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ABSTRACT: Herein is presented a methodology to quantify the degree of hexagonal
order in nanoporous alumina arrays (NAA). The approach is inspired by the theory of
two-dimensional melting, developed to describe phase transitions in two-dimensional
systems that present liquid-crystal-like structures. A local order parameter (LOP) is
defined to quantify the degree of hexagonal order of each pore without any arbitrary
parameters. Using this LOP, three main qualitative and quantitative analytical tools were
developed: (i) a color code to create a map of the LOP, which is a visual tool to identify
the degree of order; (ii) quantitative measurements of the average hexagonal order of
the sample by measuring the distribution of the LOP and the distribution of the number
of neighbors of each pore, and (iii) a quantification of the spatial correlation of the LOP, which indicates how far the hexagonal
order is spread in a sample. Because this approach has a strong support on tools developed in statistical mechanics, one can go
beyond a simple characterization and interpret the results in terms of phases, as in other physical systems. This may help to
unveil the mechanisms behind the self-organization process and long-range order observed in NAA. Moreover, this approach can
be trivially extended to characterize other physical systems that form hexagonal packings.

■ INTRODUCTION

Since Keller,1 the nanoporous alumina arrays (NAA) formed by
aluminum anodization can be considered to be the most
popular self-organized hexagonal packing system. The high
interest in this methodology is mainly due to its simplicity and
low cost. For many engineering applications, such as high-
density magnetic recording media,2 photonic crystals,3 or
pattern-transfer masks,4 the ordering and organization of the
NAA is a crucial factor. When a high degree of regularity and
uniformity is required for applications, it is very important to
quantify the level of ordering in a NAA structure.
The anodization process is normally realized in two

anodization steps and under time-consuming potentiostatic
conditions to obtain a high ordering degree.5 The auto-
organization of the nanopores is a phenomenon controlled by
anodization parameters, as the applied voltage, temperature,
type, and concentration of electrolyte6−11 and characteristics of
the aluminum matrix.12−14 It is already known that the control
of these parameters can lead to structures with a low or high
degree of structural organization. The usual method to
characterize the degree of ordering is qualitative, normally
visual or using Fourier analysis.15−19 These approaches are
limited, revealing patterns that just allow a qualitative
identification of the lattice type, but the relation with the
underlying long-range ordering of the NAA lattice is not
revealed. To date, few methodologies for the quantitative
characterization of hexagonal packing systems were developed.
Different methods have been proposed to characterize

quantitatively the degree of ordering of the NAA, mainly

based on calculation of Radial Distribution Function
(RDF).20,21 Pichler et al.22 proposed a method based on
autocorrelation functions that could be applied to a wide range
of superstructures, but the order parameters proposed rely on
purely empirical fitting procedures of autocorrelations. Hill-
ebrand et al.23 used Delaunay triangulation to define a network
of pores in contact and compare it with a perfect hexagonal
network. They also propose an algorithm to define a grain of
nearly ideal pores through the introduction of a “quality
threshold.” This method is very useful, allowing the
determination of grains and measures of the grain size,
although it relies on a somewhat arbitrary threshold
parameter.24

It is important to have a tool to characterize the degree of
order of the self-assembled structures, which is simple to
implement and of wide applicability to different structures.
Moreover, it should give meaningful information that can be
compared and predicted from model systems. From this point
of view, it is important to get in contact with observables from
statistical mechanics. Systems that can form crystal-like
superstructures, like NAA or colloidal nanocrystals, may
develop two different kinds of order. The positional order
represents the translational invariance of the center of mass of
the unit cells structures, for example, pore centers, and
orientational order associated with rotational invariance of
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bonds or edges connecting vertices of the crystal lattice and the
orientation of the sides of triangles or hexagons, as in self-
assembled NAA. Both kinds of order can be characterized
through suitable order parameters and associated correlation
functions. For two-dimensional structures, a comprehensible
description of the onset of order is given by the theory of 2D
melting, or KTHNY theory, after the names Kosterlitz−
Thouless−Halperin−Nelson−Young, who pioneered in the
statistical description of phase transitions mediated by
topological defects. A review of this theory can be seen in
refs 25 and 26. A crystalline structure without any defects
shows both positional and orientational order. Positional order
can be conveniently quantified by means of RDF, which
presents distinct peaks at the positions of the density maxima
when the system is in a crystal phase. As soon as the structure
presents topological defects (e.g., dislocations), the positional
order is disrupted, and the RDF decays exponentially.
Nevertheless, these defects do not destroy the orientational
order completely. An intermediate phase, called the “hexatic
phase,” with short-range positional order and quasi-long-range
orientational order, is possible. In the hexatic phase, positional
correlations decay exponentially, but orientational correlations
decay much more slowly, as a power law of the distance from
any fixed point in the lattice. A suitable orientational order
parameter is the so-called “hexatic parameter,” which will be
defined below and used to characterize the orientational order
of NAA.
Correlations of the hexatic order parameter can quantify the

extension of hexagonal order in the lattice. At still higher
degrees of disordering, other kinds of topological defects, that
is, isolated disclinations, can appear. These are isolated particles
with five or seven nearest neighbors. When isolated
disclinations proliferate, orientational correlations decay ex-
ponentially, and the system loses both translational and
orientational order, as in a fluid phase.
In this article, we propose the use of statistical mechanical

tools to describe experimental systems that form hexagonal
networks, like NAA. The local order parameter (LOP) was
quantified by defining an order parameter for hexagonal
packing, which is a natural quantity in the theory of 2D
melting. Suitably defined correlations of the hexatic order

parameter allowed further quantification of the degree of order
in the lattice. Other quantities of interest, like the distribution
of the number of neighbors, could also be easily measured and
related to the order parameter. Using statistical mechanical
quantities to characterize order is useful because (i) there are
no arbitrary parameters, (ii) the proposed implementation is
quite simple, and (iii) it allows making contact with results
from model systems, which can further open new perspectives
on the relevance and influence of the control of the anodization
parameters in experiments.

■ METHODOLOGY

Methodology for Quantitative Characterization of
Hexagonal Packing System. In this section, we describe a
general method to characterize the degree of order of
hypothetical points distributed in a sample. In the following
sections, we will apply the method to NAA. Details of the
quantification method to characterize the hexagonal packing
system can be seen in a web site developed to facilitate the
readers analyzing their hexagonal systems.27

Let us first suppose that one has the coordinates of N points
distributed in a sample in two dimensions. The methodology to
quantify the orientational order of this sample can be
summarized in the following steps:

Determination of Nearest Neighbors. To define the nearest
neighbors of a point i, one can use a distance criterion, in which
all points that are below a given distance dth from point i are
considered to be its neighbors. However, here we avoid the
arbitrariness in the parameter dth by constructing the Voronoi
diagram of the sample.28 This procedure associates, for each
point i, a corresponding Voronoi cell, namely, the set of all
points whose distance to i is smaller than their distance to the
other points. This allows us to define unambiguously the nn

i

nearest neighbors of each point i. In Figure 1a, there is an
example of the Voronoi diagram for a hexagonal lattice.

Computation of a Local Order Parameter, ψ6
i . For each

point i, we compute

∑ψ θ=
=n

1
cos(6 )i

n
i

j

n

ijk6
1

n
i

(1)

Figure 1. (a) Example of a determination of nearest neighbors for a hexagonal lattice. In this case, the Voronoi cells are hexagons, and the neighbors
of a given point i are the j points that are in the neighbor cells. The angle θi23 is defined between the lines that connects the sites i to 2 and i to 3. (b)
Sketch of the computation of the spatial correlation C6

i (r). Circles represent the centers of the points distributed in a hexagonal lattice and the (red)
color represents the value of ψ6 of each point. The C6

i (r) is a measure of the correlation between the particle i and all nring particles inside of the
colored ring.
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where nn
i is the number of nearest neighbors of point i and θijk is

the angle between the lines that connect the sites i to j and i to
k, as exemplified in Figure 1a by the point i and its neighbors j
= 2 and k = 3. Note that ψ6

i = 1 if point i and its neighbors
describe a perfect hexagon.
Computation of the Spatial Correlation of the LOP, C6.

Once ψ6
i is computed for all points in the sample, this defines a

field of the LOP. We then define the spatial correlation of this
field as:

∑ψ ψ ψ ψ= ⟨ ⟩ =
=

C r
n r

( )
1

( )
i i j

r
j

n r
i j

6 6 6
ring 1

( )

6 6

ring

(2)

where the ⟨ψ6
iψ6

j ⟩r indicates an average over all nring(r) points
that are at a distance between r and r + dr from point i (blue
ring in Figure 1b), and then this value is averaged over the
whole sample:

∑=
=

C r
N

C r( )
1

( )
i

N
i

6
1

6
(3)

To exemplify the method and which type of measures one
can extract from it, consider two extreme cases: (i) a hexagonal
lattice of points and (ii) a completely random network of
points. The results are summarized in Figure 2a,b, respectively.
The Voronoi diagram and the color-coded map of ψ6, Figure

2a,b, show visually a clear difference between the cases. One
observes that the Voronoi cells are irregular and the values of
ψ6 are not homogeneous in the random distribution case,
Figure 2b, in clear contrast with what happens in the hexagonal
lattice, Figure 2a. The inhomogeneity of the values of ψ6 is an

important measure to characterize the degree of hexagonal
order in a sample. The distribution of ψ6, ρ(ψ6) quantifies the
degree of (in)homogeneity. For the hexagonal case, the
distribution will be peaked at ψ6 = 1, whereas the random
case displays a Gaussian distribution with an average given by
⟨ψ6⟩ = 0, as shown in Figure 2c.
One can go beyond this local analysis of the order and

compute the spatial correlation of ψ6. The quantity C6(r)
informs us how far the LOP ψ6 is correlated in space. The
correlation functions for the two examples considered are
shown in Figure 2d. If the sample describes a perfect hexagonal
lattice, with ψ6

i = 1 for all i, then it does not matter how far two
points i and j are, the correlation between ψ6

i and ψ6
j will be 1.

In the other extreme, if points are distributed randomly, then
even two nearest neighbors are uncorrelated, and C6 decays to
zero very quickly. It is important to notice that the most
valuable information that can be extracted from C6 is the way it
decays; that is, its functional dependence. When C6 decays
exponentially, this decay is related to the typical sizes of the
regions where ψ6 has the same value. This is related to the
typical grain size of a sample. At large separations, the
asymptotic value of C6 is ⟨ψ6⟩

2.
A third important quantity to evaluate the hexagonal order in

a sample is the distribution of neighbors, shown in Figure 2e.
For a perfect hexagonal lattice, each point has exactly six
neighbors, whereas in any other case, the number of neighbors
is distributed around this value; the deviation from this value
increases with the disorder. As described, in a hexagonally
ordered array, points with five or seven neighbors are related to
topological defects of the lattice. Depending on the
neighborhood, they can form dislocations or disclinations,
and their presence characterizes hexatic or disordered
structures, with specific forms for the decay of orientational
correlations.
As we described in the Introduction, there are two kinds of

order to completely characterize hexagonal phase in a real
solid,25 the positional order and the orientational order.
However, in our samples, we found that orientational
correlations decay at best as a power law of the distance
from a particular site. In this case, it is expected that positional
correlations, which are more sensitive to defects, decay faster,
typically exponentially fast. We have indeed verified this,
computing the RDF for our samples. This quantity, then, would
not help to quantify different levels of order in the samples, and
for this reason, we did not include an analysis of RDF in our
work.

Formation of NAA by Al Anodization. For the
quantitative characterization of hexagonal packing arrays,
three different samples of NAA structure were prepared by
anodization process. The process was carried out in two
anodization steps, in a conventional two-electrode cell using a
Cu sheet as a cathode.12−14,29−33 The anode is made of Al with
two different degrees of purity, that is, high-purity Al Bulk
(99.999%) and commercial Al (99.5%). After each anodization
step, the samples were dipped in a 5 wt % H3PO4 solution at 35
± 1 °C for different times to remove the alumina formed in the
first anodization step. A second anodization step was performed
to allow the opening of nanopores. Table 1 summarizes the
anodization conditions, and the name that will be used for each
sample.
After the anodization process, the morphological nanoporous

structure was characterized by scanning electron microscopy

Figure 2. Voronoi diagram and the map of ψ6 for all points (a) in the
hexagonal lattice and (b) in a completely random case. The color code
on the right of each Figure corresponds to the value of ψ6. (c) The
distribution of LOP, ρ(ψ6). The slashed line represents the Gaussian
distribution fitted to the randomly spaced points. The blue vertical line
at ψ6 = 1 marks the distribution of the hexagonal lattice. (d) The
spatial correlation of ψ6, C6(r). The x axis is normalized by the mean
distance between the points in a sample. (e) The distribution of the
number of neighbors, which has a peak in nn = 6 for the hexagonal
packing (blue line) and a Gaussian distribution around 6 in the case of
the random distribution of points.
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(SEM, JEOL JSM 6060) operating at 20 kV acceleration
voltages.
SEM Micrographs Graphical Treatments for the

Application of Statistical Mechanical Models. The next
step was to characterize how close to the hexagonal lattice the
samples were. Before applying the statistical mechanical models
described in the previous section, it was necessary to obtain the
coordinates of the nanopores center. To do so, we adjusted
ellipses for each nanopore, totalling 1245 nanopores for S1, 484
for S2, and 977 nanopores for S3. This allows the definition of
the center of mass of each nanopore, and the values of the
major and minor semi axes of the ellipses are related to the size
of the pores. This was done with a standard software package,
for example, ImageJ.34 Thus, it was possible to obtain for each
sample the average nanopore diameter (d) from the average of
the major and minor semi axes and the interpore distance (h)
from the center of mass of each nanopore. Details of this
procedure can be seen in the Supporting Information.

■ RESULTS AND DISCUSSION
Figure 3a−c shows the SEM images of the S1, S2, and S3
samples, respectively, prepared with different Al characteristics
and anodization parameters, as described in the previous
section (Table 1). The anodization of the S1, S2, and S3
yielded NAA with d of 22.0 ± 0.4, 61.9 ± 1.2, and 39.2 ± 1.3
nm and h of 54.4 ± 0.4, 90.6 ± 1.2 and 74.6 ± 1.5 nm,
respectively. The images treatment procedure for the character-

ization of the nanopore dimensions can be seen in detail in the
Supporting Information, Figure SI2, and the results are
summarized in Table SI1 in the Supporting Information. The
obtained anodization results indicate that distinct structures
were formed, leading to different visual levels in the nanopores
order. The S1 and S2 samples show a higher ordering level of
NAA compared with S3. This result is due to the higher purity
of the Al matrix in the S1 and S2 samples, whereas the S3
sample presents more impurities, which hampers the formation
of NAA with hexagonal order. The Voronoi diagram and the
map of ψ6 were used as a systematic procedure to quantify the
degree of order of the different anodization systems, as shown
in Figure 3d−f. A visual inspection on the S1 sample indicates
many more red points (corresponding to ψ6 = 1 in the color
code) and that they are concentrated in regions where the
Voronoi cells are hexagonal. Moreover, it is possible to observe
that the hexagonal order is decreasing from the S1 to the S3
samples, and for the last ones, there are very few red points.
Figure 4a−c summarizes the quantitative analysis of

nanopore ordering with the distribution of the LOP ψ6,
correlations C6, and the number of neighbors ρ(nn),
respectively. For sample S1, ρ(ψ6) has a mean value ⟨ψ6⟩ ≈
0.79, and the distribution is completely asymmetric, indicating
that most of the nanopores form hexagons with their neighbors.
Sample S2 is also asymmetric and has most of the nanopores
with a large value of ⟨ψ6⟩ = 0.56, but the standard deviation (σ
= 0.34) from the average value indicates more disorder than in
sample S1. The S3 sample shows approximately a symmetric
distribution around ⟨ψ6⟩ = 0.27. This indicates that the sample
is much more disordered than the previous cases (S1 and S2
samples), but it still has ∼30% more order than the completely
random case, for which ⟨ψ6⟩ = 0. The dashed Gaussian curve
drawings in Figure 4a−c represent the distribution for a
random set of points discussed in the Methodology Section and
are a benchmark of such a completely disordered case.
The middle column of Figure 4a−c, C6 indicates how far ψ6

is correlated in space. The x axis is normalized by the mean
distance between the nanopores. It is important to note that in
sample S1, the correlation decays very slowly, after 20
nanopores (which corresponds to more than half of the system
size in this case), and the correlation is ∼60% of the nearest

Table 1. Anodization Conditions Used for the Three
Different Alumina Nanoporous Samples

anodization steps

1st 2nd

sample
name material condition

etching
(min) condition

etching
(min)

S1 Al
(99.999%)

a 50 a 10

S2 Al
(99.999%)

b 90 b 30

S3 Al (99.5%) a 30 a 10
a0.3 M H2SO4, 25 V at 3 ± 2 °C for 12 h. b0.3 M H2C2O4, 30 V at 15
± 2 °C for 12 h.

Figure 3. SEM images of the experimental samples of alumina nanopores: (a) S1, (b) S2, and (c) S3. (d−f) Quantitative map of the ψ6 and the
Voronoi diagram for the respective samples. The colors indicate the value of ψ6 for each nanopore. The color code is below each Figure.
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neighbor value. For sample S2, although the absolute value of
the correlation is smaller than in the S1 case, the decay of C6 is
also slow. C6 for sample S3 shows that after two nanopores, the
values of C6 are not correlated anymore, suggesting that the
grain size is comparable to the size of a pore.12

The distribution of neighbors shows that the dispersion
around the value nn = 6 increases from S1 to S3, also pointing
to an increase in the disorder.
One can rationalize the results obtained for these samples in

the light of the theory of 2D melting, or KTHNY theory.25,26

The most ordered sample analyzed here, S1, is not a perfectly
ordered sample. The presence of defects is evident from the
distributions ρ(ψ6) and ρ(nn). Because the correlations of the
order parameter decay slowly, the behavior is analogous to the
hexatic phase. Sample S2 also has a behavior of its correlation
function analogous to a hexatic phase, although it has more
defects than the sample S1. The picture changes for sample S3.
In this case, the system still has more defects, and they are
enough to destroy completely the correlation of ψ6. As can be
seen in Figure 4c, C6 decays very fast, typically exponentially
with the distance from any point in space. If a fit to an
exponential decay, C6 ≈ e(−r/xi), could be possible, then xi might
be interpreted as a typical grain size of the sample, which is too
small in this case, being only about two to three interpore
distances. This result can be interpreted as a result of the
impurities present in the Al matrix. It is important to emphasize
that the robustness of this statistical characterization method
was checked in detail, as can be seen in the Supporting
Information, Figure SI3.

■ CONCLUSIONS
In this article, we proposed a systematic methodology to
characterize hexagonal arrays of NAA based on statistical tools
that have been previously developed to describe melting in 2D
systems. For each nanopore, its neighbors were defined using

Voronoi tessellation; then, an LOP called the hexatic order
parameter was defined, ψ6, to quantify how close a given
nanopore is to a perfect hexagon. The correlation of this
parameter at two different points of the array, C6, informs us
how long the local orientational order spreads in the sample.
The method was first presented for a hypothetical network of

points and used to compute the defined quantities for two
extreme cases, a perfectly hexagonal network and a completely
random distribution of points. All realistic physical systems stay
in between these two theoretical limits. Then, the developed
tools were applied to the NAA. The average value of ψ6
quantifies the degree of orientational order in a sample, and
its standard deviation is a measure of how heterogeneous the
local order is in the sample. The correlation of this hexatic
order parameter characterizes the range of the local order and
allows a determination of the size of highly ordered grains on
the sample.
We stress that this method can be easily extrapolated to

characterize any kind of system that presents hexagonal
networks. As soon as one is able to treat the experimental
images and define the center of mass of the pores, the method
is quite general and easy to implement and has no arbitrary
parameters.
Other works have been proposed to quantify the hexagonal

order in NAA. However, the approach presented herein is
inspired by a theory developed long ago to describe phase
ordering in 2D systems. General key features necessary to
display melting in 2D systems can be borrowed from that
theory to model the growth of the NAA. We expect that this
way of characterizing order in NAA and the analogy to other
physical systems showing hexagonal packing arrays will help to
improve the theoretical modeling to better understand the
development of long-range order in the NAA and similar
systems, from which better suited experiments can be devised.
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