
2013 IEEE Computer Society Annual Symposium on VLSI

Determining the Test Sources/Sinks for Noe TAMs

Alexandre Amory, Edson Moreno, Fernando Moraes
FACIN - PUCRS University

Marcelo S. Lubaszewski
CEITEC S.A.

Porto Alegre, Brazil Porto Alegre, Brazil
Email: {alexandre.amory.edson.moreno.fernando.moraes}@pucrs.br Email: marcelo.lubaszewski@ceitec.org.br

Abstract-Conventional approaches using the Network-on­
Chip (NoC) as Test Access Mechanism (TAM), called NoC
TAM, model the test sources/sinks and the routing algorithm
as constraints to the test scheduling, reducing its efficiency. This
paper is based on a new NoC TAM model where these constraints
do not exist, potentially resulting in shorter tests. The contribution
of this paper is to present the part of the test flow which
determines the optimal number and location of the test sources
and sinks in a NoC TAM without constraining the test scheduler.
Searching the minimal number of sources/sinks can minimize the
silicon area overhead since each NoC source/sink requires about
4300 gates for a NoC channel with 32-bit width.

Keywords-VLSI test, SoC test, networks-on-chip.

I. INTRODUCTION

The SoCs were emerging back in 2000, enabling the
integration of tens of cores into a single chip and requiring
innovative SoC testing approaches. In this context, Modular
testing has been proposed as a divide-and-conquer solution
to test such complex SoCs [1]. Its conceptual model consists
of test wrappers, test sources and sinks, and Test Access
Mechanisms (TAMs). The most conunon practice for TAM
design is to use dedicated and global test buses for test data
transportation. Nowadays, the SoC integration level continues
to increase towards hundreds of cores [2], [3] interconnected
by Networks-on-Chip (NoCs), replacing buses which are not
scalable.

On the other hand, the conventional test architecture still
uses non-scalable buses as TAMs, which motivated the use
of the existing NoC to transport test data [4], providing the
scalability of NoCs to the test architecture. This approach is
referred as NoC TAM. However, Yaun et al. [5] have formally
demonstrated that the existing NoC TAM approaches can have
longer test time compared to bus-based TAMs. This is caused
the excessive number of constrains on the NoC TAM problem
formulation, reducing its efficiency.

This paper, on the other hand, is built on top of a new NoC­
based test method which is more efficient than the methods
analyzed by [5]. This test method divides the NoC TAM defi­
nition problem in two major steps: (i) the test scheduler based
on graph partitioning and (ii) determining test source/sink for
the test partitions, which is the main contribution of this paper.

This paper is organized as follows. Section II presents
previous NoC TAM approaches and shows how these ap­
proaches severely constrain the NoC TAM test scheduler.
Section III summarizes the new NoC-based test optimization
method where the algorithm presented in this paper is inserted.

978-1-4799-1331-2/13/$31.00 ©2013 IEEE

Input paths
cO: {c3,cO} or {c6,c3,cO}
c1: {c3,c4,c1} or {c6,c7,c4,c1}
c2: {c3,c4,c5,c2} or {c6,c7,c8,c5,c2}
Output paths
cO: {cO,c1,c2,c5} or {cO,c1,c2,c5,c8}
c1: {c1,c2,c5} or {c1,c2,c5,c8}
c2: {c2,c5} or {c2,c5,c8}

test path to the
output ports

Fig. 1. Example of a 3x3 NoC with mesh topology used to demonstrate how
the VO port and the routing algorithm can constrain the test scheduling. The
incoming and outgoing arrows represent test sources and sinks, respectively.
It also lists the set of possible input/output paths for each cl, c2, and c3.

Sections IV and V present and evaluate, respectively, the pro­
posed algorithm to determine the test source/sink. Section VI
concludes the paper.

II. PRIOR WORK

This section presents prior work about NoC TAMs test
scheduling, their similarities and open issues. The problem
formulation proposed by Cota et al. [6] is the core problem
statement for most, if not all, papers related to test scheduling
for NoC TAMs. This initial problem formulation has been
extended several times, including new constraints and variables
to the problem (power dissipation [7], thermal [8], among
others), or assuming the existence of certain NoC functionality
(variable clock rate [8], virtual channels [9], circuit switching,
among others). Despite these extensions, the core problem
statement is the same and can be stated as:

• given a mesh-based NoC with XY routing algorithm;
a set of cores, their test information (internal scan
chains, number of VO terminals, and so on), and the
core's location in the NoC; a set of 110 ports, the
10 location in the NoC, and its bandwidth capacity;
determine an assignment of cores to input/output pairs
such that the total test time is minimized and the 110
capacity is not exceeded.

In summary, the NoC TAM test scheduling problem can be
summarized as how to efficiently assign input/output pairs to
cores, such that the overall test time is minimized. These NoC
TAM approaches require I/O port information (their bandwidth
and location) and the NoC routing algorithm as inputs of
the test scheduling optimization problem. Then, the algorithm
must assign one of these fixed 110 ports to test the Core Under
Test (CUT) according to the routing algorithm.

8

chip
ATE

ATE

test
I

std.
I

network
S\reaming protocol protocol

wrapper

ITIJ0[J=
opt. 0 °

fifo ° �
� CUT

I std.
I

test �

protocol streaming

Fig. 2. Proposed conceptual test architecture. its DIT modules (ATE interfaces
and test wrappers). and the protocol conversions. The gray blocks are related
to test.

This approach constrains the test scheduler, increasing the
SoC test time, as illustrated in Fig. 1. In this example, the
test of cores cO, c1, and c2 cannot be executed in parallel due
to the location of the output ports and the routing algorithm
(XY, where the packet follows first the X axis and, if required,
the Y axis). These three cores can only send their test stimuli
to the output ports located in c5 or c8. This way, according
to the XY routing algorithm, the three test paths share the
link between core 2 and 5 to reach an output port. The paper
[5] formally demonstrates that this specific constraint causes
longer test time than the conventional tests based on bus-based
TAMs, reducing the research interest in NoC TAMs.

Amory et al. [10] proposed a new NoC TAM test schedul­
ing algorithm, summarized in Section III, which does not suffer
from the issues mentioned above.

III. NEW NoC TAM TEST METHOD

This section describes the background used by the pro­
posed method: the conceptual NoC TAM test architecture
(Section III-A) and the test scheduling (Section III-B).

A. The NoC TAM Test Architecture

Fig. 2 shows the conceptual test architecture, its DfT
modules, and the protocol conversions along the test data flow.
The edges of the test flow (i.e. the Automatic Test Equipment
(ATE) and the CUT) require test streaming, the NoC interface
requires a standardized protocol such as OCP (Open Core
Protocol), and the NoC internals use some network protocol,
such as handshake, which is transparent to the test. The DfT
modules, called ATE interface and wrapper, do all required
protocol and width conversions such that both the ATE and
the CUT are not aware of the NoC.

An ATE interface [11] is the DfT module that connects
the test pins to the NoC. It does bi-directional data transfer
of test stimuli from test pins to the NoC (toward the CUT)
and test reponses from the CUT (via NoC) to the test pins.
NoCs typically use standardized on-chip protocols, like OCP,
which is different from the test protocol used by ATEs. Thus,
the main tasks of an ATE interface are to do width conversion
between the number of test pins and the network data width,
protocol conversion from the ATE to the NoC (and vice-versa),
and traffic shaping for the test stream.

This test traffic shaping using NoCs is perhaps the most
relevant challenges of NoC TAMs. The test data flow requires

deterministic latency and no jitter such that the scan chains do
not have to use, for instance, clock gating to stop shifting test
data. However, NoCs use routers as shared resources. Shared
resources lead to an arbitration logic which leads to variable
latency and jitter, according to the traffic conditions on the
NoC. One way to guarantee deterministic traffic in NoCs is to
reserve the NoC resources using Quality-of-Service approaches
like circuit switching. However, not all NoCs have this feature.
The method used in this paper spatially distributes the test data
flows on the NoC such that no flow uses the same router. This
way, there are no shared resources, providing deterministic
latency and no jitter, even though the NoC does not have circuit
switching. Next section explains how multiple test flows are
distributed in the NoC.

B. Problem Statement of the Test Scheduler

The paper [10] presents a test scheduling algorithm which
is the basis for the method presented in this paper. Let an
undirected graph G = (V, E) represent the NoC topology,
where V is the set of NoC nodes and E is the set of NoC
links that determines the connectivity between the NoC nodes.
A NoC node, or just node, consists of exactly one NoC router
and a set of zero or more CUTs which are connected to this
router. Let us also define the following symbols which are used
along this paper:

• Slanted upper case symbols P are a partition of G;

• Upper case symbols P are a part of the partition P;

• Lower case symbols n represent a single node of the
part P;

• t(P) is the test length (in clock cycles) of the part
P;

• b(P) is the test bandwidth (in Mbps) assigned to the
part P;

• w(P) is the part width (in number of test pins)
assigned to the part P.

The NoC TAM test scheduling problem is stated as: Given
the total number of test pins Wmax and the maximum sustain­
able NoC channel bandwidth bnoc. Given a set of cores and
the their test-related information (as defined in [10]). Given a
graph G = (V, E), representing the NoC topology. The goal
of the test scheduling algorithm is to determine a partition P
of G such that:

1)

2)

3)

4)

(2=l�� w(Pi)) ::; Wmax, i.e. the sum of all part widths
w(Pi), with Pi E P, do not exceed the number of test
pins Wmax;
VPiEP(b(Pi) ::; bnoc), i.e. the test bandwidth of each
part b(Pi) do not exceed the maximal bandwidth of
the NoC channels bnoc;
The SoC test time T is minimized, where T

IPI () . maxi=ot Pi ,
A valid partition has the following properties: all
nodes of a part are connected, all nodes are assigned
to exactly one part, and all parts are disjoint;

This new problem statement is significantly more general
and less constrained than the problem statement presented in

9

,
I 0
'. '*�

(a) XY routing algorithm (b) NF non minimal
routing algorithm

Fig. 3. Example of test partition of a 4x4 mesh and the resulting ATE inter­
faces location assuming XY (a) and NF non minimal (b) routing algorithms.
Nodes with dashed line represent the location of an ATE interface.

Section II. For instance, it supports most NoC topologies, even
the irregular ones, and the routing algorithm and test ports
do not constrain the test scheduling algorithm. However, the
information generated by this algorithm only optimizes the
SoC test time and the CUT test wrappers. It does not define the
ATE interfaces for the NoC TAMs. Next section presents the
proposed method to optimize the ATE interfaces, completing
the test flow.

IV. DETERMINING THE LOCATION OF ATE INTERFACES

This section presents the contribution of this paper and how
it complements the test method presented in Section III-B.

A. Example

Fig. 3 illustrates an example test partItIOn with 3 parts
(PI, P2, and P3) of a 4x4 mesh NoC generated by the test
scheduler presented in Section III-B. This example partition is
used to explain the problem of determining the location of the
test sources and sinks for NoC TAMs. Two classes of routing
algorithms are assumed in this example: deterministic routing
algorithms, e.g. XY, always use the same path for the same
source-target nodes; partially adaptive routing algorithms, e.g.
North First non minimal (NF), it might take different paths for
the same source-target nodes, according to the NoC congestion
status [12l

The goal of the proposed method is to determine where an
ATE interface can be placed such that it can send test stimuli
and receive test responses for all CUTs within its test partition
without using nodes from other parts, which could cause net­
work congestion as explained before. For instance, assuming
XY and part P3 (Fig. 3(a) in white color), P3 requires two ATE
interfaces to reach its nodes. One ATE interface is located at
node 3, with access to the nodes {2, 3, 7, 11, 15}, and the other
is located at node 14, with access to {14, 15}. It means that
node 3 can send test stimuli and receive test responses from
the nodes {2, 3, 7, 11, 15} without using resources from other
parts, creating a deterministic test data flow. Note that node
3 cannot test node 14 because it would use nodes 6 and 10,
which do not belong to P3. This way, another ATE interface is
required for P3. Similarly, the part PI also requires two ATE

interfaces; one at node 0 and the other at node 5. The part
P2 requires a single ATE interface at node 12 because it has
access to all nodes of this part.

Assuming the NF routing algorithm I (Fig. 3(b)), the ATE
interfaces would be located on nodes 10, 12, and 15 for the
parts PI, P2, and P3, respectively. Thus, one ATE interface is
required to access all nodes of each part.

These examples show that the definition of test
sources/sinks for NoC TAMs depends on the NoC routing
algorithm and the geometry (shape) of the parts. Moreover,
each pair of test source/sink requires an ATE interface to
perform the appropriate data flow adaptation, and this ATE
Interface costs silicon area [11]. Thus, the proposed method
also minimizes the number of ATE interfaces, respecting the
constraint of routing algorithm and the test partition geometry.
Finally, a part might need more than one ATE interface, like
P3 in Fig. 3(a). In this case, these ATE interfaces share the
same test pins and they are activated sequentially, not causing
network congestion within the part. In the example of P3 in
Fig. 3(a), it means that the ATE interface in node 3 is used
as test source/sink for the nodes {2, 3, 7, 11} and, after testing
these nodes, the node 14 starts testing the nodes {14, 15}. Once
the ATE interfaces are defined for the whole test partition, the
NoC test data flow is completly defined. It means that it is
possible to determine, for instance, which ATE interface is
used for each CUT. For example, each CUT's test wrapper
is configured in design time with its test sink address in the
NoC. This way, when node 2 is in test mode, it knows its test
stimuli must be sent to the node 3. The test stimuli of node
15 must be sent to the node 14, and so on.

B. Problem Statement

Let us define that for each part PE P, there is a non-empty
subset of P, called A, representing the location of the ATE
interfaces of part P. Let this relationship between P and A be
expressed in terms of a function A = LocateATE1ForPart(P).
For example, if we assume the part P2 illustrated in Fig. 3(a),
then A 2 = LocateATE1ForPart(P2) = {12} since the node 12
has access to all nodes of the part P2. Let also A be the set
of A for the entire partition P. For example, assuming the
partition illustrated in Fig. 3(a), then A = {AI, A2, A3} =

{{O, 5}, {12}, {3, 14}} since these are the ATE interfaces for
the three parts.

The problem is stated as: given the test partition P of the
graph G, as presented in Section III-B, and the NoC routing
algorithm, determine A for the partition P such that:

1)

2)

3)

The total number of ATE interfaces (LAEA IAI) is
minimized;
Each part of a partition has at least one ATE interface,
i.e. I;j PEpLocateATEIForPart(P) i=- 0;
Each node nl E P is accessible by at least one node
n2 E A assuming the given routing algorithm such
that the path from nl to n2 and from n2 to nl must
only consist of nodes in P.

1 NF routing algorithm states that. if it needs to go to the north. then the
north direction must be the first tum and the north direction cannot be taken
again.

10

The goal of the proposed algorithm is to determine the min­
imal number of ATE interfaces and their location considering
a given NoC routing algorithm and a given network partition.
The selected ATE interface locations must be able to send test
stimuli and receive test responses from all nodes of a part
without using resources (nodes and links) from other parts,
avoiding any type of disturbance on the test of other parts,
creating test data flows with deterministic latency and no jitter.

C. The Algorithm

Let us define the function getPath(nl, n2, P) that imple­
ments the routing algorithm. It returns the set of nodes in the
path between the nodes nl and n2 (test stimuli path) and also
from n2 to nl (test responses path) such that all nodes in both
paths belong to the part P. It returns an empty set if there is
no such path between nl and n2 using only the nodes in P.

The Algorithm 1 determines the ATE interface location
for the entire partition. It concatenates the results from Algo­
rithm 2 for each part of the partition into A. Let us assume
the example in Fig. 3(a). The first iteration generates the ATE
interface location for part PI, resulting in A = {{O, 5}}. The
second iteration includes the ATE interface location for part
P2, resulting in A = {{O, 5}, {12}}. The last iteration gener­
ates the final result A = {{O, 5}, {12}, {3, 14}}, including the
ATE interface location for part P3.

Algorithm 1 [LocateATEIForPartition(P)]

01. A = 0
02. for all PEP
03. A = Au { LocateATEIForPart(P)}
04. return A

The Algorithm 2 determines the ATE interface location for
a single part of a partition. It starts by building the reach ability
set (Pconn, lines 3 to 9) for the part P. The reachability set
can be explained by an example. Let us assume the part P3 in
Fig. 3(a). Node 2, for instance, can reach nodes {2, 3}, which
means that node 2 can send test stimuli to and receive test
responses from the nodes {2, 3}. The rest of the reachable
nodes are presented below:

• node 2: {2, 3};
• node 3: {2, 3, 7, 11, 15};
• nodes 7 and 11: {3, 7, 11, 15};
• node 14: {14, 15};
• node 15: {3, 7, 11, 14, 15}.
Finally, the reach ability set Pconn is formalized as a set

of tuples (n, R) where the item n represents the source
node and the item R is a set of all reachable nodes from
the node n. For instance, according to the example above,
the tuple for node 2 is (2, {2, 3}). The entire reachability
set of the part P3 (in Fig. 3(a» is Pconn = {(2, {2, 3}),
(3, {2, 3, 7, 11, 15}), · ··, (15, {3, 7, 11, 14, 15})}.

The remaining part of Algorithm 2 is an exhaustive search
algorithm which finds the best solution, i.e. the minimal

number of ATE interfaces for part P. First, it checks whether
there is a single node that can access all other nodes of the
same part (line 13). If this is the case (like in the part P2 of
Fig. 3(a», then it returns a set with this single node (line 14).
If there is no single-node solution, it tests for solutions with
two nodes (lines 16 to 19), returning them if this is the case
(like in the parts PI and P3 of Fig. 3(a». If it is not the case,
then it tests for three-nodes solution (lines 21 to 25), and so
on.

As an example, assuming the part P3 in Fig. 3(a), Algo­
rithm 2 first determines the Pconn, as demonstrated before.
Then, it checks whether there is a single node that has access
to all other nodes of the part. Next, it checks for solutions with
two nodes. The union of the nodes reachable by the nodes 3
and 14 is {2, 3, 7, 11, 15} U {14, 15} = {2, 3, 7, 11, 14, 15} =

P3, thus combining these two nodes (3 and 14) is sufficient
to reach all nodes in the part P3 and this is the minimal
number of ATE interfaces for this part. The Algorithm 2 can
also be described recursively. However, we believe that the
presented description is more appropriate for the paper due to
its simplicity and readability.

Algorithm 2 [LocateATEIForPart(P)]

01. P eonn = 0
02. Ilbuild the reachability set P eonn for part P
03. for all nl E P
04. Paux.n = nl
05. Paux.R = {nl}
06. for all n2 E P such that n2 i= nl
07. if getPath(nl, n2, P) i= 0
08. Pa11x.R = Paux.R U {n2}
09. P eonn = P eonn U {Paux}
10. Iitest if there is a single node with access
11. lito all nodes in P
12. for all Peonn E P eonn
13. if Peonn.R = P
14. return {Peonn.n}
15. Iitest if there is a two-nodes solution
16. for all Peonn E P eonn
17. for all Peonn2 E P conn
18. if (Peonn.R U Peonn2.R) = P
19. return Peonn.n U Peonn2.n
20. Iitest if there is a tree-nodes solution
21. for all Peonn E P eonn
22. for all Peonn2 E P eonn
23. for all Peonn3 E P eonn
24. if (Peonn.R U Peonn2.R U Pconn3.R) = P
25. return Peonn.n U Peonn2.n U Pconn3.n
26. Iitest if there is a four-nodes solution

27.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

This Section evaluates several SoC configurations where
each SoC is evaluated with five different routing algorithms:
XY, minimal Negative First (NF-min), minimal West First
(WF-min), non minimal NF (NF), and non minimal WF (WF)
routing algorithms [12].

11

12
- 16
= 32
= 48

xy routing algorithm

o
d281 d695 91023 p22810 p34392 p93791 big

SOCS

2
- 16

1= 32
= 48

o �

8

6

4

2�

(a) XY

f fng algorthm n rou I I

I
0

4 d281 d695 g1023 p22810 p3 392 P
SoCs

(b) NF

Ir
93791 b;

Fig. 4. Number of ATE interfaces per SoC with XY and NF routing
algorithms. The columns represent the average number of ATE interfaces for
ten SoC placements, considering 16, 32, 48, and 64 test pins. The error bars
over each column represent the number of ATE interfaces for the best and
worst placements.

Two categories of routing algorithms are used: determin­
istic and partially adaptive. The partially adaptive routing
algorithms can be minimal or non minimal in terms of the path
length. Minimal routing algorithms are those where a bound­
ing box virtually exists between the source and destination,
and it implies that only decreasing distances from source to
destination are valid. Non minimal routing algorithms allow
increasing the distance from source to destination.

The following systems from ITC'02 SoC Test Benchmarks
[13] were modified to include a mesh-based NoC (the NoC
dimensions, i.e. the number of routers for each system is
in parentheses): d281 (3,3), d695 (3,3), g1023 (4,3), p22810
(5,5), p34392 (4,4), and p93791 (6,5). The number of cores
of the system defines the NoC dimension. There is also the
so called 'big(9,9)' SoC created to test the scalability of the
proposed model. This SoC is placed in a 9 x 9 mesh with
117 cores of the five biggest ITC'02 SoC Test Benchmarks.
Ten core placements were randomly generated for each SoC
and each SoC is tested with 16, 32, 48, or 64 test pins. The
position of cores in the NoC and the number of test pins
generate different test partitions and each partition requires a
different ATE interface placement. In total, 7 SoCs x 10 core
placements x 4 different number of test wires result in 280
SoC configurations.

_ d695
_ g1023

4.31
4.60

I
Routing Algorithms

4.59

(a) Total # of ATE interfaces

- avg _ d695
_ d281 _ g1023

;
Routing Algorithms

(b) Total # of ATE interfaces/# of parts

4.76

Fig. 5. Average number of ATE interfaces per routing algorithm.

B. Results

Fig. 4 presents the average number of ATE interfaces
of a SoC configuration with XY and NF routing algorithms
because they are, respectively, the cases with the most and
the least number of ATE interfaces. The columns of Fig. 4
represent the average number of ATE interfaces considering
ten different SoC placements. The error bars represent the
placement which resulted in the minimal and maximal number
of ATE interfaces. This fluctuation in the number of ATE
interfaces is related to the generated test partition for each
combination of core placement and number of test pins.

Fig. 4 shows that the number of ATE interfaces is not
related to the size of the NoC. For instance, both d281 and
d695 have the same size (3x3) but the later has almost twice
the number of ATE interfaces. The SoC big has 81 routers
but has smaller number of ATE interfaces than p22810 and
p93791 with 25 and 30 routers, respectively. The reason is
related the the structure of the Soc. SoCs whose core test
weight are evenly distributed tend to require partitions with
more parts where each part requires a small number of test
pins. The number of ATE interfaces is related to the number
of parts of the resulting test partition.

Fig. 4 also shows the relationship between the routing algo­
rithm and the core placement, which was randomly generated.
It can be observed that the error bars for XY are bigger than
the error bars for NF. This is related to the adaptiveness of

12

Test Pins

Fig. 6. Average number of ATE interfaces per number of test pins.

the routing algorithm. As a consequence, the core placement
results in a greater variation on the number of ATE interfaces
when deterministic routing algorithms are used.

Fig. 5(a) illustrates the average number of ATE interfaces
per routing algorithm. Fig. 5(b) has an equivalent information,
but normalized by the number of parts. For instance, if a SoC
configuration has 5 ATE interfaces and 2 parts, then this chart
shows � = 2.5 ATE interfaces per part. The absolute minimal
number of ATE interfaces (one per part) could be achieved if
we assumed, for instance, the source-based routing approach
where any connected node can be accessed by annotating the
required turns. Comparing this ideal circumstance with the
evaluated routing algorithms, we can see in Fig. 5(b) that
the XY routing algorithm requires 27% more ATE interfaces
then the ideal case. On the other hand, NF routing algorithm
requires only 1 % more ATE interfaces. This difference among
the algorithms is due to the adaptiveness of the algorithms. In
this case, XY has no adaptiveness and NF, among the evaluated
routing algorithm, is the one with most adaptiveness.

Fig. 6 illustrates the average number of ATE interfaces per
number of test pins. This result shows that the number of test
pins has a relevant effect on the number of ATE interfaces than
the routing algorithm. For instance, increasing the number of
test pins from 16 to 32 increases in 1.3 the number of ATE
interfaces; from 16 to 64 adds 2.6 ATE interfaces to the system,
almost duplicating the total number of ATE interfaces. The
reason is related to the test scheduling algorithm which tends
to create partitions with more parts when more test pins are
available, increasing the test parallelism.

The paper [11], where the ATE interface design is pre­
sented, evaluates its silicon area. The results show that the area
of an ATE interface varies from about lOOO equivalent gates to
8000, for NoC data width from 8-bits to 64-bits, respectively.
An 32-bit ATE interface uses 4300 gates. Then, the silicon area
overhead to implement all ATE interfaces can be estimated by
the number of gates of a single ATE interface times the number
of ATE interfaces (LAEA IAI). For instance, the example in
Fig. l(a) with 5 ATE interfaces and a 32-bit NoC channel
requires 5 x 4300 = 21500 gates. In terms of area overhead,
the proposed approach might need more ATE interfaces then
previous approaches. However, the efficiency of the previous
approaches presented in Section II is totally dependent of the
given ATE interfaces, affecting negatively the SoC test time.

The new approach, on the other hand, defines the minimal
ATE interfaces without sacrificing the SoC test time since ATE
interfaces and SoC test time are optimized in different steps.

VI. CONCLUSIONS

This paper presented a new NoC TAM test method divided
in two steps, where the second step is the focus of this paper.
This paper presented an algorithm to determine the minimal
number of ATE interfaces for a test partition, reducing the
silicon area for the test circuitry. The results show that, on
average, the routing algorithm, the number of test pins, and
the core placement have a relevant influence on the number of
ATE interfaces. The combination of the proposed 2-step test
flow created a new NoC TAM test method that, compared to
previous NoC TAM approaches, is pottentially more efficient
because it eliminates unnecessary constraints from the test
scheduler.

ACKNOWLEDGEMENTS

This work was developed while Alexandre was supported
by postdoctoral scholarship from CapesIPNPD, grant num­
ber 02388/09-0. Fernando Moraes is supported by CNPq,
FAPERGS, and CAPES, projects 30262512012-7, lO/0814-9,
708/11, respectively.

REFERENCES

[1] S. K. Goel and E. 1. Marinissen, "SOC test architecture design for
efficient utilization of test bandwidth," ACM TODAES, vol. 8, no. 4,
pp. 399-429. Oct. 2003.

[2] S. O. E. Lindholm, 1. Nickolls and 1. Montrym, "NVIDIA tesla: A
unified graphics and computing architecture," Micro, IEEE, vol. 28,
no. 2, pp. 39-55, 2008.

[3] S. R. Vangal et aI., "An 80-tile sub-100-w teraFLOPS processor in 65-
nm CMOS," IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp.
29-41, 2008.

[4] E. Cota and C. Liu, "Constraint-driven test scheduling for NoC-based
system," IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 25, no. 11, pp. 2465-2478, 2006.

[5] F. Yaun, L. Huang, and Q. XU, "Re-examining the use of network-on­
chip as test access mechanism," in Proc. DATE, 2008, pp. 808-811.

[6] E. Cota, C. A. Zeferino, M. Kreutz, L. Carro, M. S. Lubaszewski, and
A. A. Susin, "The impact of NoC reuse on the testing of core-based
systems," in Proc. VTS, 2003, pp. 128-133.

[7] C. Liu, V. Iyengar, 1. Shi, and E. Cota, "Power-aware test scheduling
in network-on-chip using variable-rate on-chip clocking," in Proc. VTS,
2005, pp. 349-354.

[8] C. Liu and V. Iyengar, "Test scheduling with thermal optimization for
network-on-chip systems using variable-rate on-chip clocking," in Proc.
DATE, 2006, pp. 652-657.

[9] 1. M. Nolen and R. N. Mahapatra, "Time-division-multiplexed test
delivery for NoC systems," IEEE Design & Test of Computers, vol. 25,
no. 1, pp. 44-51, 2008.

[10] A. M. Amory, C. Lazzari, M. S. Lubaszewski, and F. G. Moraes, "A
new test scheduling algorithm based on networks-on-chip as test access
mechanisms," Journal of Parallel and Distributed Computing, vol. 71,
no. 5, pp. 675 - 686, 2011.

[II] A. M. Amory, M. S. Lubaszewski, and F. G. Moraes, "OfT for the reuse
of networks-on-chip as test access mechanism," in Proc. VTS, 2007, pp.
435-440.

[12] C. Glass and L. Ni, "The turn model for adaptive routing," Journal of
the Association for Computing Machinery, vol. 41, no. 5, pp. 874-902,
1994.

[13] E. 1. Marinissen, V. Iyengar, and K. Chakrabarty, "A set of benchmarks
for modular testing of SOCs," in Proc. lTC, 2002, pp. 519-528.

13

