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Abstract—As data volumes and the need for timely analysis
grow, Big Data analytics frameworks have to scale out to hundred
or even thousands of commodity servers. While such a scale-out is
crucial to sustain desired computational throughput/latency and
storage capacity, it comes at the cost of increased network traffic
volumes and multiplicity of traffic patterns. Despite the sheer
reality of the dependency between datacenter network (DCN)
and time-to-insight through big data analysis, our experience as
active networking researchers conveys that a large fraction of
DCN research experimentation is conducted on network traces
and/or synthetic flow traces. And while the respective results are
often valuable as standalone contributions, in practice it turns
out extremely difficult to quantitatively assess how the reported
network optimization results translate to performance or fault-
tolerance improvement for actual analytics runtimes, e.g., due
to the ability of these runtimes to overlap communication with
computation. This paper presents MRemu, an emulation-based
framework for conducting reproducible datacenter network re-
search using accurate MapReduce workloads and at system scales
that are relevant to the size of target deployments, albeit without
requiring access to a hardware infrastructure of such scale.
We choose the MapReduce (MR) framework as a design point,
for it is a common representative of the most widely deployed
frameworks for analysis of large volumes of - structured and
unstructured - data and is reported to be highly sensitive to
network performance. With MRemu, it is possible to quantify
the impact of various network design parameters and software-
defined control techniques to key performance indicators of a
given MR application. We show through targeted experimental
validation that MRemu exhibits high fidelity, when compared to
the performance of MR applications on a real scale-out cluster
of 16 high-end servers.

I. INTRODUCTION

The rise of Internet of Things sensors, social networking
and mobile devices has led to an explosion of data available for
analysis towards knowledge gaining and final insights. In turn,
this has led into the development of dedicated platforms for
large-scale data analysis. The MapReduce (MR) framework, as
implemented in Hadoop [1], is one of the most popular frame-
works for Big Data analysis. To handle the ever-increasing data
size, Hadoop is a scalable framework that allows a dedicated
and seemingly unbound number of servers to participate in the
analytics process. The response time of an analytics request
is an important factor for time to value/insights. While the
computing and disk I/O requirements can be scaled with
the number of servers, scaling the system leads to increased
network traffic. Evidently, the communication-heavy phases of
MR contributes significantly to the overall response time [2].

Despite Big Data analytics being a very common work-
load in datacenters, most research on datacenter networks

does not really take it into consideration. Instead, researchers
normally use synthetic traffic patterns (e.g., random traffic
following probabilistic distributions) to evaluate network per-
formance [3], [4], [5], [6]. While useful to rapidly evaluate
new algorithms and techniques, this approach often fails to
capture the real strain on datacenter networks supporting MR-
like runtimes. Thus, it is difficult to determine how these
studies would perform in the presence of MR workloads
and, most importantly, how they impact MR response time.
In fact, recent research has shown that MR applications are
sensitive to network performance [7], [2] and that it is possible,
by leveraging the emergent technology of software-defined
networks (SDN), to develop network control software to adapt
the network to the application’s needs in order to accelerate
the execution of this kind of application [7], [8].

Some studies in the literature use MapReduce-like traffic
patterns to evaluate their research [9], [10], [6]. They normally
model the MR shuffle pattern as map tasks (typically one per
node) sending data to one or more reduce tasks. However,
MapReduce frameworks, such as Hadoop, implement some
mechanisms to improve network performance that are not
taken into account by these works (e.g., transfer scheduling
decisions, number of parallel transfers, etc.). Moreover, nor-
mally there are a large number of map tasks per node and
Hadoop nodes have to serve data to multiple reduce tasks
concurrently. As a result, a great deal of research is being
conducted using synthetic traffic patterns and may not perform
well when applied to real MapReduce applications, particularly
those that claim to improve MapReduce performance.

Research in this area often relies on analytical and simula-
tion models to evaluate the network performance, which may
not capture all of the characteristics of real networks and appli-
cations. The use of real hardware, on the other hand, is often
not a valid option, since many researchers do not have access
to datacenters robust enough to run data-intensive applications.
Moreover, even when datacenter resources are available, it
is normally not practical to reconfigure them in order to
evaluate different network topologies and characteristics (e.g.,
bandwidth and latency). In this context, an alternative is to use
emulation-based testbeds. In fact, network emulation has been
successfully used to reproduce network research experiments
with a high level of fidelity [11]. Although existing network
emulation systems allow for the use of arbitrary network
topologies, they typically run on a single physical node and use
some kind of virtualization (e.g., Linux containers) to emulate
the datacenter nodes. Therefore, they lack resources to run real
Hadoop jobs, which are known to be CPU and IO-intensive.
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To overcome the above gap, we propose to combine net-
work emulation with trace-driven MapReduce emulation. For
this, we have implemented a framework called MRemu that re-
produces executions of MapReduce jobs by mimicking Hadoop
MapReduce internals (e.g., scheduling decisions) and generat-
ing traffic in the same way a real Hadoop job would. The
proposed framework enables networking research experiments
targeting datacenter networks using SDN and MapReduce-
like workloads, however by slashing the requirements of
continuous access to a large infrastructure. For example, it
is possible to compare the performance (e.g., job completion
time) of a given MapReduce job on different network topolo-
gies and network control software. The MapReduce emulation
also works as a stand-alone tool that can be used to run
network experiments in clusters with limited resources (i.e.,
not robust enough to run real Hadoop jobs [10]). MRemu
sports following features and functionality:

• Ability to create arbitrary network topologies, includ-
ing complex multi-path topologies (e.g., fat-tree), and
network parameters (e.g., bandwidth, latency, delay,
and packet-loss ratio);

• Accurate reproduction of MapReduce workloads, in-
cluding jobs with skewed transfer patterns, without
requiring a real datacenter infrastructure;

• Support for evaluating real software-defined network
(SDN) control code running on production SDN con-
trollers, through interfacing MRemu with SDN con-
trollers via the OpenFlow protocol and thus slashing
“from-lab-to-market” integration times. We have suc-
cessfully tested MRemu working in tandem with pro-
duction SDN controllers, notably OpenDaylight [12]
and POX/NOX [13].

This paper is structured as follows. Section II outlines
background information related to MapReduce and associated
data movement patterns. Section III presents the proposed
testbed, including network emulation framework and MapRe-
duce workload generation. Sections IV presents evaluation
results manifesting the accuracy and impact of our approach
and framework embodiment. Conclusions and future work are
presented in Section V.

II. BACKGROUND

This section provides an overview of the Hadoop MapRe-
duce implementation. Although there are currently several im-
plementations that are functionally equivalent to MapReduce
(e.g., Hadoop [1], Dryad [14], Twister [15], Spark [16]), this
work will focus on Hadoop because it is one of the most
popular open-source implementations for Big Data analysis
implementations.

The Hadoop framework can be roughly divided in two
main components: the Hadoop MapReduce, an open-source
realization of the MapReduce model and the Hadoop Dis-
tributed File System (HDFS), a distributed file system that
provides resilient, high-throughput access to application data.
The execution environment includes a job scheduling system
that coordinates the execution of multiple MapReduce pro-
grams, which are submitted as batch jobs. Assuming that the
input data is already loaded into the distributed file system
(i.e. excluding data movement due to loading/exporting data
to/from HDFS), intensive data movement in Hadoop is mainly
attributed to shuffling intermediate mapper output to reducers.
For instance, a recent analysis of MR traces from Facebook
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Fig. 1. Block diagram showing MRemu architecture.

revealed that 33% of the execution time of a large number
of jobs is spent at the MR phase that shuffles data between
the various data-crunching nodes [2]. This same study also
reports that for 26% of Facebooks MR jobs with reduce tasks,
the shuffle phase accounts for more than 50% of the job
completion time, and in 16% of jobs, it accounts for more
than 70% of the running time.

Hadoop Data Shuffling. In the shuffle phase of a MR
job, each reduce task collects the intermediate results from all
completed map tasks. Reduce tasks are normally scheduled
after a fraction of map tasks have been completed (by default
5%). Once running, a reduce task does not wait for all map
tasks to be completed to start fetching map results. Instead,
it starts scheduling copier threads to copy map output data
as soon as each map task commits and the data becomes
available. This technique (often referred to as early shuffle)
causes the overlap between the execution of map tasks and
the shuffle phase, which typically reduces the job completion
time. However, the reduction itself starts only after all map
tasks have finished and all intermediate data becomes available,
which works as an implicit synchronization barrier that is
affected by network performance.

III. THE MREMU FRAMEWORK

This section describes the design and architecture of the
proposed emulation-based experimentation framework to en-
able networking experiments with MapReduce applications. As
introduced earlier, the main goals of this work are (1) to enable
the evaluation of network design parameters to MapReduce-
like application performance (e.g., job completion time), (2)
to enable the evaluation of novel software-defined datacenter
network control algorithms and policies to MapReduce-like
applications and (3) to provide for a means of identifying
network bottlenecks and optimization opportunities caused by
new MapReduce-like applications (e.g. workflows comprising
inter-dependent MR jobs). For this, we decided to combine
network emulation with trace-driven MapReduce emulation,
as conveyed in the block diagram of Figure 1 showing the
functional blocks of the MRemu framework. The rest of this
section will explain each of the proposed system’s components
in detail.

A. MapReduce Job Tracing

The emulation-based experiments are driven by job traces
that can be either extracted from past job executions or
synthetically generated by statistical distributions. Hadoop has
a built-in tool, called Rumen [17], that generates job trace
files for past executions. However, the trace data produced is
insufficient for network-related analysis, since it lacks informa-
tion about individual network transfers. Thus, we developed a
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new tool for extracting meaningful information from Hadoop
logs (including network-related information) and generating
comprehensive MR execution traces. This tool is also able to
create job traces with different numbers of nodes and tasks
by using linear extrapolation, which is particularly useful for
scaling experiments for setups larger than those where the job
traces were collected from.

B. Data Center Emulation

This work relies on Mininet-HiFi [11] for network emu-
lation. Mininet-HiFI, also called Mininet 2.0, is a container-
based network emulation tool designed to allow reproducible
network experiments. It extends the original Mininet [18] with
features for performance isolation, resource provisioning, and
performance fidelity monitoring. Performance isolation and
resource provisioning are provided using Linux containers
features (e.g, cgroups and namespaces) and network traffic
control (tc). Fidelity is achieved by using probes to verify that
the amount of allocated resources were sufficient to perform
the experiment.

We have developed a tool for automatically setting up
a datacenter network experiment scenario, launching the ex-
periment code and monitoring performance information. It
consists of three main components: TopologyBuilder, Appli-
cationLauncher and NetworkMonitor. The TopologyBuilder
component ingests a datacenter network description file, which
can be either the topology file extracted from Hadoop traces
(cf. Section III-A) or a manually created file supporting the
use of any arbitrary network topology, and uses Mininet’s
Python APIs to create a complete network topology. Ap-
plicationLauncher is an extensive component that launches
the application code in each emulated node and waits for
its completion. Currently, it supports two applications: the
MapReduce emulator (cf. Section III-C) and a synthetic traffic
generator using iperf. Finally, NetworkMonitor allows for
probes to be installed in every node or network element to
collect monitoring information. Examples of information that
can be collected are network bandwidth usage, queue length,
number of active flows, CPU usage, etc.

C. Hadoop MapReduce Emulation

We implemented a tool that reproduces executions of
MapReduce jobs by mimicking Hadoop MapReduce internals
(e.g., scheduling decisions) and generating traffic in the same
way a real Hadoop job does. Although it internally simulates
part of MapReduce functionality, it constitutes a MapReduce
emulation tool from the system networking point of view: to
the network system, our evaluation tool has exactly the same
effect as a real MapReduce application producing real network
traffic and logging events to local files. This also allows,
for example, plugging systems that extract information from
Hadoop logs to predict network transfers [7], [8]. Since we are
interested mainly in the MapReduce shuffle phase, simulating
the details of Hadoop daemons and tasks (e.g., task processing
internals, disk I/O operations, control messages, etc.) is not
a goal, unlike MapReduce simulators (e.g., MRPerf [19]).
Instead, we use information extracted from job traces (e.g., task
durations, wait times, etc.) to represent the latencies during
different, non-shuffling phases of the MapReduce processing.

Our emulator implements two operation modes: REPLAY,
which reproduces the exact scheduling decisions from MR ap-
plication execution log traces, and HADOOP, which computes
new scheduling decisions based on the same algorithms that
Hadoop uses to schedule jobs and transfers used by Hadoop.

As the name conveys, the first mode allows us to reproduce
the exact order and timing of individual transfers, as these
occurred during execution of the MR application on a real
scale-out machine. The second mode may not reproduce the
same order and execution timing, but allows us to employ
trace-driven evaluation by varying the network parameters
and network control logic, without having to replicate the
respective network configuration of the datacenter that the
traces were collected from.

It is worth mentioning that the Hadoop emulation system
can also be used as a standalone tool. Although we have
developed MRemu to run in container-based emulation envi-
ronments, it is also possible to use it to perform experiments
on real hardware testbeds that are not robust enough (due to
,e.g., lack of memory, compute or I/O rate) to execute real
large-scale data-intensive jobs.

IV. EVALUATION

This section describes the experiments conducted to evalu-
ate the fidelity of the MRemu implementation. Since Mininet-
HiFi has already been validated [11] and is widely used to
reproduce networking research experiments [20], we focus on
the evaluation of our MapReduce emulation tool and its ability
to accurately reproduce MapReduce workloads.

Our experiments are based on job traces extracted from
executions in a real cluster. These traces are used both as
input for our emulation system and baseline to evaluate the
emulation results accuracy. The cluster setup we have used
consists of 16 identical servers, each equipped with 12 x86 64
cores and 128 GB of RAM. The servers are interconnected by
an Ethernet switch with 1Gbps links. All servers run Hadoop
1.1.2. The emulation-based experiments were executed on a
single server with 16 x86 64 cores and 16 GB of RAM. Our
emulation tool runs within Mininet 2.1.0+. We selected popular
benchmarks as well as real applications that are representative
of significant uses of MapReduce (e.g., data transformation,
web search indexing and machine learning). The selected
applications are part of the HiBench Benchmark Suite [21],
which includes Sort, Nutch, PageRank and Bayes.

A. Evaluation of the Job Completion Time Accuracy

In order to evaluate the accuracy of our Hadoop emulation
system, we performed a comparison between job completion
times in real hardware and in the emulation environment. We
tested both REPLAY and HADOOP operation modes. The
graph in Figure 2 shows normalized job completion times
compared to those extracted from the original traces. As can be
observed, job completion times for emulation in the REPLAY
mode are very close to the ones observed in the original
execution traces. When using the HADOOP mode (i.e., the
one that computes new scheduling decisions, instead of directly
using times extracted from traces), the completion times are
are slightly deviating for the Bayes application.

B. Evaluation of Individual Network Flow Completion Time
Accuracy

After validating the system accuracy in terms of job com-
pletion time, we conducted experiments to evaluate individual
flow durations. The graph in Figure 3 shows the Cumulative
Distribution Function (CDF) for completion times of flows
during the shuffle phase of the Sort application. We compared
the results of the emulated execution with times extracted from
the original execution trace. Although the mean time is very
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Fig. 2. Comparison between job completion times in real hardware and in
the emulation environment for different MapReduce applications.

close, we can see in Figure 3 that the transfers’ durations
were slightly different. This behavior is expected since we
are inferring flow durations from Hadoop logs, which may not
represent the exact system behavior due to high-level latencies.
Especially for small transfers, we detected that our traffic
generation imposes an overhead, since it needs to start two
new processes (client and server) at each new transfer (we
plan to improve this in future). Nevertheless, the system still
achieved completion times very close to the ones extracted
from Hadoop traces and, as shown in Section IV-A, it leads to
accurate job completion times.
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V. CONCLUSIONS AND FUTURE WORK

This paper presented MRemu, an emulation-based frame-
work that enables conducting datacenter network research and
resource planning, without requiring expensive and continuous
access to large-scale datacenter hardware resources. Among
the highlights of MRemu is a) the ability to process logs
and traces from executions of real MapReduce applications in
production datacenters and replay or extrapolate patterns to fa-
cilitate realistic network emulation in the context of datacenter
network evaluation, b) the ability to emulate network control
code for software-defined networks (SDN) implemented and
running directly on the production SDN controller and c) the

potential of its use as a standalone tool in legacy computer
clusters with limited resources for real data-crunching. We
verified through rigorous and methodical experimentation that
MRemu exhibits high accuracy of emulation with respect to
application performance, when compared to respective appli-
cation runs in a real datacenter. As such, we are confident
that MRemu can be used by the broader research community
as a valuable tool in its experimentation toolset. In fact, we
are working in this direction and towards making MRemu
available to the community as an open-source tool1. As part
of our next steps, we are working on overcoming its limita-
tions (e.g, distributed emulation, multi-job execution), as well
as incorporating further analytics runtimes beyond Hadoop
MapReduce into the emulator.
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