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Abstract—Learning content from videos is not an easy task
and traditional machine learning approaches for computer vision
have difficulties in doing it satisfactorily. However, in the past
couple of years the machine learning community has seen the
rise of deep learning methods that significantly improve the
accuracy of several computer vision applications, e.g., Convolu-
tional Neural Networks (ConvNets). In this paper, we explore the
suitability of ConvNets for the movie trailers genre classification
problem. Assigning genres to movies is particularly challenging
because genre is an immaterial feature that is not physically
present in a movie frame, so off-the-shelf image detection models
cannot be directly applied to this context. Hence, we propose a
novel classification method that encapsulates multiple distinct
ConvNets to perform genre classification, namely CoNNECT,
where each ConvNet learns features that capture distinct aspects
from the movie frames. We compare our novel approach with
the current state-of-the-art techniques for movie classification,
which make use of well-known image descriptors and low-level
handcrafted features. Results show that CoNNECT significantly
outperforms the state-of-the-art approaches in this task, moving
towards effectively solving the genre classification problem.

I. INTRODUCTION

Most of the modern computer-based systems and applica-
tions make use of Machine Learning (ML) at some extent.
ML algorithms aim to automatically learn from experience,
outperforming human beings in several tasks from a variety of
application domains. Successful applications of ML algorithms
include handwritten digit recognition [1], autonomous driving
[2], gene expression classification [3], [4], protein function
prediction [5], [6], software metrics estimation [7], [8], and
real-time stream sensor analysis [9].

Automatically analyzing videos and learning from their
content is an important Computer Vision (CV) application
that could help humans to solve a plethora of problems that
are currently either too tedious or expensive for them to
solve on their own. Whereas the number of efficient ML
approaches for classifying images as belonging to one within
a thousand of labels grows almost exponentially (e.g.,[10],
[11]), video-based applications have shown to be much more
challenging. Such a task has a high complexity level, and
most traditional and well-established ML algorithms have
difficulties in handling it effectively.

Learning from videos is a broad concept and offers many re-
search possibilities, such as action recognition, categorization,
element recognition, context analysis, and many other tasks.
Recent work [12], [13], [14] address video analysis with Deep
ConvNets [15], showing exciting first results and possibly

paving the way for many applications to be further explored.
ConvNets are the state-of-the-art method for supervised image
classification, borrowing concepts from image processing to
ensure some degree of scale, position, and distortion invari-
ance. They consist of multiple layers of small neuron sets
that process portions of the input data, tiling the outputs
so that their input regions overlap, thus generating a better
representation of the original input.

In this paper, we investigate the use of ConvNets for
automatically classifying movies according to their genre (e.g.,
action, horror, drama, comedy). Movie genre classification is
a much more challenging task than object detection or scene
recognition because of two main problems. First, the classes to
be predicted by the ML algorithm are not present within any
region of the movie frames. Genres are intangible, immaterial
features that cannot be pinpointed in a frame or sequence of
movie frames like an object can. Second, since classification
is performed over movie frames (or sequences of frames),
the training dataset is intrinsically weakly-annotated, i.e., each
frame is labeled according to the genre of its respective
movie. Note that this weak annotation is problematic given that
movies from distinct genres present similar content in most of
their frames (e.g., images of people talking, landscapes, roads
with cars, etc.). Hence, the ML algorithm will have difficulties
in understanding why frames with dialogues are sometimes
classified as drama and sometimes classified as comedy, for
example. For properly addressing these issues, our hypothesis
is that multiple ConvNets that are trained to learn different
aspects of the movie frames/scenes (e.g., motion content,
scene recognition, object detection) can actually perform the
mapping of a sequence of frames into intangible genres. Our
proposed approach is named CoNNeCT (Convolutional Neural
Networks for Classifying Trailers).

We highlight two important contributions in our work.
First, we make publicly available a novel movie trailers
dataset, which comprises more than 3500 trailers from 22
genres. To the best of our knowledge, this is the most
complete dataset that was publicly provided to date. Sec-
ond, we present CoNNeCT in detail, and we empirically
demonstrate that it significantly outperforms the current state-
of-art movie trailer classification techniques, which employ
traditional image descriptors such as Gist [16], CENTRIST
[17], and w-CENTRIST [18], or that perform low-level feature
classification [19], [20].

This paper is organized as follows. Section II presents

2016 5th Brazilian Conference on Intelligent Systems

978-1-5090-3566-3/16 $31.00 © 2016 IEEE

DOI 10.1109/BRACIS.2016.11

1



related work in the area of movie genre classification. Sec-
tion III describes in detail our novel approach, whereas Sec-
tions IV and V present the experimental analysis that was
conducted for validating our research hypotheses. Finally, we
end this paper with our conclusions and suggestions for future
work in Section VI.

II. RELATED WORK

Rasheed et al. [19] propose the extraction of low-level
features to detect movie genres through the application of
the mean-shift classification algorithm [21]. Such features are
responsible for describing raw video elements, such as the
average shot length, color variance, lighting key, and motion.

A second approach for movie genre classification makes
use of well-known image descriptors to compute high-level
features for each keyframe. The work of Zhou et al. [18]
employs the image descriptors Gist [16], CENTRIST [17],
and w-CENTRIST to extract high-level features from frames
and then perform movie genre classification via k-NN. The
Gist descriptor tries to encode semantic information like
naturalness, openness, roughness, expansion, and ruggedness
that represent the dominant spatial structure of a scene [16].
CENTRIST [17] is an image descriptor that applies a spatial
pyramid at different levels, breaking the image into smaller
patches. This process enables the detection of both local and
global information. Each patch is processed through the Cen-
sus Transform which compares the pixels with its neighbors.
This step produces an 8-bit vector replacing the current pixel.
Afterwards, it is appended to the final vector containing all
values from the patches. Finally, w-CENTRIST [18] modifies
CENTRIST by taking into account color information, neither
present in Gist nor in CENTRIST.

It is often the case that the image descriptors output is
employed to build a bag-of-visual-words (BOVW) via the
well-known k-means clustering algorithm [18], [16], [17]. The
final centroids generated by k-means are known as codewords,
and each keyframe is assigned to one cluster represented by
a codeword. Finally, a global multi-dimensional histogram is
built for each trailer, where each dimension encodes a part
of the trailer. In its final step, each trailer in the test set is
processed by the k-NN algorithm that computes its neighbors
according to the χ2 histogram similarity measure.

Huang and Wang [20] propose a hybrid approach that
combines both low-level visual features and audio information,
reaching a total of 277 features. They make use of the well-
known jAudio tool [22] to extract audio features such as
audio intensity (measured in terms of the the RMS amplitude),
timbre (based on different structures of amplitude spectrum),
and rhythm. They extract more than 200 audio features with
the aid of jAudio, including the well-known Mel-Frequency
Cepstral Coefficients (MFCCs). Next, they make use of the
self-adaptive harmony search (SAHS) algorithm in order to
search for the optimal subset of features for each of the one-
vs-one SVMs that are used to classify 223 movie trailers from
the Apple website.

III. CONNECT

In this section we present our approach for movie genre
classification, namely CoNNeCT (Convolutional Neural Net-
works for Classifying Trailers). Considering that movie genre
classification is a much more complex task than simple object
classification/detection, we claim that a single off-the-shelf
ConvNet model is not enough for solving the problem (this
claim is supported by the experiments performed in Sec-
tion V). Hence, our approach makes use of a combination of
features extracted by multiple ConvNet models, each of them
designed to learn different aspects from the videos, as follows.

The first model is an implementation of the GoogLeNet [10]
architecture, which is pre-trained on the well-known ImageNet
dataset [24] and fine-tuned with our own movie trailer dataset,
namely LMTD (Labeled Movie Trailer Dataset, details in
Section IV). The second model is also resulting from a fine-
tuning procedure over a GoogLeNet architecture, but pre-
trained on the Places dataset [25]. In the third model, instead
of fine-tuning a pre-trained model, we trained a GoogLeNet
architecture on LMTD from scratch. In order to explicitly
extract motion features from the trailers, the fourth model
is a 3D ConvNet pre-trained on the Sports 1M dataset [13]
and fine-tuned over LMTD as well. Finally, the fifth model
is a simple Multi-Layer Perceptron (MLP) whose input are
features extracted from the audio (MFCCs) of the videos.

With the five above-mentioned models, we believe we can
cover different aspects from the movies, allowing for an easier
mapping to a pre-defined movie genre. For instance, the model
pre-trained with ImageNet data extracts features that focus on
particular elements of the movie frames, whereas the model
pre-trained on the Places dataset extracts features which char-
acterize scenes and ambients, providing the context in which
particular elements are positioned over. The 3D ConvNet is
particularly helpful in characterizing actions and motion in
general within the trailers. Finally, the MLP performs the
direct mapping of audio (in the form of Mel-Frequent Cepstral
Coefficients) into genres.

For illustrating how each fine-tuned ConvNet learns differ-
ent aspects from the movie trailer, we show positive-class
sensitivity heat maps in Figure 1. The frame in the first
column was extracted from the movie “Battlefield”, and it
depicts an aircraft carrier in the middle of the ocean. The
following frames show the sensitivity to the positive class
(the action genre) as indicated by each model. For instance,
the model pre-trained on the Places dataset is very sensitive
to the environment, associating the positive class to global
aspects from the scene (note the sensitivity to the ocean
and sky). Conversely, the model pre-trained on ImageNet is
particularly focused on relevant objects, being mostly invariant
to the background. Finally, one can see that the GoogleNet
trained from scratch on LMTD considers both local and global
features, being sensitive to the spatial disposition of elements
within each frame. We found that when the convolution layers
are locked and the fine-tuning is performed only in the fully-
connected layers, the learning is suboptimal. Considering that
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Original Frame ImageNet Places LMTD

Fig. 1. Positive-class sensitivity analysis following the general procedure described in [23]. The original frame is presented in the left, followed by three heat
maps: GoogLeNet pre-trained on ImageNet and fine-tuned on LMTD, GoogLeNet pre-trained on Places and fine-tuned on LMTD, and GoogLeNet trained
on LMTD from scratch. A strong sensitivity to the positive class is indicated by warm colors, whereas cold colors represent low sensitivity.

LMTD is a large dataset, we fine-tuned all layers of the
original architecture with confidence that it would not lead to
overfitting. Notwithstanding, we did use much smaller learning
rates so we would not distort the pre-trained weights too much
(or too quickly).

Considering that each network model captures distinct
(albeit complementary) aspects from the frames/scenes of a
movie trailer, CoNNeCT employs a post-processing learning
step which uses the predictions from each model as input to an
SVM classifier to generate the final genre predictions. Instead
of going for an ensemble strategy of majority voting among
the models, we show in Section V that this post-processing
learning step is much more accurate in predicting genres. We
detail the post-processing learning step in Section III-C.

A. Pre-Processing Step

We performed multiple procedures to collect, clean, and
augment the data from LMTD prior to the training/tuning
of each model. The three models based on the GoogLeNet
architecture make use of the same set of frames extracted
from individual scenes from each trailer. First, we employ
the shot detection algorithm described in [19] for detecting
the set of scenes that a trailer contains. Next, we identify
the keyframe (central frame) of each scene, and we collect
it along with 20% of the frames in that same scene, in order
to have diversity within the collected data without resorting to
all frames in a trailer. Regarding the 3D ConvNet, we collected
a sequence of 16 frames from each detected scene. If a scene
has 32 frames or more, we split it into two instances, each
of which containing 16 frames. If a scene has less than 16
frames, we discard it and continue to process the next scenes.
Each instance in the 3D ConvNet is thus a sequence of 16
frames, and multiple instances may refer to the same movie
scene whereas short scenes are discarded.

All frames are downsized to 256× 256, and then randomly
cropped during training to 224× 224 and eventually mirrored
(uniform probability). Considering that we use colored images,
the 2D ConvNets have inputs of size 224 × 224 × 3 (height,
width, color channels), whereas the 3D ConvNet inputs are of
size 112×112×3×16 (height, width, color channels, frames).
Height and width were reduced 2-fold in the 3D model due
to the available computational resources.

For processing the audio of the videos, we extracted the Mel
Frequency Cepstral Coefficients (MFCCs) from each trailer

scene. Since MFCCs extraction generates 13 variable-size
feature vectors, we computed four different statistics from each
one, namely the minimum and maximum values, standard de-
viation, and average. The combination of the statistics obtained
from each of the 13 vectors and of the two corresponding
deltas resulted in a single 156-long vector (13×4×3), which
is then used as input to the Multi-Layer Perceptron.

B. CoNNeCT Models

With the goal of identifying particular elements within the
movies frames, CoNNeCT makes use of a GoogLeNet model
[10] that is pre-trained on the ImageNet dataset [24]. ImageNet
(ILSVRC12) is the well-known image dataset that comprises
1.2 million images divided in 1.000 classes, being widely
used for computer vision tasks such as object classification. In
the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC14), a GoogLeNet based model was responsible for
establishing the state-of-the-art in object classification [10].

CoNNeCT employs the GoogLeNet pre-trained on the Im-
ageNet dataset and fine-tuned on LMTD. The fine-tuning is
executed in batches of 128 images for 10 epochs. The initial
learning rate is set to 1 × 10−4 and it decreases 10-fold
whenever the validation loss plateaus.

The second model is an implementation of the GoogLeNet
architecture focused on extracting features based on scenes
and environments. For such, this model is pre-trained on the
Places dataset [25] and fine-tuned on LMTD. Places is a scene-
centric dataset that contains over 2.4 million labeled images of
scenes divided in 205 classes. The size of batches, epochs and
learning rate strategy are the same as previously described.

Rather than using a pre-trained model, the third CoN-
NeCT model is a GoogLeNet trained on LMTD from scratch.
The main goal of this model is to capture information that re-
lates the movie frames with genres regardless of any previous
knowledge other than the movie itself. We run it in batches
of 128 images for 20 epochs, with the initial learning rate set
to 1× 10−3, with the same decreasing policy as the previous
networks.

In order to extract motion features from the trailers, CoN-
NeCT comprises a 3D ConvNet based on the C3D architecture
[26], [27], which is more suitable for spatiotemporal feature
learning than conventional 2D ConvNets. This model is pre-
trained on the Sports-1M dataset [13] and fine-tuned on LMTD
with batches of 32 frame-sequences (16 frames per sequence)
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executed for 20 epochs, initial learning rate of 1× 10−4, with
the same decreasing policy as before.

The last CoNNeCT model is an MLP that receives as input
the MFCCs audio features. The MLP architecture is 156 ×
312 × 312 × 4 with hyperbolic tangent neurons, trained with
Nesterov’s Accelerated Gradient with an initial learning rate
of 0.01 and dropout of 50%.

C. Post-Processing Learning Step

The final step of CoNNeCT is to perform the concatenation
of the predictions from each of the five models. Since the
models generate predictions in different granularities (per-
frame or per-scene), we need to put them into the same
granularity (per-scene). The three GoogLeNet-based models
are the only ones to provide per-frame predictions, so we
average the predictions for all frames in the same scene.

Once all predictions are scene-based, we noticed that aver-
aging over scenes in order to generate per-trailer predictions
would lead to severe information loss. Hence, we divided the
trailer in p parts with uniform frequency of scenes, averaging
the predictions from those scenes located in a same part. After
this procedure, the final feature set contains a total of c×p×5
features (number of classes × number of parts × number of
models), which serve as input to an SVM classifier. Since each
instance is now a set of genre probabilities from a single movie
that vary in time, the classifier can learn the function that
maps such features to the desired genre, properly addressing
the issues of learning intangible information from frames.

IV. EXPERIMENTAL METHODOLOGY

To validate the hypothesis that movie trailer genres can be
properly identified by CoNNeCT , we need a labeled movie
trailer dataset. Zhou et. al. [18] describe their own movie
trailer data, though it is not made publicly available for the
research community. Moreover, 54% of the trailers in their
dataset belong at the same time to three out of the four genres,
the same genres evaluated by our research. Their reported
accuracy values consider a correct classification whenever their
approach classifies the movie trailer as belonging to any of the
labeled genres, which means movies with 3 genres has a 75%
probability of being correctly classified simply by chance.

We have developed a novel movie trailers dataset called
LMTD (Labeled Movie Trailer Data), which comprises more
than 3500 trailers whose genres are known, and we make
it publicly available for the interested reader. The ≈ 3500
movie trailers are distributed over 22 different genres. To avoid
the problems identified in the work of Zhou et. al. [18], we
have selected a subset of 999 movie trailers from LMTD, as
presented in Table I, where each trailer belongs to one of 4
disjoint genres (action, comedy, drama, or horror). Note that
this subset is a consequence of i) restricting to 4 genres among
the 22 existing ones; and ii) selecting all disjoint movie trailers
from the 4 selected genres. This subset is called LMTD-4. The
training, validation, and test sets were chosen randomly among
the available trailers.

TABLE I
LMTD-4 DATASET.

Genre Training Validation Test Total

Action 160 15 90 265
Comedy 160 15 95 270
Drama 160 15 90 285
Horror 114 10 55 179

Frames 1,425,600 132,000 792,000 2,349,600

To validate our results we compare CoNNeCT with the
state-of-the-art methods in movie genre classification, namely
Gist [16], CENTRIST [17], w-CENTRIST [18], and two
approaches based on low-level features extraction [19], [20].
For Gist, CENTRIST, and w-CENTRIST we set the same
parameters as defined in [18], namely: BOVW of 200 code-
words and 100 bin histogram with t = 3. We replaced the
k-NN classification performed by the authors by an SVM
classification (RBF kernel, γ = 0.1 and C = 1), considering
the vast improvement achieved in validation data.

The low-level features extraction approach presented by
Rasheed et al. [19] is not directly comparable to other methods
since its main goal is not to classify genres but to understand
the relationship between features and genres. Therefore, we
employed the same strategy than for the previous methods,
which is performing SVM classification with RBF kernel,
γ = 0.1, and C = 1. For the second low-level features
based approach, proposed by Huang and Wang [20], we set the
parameters as suggested by the authors in their experimental
analysis: SAHS with HMS set to 50 and HMCR set to 0.99;
SVMs with RBF kernel and parameters γ and C tuned in the
validation set considering a grid of 6x6 combinations between
[2−4, ..., 21] and [2−2, ..., 23].

We also set as baseline approaches each individual network
that is part of CoNNeCT , for verifying the hypothesis that
multiple models capable of learning distinct features would
outperform any single model being used individually. Our
last baseline is a modification of CoNNeCT that performs
ensemble-like classification by aggregating the predictions of
the multiple models instead of performing the post-processing
step with SVMs. Our goal here is to verify whether making
use of the predictions from each model to feed an SVM in a
post-processing learning step is a more robust approach than
aggregating predictions in a weighted vote scheme. We refer to
each individual model in CoNNeCT as follows: G-ImageNet,
G-Places, G-LMTD, 3D ConvNet, Audio MLP, and we refer to
the CoNNeCT approach that performs ensemble classification
instead of the post-processing step as E-CoNNeCT .

V. RESULTS AND DISCUSSION

We first analyze the performance of each network comprised
by CoNNeCT when used individually to predict genres. In
Table II, we show the performance of each network in the
validation set, averaging their predictions from frames/scenes
to the entire movie trailer. We also present the performance of
E-CoNNeCT , which is the modified version of CoNNeCT that
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does not perform the post-processing learning step. In E-
CoNNeCT , we average the frame-based predictions generated
by G-Places, G-ImageNet, and G-LMTD, to the scene gran-
ularity, and then we average the aggregated scene predictions
with those generated by the 3D ConvNet and Audio MLP.
Finally, we average the predictions from scenes to trailers.

Table II shows that the overall accuracy of each individual
network is quite low, with G-Places outperforming the other
networks. It also shows that combining the multiple models
into a single scheme and weight-averaging the results does
not provide the best overall accuracy (E-CoNNeCT reaches
42% versus 44% for G-Places). We argue that by aggregating
the predictions from the distinct models we lose important
information for defining genre. Our claim is that genre should
be defined based on the relationship among these distinct
predictions, and not based on their aggregation.

TABLE II
PER-GENRE AND OVERALL ACCURACY IN THE VALIDATION SET.

PREDICTIONS ARE AVERAGED FROM FRAMES/SCENES TO TRAILERS.

Network Action Comedy Drama Horror Overall accuracy

G-Places 0.60 0.47 0.40 0.2 0.44
G-ImageNet 0.47 0.33 0.27 0.1 0.31
G-LMTD 0.47 0.4 0.27 0.1 0.33
3D ConvNet 0.47 0.53 0.40 0.2 0.42
Audio MLP 0.33 0.53 0.13 0.2 0.31
E-CoNNeCT 0.4 0.53 0.40 0.30 0.42

For backing up that claim, we show in Table III the
performance of each individual network followed by the post-
processing learning step with SVMs. For the frame-based
networks, we average the predictions from frames to scenes,
and then we divide each trailer in 12 parts with uniform
frequency of scenes. Next, we average the predictions from
scenes to parts, resulting in 48 features (4 predictions × 12
parts) per trailer, which are used as input to a SVM classifier
with RBF kernel, γ = 1 and C = 1 (default values). The same
rationale is applied to the scene-based networks, averaging
predictions from scenes to parts and then performing SVM
classification. The final number of features that are used as
input to the SVM classifier is 240 (48 × 5 models). We also
show in Table III the CoNNeCT performance, so we can
evaluate whether predictions from multiple models improve
over the individual ones.

TABLE III
PER-GENRE AND OVERALL ACCURACY IN THE VALIDATION SET.
PREDICTIONS ARE AVERAGED FROM FRAMES/SCENES TO PARTS

FOLLOWED BY THE POST-PROCESSING LEARNING STEP WITH SVMS.

Network Action Comedy Drama Horror Overall Accuracy

G-Places 0.66 0.80 0.73 0.70 0.73
G-ImageNet 0.73 0.80 0.73 0.70 0.75
G-LMTD 0.47 0.6 0.67 0.6 0.58
3D ConvNet 0.73 0.73 0.6 0.70 0.70
Audio MLP 0.53 0.80 0.47 0.20 0.53
CoNNeCT 0.87 0.80 0.87 0.80 0.84

Table III shows that the post-processing learning step sub-
stantially improves the accuracy of all models (from ≈ 40%

to ≈ 70%). Moreover, note that CoNNeCT substantially
outperforms the most accurate individual networks (G-Places
and G-ImageNet), showing an improvement of ≈ 10% by
combining predictions from multiple models. Figure 2 shows
the effect of sequentially adding the predictions of each model
to the set that initially contains the G-LMTD predictions.
A given position in the x axis indicates the model whose
predictions are being added to the set of predictions from the
models on its left.

LMTD + 3D + AUDIO + PLACES + IMAGENET
0.55
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Fig. 2. Per-genre test accuracy computed by sequentially adding predictions
from the baseline models into the post-processing learning step. From left to
right: 1) 48 predictions from the G-LMTD model; 2) 48 predictions from the
3D ConvNet plus the previous 48 predictions from G-LMTD; 3) 48 predictions
from Audio MLP plus the previous 96 predictions; 4) 48 predictions from G-
Places plus the previous 144; 5) 48 predictions from G-ImageNet plus the
previous 192.

Note how the overall accuracy substantially increases when
sequentially adding more information from the network mod-
els, confirming our hypothesis regarding the benefits of ex-
tracting features of different aspects from the frames/scenes.
The drama genre, in particular, greatly benefits from a
multiple-model approach, going from ≈ 55% to ≈ 90% of
accuracy. Other interesting finding is the gain of accuracy for
the action genre when using a 3D ConvNet, which makes
sense considering that action movies can be more naturally
described by motion-based features. The only genre that does
not seem to benefit from knowledge extracted by multiple
models is horror, which only gains in accuracy when adding
audio features and scene information, and has its accuracy
decreasing when making use of object-oriented features.

In our last analysis, we present the performance of all
baseline algorithms along with CoNNeCT in Table IV. Note
that CoNNeCT outperforms the current state-of-the-art in 13%
of accuracy, showing once again the power of ConvNets in
Computer Vision applications. Whilst the baseline approaches
struggle when predicting the drama genre, observe that CoN-
NeCT comfortably reaches 90% of accuracy, an improvement
of 23% over the second-best approach! Yet, the downside
is the horror genre, which is outperformed by the work of
Huang and Wang [20]. We are still not certain of the reasons
for CoNNeCT ’s lack of performance when classifying horror
trailers, but we believe that performing feature selection over
the set of 240 features may increase its performance, albeit
not by a great margin.

Our final remark is regarding scalability and adaptation
to multi-label classification: CoNNeCT can naturally perform
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TABLE IV
PER-GENRE AND OVERALL TEST ACCURACY OF ALL BASELINE

ALGORITHMS AND CoNNeCT .

Method Action Comedy Drama Horror Overall

Low-Level + SVM [19] 0.54 0.35 0.50 0.10 0.41
GIST + SVM [18] 0.57 0.61 0.31 0.40 0.48
CENTRIST + SVM [18] 0.58 0.55 0.47 0.37 0.51
w-CENTRIST + SVM [18] 0.55 0.54 0.44 0.35 0.49
One-vs-One SVM [20] 0.74 0.83 0.67 0.72 0.74
CoNNeCT [Ours] 0.89 0.92 0.90 0.70 0.87

multi-label classification, which is not true for neither of the
baseline approaches. Moreover, adding extra classes to the
problem does not impact severely on CoNNeCT ’s compu-
tational cost. The work of Huang and Wang [20], on the other
side, would require 231 SVM classifiers to recognize the full
extent of genres in LMTD (22).

VI. CONCLUSIONS

We presented a novel approach to learn genre from movie
trailers based on Convolutional Neural Networks (ConvNets),
namely CoNNeCT . It recognizes disjoint movie genres with
87% of accuracy, substantially surpassing the current state-of-
the-art approaches. CoNNeCT innovates by combining predic-
tions from multiple models in order to address a semantic gap
between the frame/scene granularity and the movie granularity.
This work has shown that it is possible for multiple ConvNets
to learn an intangible feature such as movie genre even
resorting to a weak labeled dataset, in which frames were
labeled according to the overall movie genre. As future work,
we intend to investigate the movie genre domain under the
perspective of multi-label classification, eventually making use
of the entire set of 22 movie genres. Another interesting venue
is to investigate automatic approaches for labeling scenes in
order to avoid the weak-labeling issue previously described.
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