who have no movement restrictions and thus are able to more easily find
a solution. In other domains, such as in the Rovers domain, this may not be the case,
where more than 1 reallocation/replanning rounds were necessary. Because the results
were very similar, we omitted DOMAP results with role ban and showed only DOMAP
with agent ban, as it is a more domain-independent solution, and it was the same ban
strategy that we used in the Rovers domain.

Our results also indicate that allocating goals before planning can lead to a
huge improvement with regards to planning time, since SIW+ -then-BFS(f) is the only
planner that does not do so. Moreover, decentralising planning (i.e., running an individ-
ual planner for each agent, which only DOMAP and PMR do so) and running in comput-
ers with multiple cores (only DOMAP, CMAP-t, and PMR take advantage of multiple
cores) can also lead to faster planning times. The range between minimum and max-
imum plan lengths in DOMAP indicates that bid calculation and selection heuristics
can be improved to minimise this gap. Finally, by also decentralising goal allocation in
DOMAP, we are able to preserve autonomy and privacy of agents, while trying to max-
imise fairness, at the extra incurred cost in time to allocate goals.

6.3 Petrobras Domain Experiments

The Petrobras domain was first introduced [66] as a challenge domain in the In-
ternational Competition on Knowledge Engineering for Planning and Scheduling (ICK-
EPS 2012), held during ICAPS 2012. It is targeted at modelling planning and scheduling
of ship operations on petroleum platforms and ports based on a real problem found in
the Brazilian petroleum company Petrobras. The general problem is the transportation
and delivery of cargo to a number of different locations, respecting any constraints that
are imposed, such as vessel load and fuel capacity. The goal is to optimise execution cost
of the resulting schedule.

Since its introduction, there have been a wide variety of work using the Petro-
bras domain. In [135], it is shown how the domain can be modelled in UML and then
translated into PDDL, as well as using the itSIMPLE [134] tool to investigate and de-
scribe the efficiency of the model. The limitations of available domain-independent plan-
ners with regards to realistic problems in this domain are also shown.

In [128], the authors describe three approaches to solve the Petrobras chal-
lenge, using classical planning, temporal planning, and single-player games with Monte-
Carlo tree search. Two ideas that were originated from experiences with the Petrobras
domain are described in [6]. The use of finite state automaton to describe expected se-

117

quences of actions with arcs that are annotated by conditions to guide the planner to
explore good paths in the automaton, and turning primitive actions into meta-actions
to decrease the size of the finite state automaton and improve efficiency of planning.
Finally, in [12], a reformulation of the Petrobras domain in SAT is proposed, specifically
with satisfiability modulo theories (SMT) encodings, and SMT solvers are used to solve
them.

Problems in this domain focus on the transportation of cargo from ports on the
land to platforms in the ocean. Two strips of the Brazilian coast are considered, a port
in Rio de Janeiro and a port in Santos, as shown in Figure 6.11 [135]. Each strip has
a set of ocean platforms, six in the Rio de Janeiro strip (F1, . . . , F6), and four in the
Santos strip (G1, . . . , G4). There is one waiting area off-shore in each strip (A1 and A2),
where vessels can wait in between deliveries. Ports and platforms F5 and G3 can refuel
vessels. Ports can dock two vessels simultaneously, while platforms can only dock one.

Figure 6.11 – Locations in the Petrobras domain [135].

118

6.3.1 Setting

Locations are static across all problems and follow the representation shown in
Figure 6.11 [135]. The first problem3 has 4 vessels (agents) and 4 cargo (goals). Each
subsequent problem adds one agent and one goal, thus, the last problem has 13 vessels
and 13 cargo. The configuration of each problem is shown in Table 6.4.

Table 6.4 – Petrobras problem configurations.
vessels locations cargo

p01 4 14 4
p02 5 14 5
p03 6 14 6
p04 7 14 7
p05 8 14 8
p06 9 14 9
p07 10 14 10
p08 11 14 11
p09 12 14 12
p10 13 14 13

6.3.2 Results

The Petrobras domain results for time spent in planning are shown in Fig-
ure 6.12. In these graphs, the y-axis is not in logarithmic scale as in the planning time
graphs from the previous two domains, since there was not a large difference in plan-
ning time as before. However, SIW+ -then-BFS(f) still appears to scale poorly with the
increase in the number of agents and goals. The other planners achieve comparable
results.

ADP-legacy and CMAP-t are not shown in problem 1 (p01) in all graphs of the
Petrobras domain results because they had an exception while parsing it, and thus,
could not find any solution for the problem.

In regards to plan size, we can observe in Figure 6.13 that DOMAP did not had
the highest plan sizes as in previous domains. In the Petrobras domain, SIW+ -then-
BFS(f) had the worst plan lengths across all problems.

Although SIW+ -then-BFS(f) often had good parallelism in previous domains,
it manages to compete directly with DOMAP in the Petrobras domain, even surpass-
ing DOMAP in some problems, as can be seen in Figure 6.14. On the other hand, the
remaining planners performed much worse than in previous domains.

3The HTN encodings that we used are available at https://github.com/smart-pucrs/petrobras-domain

https://github.com/smart-pucrs/petrobras-domain

119

0
0.5
1

1.5
2

2.5
3

3.5
4

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Petrobras — Planning Time Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0

1

2

3

4

5

6

7

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Petrobras — Planning Time Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0

1

2

3

4

5

6

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Petrobras — Planning Time Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.12 – (a) Minimum time spent planning; (b) Maximum time spent planning; (c)
Average time spent planning.

0

10

20

30

40

50

60

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

P
la

n
S

iz
e

Problem Instance

Petrobras — Plan Size Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0

10

20

30

40

50

60

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

P
la

n
 S

iz
e

Problem Instance

Petrobras — Plan Size Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0

10

20

30

40

50

60

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

P
la

n
S

iz
e

Problem Instance

Petrobras — Plan Size Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.13 – (a) Minimum plan size; (b) Maximum plan size; (c) Average plan size.

120

0

20

40

60

80

100

120

140

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

M
in

im
um

 P
la

n
V

ar
ia

nc
e

Problem Instance

Petrobras — Parallelism Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0

20

40

60

80

100

120

140

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

M
ax

im
um

 P
la

n
V

ar
ia

nc
e

Problem Instance

Petrobras — Parallelism Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0

20

40

60

80

100

120

140

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

A
ve

ra
ge

 P
la

n
V

ar
ia

nc
e

Problem Instance

Petrobras — Parallelism Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.14 – (a) Minimum plan size variance between all agents; (b) Maximum plan
size variance between all agents; (c) Average plan size variance between all agents.

The impact of parallelism on the execution’s performance is even more apparent
with the execution time results from Figure 6.15. SIW+ -then-BFS(f) and DOMAP, the
both planners who had the best parallelism, achieve the faster execution times.

The combination of planning and execution times is shown in Figure 6.16.
There was not any large differences in time (planning or execution) as in the previous
domains, thus, results for all planners were included in both graphs. ADP-legacy and
CMAP-t are not shown in problem 1 (p01) in Figure 6.16a because they did not succeed
in planning, and consequently, did not have any execution results for this problem.

Appendix E contains tables with all values used to generate each of the graphs
found in this section.

6.3.3 Discussion

All four PDDL planners use the same input language, that is, they all used the
same domain and problem specifications. However, only CMAP-t and PMR (both use
the same parser from MA-PDDL to PDDL with obfuscation) had parsing errors in the
first problem of the Petrobras domain, and were not able to perform planning. In our
experiments, this was the only instance where a planner crashed, although we suspect
that SIW+ -then-BFS(f) also did something wrong in the parsing of problem 8 from the

121

0

5

10

15

20

25

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
d

s

Problem Instance

Petrobras — Execution Time Minimum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(a)

0

5

10

15

20

25

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Petrobras — Execution Time Maximum 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(b)

0

5

10

15

20

25

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

T
im

e
in

 S
ec

on
ds

Problem Instance

Petrobras — Execution Time Average 20 runs

ADP-legacy CMAP-t DOMAP PMR SIW

(c)

Figure 6.15 – (a) Minimum time spent executing solutions; (b) Maximum time spent
executing solutions; (c) Average time spent executing solutions.

0

2

4

6

8

10

12

14

16

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

p01 p02 p03 p04 p05

planning execution

(a)

0

5

10

15

20

25

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

ad
p

cm
ap

do
m
ap

pm
r

si
w

p06 p07 p08 p09 p10

planning execution

(b)

Figure 6.16 – (a) Planning and execution times for the first 5 problems in the Petro-
bras domain; (b) Planning and execution times for the last 5 problems in the Petrobras
domain.

122

Rovers domain, as it was not a particularly hard problem to solve (when compared to
problem 9 and 10).

Our problems in the Petrobras domain were not as difficult (in relation to the
total number of agents and goals) as the previous two domains. Consequently, DOMAP
maintained its base planning time of under two seconds, which we have already covered
in previous domains is due to start-up of the MAS and the use of contract net protocol.
These results are in line with the results from the other two domains, and we expect that
larger problems would result in good scalability regarding planning time for DOMAP.

The DOMAP results for plan size are most likely due to the low number of
agents in this domain, 13 in problem 10 against 22 in Rovers and 36 in Floods; and
because the number of locations do not increase with each problem.

Regarding parallelism, DOMAP achieves an impressive minimum variance of
zero in problem 1 and 3. This indicates the best possible goal allocation, where the tasks
are distributed evenly across all agents. This is reflected in the execution results, which
when combined with the planning time results, show that DOMAP maintains a modest
performance in the first six problems, and outperforms all other planners in the last four
problems.

123

7. CONCLUSION

In this thesis, we described the DOMAP framework and its four main compo-
nents: (i) multi-agent factored representation — a multi-agent interface between agent,
environment, and organisation dimensions from MAS and HTN planning; (ii) goal al-
location mechanism — by using a contract net protocol, agents that participate in the
planning phase can pre-select goals that they believe to be more appropriate for them,
which can cut planning time considerably in domains with heterogeneous agents; (iii)
individual planner — the SHOP2 planner is used in each agent for individual planning,
so as to make the most of the HTN-like structure of the plan library found in typical
BDI agents; (iv) coordination mechanism — employing social laws to coordinate agents
at execution time, in order to avoid any conflicts created during planning.

We also described our implementation of DOMAP with the JaCaMo MAS de-
velopment platform. Detailing how each of the different dimensions in JaCaMo interact
with DOMAP’s main components. In the organisation level, we demonstrated how to
define social laws and created an organisation artifact responsible for ensuring that
agents follow social laws when executing conflicting actions, and how the failure of so-
cial schemes can start DOMAP to generate new, and improved, social schemes. In the
environment level, we described artifacts responsible for parsing information between
the MAS and the individual planner, as well as CNP artifacts for goal allocation. In
the agent level, we presented the set of Jason domain-independent plans to explore an
agent’s plan library, generating goal-plan trees, and extracting useful information for
CNP bids.

7.1 Summary of Results

Experiments in the classical Rovers domain and Petrobras domain were re-
ported, but in order to better evaluate our approach we defined a new multi-agent prob-
lem, the Floods domain. In this domain, three heterogeneous types of agents (UAVs,
USVs, and UGVs) provide aid to centres for disaster management in order to monitor
possible flood areas and provide any necessary assistance in regions affected by floods.
We isolated the online components of DOMAP (MAS execution and social laws) and ran
experiments in those domains comparing against four other state-of-the-art multi-agent
planners from CoDMAP-15, and then used DOMAP MAS execution and social laws com-
ponents to run the solutions found by all planners.

Our results show that DOMAP scales rather well, provides excellent parallel so-
lutions, and is the fastest multi-agent planner for the largest problems, while still main-
taining a reasonable plan length compared to other planners. Our results indicate that

124

allocating goals before planning can lead to a huge improvement with regards to plan-
ning time, since SIW+ -then-BFS(f) is the only planner that does not do so. Moreover,
decentralising planning and running in computers with multiple cores can also lead to
faster planning times (only DOMAP and PMR decentralise planning). Furthermore, our
experiments show that when concurrent actions are possible, lower plan length does
not directly translate into lower execution times, and that fairness can be as important
as the overall plan length in some multi-agent settings. While most other multi-agent
planners favour the makespan metric (largest plan size of agents), we have shown that
our parallelism metric is a better indicator for execution performance, at least when
there are many concurrent actions. Finally, when combining time spent on planning
and execution, DOMAP achieves the best performance.

Our results with regards to planning time, contradict those found in CoDMAP-
15, which we believe was mostly due to the low scale factor of the problems found in
the competition. Their domains were too simplistic, with a small number of agents and
goals, resulting in planning times low enough that the winner could have been any of
the top performing planners. One of the advantages of MAP is its usability in large-
scale problems, with many agents and goals. Such problems are still much needed for
improving benchmarking in the MAP community, and in this thesis we have introduced
the Floods domain as a first step towards this goal.

7.2 Future Work

The recent addition of the interaction as a programming abstraction to JaCaMo
can allow further improvements to both goal allocation and the coordination mechanism
used in DOMAP. In [152], an implementation of CNP as an interaction protocol is given,
which could be used instead of the artifact approach we currently use, or maybe even
a combination of both. As for the coordination mechanism, social laws could easily be
described as interaction protocols, which might prove to be a more straightforward pro-
cess then defining them as CArtAgO artifacts, which were already quite limited for this
purpose.

The planners ADP-legacy, CMAP-T, and PMR all use relaxed planning graphs
during goal allocation, and we believe that DOMAP’s plan length can be improved con-
siderably if we integrate relaxed planning graphs in each agent bid calculation together
with our current bid selection heuristics.

One of our goals with DOMAP, is to turn it into a general-purpose domain-
independent framework. As such, we designed DOMAP to be an open platform where
other alternatives for modular components can be used, allowing the developer to choose
the approach that is more suited for their particular problem. For example, by taking an

125

argumentation-based approach [113, 97] instead of using contract net protocol, agents
could cooperate better, since a communication link would be established instead of just
placing bids according to what they believe to be their own value. This improvement
in cooperation could lead to better goal allocation, especially in tightly-coupled domains
with many conflicts and dependencies.

There are many other formalisms, mechanisms, and planners that could be
added to DOMAP. The following is a list of some of the alternatives that we have consid-
ered:

• formalism: MA-STRIPS [17], MA PDDL 3.1 [71].

• goal allocation: vickrey auction, market simulation and economics, MDPs, game
theory.

• individual planner: fast downward [59], temporal planners, probabilistic plan-
ners.

• coordination mechanism: temporal decoupling, plan merging, simple temporal
networks.

Another interesting experiment to make would be to allow the agents to choose
the planner that is the most appropriate for achieving a particular goal. For example,
while one agent might opt to use SHOP2 planner, another agent might have a goal
that contains some degree of uncertainty, where a probabilistic planner would be better
suited for the job.

Considering self-interested agents instead of fully cooperative ones opens up
the use of many negotiation techniques in goal allocation. While coordination might
prove to be more difficult in these instances, some sort of negotiation could also be ap-
plied. Privacy also becomes much more important, as agents need to protect their infor-
mation from other agents, as each agent expects to win their negotiations.

The Multi-Agent Programming Contest scenarios [28] are very complex MAS
that would make very interesting multi-agent planning domains. Although the small
deadline for sending an action at each step of the simulation (currently four seconds) is
a challenge for applying planning techniques, with DOMAP and the results shown here
we believe it is possible, as long as a good translation between the environment and the
factored representation is in place (e.g., using only relevant states for planning instead
of the whole environment).

There is a possibility of running DOMAP in a real-world version of the Floods
scenario (presented in Section 6.2). There are two USVs available, of the Lutra Prop1

model shown in Figure 7.1, and several USVs and UGVs. The boats are low-cost, ro-
bust, and compact in size and weight. They are equipped with an electrical conductivity

1http://senseplatypus.com/

http://senseplatypus.com/

126

sensor, a dissolved oxygen sensor, and one side-scan sonar. Experiments with the boats
are already under way in a separate project, and eventually JaCaMo agents should be
controlling them, enabling the use of DOMAP.

Figure 7.1 – A still image of Lutra Prop on the left, and an image of it in our first field
work.

Another interesting line of future work is related to the validation of HTN
plans, to check if the solution found during planning is still valid during execution. There
is an algorithm [7] that uses classical parsing of context-free grammars customized to
attribute grammars with a timeline constraint [5]. Experiments indicate that convert-
ing HTN models to attribute grammars may provide better time-performance results in
comparison to converting to a SAT-based approach [8].

127

REFERENCES

[1] Alberola, J. M.; Such, J. M.; Espinosa, A.; Botti, V.; García-Fornes, A. “Magentix:
a Multiagent Platform Integrated in Linux”. In: European Workshop on Multi-
Agent Systems, 2008, pp. 1–10.

[2] Alechina, N.; Behrens, T.; Hindriks, K.; Logan, B. “Query caching in agent
programming languages”. In: Proceedings of the 10th International Workshop on
Programming Multiagent Systems, 2012, pp. 117–131.

[3] Backus, J. W. “The syntax and semantics of the proposed international algebraic
language of the zurich ACM-GAMM conference”. In: International Federation for
Information Processing Congress, 1959, pp. 125–131.

[4] Barrett, A.; Weld, D. S. “Partial-order planning: Evaluating possible efficiency
gains”, Artificial Intelligence, vol. 67–1, May 1994, pp. 71–112.

[5] Barták, R.; Maillard, A. “Attribute grammars with set attributes and global
constraints as a unifying framework for planning domain models”. In: Proceedings
of the 19th International Symposium on Principles and Practice of Declarative
Programming, 2017, pp. 39–48.

[6] Barták, R.; Zhou, N.-F. “On modeling planning problems: Experience from the
petrobras challenge”. In: Advances in Soft Computing and Its Applications, 2013,
pp. 466–477.

[7] Barták, R.; Maillard, A.; Cardoso, R. C. “Validation of hierarchical plans
via parsing of attribute grammars”. In: Proceedings of the Twenty-Eight
International Conference on Automated Planning and Scheduling, 2018, 8p.

[8] Behnke, G.; Höller, D.; Biundo, S. “This is a solution! (... but is it though?) verifying
solutions of hierarchical planning problems”. In: Proceedings of the Twenty-
Seventh International Conference on Automated Planning and Scheduling, 2017,
pp. 20–28.

[9] Behrens, T. M.; Hindriks, K.; Hübner, J.; Dastani, M. “Putting APL platforms
to the test: Agent similarity and execution performance”, Technical Report,
Clausthal University of Technology, 2010, 23p.

[10] Bellifemine, F. L.; Caire, G.; Greenwood, D. “Developing Multi-Agent Systems
with JADE”. John Wiley & Sons, 2007, 286p.

[11] Bellman, R. “A Markovian Decision Process”, Indiana University Mathematics
Journal, vol. 6–4, Apr 1957, pp. 679–684.

128

[12] Bofill, M.; Espasa, J.; Villaret, M. “Efficient SMT encodings for the petrobras
domain”. In: Proceedings of the 13th International Workshop on Constraint
Modelling and Reformulation, 2014, pp. 68–84.

[13] Boissier, O.; Bordini, R. H.; Hübner, J. F.; Ricci, A.; Santi, A. “Multi-agent
oriented programming with JaCaMo”, Science of Computer Programming, vol. 78–
6, Jun 2013, pp. 747–761.

[14] Bordini, R. H.; Dix, J. “Programming multiagent systems”. In: Multiagent Systems
2nd Edition, Weiss, G. (Editor), MIT Press, 2013, chap. 11, pp. 587–639.

[15] Bordini, R. H.; Wooldridge, M.; Hübner, J. F. “Programming Multi-Agent Systems
in AgentSpeak using Jason”. John Wiley & Sons, 2007, 273p.

[16] Borrajo, D.; Fernandez, S. “MAPR and CMAP”. In: Proceedings of the Competition
of Distributed and Multi-Agent Planners, 2015, pp. 1–3.

[17] Brafman, R. I.; Domshlak, C. “From one to many: Planning for loosely coupled
multi-agent systems”. In: International Conference on Automated Planning and
Scheduling, 2008, pp. 28–35.

[18] Brafman, R. I.; Shani, G.; Zilberstein, S. “Qualitative planning under partial
observability in multi-agent domains”. In: Proceedings of the Twenty-Seventh
Conference on Artificial Intelligence, 2013, pp. 130–137.

[19] Bratman, M. E.; Israel, D. J.; Pollack, M. E. “Plans and resource-bounded practical
reasoning”, Computational Intelligence, vol. 4–3, Sep 1988, pp. 349–355.

[20] Braubach, L.; Pokahr, A.; Lamersdorf, W. “A universal criteria catalog for
evaluation of heterogeneous agent development artifacts”. In: From Agent Theory
to Agent Implementation, 2008, pp. 19–28.

[21] Brenner, M.; Nebel, B. “Continual planning and acting in dynamic multiagent
environments”, Autonomous Agents and Multi-Agent Systems, vol. 19–3, Dec 2009,
pp. 297–331.

[22] Cardoso, R. C.; Bordini, R. H. “Allocating social goals using the contract
net protocol in online multi-agent planning”. In: 5th Brazilian Conference on
Intelligent System, 2016, pp. 199–204.

[23] Cardoso, R. C.; Bordini, R. H. “A distributed online multi-agent planning system”.
In: 4th Workshop on Distributed and Multi-Agent Planning, 2016, pp. 15–23.

[24] Cardoso, R. C.; Bordini, R. H. “A modular framework for decentralised multi-agent
planning”. In: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, 2017, pp. 1487–1489.

129

[25] Cardoso, R. C.; Bordini, R. H. “A multi-agent extension of a hierarchical task
network planning formalism”, Advances in Distributed Computing and Artificial
Intelligence Journal, vol. 6–2, May 2017, pp. 5–17.

[26] Cardoso, R. C.; Hübner, J. F.; Bordini, R. H. “Benchmarking communication
in actor- and agent-based languages”. In: 12th International Conference on
Autonomous Agents and Multiagent Systems, 2013, pp. 1267–1268.

[27] Cardoso, R. C.; Hübner, J. F.; Bordini, R. H. “Benchmarking communication in
agent- and actor-based languages”. In: Engineering Multi-Agent Systems, 2013,
pp. 81–96.

[28] Cardoso, R. C.; Pereira, R. F.; Krzisch, G.; Magnaguagno, M. C.; Basegio, T.;
Meneguzzi, F. “Team pucrs: a decentralised multi-agent solution for the agents in
the city scenario”, International Journal of Agent-Oriented Software Engineering,
vol. 6–1, Jan 2018, pp. 3–34.

[29] Cardoso, R. C.; Zatelli, M. R.; Hübner, J. F.; Bordini, R. H. “Towards benchmarking
actor- and agent-based programming languages”. In: Workshop on Programming
based on actors, agents, and decentralized control, 2013, pp. 115–126.

[30] Clearwater, S. H. (Editor). “Market-based Control: A Paradigm for Distributed
Resource Allocation”. World Scientific Publishing Co. Inc., 1996, 328p.

[31] Clement, B. J.; Durfee, E. H.; Barrett, A. C. “Abstract reasoning for planning and
coordination”, Journal of Artificial Intelligence Research, vol. 28–1, Apr 2007, pp.
453–515.

[32] Coen, M. H. “Non-deterministic social laws”. In: Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence, 2000, pp. 15–21.

[33] Collier, R. W.; Russell, S.; Lillis, D. “Reflecting on agent programming with
AgentSpeak(L)”. In: Principles and Practice of Multi-Agent Systems, 2015, pp.
351–366.

[34] Cox, J.; Durfee, E. “Efficient and distributable methods for solving the multiagent
plan coordination problem”, Multiagent and Grid Systems, vol. 5–4, Dec 2009, pp.
373–408.

[35] Crosby, M. “ADP an agent decomposition planner codmap 2015”. In: Proceedings
of the Competition of Distributed and Multi-Agent Planners, 2015, pp. 4–7.

[36] Crosby, M.; Jonsson, A.; Rovatsos, M. “A single-agent approach to multiagent
planning”. In: 21st European Conference on Artificial Intelligence, 2014, pp. 237–
242.

130

[37] Crosby, M.; Rovatsos, M.; Petrick, R. P. A. “Automated agent decomposition for
classical planning”. In: Proceedings of the Twenty-Third International Conference
on Automated Planning and Scheduling, 2013, pp. 46–54.

[38] Dastani, M. “2APL: a practical agent programming language”, Autonomous
Agents and Multi-Agent Systems, vol. 16–3, Jun 2008, pp. 214–248.

[39] de Silva, L. “BDI agent reasoning with guidance from HTN recipes”. In:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, 2017, pp. 759–767.

[40] de Silva, L.; Sardiña, S.; Padgham, L. “First principles planning in BDI systems”.
In: 8th International Joint Conference on Autonomous Agents and Multiagent
Systems, 2009, pp. 1105–1112.

[41] de Silva, L.; Sardiña, S.; Padgham, L. “Summary information for reasoning about
hierarchical plans”. In: European Conference on Artificial Intelligence, 2016, pp.
1300–1308.

[42] de Weerdt, M. “Plan merging in multi-agent systems”, Ph.D. Thesis, Delft
University of Technology, 2003, 204p.

[43] de Weerdt, M.; Clement, B. “Introduction to planning in multiagent systems”,
Multiagent and Grid Systems, vol. 5–4, Dec 2009, pp. 345–355.

[44] Dean, T.; Boddy, M. S. “An analysis of time-dependent planning.” In: National
Conference on Artificial Intelligence, 1988, pp. 49–54.

[45] Decker, K. S. “TAEMS: A framework for environment centered analysis &
design of coordination mechanisms”. In: Foundations of Distributed Artificial
Intelligence, 1996, pp. 429–448.

[46] desJardins, M. E.; Durfee, E. H.; Ortiz, C. L.; Wolverton, M. J. “A survey of
research in distributed, continual planning”, AI Magazine, vol. 20–4, Dec 1999,
pp. 13–22.

[47] Díaz, Á. F.; Earle, C. B.; Fredlund, L.-A. “eJason: an implementation of Jason
in Erlang”. In: Proceedings of the 10th International Workshop on Programming
Multi-Agent Systems, 2012, pp. 7–22.

[48] Dignum, V.; Padget, J. “Multiagent organizations”. In: Multiagent Systems 2nd
Edition, Weiss, G. (Editor), MIT Press, 2013, chap. 2, pp. 51–98.

[49] Durfee, E. H. “Distributed problem solving and planning”. In: Mutli-agents
Systems and Applications, Carbonell, J. G.; Siekmann, J. (Editors), Springer-
Verlag New York Inc., 2001, pp. 118–149.

131

[50] Durfee, E. H.; Zilberstein, S. “Multiagent planning, control, and execution”. In:
Multiagent Systems 2nd Edition, Weiss, G. (Editor), MIT Press, 2013, chap. 11,
pp. 485–545.

[51] Ferber, J.; Gutknecht, O.; Michel, F. “From agents to organizations: An
organizational view of multi-agent systems”. In: Agent-Oriented Software
Engineering, LNCS 2935, 2003, pp. 214–230.

[52] Fernández, V.; Grimaldo, F.; Lozano, M.; Orduña, J. M. “Evaluating Jason for
distributed crowd simulations”. In: International Conference on Agents and
Artificial Intelligence., 2010, pp. 206–211.

[53] Fikes, R. E.; Nilsson, N. J. “STRIPS: a new approach to the application of
theorem proving to problem solving”. In: Proceedings of the 2nd international joint
conference on Artificial intelligence, 1971, pp. 608–620.

[54] Fitoussi, D.; Tennenholtz, M. “Choosing social laws for multi-agent systems:
Minimality and simplicity”, Artificial Intelligence, vol. 119–1, Aug 2000, pp. 61–
101.

[55] Foulser, D. E.; Li, M.; Yang, Q. “Theory and algorithms for plan merging”, Artificial
Intelligence, vol. 57–2, Oct 1992, pp. 143–181.

[56] Georgeff, M.; Lansky, A. “Procedural knowledge”, Proceedings of the Institute of
Electrical and Electronics Engineers (Special Issue on Knowledge Representation),
vol. 74–10, Oct 1986, pp. 1383–1398.

[57] Giacomo, G.; Lespérance, Y.; Levesque, H. J.; Sardina, S. “Indigolog: A high-
level programming language for embedded reasoning agents”. In: Multi-Agent
Programming: Languages, Tools and Applications, Bordini, R. H.; Dastani, M.;
Dix, J.; Seghrouchni, A. E. F. (Editors), Springer, 2009, chap. 2, pp. 31–72.

[58] Gmytrasiewicz, P. J.; Durfee, E. H. “Rational coordination in multi-agent
environments”, Autonomous Agents and Multi-Agent Systems, vol. 3–4, Dec 2000,
pp. 319–350.

[59] Helmert, M. “The fast downward planning system”, Journal of Artificial
Intelligence Research, vol. 26–1, Jul 2006, pp. 191–246.

[60] Hindriks, K. V.; de Boer, F. S.; van der Hoek, W.; Meyer, J.-J. C. “Agent
programming with declarative goals”. In: Proceedings of the 7th International
Workshop on Agent Theories and Architectures„ 2000, pp. 228–243.

[61] Hindriks, K. V.; Roberti, T. “Goal as a planning formalism”. In: Proceedings
of Multiagent System Technologies, Braubach, L.; van der Hoek, W.; Petta, P.;
Pokahr, A. (Editors), 2009, pp. 29–40.

132

[62] Hoek, W.; Roberts, M.; Wooldridge, M. “Social laws in alternating time:
effectiveness, feasibility, and synthesis”, Synthese, vol. 156–1, May 2006, pp. 1–
19.

[63] Hoffmann, J.; Nebel, B. “The FF planning system: fast plan generation through
heuristic search”, Journal of Artificial Intelligence Research, vol. 14–1, May 2001,
pp. 253–302.

[64] Howden, N.; Rönnquist, R.; Hodgson, A.; Lucas, A. “JACK intelligent agents
- summary of an agent infrastructure”. In: 5th International conference on
autonomous agents, 2001, 6p.

[65] Hübner, J. F.; Sichman, J. S.; Boissier, O. “Developing organised multiagent
systems using the MOISE+ model: programming issues at the system and agent
levels”, International Journal of Agent-Oriented Software Engineering, vol. 1–3,
2007, pp. 370–395.

[66] Igreja, H.; Silva, J. R.; Tonidandel, F. “ICKEPS 2012 challenge domain: Planning
ship operations on petroleum platforms and ports”. In: Proceedings of the
4th International Competition on Knowledge Engineering for Planning and
Scheduling, 2012, 11p.

[67] Jordan, H.; Botterweck, G.; Huget, M.-P.; Collier, R. “A feature model of actor,
agent, and object programming languages”. In: Workshop on Programming based
on actors, agents, and decentralized control, 2011, pp. 147–158.

[68] Jr., J. C. B.; Durfee, E. H. “Distributed algorithms for solving the multiagent
temporal decoupling problem”. In: International Conference on Autonomous
Agents and Multiagent Systems, 2011, pp. 141–148.

[69] Kambhampati, S. “Refinement planning as a unifying framework for plan
synthesis”, AI Magazine, vol. 18–2, Jun 1997, pp. 67–97.

[70] Komenda, A.; Novak, P.; Pechoucek, M. “Domain-independent multi-agent plan
repair”, Journal of Network and Computer Applications, vol. 37, Jan 2014, pp.
76–88.

[71] Kovacs, D. L. “A multi-agent extension of PDDL 3.1”. In: Proceedings of the 3rd
Workshop on the International Planning Competition, 2012, pp. 19–27.

[72] Kuter, U.; Nau, D. S. “Using domain-configurable search control for probabilistic
planning”. In: Proceedings of the Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, 2005, pp. 1169–1174.

133

[73] Kuter, U.; Nau, D. S.; Pistore, M.; Traverso, P. “A hierarchical task-network
planner based on symbolic model checking”. In: Proceedings of the Fifteenth
International Conference on Automated Planning and Scheduling, 2005, pp. 300–
309.

[74] Lerma, A. T. “Design and implementation of a multi-agent planning system”,
Master’s Thesis, Polytechnic University of Valencia, 2011, 81p.

[75] Levesque, H.; Reiter, R. “High-level robotic control: Beyond planning. a position
paper”. In: Association for the Advancement of Artificial Intelligence 1998 Spring
Symposium: Integrating Robotics Research: Taking the Next Big Leap, 1998, pp.
106–108.

[76] Levesque, H. J.; Reiter, R.; Lin, F.; Scherl, R. B. “Golog: A logic programming
language for dynamic domains”, Journal of Logic Programming, vol. 31–1,
Apr 1997, pp. 54–84.

[77] Luis, N.; Borrajo, D. “PMR: Plan merging by reuse”. In: Proceedings of the
Competition of Distributed and Multi-Agent Planners, 2015, pp. 11–13.

[78] Mao, X.; Mors, A.; Roos, N.; Witteveen, C. “Coordinating competitive agents
in dynamic airport resource scheduling”. In: Proceedings of the 5th German
conference on Multiagent System Technologies, 2007, pp. 133–144.

[79] Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.; Veloso, M.; Weld, D.;
Wilkins, D. “PDDL - the planning domain definition language”, Technical Report,
Yale Center for Computational Vision and Control, 1998, 27p.

[80] Meneguzzi, F.; De Silva, L. “Planning in BDI agents: a survey of the integration of
planning algorithms and agent reasoning”, The Knowledge Engineering Review,
vol. 30–1, Jan 2015, pp. 1–44.

[81] Meneguzzi, F.; Luck, M. “Composing high-level plans for declarative agent
programming”. In: Declarative Agent Languages and Technologies V, Baldoni, M.;
Son, T.; van Riemsdijk, M.; Winikoff, M. (Editors), Springer Berlin Heidelberg,
2008, pp. 69–85.

[82] Meneguzzi, F. R.; Zorzo, A. F.; Móra, M. D. C. “Propositional planning in BDI
agents”. In: Proceedings of the 2004 ACM Symposium on Applied Computing,
2004, pp. 58–63.

[83] Miller, G. E. “Hubble space telescope planning and scheduling - experience;
lessons learned and future directions”. In: Proceedings of the workshop New
observing modes for the next century, 1996, pp. 158–161.

134

[84] Mora, M. C.; Lopes, J. G.; Viccariz, R. M.; Coelho, H. “BDI models and systems:
Reducing the gap”. In: Intelligent Agents V: Agents Theories, Architectures, and
Languages, 1999, pp. 11–27.

[85] Muise, C.; Lipovetzky, N.; Ramirez, M. “MAP-LAPKT: Omnipotent multi-
agent planning via compilation to classical planning”. In: Proceedings of the
Competition of Distributed and Multi-Agent Planners, 2015, pp. 14–16.

[86] Murphy, R. R. “Trial by fire [rescue robots]”, IEEE Robotics Automation Magazine,
vol. 11–3, Sep 2004, pp. 50–61.

[87] Murphy, R. R. “Emergency informatics: Using computing to improve disaster
management”, Computer, vol. 49–5, May 2016, pp. 19–27.

[88] Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Wu, D.; Yaman, F.; Munoz-Avila, H.;
Murdock, J. “Applications of SHOP and SHOP2”, Intelligent Systems, vol. 20–2,
March 2005, pp. 34–41.

[89] Nau, D.; Ghallab, M.; Traverso, P. “Automated Planning: Theory & Practice”.
Morgan Kaufmann Publishers Inc., 2004, 638p.

[90] Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; Yaman, F. “SHOP2:
An HTN planning system”, Journal of Artificial Intelligence Research, vol. 20–1,
Dec 2003, pp. 379–404.

[91] Nau, D. S.; Ghallab, M.; Traverso, P. “Blended planning and acting: Preliminary
approach, research challenges”. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015, pp. 4047–4051.

[92] Nissim, R.; Brafman, R. I. “Multi-agent A* for parallel and distributed systems”.
In: Proceedings of the Heuristics for Domain-Independent Planning Workshop,
2012, pp. 1265–1266.

[93] Nissim, R.; Brafman, R. I. “Distributed heuristic forward search for multi-agent
planning”, Journal of Artificial Intelligence Research, vol. 51–1, Oct 2014, pp. 293–
332.

[94] Nissim, R.; Brafman, R. I.; Domshlak, C. “A general, fully distributed multi-agent
planning algorithm”. In: International Conference on Autonomous Agents and
Multiagent Systems, 2010, pp. 1323–1330.

[95] O’Hare, G. M. P. “Agent factory: an environment for the fabrication of multiagent
systems”. In: Foundations of distributed artificial intelligence, 1996, pp. 449–484.

135

[96] Omicini, A.; Ricci, A.; Viroli, M. “Artifacts in the A&A meta-model for multi-agent
systems”, Autonomous Agents and Multi-Agent Systems, vol. 17–3, Dec 2008, pp.
432–456.

[97] Panisson, A. R.; Freitas, A.; Schmidt, D.; Hilgert, L.; Meneguzzi, F.; Vieira, R.;
Bordini, R. H. “Arguing about task reallocation using ontological information
in multi-agent systems”. In: 12th International Workshop on Argumentation in
Multiagent Systems, 2015, 16p.

[98] Planken, L.; de Weerdt, M.; Witteveen, C. “Optimal temporal decoupling in
multiagent systems”. In: International Conference on Autonomous Agents and
Multiagent Systems, 2010, pp. 789–796.

[99] Pokahr, A.; Braubach, L.; Lamersdorf, W. “Jadex: Implementing a
BDI-infrastructure for JADE agents”, EXP - in search of innovation (Special
Issue on JADE), vol. 3–3, Dec 2003, pp. 76–85.

[100] Rao, A. S. “AgentSpeak(L): BDI agents speak out in a logical computable
language”. In: Proceedings of the 7th European workshop on Modelling
autonomous agents in a multi-agent world, 1996, pp. 42–55.

[101] Rao, A. S.; Georgeff, M. P. “BDI agents: From theory to practice”. In: Proceedings
of the first International Conference on Multi-Agent Systems, 1995, pp. 312–319.

[102] Ricci, A. “From actor event-loop to agent control-loop: Impact on programming”.
In: Workshop on Programming based on actors, agents, and decentralized control,
2014, pp. 121–132.

[103] Ricci, A.; Piunti, M.; Viroli, M. “Environment programming in multi-agent
systems – an artifact-based perspective”, Autonomous Agents and Multi-Agent
Systems, vol. 23–2, Sep 2011, pp. 158–192.

[104] Ricci, A.; Piunti, M.; Viroli, M.; Omicini, A. “Environment programming in
CArtAgO”. In: Multi-Agent Programming: Languages, Tools and Applications,
Bordini, R. H.; Dastani, M.; Dix, J.; Seghrouchni, A. E. F. (Editors), Springer, 2009,
chap. 8, pp. 259–288.

[105] Rodriguez, S.; Gaud, N.; Galland, S. “Sarl: A general-purpose agent-oriented
programming language”. In: Web Intelligence and Intelligent Agent Technologies,
2014, pp. 103–110.

[106] Russell, S. J.; Norvig, P. “Artificial Intelligence: A Modern Approach”. Prentice
Hall, 2009, 1152p.

136

[107] Sandholm, T. W.; Lesser, V. R. “Coalitions among computationally bounded
agents”, Artificial Intelligence, vol. 94–1, Jul 1997, pp. 99–137.

[108] Sapena, O.; Onaindia, E.; Torreño, A. “FLAP: applying least-commitment in
forward-chaining planning”, AI Communications, vol. 28–1, Jan 2015, pp. 5–20.

[109] Sardiña, S.; de Silva, L.; Padgham, L. “Hierarchical planning in BDI agent
programming languages: a formal approach”. In: 5th International Joint
Conference on Autonomous Agents and Multiagent Systems, 2006, pp.
1001–1008.

[110] Sardiña, S.; Padgham, L. “Goals in the context of BDI plan failure and planning”.
In: International Conference on Autonomous Agents and Multiagent Systems,
2007, 8p.

[111] Sardiña, S.; Padgham, L. “A BDI agent programming language with failure
handling, declarative goals, and planning”, Autonomous Agents and Multi-Agent
Systems, vol. 23–1, Jul 2011, pp. 18–70.

[112] Scerri, P.; Xu, Y.; Liao, E.; Lai, J.; Sycara, K. “Scaling teamwork to very
large teams”. In: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, 2004, pp. 888–895.

[113] Sergio Pajares Ferrando, E. O. “Defeasible argumentation for multi-agent
planning in ambient intelligence applications”. In: 11th International Conference
on Autonomous Agents and Multiagent Systems, 2012, pp. 509–516.

[114] Shehory, O.; Kraus, S. “Methods for task allocation via agent coalition formation”,
Artificial Intelligence, vol. 101–1-2, May 1998, pp. 165–200.

[115] Shoham, Y. “Agent-oriented programming”, Artificial Intelligence, vol. 60–1,
Mar 1993, pp. 51–92.

[116] Shoham, Y.; Tennenholtz, M. “On the synthesis of useful social laws for artificial
agent societies (preliminary report)”. In: Proceedings of National Conference on
Artificial Intelligence, 1992, pp. 276–281.

[117] Shoham, Y.; Tennenholtz, M. “On social laws for artificial agent societies: Off-line
design”, Artificial Intelligence, vol. 73–1-2, Feb 1995, pp. 231–252.

[118] Singh, M. P.; Chopra, A. K. “Programming multiagent systems without
programming agents”. In: Programming Multi-Agent Systems, 2010, pp. 1–14.

[119] Smallwood, R. D.; Sondik, E. J. “The optimal control of partially observable
markov processes over a finite horizon”, Operations Research, vol. 21–5, Oct 1973,
pp. 1071–1088.

137

[120] Smith, R. G. “The contract net protocol: High-level communication and control
in a distributed problem solver”, IEEE Transactions on Computers, vol. 29–12,
Dec 1980, pp. 1104–1113.

[121] Such, J. M.; García-Fornes, A.; Espinosa, A.; Bellver, J. “Magentix2: a privacy-
enhancing agent platform”, Engineering Applications of Artificial Intelligence,
vol. 26–1, Dec 2012, pp. 96–109.

[122] Sycara, K. P. “Multiagent systems”, AI Magazine, vol. 19–2, Jun 1998, pp. 79–92.

[123] Sycara, K. P.; Pannu, A. “The RETSINA multiagent system: Towards integrating
planning, execution and information gathering”. In: Proceedings of the second
international conference on Autonomous agents, 1998, pp. 350–351.

[124] Tang, P.; Wang, H.; Qi, C.; Wang, J. “Anytime heuristic search in temporal htn
planning for developing incident action plans”, AI Communications, vol. 25–4,
Oct 2012, pp. 321–342.

[125] Tang, Y.; Meneguzzi, F.; Parsons, S.; Sycara, K. “Probabilistic hierarchical
planning over MDPs”. In: Proceedings of the Tenth International Conference on
Autonomous Agents and Multiagent Systems, 2011, pp. 1143–1144.

[126] Tang, Y.; Meneguzzi, F.; Parsons, S.; Sycara, K. “Planning over MDPs through
probabilistic HTNs”. In: Proceedings of the AAAI-11 Workshop on Generalized
Planning, 2011, 8p.

[127] Thangarajah, J.; Padgham, L.; Winikoff, M. “Detecting and avoiding interference
between goals in intelligent agents”. In: International Joint Conference on
Artificial Intelligence, 2003, pp. 721–726.

[128] Toropila, D.; Dvorak, F.; Trunda, O.; Hanes, M.; Bartak, R. “Three approaches to
solve the petrobras challenge: Exploiting planning techniques for solving real-
life logistics problems”. In: International Conference on Tools with Artificial
Intelligence, 2012, pp. 191–198.

[129] Torreno, A.; Onaindia, E.; Sapena, O. “An approach to multiagent planning with
incomplete information”. In: 20th European Conference on Artificial Intelligence,
2012, pp. 762–767.

[130] Torreño, A.; Onaindia, E.; Sapena, O. “A flexible coupling approach to multi-agent
planning under incomplete information”, Knowledge and Information Systems,
vol. 38–1, Jan 2014, pp. 141–178.

[131] Torreño, A.; Onaindia, E.; Sapena, O. “FMAP: distributed cooperative multi-agent
planning”, Applied Intelligence, vol. 41–2, Sep 2014, pp. 606–626.

138

[132] Van Dyke ParunaK, H.; Brueckner, S.; Sauter, J. “Digital pheromone mechanisms
for coordination of unmanned vehicles”. In: Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems, 2002, pp. 449–
450.

[133] van Leeuwen, P.; Witteveen, C. “Temporal decoupling and determining resource
needs of autonomous agents in the airport turnaround process”. In: Proceedings of
the International Conference on Intelligent Agent Technology, 2009, pp. 185–192.

[134] Vaquero, T.; Silva, J. R.; Ferreira, M.; Tonidandel, F.; Beck, J. C. “From
requirements and analysis to PDDL in itSIMPLE3. 0”. In: Proceedings of the
Third International Competition on Knowledge Engineering for Planning and
Scheduling, 2009, pp. 54–61.

[135] Vaquero, T. S.; Costa, G.; Tonidandel, F.; Igreja, H.; Silva, J. R.; Beck, J. C.
“Planning and scheduling ship operations on petroleum ports and platforms”. In:
Proceedings of the Scheduling and Planning Applications woRKshop, 2012, pp.
8–16.

[136] Vickrey, W. “Counterspeculation, auctions and competitive sealed tenders”,
Journal of Finance, vol. 16–1, 1961, pp. 8–37.

[137] Vieira, R.; Moreira, Á. F.; Wooldridge, M.; Bordini, R. H. “On the formal semantics
of speech-act based communication in an agent-oriented programming language”,
Journal of Artificial Intelligence Research, vol. 29–1, May 2007, pp. 221–267.

[138] Štolba, M.; Komenda, A.; Kovacs, D. L. “Competition of distributed and multiagent
planners (CoDMAP)”. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, 2016, pp. 4343–4345.

[139] Walsh, W. E.; Wellman, M. P. “A market protocol for decentralized task allocation”.
In: Proceedings of the Third International Conference on Multiagent Systems,
1998, pp. 325–332.

[140] Wellman, M. P. “A market-oriented programming environment and its application
to distributed multicommodity flow problems”, Journal of Artificial Intelligence
Research, vol. 1–1, Aug 1993, pp. 1–23.

[141] Wellman, M. P.; Greenwald, A.; Stone, P.; Wurman, P. R. “The 2001 trading agent
competition”, IEEE Internet Computing, vol. 13–1, Dec 2000, pp. 4–12.

[142] Weyns, D.; Omicini, A.; Odell, J. “Environment as a first class abstraction in
multiagent systems”, Autonomous Agents and Multi-Agent Systems, vol. 14–1,
Feb 2007, pp. 5–30.

139

[143] Witwicki, S. J.; Durfee, E. H. “Towards a unifying characterization for quantifying
weak coupling in dec-POMDPs”. In: International Conference on Autonomous
Agents and Multiagent Systems, 2011, pp. 29–36.

[144] Wooldridge, M. “An Introduction to MultiAgent Systems”. John Wiley & Sons,
2002, 368p.

[145] Wooldridge, M. “Intelligent agents”. In: Multiagent Systems 2nd Edition, Weiss,
G. (Editor), MIT Press, 2013, chap. 1, pp. 3–50.

[146] Wu, F.; Zilberstein, S.; Chen, X. “Online planning for multi-agent systems with
bounded communication”, Artificial Intelligence, vol. 175–2, Feb 2011, pp. 487–
511.

[147] Xueguang, C.; Haigang, S. “Further extensions of FIPA contract net protocol:
Threshold plus DoA”. In: Proceedings of the 2004 ACM Symposium on Applied
Computing, 2004, pp. 45–51.

[148] Yadati, C.; Witteveen, C.; Zhang, Y. “Coordinating agents - an analysis of
coordination in supply-chain management tasks”. In: Proceedings of the 2nd
International Conference on Agents and Artificial Intelligence, 2010, pp. 218–223.

[149] Yang, Q.; Nau, D. S.; Hendler, J. “Merging separately generated plans with
restricted interactions”, Computational Intelligence, vol. 8–4, Feb 1992, pp. 648–
676.

[150] Yokoo, M.; Durfee, E. H.; Ishida, T.; Kuwabara, K. “The distributed constraint
satisfaction problem: Formalization and algorithms”, IEEE Transactions on
Knowledge and Data Engineering, vol. 10–5, Sep 1998, pp. 673–685.

[151] Zatelli, M. R.; de Brito, M.; Schmitz, T. L.; Morato, M. M.; de Souza, K. S.; Uez,
D. M.; Hübner, J. F. “SMADAS: A team for mapc considering the organization
and the environment as first-class abstractions”. In: Engineering Multi-Agent
Systems, 2013, pp. 319–328.

[152] Zatelli, M. R.; Hübner, J. F. “The interaction as an integration component for the
JaCaMo platform”. In: Engineering Multi-Agent Systems, 2014, pp. 431–450.

140

141

APPENDIX A – REMAINING DESCRIPTIONS OF THE FLOODS
DOMAIN

The domain for an UGV is shown in Listing A.1. The navigation operator and
methods are similar to UAVs, except that it has the precondition that requires a ground
path between two areas, and the method has a third branch to traverse through mid-
dle areas in order to arrive at its destination (using internal operators, discussed in
the previous chapter). There are two new operators: pickup_box to pick a first aid kit
that is located in a CDM, and drop_box to drop it in an area that requires it. The
deliver_box method’s task list has the following recipe: navigate to the area where
the box is located, pick it up, navigate to the goal area, and drop the box.

The USV domain specification in Listing A.2 is very similar to UGVs. One of
the differences is that USVs require water instead of ground paths. The operators and
methods related to box are swapped for water sampling ones. The sample_water oper-
ator collects a water sample in the area where the USV is in, while drop_sample drops
the water sample if the agent is at a CDM. The deliver_sample method’s recipe is to
navigate to the area where a water sample was requested, collect it, move to an area
with a CDM, and drop the sample.

142

Listing A.1 – HTN domain specification of an UGV agent.
1 (defdomain floods−ugv (
2 (:operator (!navigate ?from ?to)
3 ((area ?from) (area ?to) (ground_path ?from ?to) (at ?from))
4 ((at ?from))
5 ((at ?to))
6)
7 (:operator (!take_picture ?area ?disaster)
8 ((area ?area) (disaster ?disaster) (visible_from ?disaster ?area) (at ?area))
9 ()

10 ((have_picture ?disaster))
11)
12 (:operator (!communicate_data ?cdm ?disaster ?area1 ?area2)
13 ((disaster ?disaster) (cdm ?cdm) (at ?area1) (cdm_at ?cdm ?area2) (area ?area1) (area ?area2) (

have_picture ?disaster) (in_range ?area1 ?area2))
14 ((have_picture ?disaster))
15 ((communicated_data ?disaster))
16)
17 (:operator (!pickup_box ?store ?cdm ?area ?box)
18 ((store ?store) (empty ?store) (cdm ?cdm) (box ?box) (area ?area) (box_at_cdm ?box ?cdm) (

cdm_at ?cdm ?area) (at ?area))
19 ((empty ?store) (box_at_cdm ?box ?cdm))
20 ((full ?store) (have_box ?box))
21)
22 (:operator (!drop_box ?store ?area ?box)
23 ((store ?store) (full ?store) (box ?box) (area ?area) (have_box ?box) (at ?area))
24 ((full ?store) (have_box ?box))
25 ((empty ?store) (box_at_area ?box ?area))
26)
27 (:method (navigate ?to)
28 ((at ?from))
29 ((navigate_ugv ?from ?to))
30)
31 (:method (navigate_ugv ?from ?to)
32 ((at ?to))
33 ()
34 ((ground_path ?from ?to))
35 ((!navigate ?from ?to))
36 (ground_path ?from ?mid) (not (visited ?mid)))
37 ((!navigate ?ugv ?from ?mid) (!!visit ?mid) (navigate_ugv ?ugv ?mid ?to) (!!unvisit ?mid))
38)
39 (:method (get_picture ?disaster)
40 ((disaster ?disaster) (visible_from ?disaster ?area))
41 ((navigate ?area) (!take_picture ?area ?disaster) (send_data ?disaster))
42)
43 (:method (send_data ?disaster)
44 ((disaster ?disaster) (have_picture ?disaster) (cdm_at ?cdm ?area2) (area ?area2) (in_range ?

area1 ?area2))
45 ((navigate ?area1) (!communicate_data ?cdm ?disaster ?area1 ?area2))
46)
47 (:method (deliver_box ?box ?area)
48 ((box ?box) (area ?area) (store ?store) (box_at_cdm ?box ?cdm) (cdm_at ?cdm ?area2))
49 ((navigate ?area2) (!pickup_box ?store ?cdm ?area2 ?box) (navigate ?area) (!drop_box ?store ?

area ?box))
50)
51))

143

Listing A.2 – HTN domain specification of an USV agent.
1 (defdomain floods−usv (
2 (:operator (!navigate ?from ?to)
3 ((area ?from) (area ?to) (water_path ?from ?to) (at ?from))
4 ((at ?from))
5 ((at ?to))
6)
7 (:operator (!take_picture ?area ?disaster)
8 ((area ?area) (disaster ?disaster) (visible_from ?disaster ?area) (at ?area))
9 ()

10 ((have_picture ?disaster))
11)
12 (:operator (!communicate_data ?cdm ?disaster ?area1 ?area2)
13 ((disaster ?disaster) (cdm ?cdm) (at ?area1) (cdm_at ?cdm ?area2) (area ?area1) (area ?area2) (

have_picture ?disaster) (in_range ?area1 ?area2))
14 ((have_picture ?disaster))
15 ((communicated_data ?disaster))
16)
17 (:operator (!sample_water ?store ?area)
18 ((store ?store) (empty ?store) (area ?area) (at ?area))
19 ((empty ?store))
20 ((full ?store) (have_water_sample ?area))
21)
22 (:operator (!drop_sample ?store ?area1 ?area2 ?cdm)
23 ((store ?store) (area ?area1) (area ?area2) (cdm ?cdm) (have_water_sample ?area2) (cdm_at ?

cdm ?area1) (at ?area1))
24 ((full ?store) (have_water_sample ?area2))
25 ((empty ?store) (have_water_sample_cdm ?cdm ?area2))
26)
27 (:method (navigate ?to)
28 ((at ?from))
29 ((navigate_usv ?from ?to))
30)
31 (:method (navigate_usv ?from ?to)
32 ((at ?to))
33 ()
34 ((water_path ?from ?to))
35 ((!navigate ?from ?to))
36 (water_path ?from ?mid) (not (visited ?mid)))
37 ((!navigate ?usv ?from ?mid) (!!visit ?mid) (navigate_usv ?usv ?mid ?to) (!!unvisit ?mid))
38)
39 (:method (get_picture ?disaster)
40 ((disaster ?disaster) (visible_from ?disaster ?area))
41 ((navigate ?area) (!take_picture ?area ?disaster) (send_data ?disaster))
42)
43 (:method (send_data ?disaster)
44 ((disaster ?disaster) (have_picture ?disaster) (cdm_at ?cdm ?area2) (area ?area2) (in_range ?

area1 ?area2))
45 ((navigate ?area1) (!communicate_data ?cdm ?disaster ?area1 ?area2))
46)
47 (:method (deliver_sample ?cdm ?area2)
48 ((cdm ?cdm) (area ?area2) (store ?store) (cdm_at ?cdm ?area1))
49 ((navigate ?area2) (!sample_water ?store ?area2) (navigate ?area1) (!drop_sample ?store ?

area1 ?area2 ?cdm))
50)
51))

144

Listing A.3 – HTN problem specification of an UGV agent.
1 (defproblem ugv1 floods−ugv (
2 (area area1)
3 (area area2)
4 (area area3)
5 (area area4)
6 (disaster flood1)
7 (disaster flood2)
8 (disaster flood3)
9 (disaster flood4)

10 (cdm cdm1)
11 (cdm_at cdm1 area1)
12 (at area1)
13 (ground_path area1 area3)
14 (ground_path area3 area1)
15 (visible_from flood1 area3)
16 (visible_from flood2 area4)
17 (visible_from flood3 area3)
18 (visible_from flood4 area4)
19 (in_range area2 area1)
20 (in_range area1 area1)
21)
22 (:unordered
23 (:task get_picture flood3)
24)
25)

Listing A.4 – HTN problem specification of an USV agent.
1 (defproblem usv1 floods−usv (
2 (area area1)
3 (area area2)
4 (area area3)
5 (area area4)
6 (disaster flood1)
7 (disaster flood2)
8 (disaster flood3)
9 (disaster flood4)

10 (cdm cdm1)
11 (cdm_at cdm1 area1)
12 (at area1)
13 (water_path area1 area2)
14 (water_path area2 area1)
15 (water_path area2 area4)
16 (water_path area4 area2)
17 (visible_from flood1 area3)
18 (visible_from flood2 area4)
19 (visible_from flood3 area3)
20 (visible_from flood4 area4)
21 (in_range area2 area1)
22 (in_range area1 area1)
23)
24 (:unordered
25 (:task get_picture flood4)
26)
27)

145

Listing A.5 – UGV agents’ code snippet.
1 +!navigate(To)
2 : at(From)
3 <−
4 !navigate(From,To).
5

6 +!navigate(From,To)
7 : at(To).
8

9 +!navigate(From,To)
10 : ground_path(Areas)[artifact(From)] & .my_name(Name)
11 <−
12 navigate(From,To,Areas)[artifact(Name)].
13

14 +!take_picture(Area,Disaster)
15 : visible_from(Areas)[artifact(Disaster)] & .my_name(Name) & cdm_at(CdmAt)[artifact(Cdm)]
16 <−
17 !navigate(Area);
18 take_picture(Area,Disaster,Areas)[artifact(Name)];
19 !communicate_data(Cdm,Disaster,Area,CdmAt).
20

21 +!communicate_data(Cdm,Disaster,At,To)
22 : cdm_at(CdmAt)[artifact(Cdm)] & in_range(Areas)[artifact(Cdm)] & .my_name(Name)
23 <−
24 !navigate(To);
25 communicate_data(At,To,CdmAt,Disaster,Areas)[artifact(Name)].
26

27 +!deliver_box(Area,Box)
28 : box_at(BoxAt)[artifact(Box)] & cdm_at(CdmAt)[artifact(BoxAt)] & .my_name(Name)
29 <−
30 !navigate(CdmAt);
31 pickup_box(CdmAt, CdmAt, BoxAt, BoxAt, Box)[artifact(Name)];
32 !navigate(Area);
33 drop_box(Area, Box)[artifact(Name)].

146

Listing A.6 – USV agents’ code snippet.
1 +!navigate(To)
2 : at(From)
3 <−
4 !navigate(From,To).
5

6 +!navigate(From,To)
7 : at(To).
8

9 +!navigate(From,To)
10 : water_path(Areas)[artifact(From)] & .my_name(Name)
11 <−
12 navigate(From,To,Areas)[artifact(Name)].
13

14 +!take_picture(Area,Disaster)
15 : visible_from(Areas)[artifact(Disaster)] & .my_name(Name) & cdm_at(CdmAt)[artifact(Cdm)]
16 <−
17 !navigate(Area);
18 take_picture(Area,Disaster,Areas)[artifact(Name)];
19 !communicate_data(Cdm,Disaster,Area,CdmAt).
20

21 +!communicate_data(Cdm,Disaster,At,To)
22 : cdm_at(CdmAt)[artifact(Cdm)] & in_range(Areas)[artifact(Cdm)] & .my_name(Name)
23 <−
24 !navigate(To);
25 communicate_data(At,To,CdmAt,Disaster,Areas)[artifact(Name)].
26 +!deliver_sample(Cdm,Area2)
27 : cdm_at(CdmAt)[artifact(Cdm)] & .my_name(Name) & store(Store)[artifact(Name)]
28 <−
29 !navigate(Area2);
30 sample_water(Area2)[artifact(Name)];
31 !navigate(CdmAt);
32 drop_sample(CdmAt, Area2, CdmAt)[artifact(Name)].

147

Listing A.7 – The UGV artefact.
1 public class VehicleUgv extends Artifact {
2 void init(String area, String store) {
3 defineObsProperty("at",area);
4 defineObsProperty("storage",store);
5 }
6 @OPERATION void navigate(String from, String to, String areas) throws

InterruptedException {
7 ObsProperty cond1 = getObsProperty("at");
8 if (cond1(from) && areas.contains(to)) {
9 getObsProperty("at").updateValue(to);

10 } else { failed("Action navigate has failed."); }
11 }
12 @OPERATION void take_picture(String area, String disaster, String areas) throws

InterruptedException {
13 ObsProperty cond1 = getObsProperty("at");
14 if (cond1(area) && areas.contains(area)) {
15 defineObsProperty("have_picture", disaster);
16 } else { failed("Action take_picture has failed."); }
17 }
18 @OPERATION void communicate_data(String at, String to, String cdmAt, String disaster,

String areas) throws InterruptedException {
19 ObsProperty cond1 = getObsProperty("at");
20 ObsProperty cond2 = getObsPropertyByTemplate("have_picture", disaster);
21 if (cond1(at) && cond2(disaster) && to.equals(cdmAt) && areas.contains(to)) {
22 defineObsProperty("communicated_data", disaster);
23 removeObsPropertyByTemplate("have_picture", disaster);
24 } else { failed("Action communicate_data has failed."); }
25 }
26 @OPERATION void pickup_box(String cdmAt, String area, String boxAt, String cdm,

ArtifactId boxId) throws InterruptedException, OperationException {
27 ObsProperty cond1 = getObsProperty("at");
28 ObsProperty cond2 = getObsProperty("storage");
29 if (cond1(area) && area.equals(cdmAt) && (boxAt.equals(area) || boxAt.equals(cdm)) &&

cond2("empty")) {
30 getObsProperty("storage").updateValue("full");
31 execLinkedOp(boxId, "updateLoc", getCurrentOpAgentId().getAgentName());
32 } else { failed("Action pickup_box has failed."); }
33 }
34 @OPERATION void drop_box(String area, ArtifactId boxId) throws InterruptedException,

OperationException {
35 ObsProperty cond1 = getObsProperty("at");
36 ObsProperty cond2 = getObsProperty("storage");
37 if (cond1(area) && cond2("full")) {
38 getObsProperty("storage").updateValue("empty");
39 execLinkedOp(boxId, "updateLoc", area);
40 } else { failed("Action drop_box has failed."); }
41 }
42 }

148

Listing A.8 – The USV artefact.
1 public class VehicleUsv extends Artifact {
2 void init(String area, String store) {
3 defineObsProperty("at",area);
4 defineObsProperty("storage",store);
5 }
6 @OPERATION void navigate(String from, String to, String areas) throws

InterruptedException {
7 ObsProperty cond1 = getObsProperty("at");
8 if (cond1(from) && areas.contains(to)) {
9 getObsProperty("at").updateValue(to);

10 } else { failed("Action navigate has failed."); }
11 }
12 @OPERATION void take_picture(String area, String disaster, String areas) throws

InterruptedException {
13 ObsProperty cond1 = getObsProperty("at");
14 if (cond1(area) && areas.contains(area)) {
15 defineObsProperty("have_picture", disaster);
16 } else { failed("Action take_picture has failed."); }
17 }
18 @OPERATION void communicate_data(String at, String to, String cdmAt, String disaster,

String areas) throws InterruptedException {
19 ObsProperty cond1 = getObsProperty("at");
20 ObsProperty cond2 = getObsPropertyByTemplate("have_picture", disaster);
21 if (cond1(at) && cond2(disaster) && to.equals(cdmAt) && areas.contains(to)) {
22 defineObsProperty("communicated_data", disaster);
23 removeObsPropertyByTemplate("have_picture", disaster);
24 } else { failed("Action communicate_data has failed."); }
25 }
26 @OPERATION void sample_water(String area) throws InterruptedException {
27 ObsProperty cond1 = getObsProperty("at");
28 ObsProperty cond2 = getObsProperty("storage");
29 if ((cond1(area)) && (cond2("empty"))) {
30 getObsProperty("storage").updateValue("full");
31 defineObsProperty("have_water_sample", area);
32 } else { failed("Action sample_water has failed."); }
33 }
34 @OPERATION void drop_sample(String areaTo, String areaFrom, String cdmAt) throws

InterruptedException {
35 ObsProperty cond1 = getObsProperty("at");
36 ObsProperty cond2 = getObsProperty("storage");
37 ObsProperty cond3 = getObsPropertyByTemplate("have_water_sample", areaFrom);
38 if (cond1(areaTo) && cond2("full") && cond3(areaFrom) && areaTo.equals(cdmAt)) {
39 getObsProperty("storage").updateValue("empty");
40 removeObsPropertyByTemplate("have_water_sample", areaFrom);
41 defineObsProperty("delivered_water_sample", areaFrom);
42 } else { failed("Action drop_sample has failed."); }
43 }
44 }

149

APPENDIX B – DOMAP PLANNER SCRIPTS

Listing B.1 shows the startPlanner Java class that uses the default Java run-
time environment to start a new process that executes an Allegro script. This class is
implemented as an internal action that is executed by Jason agents when they enter
the individual planning phase of DOMAP. The error output is saved in a file for logging
purposes. The solution is saved in a file that is passed along to the translator, who then
parses it into plans to be added to the agent’s plan library.

Listing B.1 – Java class to start the Allegro script.
1 public class startPlanner extends DefaultInternalAction {
2 public Object execute(TransitionSystem ts, Unifier un, Term[] args) throws Exception {
3 try
4 {
5 Runtime rt = Runtime.getRuntime();
6 Process proc = rt.exec("/home/acl/startPlanner.cl");
7 InputStream stderr = proc.getErrorStream();
8 InputStreamReader isr = new InputStreamReader(stderr);
9 BufferedReader br = new BufferedReader(isr);

10 String line = null;
11 while ((line = br.readLine()) != null)
12 saveErrorFile;
13 InputStream stdin = proc.getInputStream();
14 InputStreamReader isr2 = new InputStreamReader(stdin);
15 BufferedReader br2 = new BufferedReader(isr2);
16 String line2 = null;
17 while ((line2 = br2.readLine()) != null)
18 saveOutputFile;
19 int exitVal = proc.waitFor();
20 System.out.println("Process exitValue: " + exitVal);
21 } catch (Throwable t)
22 {
23 t.printStackTrace();
24 }
25 return true;
26 }
27 }

In Listing B.2 we show the Allegro script used to start SHOP2. The script
is called from within the startPlanner Java class, and receives three variables: $DO-
MAIN_NAME, $PROBLEM_NAME, and $TIMEOUT. The $DOMAIN_NAME variable
is obtained from the SHOP2 domain file that was provided by the translator. The $PROB-
LEM_NAME is retrieved from the SHOP2 problem file that was also provided by the
translator. Finally, the $TIMEOUT variable is determined by the organisation.

150

Listing B.2 – Allegro CL script to start SHOP2.
1 #! /home/acl/alisp −#!
2 (require :asdf)
3 (push "/home/shop2/" asdf:*central−registry*)
4 (asdf:oos ’asdf:load−op :shop2)
5 (load "./$DOMAIN_NAME")
6 (define−$DOMAIN_NAME−domain)
7 (load "./$PROBLEM_NAME")
8 (find−plans ’$PROBLEM_NAME :which :shallowest :time−limit $TIMEOUT)

151

APPENDIX C – ADDITIONAL RESULTS FOR THE ROVERS
DOMAIN

Table C.1 – Plan size results collected from 20 runs per problem in the Rovers domain;
best values are in bold font.

ADP CMAP DOMAP PMR SIW
Min Max Avg Size Min Max Avg Size Size

p01 26 26 26 26 28 35 32.15 32 31
p02 42 47 43.45 46 47 57 51.7 43 46
p03 60 64 62.2 61 79 101 90.8 67 66
p04 74 79 76.9 75 101 119 112.35 81 91
p05 103 107 106 104 112 140 127.35 115 118
p06 125 130 128.65 119 229 254 246.6 131 149
p07 148 156 151.9 140 217 262 236.65 153 155
p08 142 146 144.3 145 228 251 240.85 153 –
p09 187 201 194.9 195 288 328 312.55 200 231
p10 203 209 205.4 210 323 383 348.6 189 224

Table C.2 – Parallelism results collected from 20 runs per problem in the Rovers domain;
best values are in bold font.

ADP CMAP DOMAP PMR SIW
Min Max Avg Para Min Max Avg Para Para

p01 22.333 22.333 22.333 5.667 1.583 12.917 5.171 128 27.583
p02 51.767 86.4 77.015 117.867 20.4 67.1 35.5 44.967 59.467
p03 97.143 111.143 106.98 54.839 12.696 105.839 41.207 232.839 86.214
p04 146.489 186.544 176.422 118.278 2.233 62.489 24.019 216.544 71.878
p05 246.629 248.265 247.65 75.515 17.477 105.659 53.696 206.629 131.061
p06 374.44 392.841 389.843 254.731 91.978 262.995 170.225 180.093 72.401
p07 347.2 379.45 365.456 100.867 35.317 95.329 57.466 180.663 37.696
p08 416.588 442.575 434.872 144.761 11.438 103.556 42.009 170.029 –
p09 322.576 416.421 374.244 263.461 7.818 61.042 22.039 184.947 54.682
p10 239.041 260.132 249.187 277.307 73.108 265.11 127.278 659.015 415.584

152Table C.3 – Planning time results collected from 20 runs per problem in the Rovers domain; best times are in bold font.
ADP CMAP DOMAP PMR SIW

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg
p01 0.242 0.664 0.276 0.4 1.837 0.585 1.175 6.834 2.299 0.464 2.64 0.637 0.258 0.418 0.361
p02 0.335 0.524 0.379 0.519 0.706 0.661 1.029 2.948 1.401 1.125 1.262 1.209 0.389 0.64 0.539
p03 0.47 0.704 0.506 0.688 1.067 0.877 1.131 4.386 1.808 1.132 1.368 1.24 0.671 1.128 0.901
p04 0.573 0.914 0.654 0.955 1.247 1.089 1.335 6.333 2.282 1.66 2.137 1.753 1.153 1.964 1.638
p05 1.214 1.286 1.234 1.523 2.289 1.976 2.665 8.52 4.374 2.944 3.319 3.17 4.056 6.962 5.367
p06 2.675 3.347 2.772 2.172 3.395 2.755 3.256 18.806 7.896 5.464 7.785 6.05 9.664 16.494 12.93
p07 10.309 16.273 11.426 4.392 5.904 5.568 2.046 4.085 2.976 13.219 18.905 14.615 31.532 53.074 45.253
p08 5.35 8.616 6.14 3.291 4.936 4.257 2.312 4.006 2.731 8.312 11.619 9.077 – – –
p09 7.138 11.385 7.881 4.7 5.411 5.227 2.637 4.788 3.406 11.09 13.735 11.909 43 72.316 57.086
p10 14.39 23.072 16.305 5.962 9.276 7.707 2.791 4.85 3.626 22.969 34.649 26.914 124.569 208.285 190.267

Table C.4 – Execution time results collected from 20 runs per problem in the Rovers domain; best times are in bold font.
ADP CMAP DOMAP PMR SIW

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg
p01 6.656 6.812 6.709 5.113 5.619 5.435 6.116 9.166 6.636 12.132 12.875 12.572 7.619 9.145 8.177
p02 10.678 14.22 12.997 14.557 15.734 14.939 7.596 12.715 10.722 9.038 9.639 9.153 10.692 12.191 11.503
p03 12.867 14.791 13.688 11.688 13.173 12.155 9.379 20.71 15.426 21.608 23.211 22.435 18.308 20.652 19.242
p04 20.279 22.737 21.768 16.21 18.240 17.328 11.336 14.882 13.112 24.649 25.372 24.852 18.79 20.904 19.74
p05 28.286 30.363 29.203 16.058 17.444 16.611 13.325 18.328 14.941 20.21 22.336 21.103 27.482 30.445 29.053
p06 34.192 36.543 35.894 30.879 33.392 31.833 18.789 28.494 22.160 20.646 25.344 23.738 33.485 36.454 34.918
p07 29.022 36.187 31.549 17.998 20.571 18.789 17.579 24.383 20.406 22.031 26.758 24.875 29.955 33.495 31.43
p08 46.043 48.977 47.117 24.056 27.506 25.916 18.848 25.914 20.653 23.966 27.124 25.411 – – –
p09 38.636 44.647 41.267 36.089 43.077 39.567 21.544 26.067 23.647 27.425 32.968 29.519 44.734 49.842 46.638
p10 28.883 33.858 31.325 38.653 41.756 40.347 22.641 39.358 27.595 60.345 64.088 61.963 63.914 69.799 67.01

153

APPENDIX D – ADDITIONAL RESULTS FOR THE FLOODS
DOMAIN

Table D.1 – Plan size results collected from 20 runs per problem in the Floods domain;
best values are in bold font.

ADP CMAP DOMAP PMR SIW
Min Max Avg Size Min Max Avg Size Size

p01 43 48 46.3 45 43 60 53.6 41 45
p02 55 57 56.25 64 61 82 69.55 53 55
p03 117 122 118.2 119 115 142 129.35 116 130
p04 129 141 134.15 130 138 190 164.75 125 124
p05 168 171 168.7 159 182 239 203.05 160 168
p06 176 191 183.6 179 195 244 218.25 236 188
p07 187 205 196.25 193 215 247 234.7 201 233
p08 238 251 245.05 221 238 296 273.3 230 265
p09 302 319 311.3 308 301 352 329.2 346 326
p10 305 330 316.25 313 329 384 352.05 294 337

Table D.2 – Parallelism results collected from 20 runs per problem in the Floods domain;
best values are in bold font.

ADP CMAP DOMAP PMR SIW
Min Max Avg Para Min Max Avg Para Para

p01 25.444 50.444 42.744 35.5 2.75 12.75 7.919 19.778 11.5
p02 38.242 42.265 38.841 99.697 3.356 15.97 7.357 32.811 5.174
p03 129.457 134.695 131.66 187.781 20.6 42.41 32.519 140.638 111.952
p04 120.918 133.712 127.959 181.242 26.353 50.408 37.405 146.644 33.046
p05 147.9 153.29 149.081 163.957 31.857 58.314 43.966 185.348 69.1
p06 189.536 259.259 220.326 204.346 24.027 36.862 31.675 223.362 80.928
p07 132.148 172.635 154.447 164.67 15.422 26.84 20.524 133.179 73.165
p08 235.72 297.126 272.175 202.516 21.155 35.982 27.856 188.644 45.868
p09 417.653 619.559 516.067 404.292 31.127 48.28 40.811 280.383 138.61
p10 261.52 514.729 336.33 223.131 27.625 36.313 32.682 200.623 68.313

154Table D.3 – Planning time results collected from 20 runs per problem in the Floods domain; best times are in bold font.
ADP CMAP DOMAP PMR SIW

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg
p01 0.411 0.721 0.469 0.423 0.534 0.507 1.132 3.289 1.693 0.932 1.062 0.991 0.586 0.981 0.786
p02 0.786 1.3 0.922 0.525 0.665 0.636 1.3 3.076 1.661 1.197 1.393 1.267 1.57 2.677 2.124
p03 1.439 2.099 1.56 0.743 1.088 0.918 1.534 2.126 1.805 1.674 2.112 1.747 9.774 16.815 13.245
p04 2.779 4.237 3.118 1.386 1.987 1.701 1.759 2.932 2.101 2.64 3.232 2.783 21.096 35.566 27.927
p05 4.309 6.634 4.918 1.606 2.238 1.895 1.913 3.785 2.61 4.146 5.503 4.575 54.062 92.058 73.536
p06 6.06 9.994 7.086 2.387 3.344 2.7845 2.218 4.081 2.99 12.928 20.047 15.017 125.622 209.596 180.764
p07 9.511 12.612 10.835 2.929 4.685 3.726 2.948 5.573 3.718 7.414 9.398 7.811 285.255 479.705 429.912
p08 18.339 31.813 22.126 3.534 4.812 4.225 3.364 5.694 4.175 10.153 14.002 10.857 720.376 887.571 840.414
p09 26.783 41.332 33.815 5.067 7.789 6.119 3.849 6.44 4.967 55.333 81.05 67.477 1808.363 2016.963 1946.180
p10 40.279 136.793 51.971 7.512 11.243 9.296 4.92 8.031 6.063 17.761 25.928 19.334 2897.413 3304.565 3135.850

Table D.4 – Execution time results collected from 20 runs per problem in the Floods domain; best times are in bold font.
ADP CMAP DOMAP PMR SIW

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg
p01 4.061 4.315 4.201 4.049 4.272 4.142 4.077 4.715 4.286 4.06 4.343 4.168 4.064 4.23 4.138
p02 6.07 6.316 6.167 5.065 5.318 5.197 4.116 8.312 4.882 6.102 6.44 6.228 4.091 4.36 4.188
p03 2.183 2.618 2.346 2.823 3.08 2.937 3.158 5.908 4.285 1.831 2.125 1.97 1.337 1.593 1.489
p04 13.172 13.474 13.325 13.214 13.422 13.335 7.227 11.428 9.5 14.207 14.488 14.321 10.107 10.506 10.298
p05 4.209 5.575 5.22 4.16 4.597 4.346 6.258 9.38 7.049 5.211 5.406 5.29 4.736 5.021 4.822
p06 29.328 31.414 29.649 29.356 29.776 29.470 8.633 12.466 11.06 20.281 20.602 20.455 23.338 23.679 23.441
p07 17.332 22.485 19.962 22.353 22.61 22.478 6.912 9.178 8.482 16.41 16.693 16.5 19.906 20.057 19.974
p08 28.46 28.752 28.593 25.495 25.711 25.589 8.579 12.642 10.983 23.482 23.835 23.629 16.484 16.777 16.579
p09 5.616 6.838 6.556 10.831 11.347 11.157 8.618 10.796 9.759 11.553 11.736 11.646 13.545 13.752 13.642
p10 28.709 55.24 32.736 19.075 19.453 19.287 10.681 13.266 11.51 22.749 22.987 22.802 20.621 21.033 20.83

155

APPENDIX E – ADDITIONAL RESULTS FOR THE PETROBRAS
DOMAIN

Table E.1 – Plan size results collected from 20 runs per problem in the Petrobras domain;
best values are in bold font.

ADP CMAP DOMAP PMR SIW
Size Size Min Max Avg Size Size

p01 16 – 15 16 15.25 – 18
p02 19 19 19 20 19.05 19 21
p03 22 22 22 24 22.65 22 26
p04 25 25 25 27 26 25 31
p05 27 27 28 30 29.15 27 34
p06 30 30 33 35 33.45 30 37
p07 33 33 35 39 37.1 33 42
p08 35 35 38 43 41.3 35 48
p09 37 37 42 47 44.6 37 51
p10 42 40 47 52 48.45 40 55

Table E.2 – Parallelism results collected from 20 runs per problem in the Petrobras
domain; best values are in bold font.

ADP CMAP DOMAP PMR SIW
Size Size Min Max Avg Size Size

p01 64 – 0 18.917 13.121 – 10.667
p02 72.2 72.2 6.2 14.2 12.69 72.2 8
p03 80.667 80.667 0 16.267 11.795 80.667 6.567
p04 89.286 89.286 8.238 13.571 13.035 89.286 12.238
p05 81 81 11.361 15.361 14.116 81 8.111
p06 90 90 9.877 14.044 13.149 90 10.667
p07 99 99 8.891 15.872 13.146 99 6.491
p08 102.083 102.083 8.969 15.295 12.403 102.083 12.629
p09 105.308 105.308 8.231 15 11.733 105.308 14.141
p10 126 114.286 7.604 14.901 12.481 114.286 15.209

156Table E.3 – Planning time results collected from 20 runs per problem in the Petrobras domain; best times are in bold font.
ADP CMAP DOMAP PMR SIW

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg
p01 0.323 0.462 0.361 – – – 1.032 2.126 1.375 – – – 0.229 0.566 0.315
p02 0.398 0.461 0.415 0.304 0.664 0.357 1.146 1.474 1.394 0.361 0.952 0.449 0.315 0.527 0.407
p03 0.491 0.708 0.531 0.324 0.384 0.366 1.255 1.548 1.393 0.393 0.462 0.448 0.449 0.746 0.666
p04 0.605 0.882 0.646 0.342 0.495 0.403 1.037 1.516 1.408 0.473 0.589 0.499 0.62 1.036 0.89
p05 0.723 1.092 0.796 0.375 0.523 0.415 1.14 1.573 1.414 0.468 0.545 0.528 0.828 1.403 1.194
p06 0.863 1.261 0.968 0.403 0.565 0.459 1.43 1.583 1.492 0.548 0.602 0.577 1.091 1.858 1.521
p07 1.005 1.501 1.073 0.413 0.5 0.473 1.279 1.611 1.494 0.547 0.643 0.612 1.514 2.618 2.285
p08 1.189 1.874 1.354 0.441 0.638 0.499 1.485 1.631 1.579 0.605 0.697 0.672 2.093 3.548 3.099
p09 1.341 2.026 1.472 0.49 0.703 0.569 1.258 1.827 1.616 0.673 0.947 0.745 2.718 4.612 3.768
p10 1.528 2.232 1.639 0.503 0.591 0.561 1.322 1.731 1.623 0.708 1.04 0.827 3.587 6.162 5.081

Table E.4 – Execution time results collected from 20 runs per problem in the Petrobras domain; best times are in bold font.
ADP CMAP DOMAP PMR SIW

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg
p01 8.047 8.169 8.088 – – – 2.1 4.109 3.819 – – – 4.021 4.149 4.066
p02 9.557 9.672 9.61 9.539 9.774 9.625 3.549 4.105 3.986 9.538 9.871 9.608 4.021 4.195 4.079
p03 11.048 11.337 11.148 11.055 11.239 11.135 2.202 4.235 3.944 11.043 11.374 11.151 4.026 4.204 4.104
p04 12.553 12.751 12.639 12.555 12.801 12.632 3.613 4.257 4.064 12.572 12.786 12.657 4.525 4.71 4.615
p05 13.597 13.906 13.726 13.568 13.836 13.664 4.041 4.255 4.134 13.597 13.861 13.707 4.111 4.355 4.181
p06 15.074 15.312 15.155 15.057 15.325 15.169 4.023 4.257 4.159 15.063 15.347 15.163 4.039 4.306 4.209
p07 16.598 16.818 16.723 16.595 16.895 16.705 4.065 4.325 4.183 16.593 16.808 16.685 4.097 4.313 4.184
p08 17.6 17.864 17.716 17.58 17.805 17.678 3.745 4.273 4.149 17.604 17.817 17.716 5.534 5.782 5.63
p09 18.606 18.871 18.732 18.584 18.895 18.736 3.727 4.34 4.163 18.628 18.855 18.713 5.573 5.839 5.679
p10 21.137 21.393 21.255 20.122 20.361 20.221 3.75 4.307 4.179 20.1 20.339 20.211 5.585 5.841 5.673

