
PEPS2015 - Stochastic Automata Networks
Software Tool

Paulo Fernandes1, Afonso Sales1, and Luis Zani1

{paulo.fernandes, afonso.sales}@pucrs.br, luis.zani@acad.pucrs.br
Computer Science Department

PUCRS University - Porto Alegre - BRAZIL

Abstract. This paper presents the new version of PEPS software tool,
designed for solving models expressed using Stochastic Automata Net-
works (SAN). The SAN formalism is historically the first Markovian
structured formalism employing Tensor (Kronecker) Algebra. PEPS tool
is a live project, therefore a short timeline of its previous versions, as
well as the new features included in 2015 version, are presented, namely:
compact and efficient reachable state space storage, efficient and powerful
just-in-time function evaluation, optimized numerical solutions (indirect
methods), and symbolic solution (direct solution). We also mention the
tool capabilities to solve very large models.

1 Introduction

The Stochastic Automata Networks (SAN) formalism is a structured stochas-
tic Markovian formalism proposed by Plateau [14]. It is defined as an analytical
method of modeling systems and it can be applied in different areas e.g. software
engineering, reliability, parallel programming, concurrent systems, and perfor-
mance evaluation of diverse systems. It allows us to represent an entire system
by splitting it into a set of subsystems, each with an independent behavior itself
(local events), and also eventual interdependencies among each other (synchro-
nizing events and functional rates). In that sense, the framework first proposed
by Plateau establishes a structured and modular way to describe discrete and
continuous-time Markovian models.

The PEPS project started in the late 80’s and its goal was to develop a soft-
ware package capable of computing numerical solutions for the SAN formalism.
The first version of the tool was presented in [13] and featured a basic vector-
matrix multiplication, where the matrix columns were generated one by one in
each iteration. Only the tensor formula of the Kronecker descriptor was stored,
and the full matrix was never generated. Later on, another three official versions
of the software tool were published.

Among several areas to which PEPS tool may be applied, it is convenient
to cite the areas of computing and communication performance modeling, par-
allel and distributed systems, and finite capacity queueing networks. PEPS dif-
fers from other tools supporting extended automata, such as UPPAAL [17] and

KRONOS [18], in regards to scope, as the mentioned tools are more focused on
modeling, validation and verification of real-time systems1.

Fig. 1. Overview of PEPS 2015 modules and data

The core contribution of this paper, in regards to PEPS latest version, are
essentially a compact and efficient reachable state space storage, efficient function
evaluation, and optimized numerical solutions and symbolic solutions. These
features, as well as the techniques and algorithms used in the tool, such as
application of Multi-Valued Decision Diagrams (MDD), Tensor Algebra, Shuffle
and Split algorithms, and symbolic solution, are shown in Fig. 1.

This paper is organized as follows: Section I introduces the idea proposed
in this paper. Section II contextualizes the reader with a brief explanation of
Stochastic Automata Networks. Section III presents pre-existing features that
have been implemented in PEPS previous versions so far. Section IV describes
the new features proposed in this paper for the latest version of the tool, which
is under development in 2015. Section V presents a comparison of PEPS current
version with the previous ones. Section VI shows the usage of the tool itself
along with some examples. Finally, in Section VII, the conclusion summarizes
this paper contribution and points out future works.

1 Real-Time systems use networks of timed automata to model tasks that must be
performed within strict time deadlines.

2 Stochastic Automata Networks

A SAN model can be seen as a collection of individual stochastic automata
that operate almost independently of each other in order to represent different
modules of a system. Each individual automaton consists of a number of states
and rules that dictate the way it moves from one state to another. The state of
the SAN is given by the current state of each of its component automata [14].
There can be any number of automata in a SAN model. In fact, if the model
contains only one automaton, that would be merely a Markov Chain [9].

Fig. 2. Example of a SAN model

For example, the SAN model in Fig. 2 describes a Client-Server system as
a composition of two subsystems. The first one, named Client, possesses 4 local
states: Idle, Transmitting, Receiving, and Working; and the second one, called
Server, has three local states: Idle, Transmitting, and Receiving, in order to
represent the basic functioning of the respective components. There are transi-
tions between states called local events, for they only change the state of one
automaton at a time, without affecting any other. In the described model, the
local events are proc, for “process”, more, for “more data to be transmitted”,
no more, for “nothing else to be transmitted”, and wait, for “wait for requests”.
There are also events which are called synchronizing events, which occur simul-
taneously in more than one automaton, making all of the affected automata
change their states at the same time. In this case, the synchronizing events are
req, for “request”, and resp, for response. Note that they change states from
“Transmitting” to “Receiving” on the client side, and vice-versa on the server
side with only one occurrence.

Additionally, the functional transition rates determine that the average firing
rate of the events is not a constant value 2. In fact, there is a function (in this
case, F1) that determines the possible values for this rate, depending on the
state of other automata. in the example depicted in Fig. 2, the functional transi-
tion rate F1 states that and the Server only changes states from “Transmitting”
to “Idle” when the Client is at the state “Working”, meaning that while there is
communication between the components, the server cannot go idle. The reader
interested in further information about this subject may find more detailed ma-
terial in [11].

3 Pre-existent Features

The previous version of PEPS software tool, PEPS2007 [2], contains features
that have been developed and improved along the years, since the beginning of
the project. This section presents each of these features with more details.

3.1 Textual Input (.san)

PEPS software tool takes files with the extension .san as an input. These
files contain the detailed description of every component of a SAN model that
is to be numerically resolved by the tool. The specification of a SAN is basically
composed of five sections: identifiers, events, partial reachability, network, and
results. An example of a .san file that represents the model depicted in Fig. 2 is
presented on Section 5.3 of this paper.

Identifiers: The first section of a .san file is where the average firing rates for
all the events in the model are defined. However, each rate is required to have a
unique name, i.e., an identifier.

Events: In this section, all events in the model have to be described. Hence,
for each event, its type (local or synchronizing) and name are specified, as well
as which identifier its rate corresponds to. Each event rate is associated with
the identifier for that specific rate or to a function that represents a functional
transition rate.

Partial Reachability: This is the section where the starting state of each
automaton is defined. Since not all global states are reachable, the combination
of the starting states is specified to be surely reachable. In other words, it is
guaranteed that at least this global state is known to be a reachable state.
2 Since it is a Markovian Formalism, SAN assumes that all rates represent the av-

erage of an exponential distribution. Hence, a constant rate stands for the average
frequency of an exponentially distributed phenomenon [9].

Network: After defining the partial reachability of the model, all of the au-
tomata must be described. In this section of the file, the names, states, and the
transitions along with its corresponding firing rates are defined for each automa-
ton.

Results: The software tool resolves the SAN model given as input by means
of numerical solution algorithms described in [5, 7, 8]. The output of the system
is the probability of the states configuration to happen throughout the time.
Hence, this section is where the states (either local or global) that one wants to
know the probability of the model to be at are specified.

3.2 Automata Aggregation

Automata aggregation in SAN is meant to reduce the number of automata
in the model, bringing some numerical benefits to the solution. Among these
benefits, it is important to point out the theoretical and practical advantage,
which is the decrease of total state space and reduced memory usage, respectively.

Alongside with the reduction of the total state space, additional benefits
consequently come up, such as the elimination of some functional rates and
unreachable states. It occurs because of the nature of the aggregation methods,
which basically groups automata that are connected to the same state(s) into
only one automaton.

There are essentially two aggregation methods for SAN formalism. The al-
gebraic aggregation method uses properties of the generalized tensor algebra to
reduce the number of automata. The semantic aggregation method is based on
the relationship among replicated automata [1].

3.3 Just-in-Time Functions

PEPS also implements a just-in-time function evaluation, which basically cre-
ates individual files containing C++ coded functions for each functional transi-
tion rate defined in the SAN model. Then, the C++ function codes are compiled
and linked with PEPS in compile time, in such a way that they can be called
whenever they are needed, i.e., when a function is evaluated in runtime.

3.4 Stationary and Transient Numerical Solutions (Shuffle
Algorithm)

The Vector-Descriptor product is one of the most important operations to
achieve both stationary and transient solutions for models described by Kro-
necker structured formalisms using iterative methods. The algorithm that is
usually used to perform this operation is called the Shuffle algorithm [8].

A thorough study about matrices reordering and generalized tensor algebra
properties aiming to optimize the evaluation of functional rates is given in the
literature [8].

The Shuffle algorithm basically consists in exploiting the property of decom-
posing a tensor product into the ordinary product of tensor products in a normal
form.

In other words, the Shuffle algorithm consists in the successive multiplication
of a vector by each normal factor. In fact, vector v is multiplied by the normal
factor, then the resulting vector is multiplied by the normal factor again, and so
on until the last factor. The multiplication of a vector v by the ith normal factor
is equivalent to shuffle the elements of v in order to assemble nlefti × nrighti

vectors of size ni and multiply them by matrix Q(i). So, assuming the matrix
Q(i) is stored as a sparse matrix, the number of multiplications necessary to
multiply a vector by the ith normal factor is:

nlefti × nrighti × nzi (1)

where nzi is the number of nonzero elements of the ith matrix of the tensor prod-
uct term Q(i). Considering the number of multiplications to all normal factors
of a tensor product term, the result is [5, 8]:

N∏
i=1

ni ×
N∑

i=1

nzi

nI
(2)

The reader may find extensive material in the literature [5] in regards to
memory and CPU efficiency of the Shuffle algorithm.

3.5 Integration Functions

The final steps of the Shuffle algorithm calculate the probability of each
global state to happen, as mentioned previously. In that sense, one of PEPS im-
plemented features is the integration functions. The main idea of these functions
is to sum the product of each row of the probability vector containing all the
global states. Since not all global states will necessarily be reachable, some of
these probabilities will be zero.

4 PEPS 2015 - New Features

The latest version of the software tool, PEPS2015, contains some additional
features, aiming to achieve a better performance and memory-space usage. A
more detailed explanation of each of these features can be found hereafter.

4.1 C-like Functions

One of PEPS pre-existent features is the already mentioned just-in-time func-
tion evaluation, that creates separate files containing C++ code for the functions
defined in the SAN file. With the goal of increasing performance of the applica-
tion, this created C++ code is meant to be replaced by a new way of interpreting
the functions described in the model.

The intention here is to change the way the functions are defined in the SAN
file. Given that currently the compiler creates individual files with C++ coded
functions to be linked with PEPS, it seems more reasonable to let the SAN
specification be more of a C-like function. This way, instead of creating sepa-
rate files with C++ code in compile time and then calling the created function
codes whenever it is necessary in runtime, the compiler will be able to interpret
proper C++ code that was specified directly in the SAN model, all in compile
time. Thus, performance improvements are expected since the application will be
able to run function evaluation without the need of accessing any side resource
because the entire process is done beforehand.

4.2 Reachable State Space Efficient Generation

A Multi-valued Decision Diagram (MDD) [10] is a compact structure that
allows us to store and to manipulate large sets of structured information in a
compact format. The information in a model can be structured by N components
(or subsystems, i.e., in our case, automata) where these components have some
independent behavior and occasional interdependency.

Basically a MDD is a directed acyclic edge-labeled multi-graph, where there
are some specific properties, such as: (i) nodes are organized into N + 1 levels,
where N represents the number of subsystems; (ii) level N has only one single
non-terminal node (known as the root), whereas levels N − 1 through 1 have
one or more non-terminal nodes; (iii) level 0 has two terminal nodes: 0 and 1;
(iv) a non-terminal node p at level l contains nl arcs pointing to nodes at level
l − 1, where nl indicates the number of local states of l-th subsystem; (v) there
are not duplicate nodes, i.e., nodes at a same level are unique.

Fig. 3 illustrates a MDD which represents the state space S, subset of a
cross-product of a system splitted in four subsystems (i.e., N = 4), where S(i)

represents the local state space of the i-th subsystem.
In Fig. 3, non-terminal nodes are depicted by circles and terminal nodes

are depicted by squares. A given state x of the system is composed by the
combination of the local states of each subsystem, i.e., x = x(N) . . . x(1) of S
is element of a subset represented by a N -level MDD if and only if the path
through the MDD, starting at the level-N node, following downward pointer
x(l) at level l, reaches terminal node 1. Dashed arcs and nodes are paths which
lead only to terminal node 0 and in the rest of the paper, for reasons of clarity,
will be omitted.

Also, MDD can be used to represent a set S of integer tuples by storing the
characteristic function fS of the set. Therefore sets can be manipulated using
operations over MDDs on their characteristic functions (e.g., the operation union
on sets corresponds to disjunction on MDDs).

Saturation-based state-space generation is a successful symbolic method based
on MDDs applied to generating state spaces of structured models, e.g., Stochas-
tic Petri Nets (SPN) models [3, 4, 12].

Sales and Plateau [15] presented an extension of the saturation method de-
scribed in [4], which allows the use of functional transitions, i.e., the interaction

10

4

3 3 3

2 2

1 1

1

3 0

2

0

1
2

1 0

2

2

1

0

0 1

0

1

1

00 1

Level 4

S = { 0, 1, 2, 3 }
(4)

Level 3

S = { 0, 1, 2 }
(3)

Level 2

S = { 0, 1 }
(2)

Level 1

S = { 0, 1 }
(1)

Level 0

S = { 0010, 0210, 2010 }

Fig. 3. A state space S represented by a MDD

between automata can be represented by a function. Functions can be associated
to rates or routing probabilities on the events. In this case, the rate or the rout-
ing probabilities of an event can have different values in function to the state of
other automata.

The main idea of the generation method is to compute the reachable space
state (RSS) of the model by the successive firing of events from an initial state
while the RSS is stored in a MDD. The method exploits the possibility of firing
any event that affects a given MDD node and its descendant nodes, thus bringing
the node to its saturated format. Besides, nodes are considered in a bottom-up
fashion (i.e., when a node is computed, all its descendant nodes are already in
the saturated format). A node is considered as saturated if it encodes a set of
states which are a fixed point in regards to the firing of any event at its level or
at a lower level.

Fig. 4 shows a small SAN model with three automata (N = 3) and the
corresponding RSS of this model re presented by a MDD, generated from initial
state 000.

Functions are a powerful feature in the SAN formalism, since it allows us
to represent very complex behaviors of a system in a very compact format.
Moreover, the usage of MDDs to generate the RSS of a SAN model, which uses
functions (having a small domain size), allows us to achieve the generation of
large reachable state spaces with a small computational time, while keeping a
low memory consumption.

SAN model

A

0

12

C

0

12

0

B

1

S2
l1

l4

l2 S1

l3

S1

S2

syn 4S
2

(st A == 1) x 3

l
2

loc

loc l
1

syn

Type

l
3

1

loc

loc

Event

7

S
1

(st C == 2) x 2l
4

Rate

5

RSS encoded by MDD

C

B B B

A A A

1

0
1

2

0 1

1

0
1

1

2

0 10 1

Fig. 4. RSS of the SAN model represented by a MDD

4.3 Stationary and Transient Numerical Solutions (Split Algorithm)

SAN schemes that model real scenarios are naturally sparse: That’s because
the tensor sum structures generally make the local portion of the descriptor
very sparse. Also, the synchronizing events make the descriptor quite sparse,
since they are mostly used to describe exceptional behaviors.

The Split algorithm [5] allows each tensor product of matrices to be parti-
tioned into two different groups: one with more sparse matrices and the other
with more nonzero elements. This way, the Sparse algorithm [7] could be ap-
plied to the first group generating Additive Unitary normal Factor (AUNF). An
AUNF is composed of three elements: a scalar value obtained by multiplying one
nonzero element of each matrix in the Sparse-like part by each other; an input
slice, which is a part of the vector v identified by the line row coordinates i of
the nonzero elements multiplied; and an output slice, as a part of the vector v
identified by the column coordinates j of the multiplied elements [5]. Each of the
generated AUNF must then be multiplied (tensor product) by the second group
of matrices using the Shuffle algorithm, as Slice handles only the first matrix in
this case.

Considering this concept, the goal is to split the tensor terms into two sets
of matrices and deal with them in different ways, almost individually. Therefore,
the Split algorithm is considered a generalization for the encompassing all possi-
bilities from a pure Sparse approach until the Shuffle algorithm, once it follows
the idea of breaking the system into distinct parts to be dealt with.

In regards of efficiency, a deeply detailed material may be found in the lit-
erature [5], explaining the memory and CPU efficiency of the Split algorithm,
as well as Sparse and Slice algorithms. Additionally, some optimizations on the
Split algorithm were proposed by Czekster, Fernandes, and Webber in [7], in
case the reader is interested.

4.4 Symbolic Solution

The main idea of the proposed symbolic solution is to deal with the tensor
representation of the infinitesimal generator by adding terms to perform Gauss-
Jordan Elimination steps [9]. The concept of functional elements is highly im-
portant for out method to deal with particular cases of the tensor structure and
keep the symbolic operations simple enough to be handled.

The first step for the proposed symbolic solution is to prepare the matrix by
performing the Gauss-Jordan method to obtain the infinitesimal generator. Once
this process is done, the tensor representation of the starting of the Gauss-Jordan
method will be:

Q(0) =
N−1⊕
i=0

Q
(i)
l +

∑
s∈S

N−1⊗
i=0

Q
(i)
s+ +

∑
s∈S

N−1⊗
i=0

Q
(i)
s− +

N−1⊗
i=0

Q
(i)
lc (3)

The second step is to perform the matrix triangularization, in which the ele-
ments below the diagonal are eliminated through the application of the Gauss-
Jordan to each row. The row scaling operations correspond to include functional
elements to perform the necessary scale operation to each product of the descrip-
tor. Once the matrix triangularization is complete, it is computationally simpler
to store the tensor structure and perform the final step: a backward substitution
procedure to resolve the system of equations. More detailed information about
the method itself is presented by Fernandes, Lopes and Yeralan in [9].

5 Practical Capabilities

Table 1 shows some numerical results considering Product Space State (PSS)
and type of model that the software tool can handle within reasonable time and
space limits for PEPS current and previous versions.

Table 1. PEPS numerical results

PEPS
version Model PSS Memory

Used
Time

to Solve

1998 General Resource
Sharing [19] 1,084,576 590 Bytes 33 sec.

2003 FAS - First Server
Available [20] 33,554,432 11.2 KB 5.47 min.

2007 Master-Slave
Parallel Program [5,21] 65,367,200 38.54 KB 8.92 min.

2011 Globally Distributed Software
Development Teams [22] 19,131,876 10.07 KB 6.19 min.

2015 Unreliable
Production Lines [23,24] 725,594,112 918.18 MB 133 hours

Based on the presented data, it is interesting to notice that the number of
states in the network seems to be the driving factor for the final solution time.
For the latest version of the tool, the execution time is fairly reasonable, for it
resolves a model with a significantly larger number of states (725 million), using
an acceptable amount of memory (less than 1 GB).

6 Software Tool

In order to make the way this tool works more explicit to the reader, this
section presents an example of a .san file, as well as its compilation and execution
processes. Regarding compatibility, the platforms that the software tool runs on
are pointed out.

6.1 Environment

PEPS package has been tested and proven to be currently compatible with
the following operating systems:

1. Linux - Ubuntu 14.04 64 bit
2. Mac OS X 10.8.2 - Mountain Lion
3. Mac OS X 10.9.2 - Mavericks
4. Mac OS X 10.10.2 - Yosemite

However, since the source code of PEPS is available upon request, the com-
pilation and availability for other platforms is likely to be an easy task.

6.2 Example

The code shown in Code 1.1 is an example of a .san file, describing the SAN
model depicted in Fig. 2, containing all components presented on Section 3.1 of
this paper.

For this example, it was specified in the results section that the user expects
to know the probability of the Client to be requesting, receiving, and processing.
Also, the percentage of the time that the Client is transmitting data and the
Server is receiving data and vice-versa. At last, the percentage of time that both
Client and Server are idle.

6.3 Usage

An example of usage of the software tool is shown in this section. Both
compilation and resolution of the .san file presented in the previous section can
be seen in Fig. 5. For this demonstration, the compilation process does not make
use of any aggregation method [1] and the resolution process uses the Power
Method [11] to solve the model3.
3 PEPS versions of 2003, 2007, and obviously 2015 also offer the possibility to perform

stationary solutions using Arnoldi and GMRES methods, and also transient solution
using Uniformization method [16] is available.

identifiers

//rates = per minute
r_proc = 6;
r_more = 5;
r_no_more = 1;
r_req = 6;
r_resp = 5;

F1 = (st Client == Working) * 1;

events

loc l_proc (r_proc);
loc l_more (r_more);
loc l_no_more (r_no_more);
loc l_wait (F1);
syn s_req (r_req);
syn s_resp (r_resp);

// Both Client and Server start in idle.
partial reachability = ((st Client == Idle)

&& (st Server == Idle));

network ClientServer (continuous)

aut Client
stt Idle to (Transmitting) s_req
stt Transmitting to (Receiving) s_resp
stt Receiving to (Working) l_proc
stt Working to (Transmitting) l_more

to (Idle) l_no_more

aut Server
stt Idle to (Receiving) s_req
stt Receiving to (Transmitting) s_resp
stt Transmitting to (Idle) l_wait

results

Client_requesting = (st Client == Transmitting);
Client_receiving = (st Client == Receiving);
Client_processing = (st Client == Working);
Client_trans_Serv_rcv = ((st Client == Transmitting)

&& (st Server == Receiving));
Client_recv_Serv_trans = ((st Client == Receiving)

&& (st Server == Transmitting));
Client_idle = (st Client == Idle);
Server_idle = (st Server == Idle);

Code 1.1. Example of a SAN file

The compilation generates a report of produced intermediate files, and the
time took to compile. In this toy example, the model was compiled in 0.2 mil-
liseconds of user time. Analogously, the solution presents a report of how many
iterations were necessary until achieving convergence (41 for this example), the
time spent (0.05 milliseconds for this example) and the computation of all inte-
gration functions.

According to the output of PEPS 2015, depicted in the right hand side of
Fig. 5, the probability of both Client and Server automata to be idle is less
than fifteen percent, which means that, for these parameters, the model presents
satisfying results in regards to occupancy, for the Server is far from overloaded.

Fig. 5. Compilation and resolution of the Client-Server SAN model

7 Conclusion

Fig. 1 summarizes the general vision of the PEPS 2015 software high level
modules, as well as the data and information flow. In this figure is represented
in the right hand side the input of PEPS 2015, a textual .san file describing an
imagined SAN model, and the ultimate PEPS 2015 output the results computed
by the application of integration functions over the computed probability vector,
i.e., the quantitative estimations concerning the modeled reality. The three main
modules of PEPS 2015 are the Compile, Solve and Integrate modules.

The Compile performing translation of a SAN model into a MDD description
of the reachable state space, a tensor representation of transition matrix (descrip-
tor), and the integration functions responsible to deliver the quantitative results.
It comprises two specialized submodules, one responsible to generate the MDD
representation of the reachable state space, and the other responsible to generate
the just-in-time (jit) generated functions for the tensor representation and the
integration functions.

The Solve module implements all solution iterative methods available (Power,
Arnoldi, GMRES and Uniformization) offering Shuffle and Split vector-descriptor
multiplications, but also the symbolic solution through Gaus-Jordan Elimina-
tion. In such way, this module is the more sensitive module in terms of compu-
tational efficiency, both in terms of CPU and memory usage.

Finally, the Integrate module is the simplest and more straight forward mod-
ule, since it basically visits the reachable state space computing the integration
functions and weighting the results by the computed probabilities.

PEPS software tool is a live project, hence there is ongoing work to add new
features and keep improving it by seeking for even better techniques for vector-
descriptor multiplication to speed up both transient and stationary numerical
solutions, as well as more sophisticated structures for reachable state space ma-
nipulation. The new features proposed here led to a new version of PEPS as the
main contribution of this paper. As new techniques are proposed in the future,
they may result in even newer and optimized versions of PEPS tool. The in-
terested researcher and practitioner may find more thorough information about
PEPS in the webpage http://www.inf.pucrs.br/peg/peps/.

References

[1] Benoit, A., Brenner, L., Fernandes, P., Plateau, B.: “Aggregation of stochastic
automata networks with replicas. Linear Algebra and its Applications,” 386, 111-
136, 2004.

[2] Brenner, L., Fernandes, P., Plateau, B.: “PEPS2007 - Stochastic Automata Net-
works Software Tool” in Proceedings of the 4th International Conference on the
Quantitative Evaluation of Systems (QEST 2007). Edinburgh, Scotland, p. 163-
164. September, 2007.

[3] Ciardo G., Lüttgen G., Siminiceanu R.:“Saturation: An Efficient Iteration Strat-
egy for Symbolic State-Space Generation,” in Proceedings of the 7h Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01).
Lecture Notes in Computer Science. Springer-Verlag, 2001. Vol. 2031, p. 328-342.

[4] Ciardo G., Lüttgen G., Miner S.:“Exploiting interleaving semantics in symbolic
state-space generation,” Formal Methods in System Design. 2007. Vol. 31(1), p.
63-100.

[5] Czekster R. M., Fernandes P., Vincent J. M., Webber T.: “Split: A Flexible and
Efficient Algorithm to Vector-descriptor Product” in International Workshop on
Tools for solving Structured Markov Chains, ValueTools 2007. Vol. 321(83), p.
1-8, October, 2007, Nantes, France.

[6] Czekster, Ricardo M., Fernandes, P., Webber, T.: “GTAEXPRESS: a Software
Package to Handle Kronecker Descriptors,” in Proceedings of the 6th Interna-
tional Conference on the Quantitative Evaluation of Systems. QEST ’09, p. 281-
282. IEEE Computer Society, September, 2009.

[7] Czekster R. M., Fernandes P., Webber T.:“Efficient Vector-Descriptor Product
Exploiting Time-Memory Trade-offs,” ACM SIGMETRICS Performance Evalu-
ation Review. New York, USA: ACM Press. 2011. p. 1-9.

[8] Fernandes, P., Plateau, B., Stewart, William. J.: “Efficient Descriptor-Vector Mul-
tiplication in Stochastic Automata Networks,” Journal of the ACM (JACM), Vol.
45(3), p. 381-414, 1998.

[9] Fernandes, P., Lopes, L., Yeralan, S.: “Symbolic Solution of Kronecker-based
Structured Markovian Models,” in Proceedings of the IEEE 21st International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). Los Alamitos, CA, USA: IEEE Press, 2013. p.
405-409.

[10] Kam T., Villa T., Bryaton, R. K., Sangiovanni-Vincentelli, A.:“Multi-valued de-
cision diagrams: theory and applications,” Multiple Valued Logic, Vol. 4(1-2), p.
9-62, 1998.

[11] Langville, Amy N., Stewart, William J.:“The Kronecker product and stochastic
automata networks,” Journal of Computational and Applied Mathematics, Vol.
167(2), p. 429-447, 2004.

[12] Miner A. S., Ciardo G.:“Efficient Reachability Set Generation and Storage Using
Decision Diagrams,” in Proceedings of the International Conference on Applica-
tions and Theory of Petri Nets (ICATPN’99). Lecture Notes in Computer Science.
Williamsburg, VA, USA: Springer-Verlag Heidelberg, June 1999. Vol. 1639, p. 6-
25.

[13] Plateau, B., Fourneau, J. M., Lee, K. H.: “PEPS: A Package for Solving Complex
Markov Models of Parallel Systems” in Modeling Techniques and Tools for Com-
puter Performance Evaluation, Ed. Puigjaner, R., Potier, D. Springer US, 1989.
p. 291-305.

[14] Plateau B., Stewart W. J.:“Stochastic Automata Networks”. Computational Prob-
ability. Kluwer Academic Press, 1997. p. 113-152.

[15] Sales A., Plateau B.:“Reachable state space generation for structured models
which use functional transitions,” in Proceedings of the 6th Int. Conf. on the
Quantitative Evaluation of Systems (QEST’09). Budapest, Hungary: IEEE CS,
2009. p. 269-278.

[16] Uysal, E., Dayar, T.: “Iterative methods based on splittings for stochastic au-
tomata networks,” European Journal of Operational Research, 110(1), 166-186.
1998.

[17] “UPPAAL”, http://www.uppaal.org/
[18] “KRONOS”, http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
[19] Fernandes, P.: “Méthodes numériques pour la solution de systèmes Markoviens

à grand espace d’États,” Institut National Polytechnique de Grenoble, France,
1998.

[20] Benoit A., Brenner L., Fernandes P., Plateau B.: “The PEPS software tool,” In:
13th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 2003, Urbana. Lecture Notes in Computer Science. Vol.
2794, p. 98-115. Berlin: Springer-Verlag, 2003.

[21] Baldo, L., Brenner, L., Fernandes, L. G., Fernandes, P., Sales, A.: “Performance
Models for Master/Slave Parallel Programs,” Electronic Notes In Theoretical
Computer Science, 128(4):101-121, April 2005.

[22] Fernandes, P., Sales, A., Santos, A. R., Webber, T.: “Performance evaluation of
software development teams: a practical case study,” Electronic Notes In Theo-
retical Computer Science, 275:73-92, September 2011.

[23] Fernandes, P.; OKelly E. J.; Papadopoulos, C. T.; Sales, A.: “Analysis of exponen-
tial reliable production lines using Kronecker descriptors,” International Journal
of Production Research, 51(4):4240-4257, February 2013.

[24] Fernandes, P.; OKelly E. J.; Papadopoulos, C. T.; Sales, A.: “Analysis of Exponen-
tial Unreliable Production Lines using Kronecker Descriptors,” In: 9th Stochastic
Models of Manufacturing and Service Operations (SMMSO 2013), Kloster Seeon,
Germany, May 2013.

