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Abstract—The popularity of Cloud computing due to the
increasing number of customers has led Cloud providers to
adopt resource-sharing solutions to meet growing demand
for infrastructure resources. As the adoption of resource-
sharing/consolidation in Cloud computing became arguably a
well-established solution, the ability the underlying virtualization
systems of preventing performance interferences from customers
must also be understood. Virtualization systems based on contain-
ers, such as LXC, are the basis of the next-generation of Cloud
computing and have become the most popular solution under
PaaS/IaaS Cloud platforms with the rise of Docker—an open
platform for developers and sysadmins to build, ship, and run
distributed applications. Such platforms have enticed many atten-
tions globally, since they leverage container-based virtualization
systems to offer high scalability while low performance overheads;
the performance might be solely aggravated if the customers’
workloads are consolidated onto the same hardware and the
isolation layer does not properly isolate the shared resources.
Performance isolation is an inherent concern of such systems
due to the nature as they are conceived and is still an unexplored
and open research topic; the consequences might influence in
the adoption under shared Cloud computing platforms where
Quality-of-Service is a crucial factor that cannot be disregarded.
In this paper we analyze the performance interference suffered by
disk-intensive workloads within very noisy-perturbed containers
(different hardware components stressed). Our results show
workload combinations whose performance degradation goes up
to 38%, but in contrast we expose a workload-balanced scenario
wherein the performance does not suffer any interference.

Keywords—container-based virtualization, Cloud computing,
performance isolation, disk-intensive workload

I. INTRODUCTION

Cloud computing has offered a large amount of com-
putational resources on an unprecedented scale. Users now
have other alternatives for large-scale computing with more
reliability, security, availability and scalability. Current public
Cloud providers, such as Amazon [1] and Google [2], allow
customers to allocate resources based on their needs under the
pay-as-you-go model, alleviating the burdens for maintaining
these resources in a private environment. This model has
increased the popularity of Cloud computing and has led the
providers to a scenario where the number of customers is
constantly increasing, while the diversity of workloads and
resource needs are steadily growing.

To deal with this abundance of customers from many
fields with different resource needs, Cloud providers have used
resource-sharing by leveraging virtualization to consolidate
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multiple customers onto the same hardware. This approach
brings along significant cost savings, but also brought a level
of unpredictability and an issue into focus: the performance
interferences caused among customers’ workloads consoli-
dated onto the same hardware. For example, network- and
CPU-intensive workloads might cause interferences among
each other due to the high load placed onto the same shared
network devices and processors. To address this issue, the
underlying virtualization systems must be able to isolate hard-
ware resources so that the workloads of multiple-consolidated
customers do not suffer performance interferences among each
other. This capability is referred to as performance isolation.

The Information Technology Laboratory (ITL) [3] has
defined possible service models for Cloud computing. The
Software as a Service (SaaS) model that allows customers to
use provider’s applications running on a Cloud infrastructure,
Platform as a Service (PaaS) that provides the ability to de-
ploy onto the Cloud infrastructure consumer-created/-acquired
applications using programming languages; and Infrastructure
as a Service (IaaS) that allows customers to provision different
types of infrastructure resources (e.g. virtual machine, storage,
network, etc) to supply their needs. Based on this, the perfor-
mance isolation might be quantified/analyzed from different
perspectives in Cloud computing infrastructure depending on
which of these models the customers are, and which un-
derlying virtualization system is being used. Until recently,
the hypervisor-based systems were the only systems behind
most of [aaS Clouds. Today, because of their slight impact
on performance, container-based systems, such as LXC [4],
have gained space and becoming very popular under PaaS/IaaS
Clouds with the emergence of Docker [5].

Some works have emphasized the importance of having
a good resource isolation layer to underpin the aforemen-
tioned models. Kreb et at. [6] propose metrics to quantify
performance isolation in SaaS Clouds on which a group of
customers (also known as tenants) share the same application.
Other works have explored performance isolation capabilities
of potential IaaS platforms, which consolidate infrastructure
resources allocated by several different customers onto the
same hardware [7], [8], [9], [10], [11], [12]. It is worth
noting that all related works, regardless of the model, exhibit
performance interferences issues in hypervisor-based Clouds,
whereas understand such issues in container-based Clouds still
remains an unexplored research topic, driving our motiva-
tion to conduct a set of experiments to do so. Further, our
experiments consider disk-intensive workloads, as they are
becoming very common in Cloud computing with the “Big
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Data” age expansion and MapReduce applications emergence.
On the same hand, Database management systems (DBMS)
orchestrate large quantities of information by inputting, stor-
ing, retrieving and managing those information on disks. Such
applications compute on large data sets and depends on high-
throughput disk assets for sustaining their performance and
satisfying customers Service-level agreement (SLA).

We focus instead on evaluating the intrinsic perfor-
mance isolation issues of LXC, which is the most current
container-based implementation. It has been widely adopted
under the contemporary Paas/IaaS Cloud computing platforms
and promise better performance and scalability compared
to hypervisor-based systems, such as Xen [13] and KVM
[14]. In our two earlier works [15] [16], we briefly explored
performance isolation through a benchmark suite that allow
us to stress CPU, memory and disk of consolidated virtual
instances on HPC clusters. Evaluations of HPC workloads
were conducted and the performance isolation of two types of
virtualization architectures was compared. Herein, we expand
and explore more in-depth performance isolation issues of a
well-known virtualization system commonly used to underpin
container-based Clouds. We also demonstrate the differences in
regards to KVM, which is one of those used under hypervisor-
based Clouds.

The rest of this paper is organized as follows: Section
I briefly describes the container-based architecture and its
capabilities; the contemporary container-based Clouds are also
presented. Section III outlines performance isolation metrics
and how they can be used to quantify virtualization systems.
Section IV presents indeed the evaluations. Finally, Section VI
concludes and presents future research directions.

II. BACKGROUD

A. Container-based Virtualization

Resource virtualization consists of using an intermediate
software layer on top of an underlying system to provide
abstractions of multiple virtual resources. In general, the
virtualized resources are called virtual machines (VM) and can
be seen as isolated execution contexts. There are a variety of
virtualization techniques. Today, one of the most popular is the
hypervisor-based virtualization, which has Xen, VMware [17]
and KVM as its main representatives. The hypervisor-based
virtualization, in its most common form (hosted virtualization),
consists of a virtual machine monitor (VMM) on top of a host
operating system (OS) that provides a full abstraction to VM.
In this case, each VM has its own OS that executes completely
isolated from the others. This allows, for instance, multiple
different OSs on a single host.

A lightweight alternative to the hypervisors is the
container-based virtualization, also known as OS-Level vir-
tualization. This kind of virtualization partitions the physical
machines’ resources, creating multiple isolated user space
instances on the same OS. Despite this, users in these instances
have the illusion they are working on their own independent
subsystem of network, memory, and file system. The main
difference lies in the fact that there is no need to translate
instructions from the upper to the lower layers, as such
in hypervisors, wherein virtual drivers are required for this
purpose. In Figure 1 is depicted the differences between the
container- and hypervisor-based architectures. As can be seen,
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while hypervisor-based virtualization provides abstraction for
full guest OSs (one per virtual machine), container-based
virtualization works at the OS-level, providing abstractions
directly for the guest applications. In practice, hypervisors
work at the hardware abstraction level and containers at the
system call/ABI layer. Since the container-based virtualization
works at the OS-level, all containers share a single OS kernel.
For this reason, container-based systems are supposed to have
a weaker isolation compared to hypervisor-based systems.
However, from the point of view of the users, each container
looks and executes exactly like a stand-alone OS [18].

App || App || App App || App || App

Container Container Guest 0S Guest OS

Shared Operating System Virtual Machine Monitor

Hardware Hardware

container-based architecture hypervisor-based architecture

Fig. 1.
tectures

Comparison of container- and hypervisor-based virtualization archi-

LXC is the today’s most notable system based on contain-
ers for Linux. It has gained space because of its inclusion
in Linux kernel upstream (mainline source code) and has
increasingly been used in a variety of platforms that demands
high scalability with low performance overheads. That is why
we opted to use LXC as a representative of the container-
based systems to be evaluated. The system is basically a Linux
application tool that allows users to create containers contain-
ing groups of processes that might access its isolated instance
of the global resource. To support container implementation,
the Linux kernel has provided isolate resource capability per
processes or group of processes. This feature is referred to as
Kernel namespaces.

Given that containers should not be able to interact with
things outside, many global resources are wrapped in a layer
of namespace that provides the illusion that the container is
its own system. Currently, the kernel supports six different
namespaces that are responsible in turn, also by isolating
different resources, which are:

Mount namespace: isolates filesystem mount points
seen by a container, in such way that processes in
different containers might have different views of the
file system hierarchy;

UTS namespace: allows each container to have its
own hostname and NIS domain name;

IPC namespace: isolates the inter-process communi-
cation, meaning that processes containing in a con-
tainers have its own message queues, and they are
completely independent from the others;

PID namespace: isolates the global PID space per
containers, in such a way that might have processes
with the same PID number running onto different
containers. It allows containers to be migrated between
hosts while keeping the same applications’ PID num-
ber;



Network namespace: isolates the network subsystem,
such as firewall tables, devices, IP address and IP route
tables. Each container maintains its own networking
configuration and the applications running on that can
bind to the per-namespace port number space. This
allows multiple web servers, for instance, to be hosted
onto different containers with each server intensive to
port 80 in its (per-container) network namespace;

User namespace: isolates groups and users IDs from
the host and other containers running on. It means
that the user root (ID 0) has full privileges within a
container, but without any privileges outside, ensuring
safety and reliability.

Such namespaces are the basis of the LXC and in conjunc-
tion with other resource management features provide isolated
user spaces environments in the form of containers. LXC takes
the cgroups resource management facilities [19] as its basis
and adds POSIX file capabilities [20] to restrict resources
among the containers. By cgroups it is possible to apply a
set of criteria to restrict resource subsystems such as memory,
network, disk I/O and CPU, in the sense that one container
does not exceed its imposed constraints and not interfere other
containers running on the same hardware. In fact, whereas the
Kernel namespaces ensure isolation among the containers such
that they cannot see resources between one another, cgroups
is responsible for resource limiting, prioritization, accounting,
and control.

B. Container-based Clouds

Container-based systems have awakened attention of the
industry as it brings along benefits including flexibility, agility,
and scalability. Internet companies, such as Amazon and
Google, have taken advantage of such systems, enabling ro-
bust container-based PaaS/laaS platforms to build/deploy/host
applications on a lightweight environment that promises to be
free of performance overheads. This is the case of Docker
[5]. Docker is an open platform for developers and sysad-
mins to build, ship, and run distributed applications in a
lightweight manner. These platforms enable apps to be quickly
assembled from components, eliminating the friction between
development, quality assurance, and production environments.
As a result, IT can whereby ship faster and run the same
application, unchanged, on laptops, data centers, and any
container-supported Clouds. Also, more containers can be
packed onto a single server, since the OS is not duplicated
for each application. It might be a better option, if there is a
need to deploy dozens or hundreds of guests. These are the
main benefits that have led Cloud providers to adopt these
platforms into their solutions.

On the other hand, while hypervisor-based Clouds allow
customers to choose the OS that better fits their necessity,
container-based Clouds are not interoperable. Linux and Win-
dows cannot be run together [21] on the same hardware.
Further, because of the shared OS, many instructions are
scheduled by the same OS. This aroused Cloud providers for
possible safety/stability issues, since they have no knowledge
about customers, so that malicious users could affect the whole
system if the isolation capabilities are not properly working.

The use of container-based virtualization under Clouds
opens a new horizons for research, and all stemming ques-
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tions should be understood and answered. We are taking a
step, presenting in this paper a performance isolation analysis
of the underlying virtualization system of the contemporary
container-based Clouds.

III. PERFORMANCE ISOLATION OVERVIEW

Uncontrolled competition for shared computing resources
on a machine creates unexpected performance variations for
collocated applications. In traditional shared environments,
applications compete for resources. This means that an ap-
plication execution might interfere the performance of another
application, impacting on performance metrics. In Cloud en-
vironments, application performance should be kept because
it would violate SLA, impacting directly on the user experi-
ence quality. Therefore, beyond virtualization provides other
features for these environments such as elasticity and efficient
use of hardware, isolation plays a decisive role. While virtual
instances can share physical resources of a single machine,
they remain completely isolated from each other, as if they
were separated physical machines. Thus, isolation is one of
the main reasons why availability and security of applications
running on virtual environments are far superior to applications
running on a traditional system. There is a subtle difference
in container-based Clouds: there is no virtualization layer, and
the OS shall ensure the performance isolation.

A simple and efficient way to implement isolation between
applications or subsystems in container-based virtualization
lies in the user space. In this approach, the OS’s user space
is divided into areas referred to as isolated virtual domain.
Each virtual domain allocates an OS resources portion, such
as memory, CPU time and disk. In addition, some features
of the real system can be virtualized, like network interfaces—
each domain has its own virtual interface and its own network
address. This notion of distinct spaces can be extended to other
system resources as we presented in section II-A.

Although the customers have no control over the Cloud
infrastructure, they need assurances of reliability and perfor-
mance of the contracted resources, since the migration involves
transferring vital functions from their business to the Cloud
(i.e. it becomes vital for customers to obtain guarantees of
delivery service providers). Typically, these guarantees are
provided by SLAs negotiated between providers and cus-
tomers, but this is not a straightforward task, especially in the
Cloud computing infrastructures. The simplest way is through
committed resources dedicated to each customer. Many Cloud
providers strive to cut infrastructure costs through excessive
subscriptions in their data centers, so that the resource capacity
became underutilized and the isolation capability becomes an
even greater concern [22].

There have been works proposing the use of metrics for
quantifying performance isolation between virtual domains,
such as response time and disruptive loads, on several scenarios
(non-isolation virtual domains against pinned and unpinned
virtual domains) [6] [8] [9] [23]. The findings have revealed
that the metrics are enough to prove that the system is
completely isolated, however they fail at ranking the isolation
system resources into the range between isolated and non-
isolated.

In a more restrict view, the most usual way to quantify
performance isolation of workloads in Cloud environments,



consists in running concurrent workloads within different
virtual domains, whose workloads consume equally the same
physical resource, as can be seen in [24] [25] [26] [27] [28].
In Figure 2 is illustrated this scenario applied in the context of
container-based virtualization under disk-intensive workloads.

1/0 workload | 1/0 workload | Stress App
Busy ldle | __ » Busy Busy
Container Container Container Container

Shared Operating System Shared Operating System

Hardware Hardware

(a) First step (b) Second step

Fig. 2. Isolation Evaluation Architecture

As observed, the total amount of physical resources is
partitioned evenly among the containers (two containers per
machine). The workflow consists basically of two steps. In the
first step (a), a disk-intensive workload runs alone into one of
the two containers, while the other remains idle, meaning that
no container has been disturbed. The disk-intensive workload
metric is collected and stored to be used further, at the end of
the workflow. In the second step (b), the same workload runs
into one of the containers, but now together with a disruptive
container running side-by-side. The metric is collected again
and the performance isolation is quantified by the difference of
the metrics collected from the two steps, denoted as follows:

D=[1-]|

The difference D denotes the performance degradation and
might give an insight whether the namespaces and cgroups are
properly isolating the resources. In fact, forecasting perfor-
mance isolation of virtualized applications is quite beneficial
for large complex data centers, not only to improve the
relatively static allocation of workloads to physical resources,
but also as input to more dynamic orchestration systems.
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IV. EVALUATION RESULTS

Experiments were conducted to evaluate the performance
interference a disk-intensive workload suffers by disruptive
virtual domains running on the same hardware. To that end,
we chose Oracle [29] and MySQL [30] databases for the
sole purpose of putting load stress on them and contrasting
an open-source and a commercial DBMS. Regarding Oracle,
it is used in environments that require high scalability and
robustness. MySQL, however, is broadly used in Internet
applications such as e-commerce sites. Both systems have
been supported by Oracle, but Oracle databases are commonly
indicated for business enterprises, while MySQL is a lighter
and straightforward solution purpose-built for small companies
that dispense high investments in supporting and maintaining.
We used respectively the versions 12¢ and 5.5 of Oracle and
MySQL.

To put stress on these systems, we ran the Swingbench
[31] and the Sysbench [32] benchmarks on Oracle and MySQL
databases, respectively. They are both TPC-C benchmarks [33]
and are essentially based on On-Line Transaction Processing
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(OLTP) classes that facilitate and manage transaction-oriented
applications. They enable multiple concurrent users’ transac-
tions (e.g. select, update and delete operations) to be executed
on the DBMS systems. In fact, OLTP-oriented benchmarks
emulate typical transactions on systems that need high avail-
ability, while dealing with several simultaneous users’ requests.
There are five basic transactions that represent the behavior of
an OLTP system. These transactions and their characteristics
are outlined in Table I. The transaction percentage is analogous
to the distribution used by an OLTP system [33].

TABLE 1. TPC-C TRANSACTIONS TYPES AND OCCURRENCES
Transaction Characteristics Percentage
New Order | read-write, middle complexity 45%
Payment read-write, low complexity 43%
Order Status | read, middle complexity 4%
Stock Level | read-write 4%
Delivery read-write 4%

By the nature of the DBMS systems, they can sustain finite
floods of transactions over a certain period. Such floods refer
to the number of atomic actions performed by certain entity per
second. This measurement has become a universal metric used
in database warehouse for measuring performance in terms of
database processing capacity, since it can give a vision of how
efficient the system is (how many transactions the system is
capable of executing without impact on user satisfaction). This
metric is referred to as Transaction Per Second (TPS) and it is
the output of popular TPC-C benchmarks such as those used
in our evaluations, which are: Swingbench and Sysbench. TPS
refers to the disk-intensive metric collected from both steps in
the workflow earlier described in section III.

Rounds of tests were carried on the workflow and the
number of rounds was given by a confidence interval of at least
95%. The metric TPS obtained from the first step was simply
collected via the benchmarks and stored to be used as a factor
of comparison further. In the second step, while the DBMS
system within a domain was being stressed via a benchmark
outside, the other domain began having its allocated hardware
resources stressed (CPU, disk, and memory) through purpose-
build apps. The apps aim to put stress on the domains in an
attempt to cause performance interferences to the domains that
are handling database transactions. The stress app called mem-
orybomb, basically loops many memory allocation instructions
in order to reach the limits imposed by the OS. Similarly, the
cpubomb stress app loops arithmetic operations, putting stress
on all CPU cores simultaneously. To stress the disk I/O, we
used the IOzone filesystem benchmark [34] that allowed us to
measure read/write file operations fairly accurately.

A. Experimental Setup

Our hardware setup comprises two identical Dell Pow-
erEdge R810 machines. Each of them equipped with two
3.46Ghz Intel Xeon C5690 processors with 8 cores each (with
Hyper-Threading), totaling 32 virtual cores; 64Gb of RAM
memory, and four Gigabit Ethernet adapters. The communica-
tion between them is done via a Gigabit switch. On these ma-
chines we deployed the Linux distribution Ubuntu 14.04 LTS
[35] and the OpenStack Cloud platform (Havanna Release)
[36]. In summary, our testbed is an OpenStack environment
composed of two nodes, where the system that orchestrates



the virtual domains in such nodes are eventually swapped
depending on which is being evaluated: the container-based
LXC or KVM, which is the hypervisor-based representative to
be collated.

To perform the experiments on LXC, we installed the LXC
toolkit (1.0.5) on it and ensure that all requirements presented
by the Ixc-checkcong tool were met. Finally, each container
allocates half of the total amount of resources of CPU, Disk
I/O and memory, taking into account that the workflow cycles
consider only two containers in place. The cgroups was used
for this purpose.

Experiments involving KVM were performed with the
purpose of comparing the results with the ones obtained from
LXC. We installed on our testbed the KVM (version 1.0)
and the QEMU (version 1.4) [37] to support all virtualization
capabilities and to conduct the experiment in an environment
as similar as possible with the LXC.

B. Performance Isolation Analysis of LXC

In this section we discuss the outcomes of performance
interferences caused on the DBMS systems stemming from
a disruptive LXC container running on the same OpenStack
node. On the experimental platform, we conducted experiments
using Oracle and MySQL to ascertain any perturbations in their
operations/performances while handling database transaction-
oriented floods carried from the benchmarks.

Figure 3 depicted the TPS metric obtained upon the
MySQL. Albeit there seems to be almost no disturbance
throughout the execution of all stress apps, it does not mean
that LXC subsystems are playing their role and all resources
are tightly isolated. Due to the Sysbench limitations and
because of its characteristic, we were not able to separately
benchmark different TPC-C transactions and infer the one that
suffers more performance interferences. This led us to diversify
and contrast the results with other DBMS system like Oracle.
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Arbitrary OLTP Transactions (Sysbench)

Fig. 3. Performance Isolation on LXC - MySQL

While observing the Oracle results in Figure 4, the differ-
ences become more noticeable. The Y-axis scale (number of
transactions) differences in due to the Swingbench limited exe-
cution time. The execution time impact directly on the number
of transactions the benchmark is able to supply, but it does not
affect the analysis among the TPC-C transactions executed by
the Swingbench. Careful examination of the outcomes, reveal
that all TPC-C transactions suffer some impact caused by the
stress apps, being the memorybomb the most noisy one. This
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led us to believe that the cgroup memory restriction capability
was not working well and its behavior merited to be further
studied.
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Fig. 4. Performance interferences in the database transactions on LXC with
Cgroups

Going further, we explored this troublesome issue regard-
ing memory constraint in cgroups by carrying out a new test
set. We found that there seems to be a relationship with the
Out-of-Memory (OOM) killer of the OS. The Figure 5 depict
out our assumption. As noted in the labeled time-slice A, at
the time the memorybomb app is killed by the Linux kernel
to conserve its stability and avoid crashing, the performance
of the database goes down and take some time to go back
on. Throughout this time, the number of transactions keeps
at 0. This intermittent behavior reflects on the totality of
transactions reached by the Swingbench along its execution,
as perceived in Figure 4.

T
600

= T
0 200

400
Execution Time (s)

* Base 4 Memory Stress

Fig. 5. Performance impacts suffered by the memory stress app. The
performance results from the workload within the perturbed LXC container
overlapped onto the results from the LXC container without any induced
interference (i.e. steps (1) and (2) are contrasted)

C. Performance Isolation Analysis of KVM

There are two ways to restrict the resources in KVM:
One is by using the built-in QEMU features and the other
is by using cgroups like in LXC. Our tests covered both in
order to identify which of them contributes to better resource
constraints and provides a fairer comparison with LXC.

As noted in Figure 6, in spite of not having driven its
performance by the stress apps, the TPS reached herein is



much lower than the TPS obtained from LXC, as we saw in
Figure 4. On the other hand, the performance isolation ability
of KVM is far superior, ensuring more security/reliability with
almost no interference. Such differences are explained by the
intrinsic virtualization layer of the hypervisor-based systems,
and the absence of such layer in container-based systems.
These benefits/drawbacks is better detailed in our earlier work,
since it is not in the ongoing work context.

New Order H Order St

Swingbench

Delivery ‘

100000

75000
50000
25000

0

Fig. 6. Performance interferences in the database transactions on KVM with
Cgroups
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Fig. 7. Performance interferences in the database transactions on KVM with
QEMU

It is easily observing in Figure 6 and 8 that all tests, regard-
less of the database and the type of TPC-C transaction carried
out, did not suffer much interferences while all resources were
stressed. This suggests that the cgroups is working properly
when using it to restrict resources in KVM. In contrast, the
own QEMU resource management did not express the same
behavior, as can be seen in Figure 7.

For better interpretation, we summarized the performance
degradations in Tables II and III in which both the Oracle
and MySQL results are exposed. When comparing the results
from LXC against the results obtained from KVM in which the
cgroups is exercised, we can infer that all resources limited by
cgroups in both environments did not interfere the performance
of the databases. This suggests that interferences in LXC are
due to the shared OS that had to handle much more instruction
during high load conditions, being unable to efficiently handle
the database transactions.

We realized considerable performance interferences while
the memory limits were stressed. The most notable was during
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Fig. 8. Performance Isolation on KVM - MySQL
TABLE II. PERFORMANCE DEGRADATION OF SWINGBENCH (ORACLE)
FOR ALL STRESSED RESOURCES

Operations DCPU Ddisk Dmemory
LXC - New Order 5,04% | 19,21% 21,62%
LXC - Delivery 11,37% | 12,35% 38,90%
LXC - Order St 0% 1,87% 16,74%
KVM (Cgroup) - New Order 0% 3,43% 4,16%
KVM (Cgroup) - Delivery 4,65% | 4,17% 5,46%
KVM (Cgroup) - Order St 5,00% 3,71% 4,60%
KVM (QEMU) - New Order | 8,49% | 26,49% 19,89%
KVM (QEMU) - Delivery 7,93% 5,91% 3,85%
KVM (QEMU) - Order St 0,28% 4,12% 3,08%

TABLE III. PERFORMANCE DEGRADATION OF SYSBENCH (MYSQL)
FOR ALL STRESSED RESOURCES
Operaﬁons DCPU Ddisk’ Dmemory
LXC - MySQL OLTP 3,22% 0,88% 0,10%
KVM (QEMU) - MySQL OLTP | 27,14% | 21,85% 8,88%
KVM (Cgroup) - MySQL OLTP | 4,89% | 0,65% 4,65%

the delivery transactions, since this kind of transaction takes
many memory pages to store and handle large data sets before
writing them back to the database. A similar behavior was also
observed in [15].

As noted, the container-based system is not yet mature
to ensure performance isolation among disk-intensive work-
loads. However, consolidate different workload types is a good
alternative to alleviate interferences. Based on our results,
we would suggest not combining disk- and memory-intensive
workloads into different containers due to the inherent perfor-
mance degradation observed while putting them together onto
the same physical machine. On the other hand, we observed
that by consolidating I/O- and CPU-intensive workloads, it is
possible to alleviate the performance impacts.

V. RELATED WORK

Virtualization has brought a great flexibility to the comput-
ing infrastructures. Although all the known advantages, trade-
offs between I/O isolation [38] and performance [39] are still
issues that are widely discussed in the literature. In this way,
Soltesz et al. [40] evaluates the impact of VServer perfor-
mance against a traditional Xen virtualization environment,
using some performance metrics such as bandwidth, CPU and
memory usage, and disk access. The work concluded that the



container-based environments can be up to two times faster
than traditional virtualization environments.

The paper by Pu et al. [41] evaluates the interference of
1/O applications among multiple virtual machines. The SPEC
benchmark was used on two Xen virtual machines sharing
the same resources, and monitoring CPU and network usage.
The results showed that the performance of I/O workloads
on isolated environments shows a high overhead due to the
constant changes in context between the host system and
virtual machines. Also, isolation is not as efficient because
there is a lack of contention due to demand for faster memory
pages in I/O channel exchanges. Other questions are presented,
related to the interference of CPU-intensive workloads and
network-intensive workloads on the same physical machine
can bring overhead due to competition for resources.

The work of Mandal et al. [42] evaluates the I/O network
on Cloud environments, and what impact the isolation of vir-
tual machines has on this issue. Several provisioning scenarios
were tested using HTCondor, and the results showed that
the allocation of the bandwidth increases to the point where
the disk I/O is saturated. This enabled the identification of a
maximum useful point in the allocation of network bandwidth.
Thereafter, there is little or no benefit for performance.

The paper by Mei et al. [43] presented a performance
evaluation based on network I/O applications in virtualized
datacenter environment. To quantify the impact of these appli-
cations on the environment, the test scenario consisted of the
httperf benchmark performing network requests to web servers
on distributed virtual machines. Several scenarios for the use
of virtual machines were tested, since comparison of virtual
machines with load against idle virtual machines running on
the same physical machine, until scenarios with all virtual
machines at full load. The results showed that this type of
1/0 application is affected due to poor isolation of memory.

Fang et al. [7] proposed a mechanism for allocating I/O
applications with the aim of reducing the impact of the weak
isolation of virtual machines, in a way that the mechanism
can recognize the behavior of the application and adjust the
workload parameters, eg, amount of reading and writing oper-
ations. The initial tests were performed on Xen and VMWare,
and then extended to the Amazon EC2 platform. After the
profiling phase, a mathematical model was created trying to
predict the behavior of I/O applications. The results showed a
standard deviation of 1,04%.

As we can see, traditional virtualization environments are
being widely evaluated aiming to reduce the trade-off between
performance and resource use. New virtualization proposals
are continuously emerging, such as the container-based, which
while allowing higher performance than traditional virtualiza-
tion environments, it still leaves something to be desired in
the isolation support. Nevertheless, it is a quoted technology
to support future Cloud environments [44].

The works proposed by Xavier et al. [15] [16] analyze
the isolation of container-based environments with different
workloads. The first paper [15] presented an evaluation of
several container-based environments, such as LXC, VServer
and OpenVZ, using as a basis of comparison a native Linux
environment, and a traditional virtualization environment such
as Xen. The tests evaluate several performance metrics using
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several benchmarks: Linpack was used to assess the per-
formance of computing, STREAM to memory performance,
10zone to disk performance, NetPipe to network performance,
beyond NAS Parallel Benchmark to assess HPC applications.
The results showed that container-based technology is not
yet mature in isolation of performance issues because of
a container application can interfere with the performance
of other containers. The second paper [16] evaluates the
performance of MapReduce applications on container-based
environments. In the work, performance evaluation of the
file system (HDFS) was performed. The results showed a
better isolation of LXC when compared with other container-
based platforms proposed, makes its use very attractive for
MapReduce applications.

This paper proposed an extension of these latter two papers,
assessing disk-intensive workloads on container-based Clouds.
Considering the weak support issues of isolation in container-
based systems, disk-intensive workload can impact in a very
decisively in these environments. This paper presented exper-
iments which allowed us to quantify this impact.

VI.

With the increase in the number of Cloud computing users,
Cloud providers have tackled challenges of how to attend
growing demands in a scenario where the workloads within
a virtual domain could not interfere the performance of other
workloads running on the same physical hardware. This is a
key motivation behind many works that explore performance
isolation issues in many kinds of virtualization architectures.
With the same motivation, we explored isolation issues of
the LXC, which is the underlying container-based system
where the Docker platform is settled. LXC is not the only
container-based virtualization system that exists today. Google
has launched the Lmctfy [45]—its system stack based on
containers. OpenVZ [18] which is one of the oldest container-
based system implemented for Linux and VServer [46] which
introduces its capabilities into the Linux kernel in order to
provide containerization features. Although there are a handful
of possibilities for container-based Clouds. LXC is the one that
become more popular in Cloud computing platforms due to its
inclusion in source Kernel upstream.

CONCLUSION AND FUTURE WORKS

The use of container-based virtualization systems under
Cloud computing platforms has provided many benefits and
a few drawbacks as we presented. However, an analysis of
performance isolation intrinsic to these systems was an unex-
plored topic so far. Our results reveal that, unlike the KVM,
the LXC does not provide complete isolation of resources
for now. However, understanding the possible performance
interferences, it is easy to conjecture several workload combi-
nations to alleviate such interferences taking into account the
impact they have among themselves.

The era of “containerization” has begun in Cloud com-
puting environments and the need for better understanding of
the behavior of the workloads on these systems has become
fairly desirable. Our work focused on evaluating performance
interference suffered by disk-intensive workloads, but we plan
to go further and study more in-depth these workload com-
binations on container-based Clouds. From what we know,
best fitting them can contribute to greater user satisfaction and
better resource usage that results in the end in a lower cost for
maintaining infrastructure.
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