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MODELO PARA ESTIMATIVA DE PARÂMETROS DE MULTIDÕES
EM SITUAÇÕES DE EMERGÊNCIA

RESUMO

Planos de evacuação têm sido historicamente usados como uma medida de segurança para
a construção de edifícios. Os simuladores existentes requerem ambientes 3D totalmente modelados
e tempo suficiente para preparar e simular cenários. Uma vez que a quantidade de pessoas pode
mudar ao longo do tempo, várias simulações são frequentemente necessárias para gerar um plano
de evacuação otimizado. Neste documento é apresentado uma nova abordagem para estimar os
dados resultantes de um dado cenário de evacuação sem simula-lo de fato. Para tal o ambiente
é dividido o ambiente em salas modulares com configurações diferentes, em um estilo divisão e
conquista. Em seguida, uma rede neural artificial é treinada para estimar os dados desejados de
uma sala sozinha. Após coletar os dados estimados de cada sala, uma heurística capaz de agregar
informações por sala é desenvolvida para que o ambiente completo possa ser devidamente estimado.
Esse método apresenta erros dentro da margem de 30% quando comparado o tempo de evacuação
em um ambiente real e complexo. Além disso, não é necessário modelar o ambiente 3D, aprender
como configurar um simulador de multidões e o tempo computacional para estimar é instantâneo
quando comparado ao melhor caso de um simulador de multidões.

Palavras Chave: Evacuação de Multidões, Simulação de Humanos Virtuais, Aprendizado de Má-
quina, Segurança, Multidões.





CROWD ESTIMATION MODEL FOR EMERGENCY SCENARIOS

ABSTRACT

Evacuation plans have been historically used as a safety measure for the construction
of buildings. The existing simulators require fully-modeled 3D environments and enough time to
prepare and simulate scenarios. Since the amount of people in a given simulated scenario can change
over time, several simulations are often required in order to generate an optimal evacuation plan.
With that in mind, we present in this paper a novel approach to estimate the resulting data of
a given evacuation scenario without actually simulating it. For such, we divide the environment
into modular rooms with different configurations, in a divide-and-conquer fashion. Next, we train
an artificial neural network to estimate all required data regarding the evacuation of a single room.
After collecting the estimated data from each room, we developed a heuristic capable of aggregating
per-room information so the full environment can be properly evaluated. Our method presents errors
within the 30% margin when compared to evacuation time in a real and complex environment. In
addition, it is not necessary to model the 3D environment, learn how to use and configure a crowd
simulator, and the computational time to estimate is instantaneous when compared to a best case
real-time crowd simulator.

Keywords: Crowd Egress, Virtual Human Simulation, Machine Learning, Safety, Crowds.
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1. INTRODUCTION

As new buildings are designed and constructed by engineers and architects, evacuation
procedures to assure the needed safety standards are a major concern. Evacuation drills are usually
used to analyze and evaluate pre-defined evacuation plans, but despite having strong similarities with
real emergency scenarios [4], they still present significant ethical, practical, and financial challenges
to researchers [21].

Crowd simulation has been a more viable approach for research purposes. It can be
defined as the process of simulating the movement of large amounts of entities, or crowds, in a
known environment. The different ways in which a crowd can behave has been the research interest
of many researchers for almost thirty years. These researchers come from a wide range of fields,
including architecture, computer graphics, physics, robotics, safety engineering, training systems,
psychology and sociology [42] [36].

When simulating crowds, a set of parameters that reproduce coherently the desired scenario
should be considered. Cassol et al. [7] enumerated them as aiming to represent: i) Environment’s
physical structure: dimensions, number of floors, number of rooms, location of exits and stairs; ii)
Environment functionality : whether people act as thought they were in an office, hospital, school,
airport, stadium or arena; iii) Population data: number and spatial distribution of people in the
environment, age, gender, relationships among them, knowledge about the environment; and iv)
Environment condition in events: factors that may affect the navigability in the scenario, such as
time (day or night), smoke, fire, or heat.

As of now, in the evacuation planning scope, crowd simulation can be used to search
for better evacuation plans given a parametrized environment. Cassol et al. [7] used CrowdSim, a
crowd simulator validated and tested with real scenarios [6] [8] [17] to create and gather data from
simulations, then used CMA-ES, an evolutionary strategy [24] [23], to vary the population data so
that different portions of the crowd follow different routes. The data was then evaluated using the
ep metric [6] in order to find which configuration of routes was better for the evacuation. Indeed,
this metric aims to depict a way to evaluate a given evacuation plan (more details in [7]). Although
the idea is simple, when considering all the possible variations a certain environment can have, there
will be a large quantity of simulations to be executed, growing exponentially as more details are
added in the environment.

This document presents a method which goal is to estimate the data for a certain evacua-
tion scenario without simulating it. In order to accomplish with this goal, we divided the environment
to be estimated into a set of connected rooms. Our main hypothesis is that by estimating evacua-
tion information about each room, we will be able to estimate data for the entire environment. The
data of each room is estimated using Artificial Neural Networks (ANN) trained with data collected
from many simulations using a crowd simulator, also developed in this document. Furthermore, we
defined an heuristic to provide the data estimation for more complex environments composed by
a set of rooms. Later, we analyzed the behavior of the estimator when presented with worst case
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scenarios which we suspected could be problematic. We finished with estimating a real environment
and evaluating the result obtained with a simulated result.

The estimation of crowd evacuation scenarios using ANN is the main contribution of this
work, since it is a new approach for Crowd Behavior as far as we know. We did not find any other
work that used machine learning in crowd simulation area with similar purposes.

This paper is organized as follows: in Section 2 we present works related to the developed
project. Then, in Section 3 we describe our proposal towards the goal of this work. In Section 4
we describe some experimental results obtained with our model, while in Section 5 we discuss some
final considerations and future works.
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2. RELATED WORK

The study and modeling of crowd traffic and behavior, environment and evacuation charac-
teristics is vital to the use of critical spaces [15] [34] [37] [39]. Modern hardware and computational
methods afford large-scale simulations of such pedestrian crowds in arbitrary environments [42]. In
this chapter we focus on the fundamentals and techniques used in this work to simulate and esti-
mate crowds, described in Section 2.1, and in similar works on crowd analysis and simulation area
presented in Section 2.2.

2.1 Fundamentals of Crowd Simulation

In this Section we present some concepts of Collective Behaviors, studied to understand
behavior phenomenons that occur when people gather in crowds. In addition, we describe some
tools and techniques used for simulating agents to behave as real persons in virtual environment, as
NavMesh and ORCA. An introduction to the basic of neural networks focused on crowds is also
discussed.

2.1.1 Collective Behaviors

Most crowd behaviors are hard to evaluate and validate due to the difficulty to measure
all variables that influence them. For this reason, some crowd behaviors are only evaluated and
validated qualitatively. From the observations of behavioral patterns in crowds [14,25,26,27,28,41]
authors discuss two types of behaviors: inherent and emerging behaviors.

Inherent behaviors are the ones adopted in order to make a person move in the most
efficient way possible in an environment. Some persons may present irregularities in these behaviors,
like children, because they are still learning about the environment and how to move effectively in
it [25]. The main inherent behaviors are:

• Goal seeking : people move in an environment in order to arrive at a goal it is seeking;

• Collision avoidance: people move avoiding physical contact with obstacles and with others;
and

• Least effort strategy : people choose trajectories that spend less energy, avoiding turns and
selecting the shortest paths. In some cases this conflicts with collision avoidance, since in
most cases it is needed to change its orientation to avoid to collide with others.

Emerging behaviors are collective ones resulting of the self-organization present in crowds.
These behaviors appear because of the non-linear interaction between persons applying inherent
behavior and sometimes may lead to collisions and obstructions. The main emerging behaviors are:
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• Lane formation: When in high density, the movement of groups in contrary directions causes
lanes of peoples walking in the same direction. This happens because a person follows the
one with the closest velocity in front of him/herself in order to reduce the needed effort to
reach his/her goal;

• Organization prior : When groups move in contrary directions it is possible to organize the
movement beforehand by compacting small groups temporarily to free space for people to
cross reducing the effort made; and

• Speed reduction effect: As much the people density increases, less is the people speed. This
is because of the limited space to move and also to avoid physical contact. The crossing of
different flows aggravates this effect.

The following behaviors happen due to the speed reduction effect:

– Arc formation: When a great number of people moves toward a small passage they form
a geometric arc on the entrance. They agglomerate due to the reduced speed and their
wish to stay close to the passage;

– Bottleneck effect: This effect can be observed on a corridor that at some point narrows.
The region before the narrowing will increase in density and people in this area reduce
their speed while regions after the narrowing presents decreased density with increased
speed;

– Corner effect: In high density, people in regions with corners have a reduced speed
because the space is not used effectively in these regions; and

– Shockwaves effect: In high densities, with reduced speed, people can push others, which
is propagated into the crowd, resembling a wave effect.

For the development of our crowd simulator, we implemented the agents to obey the
inherent behaviors as they are the main collective behaviors. Emerging behavior rules do not need
to be implemented directly, as they should appear if the agents are following the inherent ones.

2.1.2 Navigation Mesh (NavMesh)

NavMesh is an abstract data structure used for finding paths in a virtual environment and
is the current state-of-the-art in path finding. It appeared for use in the robotics area in 1987 with
the name Meadow mapping [2], however became a frequently used tool for game development after
the year 2000 [44] [40].

As described by Snook [40], NavMesh is a polygonal mesh composed of only convex
polygons, where adjacent polygons are connected with each other in a graph. It can be viewed as a
polygonal carpet covering the polygons of the ambient model, defining the area that is traversable for
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agents to know. Paths between the polygons of the NavMesh can be found by adapting normal graph
search algorithm like A*, and paths on a single polygon can be found by trivially tracing a straight
line between two points on its surface, since the polygons, it is composed of, are convex. Agents
following these paths do not need to use expensive collision avoidance algorithms with obstacles
since the paths are traced over guaranteed traversable area.

Different versions of NavMesh were developed along the time, one example is the Explicit
Corridor Map [19, 20, 48, 49] a version of NavMesh which uses a connected graph of different sized
circles instead of polygons as walkable areas. These circles are connected if a straight line can be
traced from theirs centers, and the size of the circles indicates how far away from the center agents
can walk in the environment.

In this work we used the Unity implementation of NavMesh in the crowd simulator de-
veloped to generate the training database. This implementation goes along tools for automatically
build the mesh according to the scenario and code to find optimal paths from two points inside this
mesh.

2.1.3 Optimal Reciprocal Collision Avoidance (ORCA)

ORCA is a protocol for collision avoidance between multiple agents proposed by Van Den
Berg et al [46]. The objective of the method is to find a velocity for each agent so that it manages
to move through the environment without colliding in an optimal manner, i.e. each agent should
consider each other agent’s velocity and regulate its movement in order to reduce the least possible
its speed, while trying to reach its goal.

The method was developed for being used in robotics collision avoidance. One of its
greatest features is that it runs at O(n) without needing to maintain communication between the
robots, just needing them to perceive each others position and velocities. ORCA provides that each
robot motion is free of collisions for at least a fixed amount of time assuming each robot uses it as
collision avoidance protocol.

Agents are represented as a simple circle shape and are holonomic, i.e. can move in any
direction without needing to turn around. A possible velocity for an agent A is computed by finding
the permitted velocities VA between agent A and each other agent. To do so it is used the velocity
obstacle (V O) between A and each other agent B for the time T :

V OT
A|B = {v|∃t ∈ [0, T ] :: t.v ∈ D(pB − pA, rA + rB)}, (2.1)

where:

v = relative velocity of A with respect to B,

rx = radius of agent x,
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px = position which agent x is centered, and

D(p, r) = open disc of radius r, centered at position p.

In other words, V O contains all relative velocities of A with respect to B that will result
in a collision between them during time T .

Then for any set of velocities VB, if vB ∈ VB and vA 6∈ V OT
A|B

⊕
VB, it means that A

and B are guaranteed to be collision free for at least T time, which is the set of collision avoiding
velocities:

CAT
A|B(VB) = {v|v 6∈ V OT

A|B
⊕

VB}, (2.2)

where the operator ⊕ denotes the Minkowski sum of two sets, i.e. it returns a new set with the
sum of the elements of the two sets on the same index.

If VA ⊆ CAT
A|B(VB) and VB ⊆ CAT

B|A(VA) is true then it means these two are sets of
reciprocally collision avoidance velocities. The optimal reciprocal collision avoidance velocity are the
pair of such velocities that increases the number of velocities closer to the optimization velocity for
each agent:

ORCAT
A|B(VB) = {v|(v − (vopt

A + u/2))n ≥ 0}, (2.3)

where:

vopt
x = the optimization velocity of agent x,

u = the vector from vopt
A − vopt

B to the closest point on the boundary of the velocity obstacle,
and

n = the outward normal of the boundary of the V OT
A|B, at point (vopt

A − vopt
B ) + u.

As ORCA is reciprocal, only half of u is applied so that each agent takes half the respon-
sibility to avoid the collision. By carefully choosing the optimization velocity, there will always be a
solution within ORCA that guarantees the collision free for at least T time.

2.1.4 Neural Networks in Crowds

The use of machine learning and deep learning have been expanded in diverse areas,
including crowd analysis and simulations. Artificial neural networks are frequently being used for
finding patterns in data and identifying objects, humans and animals in images. In the crowd area,
neural networks are frequently being used for counting and estimate the quantity and density of
people in an image [3,9], a difficult problem due to the camera angle and occlusion of persons in a
dense crowd.
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The basic neural networks known today is the multilayer perceptron [38]. As described
in [22], in this architecture, artificial neurons are organized in layers, each layer represents a matrix
of weights which are the connections between its neurons and the neurons in the layer before.
Weights are used for a matrix multiplication in each layer, with the output of one layer is the input
of the following layer, propagated the data along the network. The layers between the input and
the output layers are named hidden layers. The learning process in the multilayer perceptron is
supervised i.e. it is done by comparing the error from the network result and a "truth" value when
having the same input, then the responsibility of each weight over this error is calculated by undoing
the matrix multiplications operations over the error value, a process named backpropagating [35],
and the network learns by adjusting the value of each weight according its responsibility. In addition,
a learning rate is used to prevent the network from learning too much from a single example. Other
neural network models uses others diverse operations instead of a simple matrix multiplication, but
the general base of the neural network remains the same, i.e. to propagate the input forward the
output layer, to measure the output error then backpropagate it to adjust the weights of the network.

About the use of neural networks in the context of crowd simulation topic, there is a great
focus in estimating the number of people in a determined environment, as mentioned before. To
our best knowledge, there was no attempt at using machine learning techniques to learn or estimate
evacuation time, exit flow or any data from emergency events. In this work we explore supervised
learning in neural networks to propose a solution to such problem.

2.2 Similar works

Despite the fact that we did not find any method specifically with our goal in the literature,
we present some few existing works in the areas related to our project: crowd simulation, evacuation
planning and crowd learning. We are not exhaustive in this presentation since none of them are
really focused on the problem we want to solve in this dissertation.

2.2.1 Crowd simulation

Several studies were proposed to elaborate ways of simulating crowds in egress scenarios.
Besides the already mentioned CrowdSim [6] [8] [17] there are other approaches as following briefly
described:

• SAFEgress (Social Agent For Egress) [11] is a force based approach that models evacuat-
ing pedestrians which are able to make their actions according to their knowledge of the
environment and their interactions with the social groups and neighboring crowds.
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• MIMOSA: Mine Interior Model Of Smoke and Action [29] is a specific application of agent
modeling, with the context of a virtual underground coal mine, a fire and smoke propagation
model, and a human physiology and behavioral model.

• BioCrowds [12] is a biologically-motivated approach which simulates crowds using a space
colonization algorithm, recreating several real crowds behaviors such as collision avoidance,
speed reduction effect and lane formation.

• Tsai et al. [45] developed a general framework for evacuation simulation using particle swarm
optimization (PSO), originally proposed in [32].

Also, the works proposed in [31] [1] [16] make use of cellular automata to reproduce
pedestrian behavior and exit selection using a least effort cellular automaton algorithm, in which the
motions and goals are probabilistic.

2.2.2 Evacuation planning

As for evacuation planning, the already mentioned Cassol et al. [7] makes use of crowd
simulation (CrowdSim) and evolutionary strategies (CMA-ES) to search for the best configuration
of routes for evacuation in the environment.

Similarly, Garrett et al. [18] used Evolutionary Computation search methods to evolve the
placements of exits and other equipments in an effort to minimize the simulated evacuation time
of the environment’s occupants. The simulation is made using an artificial potential fields model in
which exits attract agents and obstacles and other agents repel them.

2.2.3 Crowd learning

Currently, most of the works in the area is on the crowd counting problem [3,9], also called
density estimation. For example, Chan et al. [10] created a privacy-preserving system for estimating
the size of inhomogeneous crowds in a video, by segmenting it using a dynamic texture motion
model, the correspondence of each segmented region’s features and the number of people in it is
estimated with a Gaussian Process regression. Similarly, Fradi et al. [13] extracted features from
videos, and used Gaussian symmetric kernel function to generate a crowd density map, allowing
more specific location of potentially crowded area.

Liu et al. [33] is the closest approach to our work, that we found in literature. They make
use of artificial neural networks to learn the behavior of simulated crowds with the objective of
replacing simulation with estimations, which is basically our same goal. They simulate the crowd
in a fixed environment containing mobile parts whose disposition varies for each simulation. The
position and rotation of these mobiles parts are used as input to the neural network to obtain the
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statistics of speed, number of collisions, and traveling time of each agent for this environment
and crowd configuration. While they also use crowd simulation associated to neural networks, the
authors propose a local estimation in same environment while we are interested about proposing a
global solution where many environment configurations can be estimated. Our scope is currently
limited to have rectangular rooms in any complexity environments, as we can see in this work, we
tested with huge environments (having 29 rooms) and also with a night club that exists in real life.
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3. THE MODEL

In this Section we describe details about our proposed method. First, we detail the devel-
opment of the crowd simulator used to generate data for the learning process; secondly, we present
the process used to validate this simulator; and finally we describe our estimation methodology.

3.1 Crowd Simulator

To develop the crowd simulator we make use of Unity3D game engine as a platform and
implemented agents endowed with the main inherent collective behaviors as referred in the literature:
i) goal seeking, ii) collision avoidance and iii) Least effort strategy behaviors, [14] [26] [27] [28] [25]
[41].

A goal seeking agent means that the agent moves inside the environment in order to arrive
at a goal it is seeking. This behavior was simple to implement, just by keeping a goal position for
each agent and moving the agent towards it at each simulation step, was enough to imitate this
behavior.

When applying a Least effort strategy, the agent moves in trajectories that require less
effort, avoiding turns and selecting the shortest paths. This behavior was implemented using path
finding over a NavMesh, a network of connected 3D planes which represents the navigable area.
The NavMesh used was the one native of Unity3D platform.

When applying a Collision avoidance behavior, the agent moves avoiding physical contact
with obstacles and with other agents. In part, this behavior is implemented using the NavMesh
to avoid collision with obstacles. In order to avoid collision with other agents we make use of
ORCA [46].

In our simulator, we can have big environments having many rooms and agents. Our only
restriction is that each room should be a rectangle having only one exit. Indeed, we argue that such
restrictions can still work for any environment if we abstract the concept of room for a "rectangular
region with one only exit". It means that if we have a different shape in a real environment to be
simulated, the region considered in our simulation is one approximate rectangle for each exit. So, for
instance a room modeled as an octagonal shape with two exits should be represented through two
rectangular rooms, each one having one exit. Clearly, it can generate some errors in comparison to
a full simulation of the environment, e.g. spaces that are not used or people that should be located
in one region, but in fact they wanted to go to another exit, but we still argue that such simplicity
has benefits in terms of modeling and scenario configurations of crowd simulations.

The room parameters defined in our method are:

• Room width (meters),

• Room length (meters),
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• Exit size (meters),

• Input flow (Agents per second that entry in the room) - it can be zero if no agents entry in
this room,

• Flow Duration (Duration in seconds defining the period where agents entry in this room) - it
can also be zero, and

• Initial population (Number of agents which are inside the room at the beginning of the simu-
lation).

As output, we collected the following data for each simulated room i and for each envi-
ronment e having N rooms:

• Evacuation total time tti and tte = ∑ tti

N
(seconds),

• Average exit time t̄i and t̄e = ∑ t̄i

N
(seconds),

• Average speed s̄i (meters per second) and s̄e = ∑ s̄i

N
; and

• Average density d̄i and d̄e = ∑ d̄i

N
(agents per meter).

We designed simulations to be generated using the cited six inputs in evacuation scenarios.
We collected data during the generated simulations to create a database of evacuation simulations
used for training neural networks later on. This is going to be more detailed in Section 3.2. However,
before to describe the usage of simulation to estimate the crowd parameters using ANNs, we present
the validation of our simulator in next Section.

3.1.1 Model validation

The validation of our crowd simulation was separated in two steps: firstly, to evaluate our
ORCA implementation when compared to the original one, and secondly, to validate its similarity
with real crowds.

In order to compare with the original ORCA, we recreated two of the ORCA’s showcases
available at the developer’s website [47]. Footage of these showcases can be seen in Figures 3.1
and 3.2.

For the real crowd validation we used the same cases used to validate CrowdSim [5] which
was based on the guidelines for evacuation analysis for new and existing passenger ships proposed
by the International Maritime Organization (IMO) [30]. This validation is composed of component
and qualitative tests. Further details are presented in Section 3.1.3.
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3.1.2 Comparing with ORCA showcases

Two showcases were created to show the agents behavior using ORCA to avoid collision and
its capacity to move efficiently while looking natural to the human eye. We recreated the showcases
only using visual information from real ORCA cases, without knowing the agents parameters (e.g.
agents positions or speeds), so we expected similar results but maybe not the same. Nevertheless,
a good visual comparison of the behaviors could still be done.

The first showcase consists of an environment with no obstacles and ten agents positioned
in a circular pattern, in which each agent is supposed to move towards the opposing end of the
circle, while avoiding collision with the others. As the agents move towards the center, the space
between them becomes smaller and some of them need to assume non-optimal routes and reduce
velocities to avoid the collisions. In both implementations (ORCA showcase and ours), agents move
successfully towards their goals, reduce their speed and change their courses to avoid collision with
others. Both the first showcase and our simulation can be visualized in Figure 3.1.

Figure 3.1 – Comparison between the ORCA’s showcase (top) and our simulation (bottom). Agents
are positioned in a circular pattern and moves to the opposite end of the circle while avoiding
collisions with others.

The second showcase consists of 41 agents in three groups, the agents of each group are
positioned to form each the letters of the word "RVO". Then they proceed to move down the screen
to form the word "UNC". The group forming the letter "R" moves to form the letter "N" at the
end of the showcase, the one forming the letter "V" forms the letter "C" and the one from the
letter "O" forms the letter "U". Easier movements could be made to complete this transformation,
however these specific movements were chosen in order to promote more potential collisions, thus
requiring the use of collision avoidance mechanisms, ideal for testing ORCA. A comparison showing
the showcase and our simulation as well as the movement pattern generated by both simulators can
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be visualized in Figure 3.2. In both cases the agents succeeded in moving and forming the other
word. /estPlease, notice, that we did not know in details the scenario and parameters used for the
showcases, instead we just imitated them based on visual comparison of the results obtained.

Figure 3.2 – Comparison between the ORCA’s showcase (top) and our simulation (bottom). 41
agents are positioned forming the word "RVO" and moves down the screen to form the word "UNC"
while avoiding collisions with others.

3.1.3 Validation according to IMO

As mentioned before, we propose to validate our simulator using the guidelines for evacu-
ation analysis for new and existing passenger ships developed by the International Maritime Orga-
nization (IMO) [30]. This validation is composed of component and qualitative tests. Component
tests are used to check if the tested software performs as intended. Two component tests were
conducted: Maintaining set walking speed and Rounding Corners. Qualitative tests are concerned
with the nature of predicted human behavior with informed expectations from observed situations,
as they demonstrate the capability of the model to produce realistic behaviors. Three qualitative
tests were realized: Counter flow, Exit flow and Exit route allocation tests. They are detailed in
next Sections.

A) Maintaining set walking speed : This test consists of simulating a single agent moving
in a straight line free of obstacles at 1m/s and it is successful if the agent walks 10 meters in 10
seconds. In our simulation the agent succeeded by arriving at the end of the 10 meters corridor at
time 9.66 seconds.

B) Rounding Corners: This test evaluates the agent’s ability to navigate around a corner
without penetrating the walls and without overlapping each other. For this we simulated 50 agents
moving towards a goal in a corridor with a 90 degrees turn. The corridor is 2 meters wide with a 10
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meters long segment before the turn and another segment after the turn, the area of the turn is a
2x2 meters square. During the test we have detected no agents outside the navigation area, which
means no agent penetrated obstacles, and no overlapping between the agents during the turn, so
the test was considered a success. An image of the test can be seen in Figure 3.3.

Figure 3.3 – Footage from a group of agents making a turn in the Rounding Corners test.

C) Counter flow : This test consists of moving 100 agents between two rooms of 10x10
meters connected by a corridor of 2 meters wide and of 10 meters length. The test is repeated
with a counter flow of 10, 50 and 100 agents. The time it takes for the last agent to enter the
second room is recorded and it is expected that the time increases as the people in the counter flow
increases. IMO’s guidelines for this test can be seen in Figure 3.4. As can be seen in Table 3.1, the
recorded time for our simulations increased along with the agents in counter flux, making the test
successful.

Figure 3.4 – Counter flow scenario configuration, following IMO’s specification.



30

Case Time (seconds)
No counter flux 21 seconds
10 counter flux 30 seconds
50 counter flux 45 seconds
100 counter flux 55 seconds

Table 3.1 – Time taken for each configuration in the Counter flow test.

D) Exit flow : The environment for this test is a large 30x20 meters room with four exits
of 1 meter each, positioned along the 30 meters sides at 4 meters from the walls. 1000 agents are
uniformly distributed in a 16x26 region at the center of the room. The simulation is done twice, the
second time with the exits in one side closed. The IMO’s specification for this scenario is illustrated
in Figure 3.5. The elapsed time in the second case should be around 50 percent greater than the
first to be successful in this test. In our simulations, the first case computed 41 seconds and the
second computed 68 seconds, while at a considerable margin, we can consider the test successful.

Figure 3.5 – Exit flow scenario configuration, following IMO’s specification.

E) Exit route allocation: This test involves a more complex scenario, a cabin corridor
with 12 cabins, two intersecting corridors of different widths, two exits of different sizes and a fixed
number of agents according to the cabin. The specification can be seen detailed in Figure 3.6. The
criteria for this test is that each agent should move to the closest exit, which means that agents in
cabins 1, 2, 3, 4, 7, 8, 9 and 10 should move to the main exit, and the remainder to the secondary
exit. In our simulation, the exits were correctly assigned.
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Figure 3.6 – Exit route allocation scenario configuration, following IMO’s specification.

Considering all performed evaluations comparing our ORCA implementation is the original
one and the validations according to IMO, we can say that our simulator is valid. So, in next
Section we describe our model to estimate rooms parameters in evacuation scenarios, based on
ANNs. Indeed, the neural networks are trained based on data generated using our simulator.

3.2 Estimation of Rooms Parameters based on ANNs

This Section presents our model to estimate crowd data, resulting of evacuation process,
instead of simulating it. As said before we are interested about to test ANN as a tool to estimate
crowd parameters instead of generate them through simulation. The overview of our method com-
prehends three phases: Firstly, we performed several simulations in order to compose the dataset to
be used to train the ANN (see Section 3.2.1). The second phase is responsible for ANN training
and validation, as discussed in Section 3.2.2. The third phase is focused in testing the learning
methodology for rooms estimation in complex environments (Section 3.3).

As mentioned before when we explained details about the simulation, the room parameters
in our method, as it is designed to compose the dataset to train, validate and test, are following
described:

• Room width (meters),

• Room length (meters),

• Exit size (meters),

• Input flow (Agents per second that entry in the room),
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• Flow Duration (Duration in seconds defining the period where agents entry in this room) and

• Initial population (Number of agents which are inside the room at the beginning of the simu-
lation).

Then, as in the simulation process, the estimation using ANNs proceeds by estimating the
following data for each room i:

• Evacuation time tti (seconds),

• Average exit time t̄i (seconds),

• Average speed s̄i (meters per second); and

• Average density d̄i (agents per meter).

In addition, other information are computed using our proposed heuristic for the whole
environment e:

• Total evacuation time tte (seconds),

• Average exit time t̄e (seconds),

• Average speed s̄e (meters per second); and

• Average density d̄e (agents per meter).

Details about the estimation procedure is given in next Sections.

3.2.1 Database Creation

To create a database of simulations that could be used to train and test the learning
algorithms, we automatized the process of creating rooms. This process generates simulations
based on the input parameters, which are randomized for each simulation, and it collects data of the
output parameters. Each generated simulation is composed of a square room with a single exit 1.
The room’s dimensions vary according to the Room width and Room length parameters, the exit
size vary according to the Exit size parameters.

Agents are placed in the room using the Initial population, Input flow and Flow Duration
parameters. The agents informed in initial population are the ones whose are already in the room
at the simulation beginning, and are created within a diamond pattern at the center of the room to
avoid agents overlapping each other. However, as their position is restricted by the size of the room,

1In this paper we investigate specifically the scope of rectangular rooms and single exits. Different rooms geometry
and number of exits are going to be addressed in a future work.
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if no space is available to accommodate all of agents that need to be created, it may be inevitable
that some agents starts positioned overlapping others. If it happens, when simulation starts, agents
will try to avoid collisions among them, eventually finding enough space to move without colliding
with other agents.

New agents n are created w.r.t to flow information. These agents are created at the
entrance in the opposite direction of the exit in a room i, considering a flow in rate defined as:

ni = fi.F
t
i , (3.1)

where fi is the Input flow defined for room i, and F t
i is the Flow Duration for i at a time t that is

included in the interval [ti; tf ] that represent respectively initial and final time for the people flow
in the room. When t is greater than tf , i.e. the people flow in room i is finished, F t

i = 0, so the
entrance of agents in room i stops.

In regard of other parameters present during the simulation: the space each agent occupies
is represented through a cylinder with a radius of 0.3 meters and it moves trying to maintain a max
speed of 1.2 m/s. Both of these values were extracted from the literature for the average value
people size and the average speed people have while walking [43].

ORCA makes use of a prediction time to make agents react and avoid collisions with each
other. We were not able to find any research or study about which value must be used to be more
close to reality. In fact, the common assumption is that value can vary according to each individual
(cultural or personality) and with the environment conditions such as time of day, smoke, fire and
crowd density. In our simulations we empirically adopted the value of 3 seconds simply because it
was the value which we got better visually convincing collisions avoided during validation tests.

To generate the training and validation database, the room’s parameters were randomly
defined in the intervals as specified in Table 3.2. We generated 18000 rooms for training and 2000
for validation. The tests are presented later in Section 4.

Parameter Min value Max value Value Type
Room width 2.0 20.0 Float
Room length 2.0 20.0 Float
Exit size 0.9 5.0 Float
Input flow 1.0 10.0 Float

Flow duration 0.2 100.0 Float
Initial population 0 99 Integer

Table 3.2 – Parameters and values.
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3.2.2 Training and validation

For each attribute to be estimated (Evacuation time, Average exit time, Average speed
and Average density) we trained a different neural network. We started with a simple model of
neural network: one hidden layer with six neurons fully connected and no bias. The loss function
used was the mean squared error function. The training process only stops when no more reduction
in the loss was observed by new epochs even when reducing the learning rate.

With these 4 networks trained, the following individual validation errors were measured
using the absolute relative error comparing the predicted value and the simulated value. We measured
the quality of our estimations according to how many cases had less than 10% error size.

The Evacuation time estimated by the ANN resulted in 89.5% of the validation cases
bellow 10% error, the Average exit time ANN presented 72.3% of the cases, while the Average
speed and Average density networks presented 40.9% and 45.7% respectively. The mean errors
histograms of these networks can be seen in Figure 3.7.

(a) Evacuation time (b) Average exit time

(c) Average speed (d) Average density

Figure 3.7 – Error frequency of the validation cases with neural networks with one hidden layer with
6 neurons. The number of occurrences of error sizes are grouped in bars of 10% error size, with a
percentage indicating how much of the validation cases are in it, also the average error size of all
cases and its correspondent standard deviation are shown.

In order to test other ANNs architectures, we perform a variation in the quantity of neurons
in the hidden layer and evaluating the results. New attempts were made using 50, 200, 400 and 500
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neurons in the hidden layer. Each attempt efficiency was measured by collecting how many cases
during individual validation were bellow 10% error size, as it can be seen in Figure 3.8.

The best configuration obtained for each attribute was with 400 neurons for the Simulation
time and for Average exit time and 200 neurons for Average density. Average speed had nearly the
same result with 200 and 400 neurons, but 200 neurons was chosen because of its slightly smaller
standard deviation during individual validation. With these new networks the number of cases bellow
10% error improved for all attributes: from 89.5% to 91.5% in Simulation time, from 72.3% to 85.4%
in Average exit time, from 40.9% to 49.9% in Average speed and from 45.7% to 51.6% in Average
density. The error histograms can be seen in Figure 3.9. As could be seen, our tests indicate that
evacuation and average exit times are parameters that seem to be adequate to be used in such type
of ANNs. Fortunately, although the other parameters are also important, these two related to the
time are more important in evacuation scenarios evaluation. That is the reason why we pursue our
investigation using only these two attributes and keeping densities and velocities for a next work.

Figure 3.8 – Search for a better network model. Attempts with 6, 50, 200, 400 and 500. Plotted
number of cases bellow 10% error in the individual validation.

Next Section describes our heuristic capable of aggregating per-room information in order
to estimate complex environments.

3.3 Environment Estimation based on ANNs and Heuristics

As described in last Section, the crowd data to estimate the evacuation times at each room
uses ANNs. However, in general, crowd evacuation methods are used for more complex environments
than only one room. Therefore, 3D modeling is usually necessary in order to create the environment
to be simulated. Once we are proposing a crowd estimation instead of simulation, we propose to
create a simple and user friendly tool to help modeling environments based on a graph of rooms
(i.e. an environment graph where the connections among the rooms are defined as graph edges).
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(a) Evacuation time - network with 400 neurons. (b) Average exit time - network with 400 neurons.

(c) Average speed - network with 200 neurons. (d) Average density - network with 200 neurons.

Figure 3.9 – Error frequency of the validation cases with the improved neural networks. The number
of occurrences of error sizes are grouped in bars of 10% error size, with a percentage indicating how
much of the validation cases are in it, also the average error size of all cases and its correspondent
standard deviation are shown.

We developed an environment editor (see Section 3.3.1), where the user can easily create and edit
a graph representing an environment to be estimated.

Our proposal is to use ANNs to estimate the parameters from each room (as discussed in
last Section) and then combine this data, through an empirically defined heuristic to compute the
global data for the whole environment. Heuristics are used in two stages. The first one is responsible
for finding the placement of each room in a time-line and calculate the flow of population from one
room to other rooms, while considering the hierarchy of rooms in the graph. In the second stage
the data regarding the whole environment is computed using the data estimated for each room.

One environment e is composed by N rooms r to be estimated. We estimated the crowd
parameters for each ri using the four trained ANNs, one for each crowd parameter (tti, t̄i, s̄i and
d̄i), as previously specified. Therefore, we have two types of rooms r in an environment e: i) rooms
of type D which population impacts another room, i.e. people from rDi

comes to another ri and
ii) rooms of type E (exit rooms) which are rooms that lead the population to the output of the
environment. Moreover, these two types of rooms are exclusive, i.e. rooms D never lead to exit and
E rooms never impact any other room in e.

A - The Heuristics during Room Estimations
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The environment estimator loads the specified environment and performs the data esti-
mation for each room separately (types D and E) using the ANNs (as described in Section 3.2).
As said before, some rooms have dependence rooms, i.e. a certain ri is impacted by other rooms
(type D) which population goes to ri. This is the definition of the set of rDi

dependence rooms
that impact ri. That is the reason why some rooms have to be estimated before others. So, first
we are going to present the execution flow for rooms which do not have dependences (NDi

= 0).

1. Since no people enters this room coming from another room: Input flow fi = 0 and Flow
Duration Fi = 0,

2. The neural networks are loaded and the two output parameters of the room (tti and t̄i) are
estimated using their respective networks. In addition to these estimations, two other features
are computed fet and gfet, as follows:

feti =


lengthi

maxSpd
, ipi = 0

lengthi
2 −Max(0,( 0.6

√
ipi.(2−1)

2 )
maxSpd

, otherwise
(3.2)

where feti is the first exit time from ri which means the time that the first agent exits such
room and ipi is the number of agents initially created in room i. It is simply calculated as
the time it takes for an agent to pass through the room at maximum speed in the simulator
(1.2m/s). However, when ipi > 0, the first agent to exit will not need to travel all the room
length to exit since it is placed at the center of the room. To deal with that we designed the
second part of Equation 3.2, which represents the distance reduction to be traveled by the first
agent to exit the room. The next equation is also computed afterwards the ANN execution:

gfeti = feti, (3.3)

where gfeti is the time the first agent exited the room in a global time among all rooms.
In the case of rooms without dependence is exactly the value of feti since they are the ones
that "start" the crowd movement in the estimation. Therefore, feti and gfeti are used to
propagate values to the input of rooms that are their dependents.

For each room ri which NDi
> 0 we perform the following execution flow:

1. If the room has a dependence (rDi
) that is not estimated yet, the estimation of this room

is postponed until all dependences are estimated. If all (rDi
) are already estimated then we

compute the following data for ri:
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giti = min(gfetDi
), (3.4)

ifti = max(gfetDi
− fetDi

+ ttDi
), (3.5)

where giti is the global initial time of ri, i.e. the time this room receives its first agent coming
from a rDi

in a global time among the rooms, and ifti is the income final time of ri, i.e.
the global time the last agent coming from a rDi

enters into ri. These two variables together
determines a window in time in which the dependence rooms of ri will send agents to ri, as
described in Equation 3.6. The input flow is determined as Equation 3.7. This way all agents
coming into ri from its dependences are considered a constant flux of agents during the time
window.

Fi = ifti − giti. (3.6)

fi =
∑NDi

k=1 (popk.pk,i)
Fi

, (3.7)

where NDi
is the number of dependence rooms of i and pk,i is the percentage of agents that

moves from the dependence room k of i to room i. popi is the population of ri, and it is
computed as follows:

popi = ipi + (fi.Fi), (3.8)

where ipi is the number of agents initially created in room i.

2. With all the data needed from dependences propagated in room i, the neural networks can
estimate the output parameters of such room (tti and t̄i), just as before.

The parameter gfeti is then calculated as follows:

gfeti = feti + giti. (3.9)

Equation 3.9 is different from 3.3 because in the first case room i has NDi
<> 0, i.e. this room has

dependences. Consequently, agents pass arrive this room coming from another one, so the time it
takes to the first one to exit has an offset of the time it took for someone to enter ri. In the second
case, NDi

= 0, agents start to be simulated in time = 0.
After we finish the estimation of a certain ri this whole process is repeated until all N

rooms in the environment are estimated. It is important to emphasize that these simple equations
have the only goal to aggregate the flow of population passing through the rooms and the global
times. Other equations to aggregate could also be possible, we tested some but at the end these
bunch of equations had the better results. This is certainly a possible future work for this research.
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B - Final Data Estimation Regarding the Environment

The last step of our method is to estimate the crowd parameters for the whole environ-
ment based on the rooms estimation. We first consider the exit rooms data (type E) to estimate
the Evacuation total time tte of a specific environment e. Indeed, this is the greatest Total evac-
uation time of M existent exit rooms that represent the exits in the environment, computed as
Equation 3.10:

tte = max(gitEe + ttEe), (3.10)

where Ee are the exit rooms of the environment e. The Average exit time t̄e of the environment is
the average between the M exit rooms exit time plus the average time agents enter this exit room,
as Equation 3.11:

t̄e =
∑M

er=1(t̄
Eer+ (giter+ifter)

2
)

M
. (3.11)

For the Average speed of the environment s̄e we use average of the Average speed esti-
mated for each ri:

s̄e =
∑N

i=1 s̄i

N
. (3.12)

Similarly we compute the Average density of the environment d̄e average of the Average
density obtained for each ri:

d̄e =
∑N

i=1 d̄i

N
. (3.13)

This is the vector 4d containing estimated data for a certain environment e we called
~EDe = {tte, t̄e, s̄e, d̄e}. We used ~EDe to compare with ~SDe, resulting from the simulation process,

as discussed in Section 4.

3.3.1 Environment editor

The Environment editor is a simple graphical application to allow users to easily create and
edit environments to be used for estimation. It consists of a main window divided in two regions,
the control panel and the canvas, as shown in Figure 3.10. The control panel provides a file menu
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with options to save the current environment into a file, load an environment from a file and to
clear the current environment. Also it has a list of available tools and a button to add a new room
to the current environment.

Figure 3.10 – Environment editor main window, control panel and canvas regions and a room are
highlighted in red, black arrows indicate each rooms connections to the others.

The tools available can be used to: i) move a room in the canvas in order to locate and
organize it as the user wants; ii) create a connection from one room to another, indicating that the
agents from the first room moves towards the second one; iii) remove an existing room, together
with its connections.

It is also possible to select a room and check its parameters. In this case, a new window will
appear, as in Figure 3.11, showing the Room width, Room length, Exit size and Initial population
parameters along with the connections presented in the selected room. The value of the parameters
can be modified by the user and the connections may be removed.
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Figure 3.11 – Environment editor’s room values window, it shows the values of the parameters of
the selected room for the user to modify it to design the environment.
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4. EXPERIMENTAL RESULTS

This Section describes some results we obtained testing our method. Section 4.1 describes
experimental results when simulating and estimating 20 full scenarios with varied population dis-
tribution in the rooms. In Section 4.2 we modeled 28 new environments by replicating rooms and
evaluated them in order to measure the impact of ANN error. Finally, we proceed with a practical
usage of our method applying it in a real life environment, as described in Section 4.3.

4.1 Evaluating Environments with Varied Populations

For the first set of scenarios to be tested, we created a quantity of full varied environments
to be estimated and simulated. Our goal is to analyze the obtained errors when comparing our
method for estimation with the numbers obtained with the full simulation.

Using the Environment Editor mentioned in Section 3.3.1 we have manually created 10
scenarios to be used with two environment cases created for each of these scenarios: one with all
agents placed at the first rooms of the scenario i.e. the ones with no dependencies, and other with
the agents placed as evenly as possible among all rooms in the scenario. The scenarios created can
be described as:

• Sim 1: This scenario has 4 rooms. The first room is 10 meters wide and 5 meters long, it
bifurcates in two smaller rooms of 4x5 meters. These both rooms connect to the same room,
another 10x5 meter room which leads to the exit. The rooms’ doors that lead to other rooms
are 1 meter wide, while the door to the exit is 2 meters wide. 20 agents are present in this
scenario.

• Sim 2: Three 5x5 meters rooms are present in this scenario. They are sequentially positioned,
with the first room leading to the second, the second leading to the third and the third to the
exit. The door size of each room increases incrementally, the one from the first to the second
room being 1 meter wide, from the second to the third 1.5m and the third to the exit 2m.
The number of agents in this scenario is also 20.

• Sim 3: Another scenario with 4 rooms. This time 3 rooms of different width leads to a bigger
room that leads to the exit. The dimensions of these rooms are 5x5, 2x5 and 3x5 meters for
the first three rooms and 11x5 meters for the bigger room. All doors have 2m size. 30 Agents
are present.

• Sim 4: This scenario is similar to Sim2, but with 4 rooms instead of 3. The rooms have also
5x5 meters and are sequentially positioned. The doors also have incremental size, from 1 to
2.5 meters. This time and the number of agents present is 30.
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• Sim 5: Five rooms also sequentially positioned are present here. The first, third and fifth
rooms are 5x5 meters. The second and fourth rooms act as a corridor between them, with
2x12 and 2x7 meters, respectively. All doors are 1m wide, including the one to the exit. 20
agents are present in this scenario.

• Sim 6: One more scenario with 4 rooms sequentially positioned. This time the rooms are
smaller 2x3 meters rooms, except for the fourth room which has 2x4 meters. All doors have
1 meter size and 28 agents are present.

• Sim 7: Also similar to Sim2, but with five 5x5 meters rooms also sequentially positioned
instead of three. The doors also are not exactly equal, decreasing in size instead of increasing,
from 3 meters, in the door in the first room to the second, to 1 meter in the door from the
last room to the exit.

• Sim 8: Another similar scenario to Sim2. Five 5x5 meters rooms sequentially positioned are
present instead of three. This time the doors have not incremental sizes, all doors have 2
meters size. 20 agents are also present in this scenario.

• Sim 9: Very similar scenario to Sim8, but with seven rooms instead of five. The dimensions of
the rooms, size of doors and number of agents remains unchanged, being 5x5 meters rooms
with 2 meters large doors and with 20 agents present.

• Sim 10: Also similar to Sim8, but with nine rooms instead of five. rooms have also 5x5 meters,
doors have also 2 meters and also 20 agents are present.

An example of one of these environments modeled in the Environment Editor can be seen
in Figure 4.1 where one case with the Sim 8 scenario is modeled.

Figure 4.1 – A environment with the scenario Sim 8 modeled in the environment editor.

In order to simulate these environments, to perform the comparison between estimated
and simulated values, we have modeled the 3D geometry and simulated them using the simulator
we developed in Unity. The modeled environments in this task can be seen in Figure 4.2. For each
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(a) Sim 1 (b) Sim 2 (c) Sim 3

(d) Sim 4 (e) Sim 5 (f) Sim 6 (g) Sim 7

(h) Sim 8 (i) Sim 9 (j) Sim 10

Figure 4.2 – Scenarios modeled in the Simulator developed in Unity.

environment we simulated two cases, as previously mentioned: i) with all agents in the first room
in the hierarchy and ii) with same number of agents distributed along the rooms.

The results of the comparison for the first environment cases, when the agents are placed
in the first rooms of the scenario, are shown in Table 4.1, in the 3th and 4th columns. For the second
set of cases, where agents are distributed evenly on the rooms of the scenario, the results are in
the 5th and 6th columns. These columns contains respectively the percentage relative error of total
evacuation time (tt) and average time per agent (t̄) when compared to the values achieved in the
simulations.

Figure 4.3 shows the measured error values for all 20 environment cases regarding total
evacuation time tte and average time t̄e. In this Figure it is easy to see that when the population
is distributed along the rooms (Sim1′ to Sim10′), the error value of average time t̄ for each agent
increases. It is expected in our method because each room is estimated only once for each full
environment. It means that when the population is distributed in various rooms, people first wait for
agents that should entry in a specific room in order to be estimated. For example, consider Sim6′

as illustrated in Table 4.1: if there are agents in the central room, those entities should wait for
others that come from the other rooms in order to have the central room estimated by the ANNs.
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Table 4.1 – Environment cases configuration and estimation relative errors.
Scenario Model tt t̄ tt agents t̄ agents

first rooms first rooms distributed distributed

Sim 1 -29% -15% -2% 25%

Sim 2 -31% -17% -5% 40%

Sim 3 7% 18% 16% 23%

Sim 4 -25% -7% -21% 35%

Sim 5 -3% 1% -2% 45%

Sim 6 36% 40% -15% 18%

Sim 7 -10% -1% -25% -7%

Sim 8 26% 16% 14% 62%

Sim 9 22% 13% 13% 54%

Sim 10 20% 12% 13% 50%
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This characteristic impacts mainly the parameters t̄, since agents that are initially placed just a room
away from the exit should wait until all other agents are in this specific room for it to be estimated.

The obtained average errors for total evacuation time tt for scenarios Sim1 to Sim10
is 20.9%, while the average error for scenarios Sim1’ to Sim10’ is 12.6%. It can be interpreted
that our method estimates reasonably well the total evacuation time for full environments, even if
the population distribution varies. Reminding that, as previously discussed, the limitations of our
heuristic impacts mainly in the average time t̄ parameter. With that said, the error of t̄ for the first
set of simulations is 14% while the second set presented an error value of 35.9%. This difference in
the error obtained for these two different types of environments confirms the expected side effects
in the estimation. In addition, the tt average error value for the 20 environments is 16.75% and the
t̄ average error value is 24.95%.

Figure 4.3 – Obtained results when testing 20 environments. The percentage of errors are shown
for total evacuation time tte and for average time t̄e metrics for each environment.

4.2 Investigating Replicated Rooms

We expect that the estimation using ANNs will present errors when compared to full
simulation. To expect them to predict perfectly the behavior of the crowds would be too optimistic.
As the heuristics fill data for rooms using information obtained from the ANNs, these errors can be
propagated forward in the graph, possibly leading to even bigger errors.

In order to evaluate this error propagation behavior, we handpicked 2 rooms from the 2000
ones used in validation. We selected the two rooms with the best and worst estimations of the total
evacuation time (tt) presented in this set of environments. They are following named: rb and rw,
respectively for the best and worst estimated total evacuation times. rb is a 28 meters wide 6 meters
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long room with 99 initial agents and a incoming flux 3.3 agents per second during 24.7 seconds with
an exit 5.6 meters wide, while rw has 29.5x4.7 meters, 12 initial agents and 9.3 agents per second
during 1.4 seconds and a 1.1 meters wide exit.

For each of those rooms, we generated new full environments by replicating the specific
room structure (dimensions and exit size for rb or rw) and positioning them sequentially. The agents
are placed in the first room of the sequence and must travel to the exit, in the last room of the
sequence. Figure 4.4 illustrates one example of environment with replicated rooms, having 9 rooms.

Figure 4.4 – Nine identical rooms placed in sequence in order to be estimated.

Using this method we created 14 new environment cases for each of the selected rooms,
each with two more rooms than the last one. For instance, the first created environment has 3
rooms, then the second environment has 5 rooms, then 7 rooms, 9 rooms, until 29 rooms. In total
we generated 28 new environment cases, half of them replicating rb and the other half rw. In all
cases the agents are placed in the first room and must travel until the exit, i.e. the last room.

For each one of these 28 environments, in addition to the graph representation using our
editor (see Section 3.3.1), we also modeled the geometry using Unity. The goal here is the same
of the last experiment, to simulate the environments in order to compare with the estimation and
analyze the results, that can be seen in Figure 4.5. In the case of the best estimated room rb the
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average absolute relative error tt in all 14 environments is 18% (Std.Dev=6%) while using rw is
29% (Std.Dev=15%).

These environments containing 29 rooms in a sequence can be considered a complex
scenario and maybe even unrealistic, and although the environments with rw achieved high error
rates, as the number of rooms increases both rw and rb converged its error value between 15% and
20%. We consider this as a good result since the error percentage did not increased as the number
of rooms increased. It indicates that the propagation of the ANNs errors by the heuristics did not
produced an ever growing error rate as the number of rooms increase.

Figure 4.5 – Absolute relative evacuation time (tt) error sizes for each of the propagation cases,
ordered by the number of rooms (14 cases, starting with 3 rooms and ending with 29 rooms).

4.3 Testing a practical example

In order to test our method in a practical example, we use the night club as described
in [7]. We used the same 3D environment as illustrated in Figure 4.6 to define the environment to
be estimated using our editor and simulate it containing 940 agents.

The 3D scenario of the night club has 3 floors and many rooms. Some of these rooms
are large, have a more complex shape and have two exits apart from each other. We divided those
rooms in two, splitting the population present on it in a proportional way to the area each room has.
Indeed, this can be interpreted as if the agents used the exit closest to them in the room. Clearly,
this approach is not a perfect representation of the environment, however as there is a lot of the
scenario already being abstracted during the estimation, the intent of this method is to reduce the
difference between the estimated environment and the simulate one. Figure 4.7 shows the graph
generated using our Editor to model the night club (named SM) in order to be estimated.
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Figure 4.6 – Architecture of the nightclub used as base for simulation and estimation.

For this practical result, we decided to measure the four metrics initially studied in this work
(total evacuation time, average time, average speed and average density). The computed differences
are presented in Figure 4.8. As can be seen, the total evacuation time keeps an acceptable error
around 30%, as the average speed and density. On the other hand, the average exit time per agent
presents a larger error mainly due to the fact that the agents are placed distributed in all rooms
inside the night club, running into the distribution problem already mentioned in Section 4.1.

In terms of required time to model and simulate environments as well as to estimate,
follows a comparable analysis:

• 5-10 minutes was the time to model the night club in our Editor, once the user has the floor
plan with the detailed information needed of the environment;

• 12-16 hours is the time for a skillful designer to model the 3D environment, once s/he has
the floor plan of the environment. Additionally, the time to prepare a 3D geometry to be
simulated, using a crowd simulator is a complex task. The user has to learn how to operate a
simulation software, define rooms to walk, place people and groups, define escape routes. The
time to accomplish this task, using CrowdSim as defined in [7], to prepare the night club to
be estimate can take weeks, and this is repeated for each new environment to be simulated.

• The environment estimation is instantaneous, i.e. to estimate the night club it takes less
than one second.
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Figure 4.7 – Modeling of SM night club in the Environment Editor.

• A full simulation containing 240 agents, as described in [7] executes at 24 frames/second
being the total evacuation time around 3 minutes for 240 people in the night club.

In the work of Cassol et al. [7], mentioned earlier, authors propose a method to find out the
best evacuation plan from several ones, where the difference is the distribution of population among
the possible paths to exits. The configuration which had the best result according to their proposed
metrics is elected as the best plan. However, this search is severely limited due to the computational
power necessary to simulate all the possible distributions a single plan could generate, for this
reason they assumed a granularity of 10% to alter these configurations, i.e. in each bifurcation,
population varies with a granularity of 10%, for instance 100% and 0%, 90% and 10%, 80% and
20% and etc. An example investigated in the paper mentioned the night club (the same one we
used in Section 4) with 240 agents and 3 bifurcations it led to the generation of 1331 plans with
altered configurations (distribution in the bifurcation), taking around 8 hours for all to be simulated.
Another example, 1010 agents with the same scenario, took around 60 hours, simply because of the
additional processing required.

With our estimations replacing the simulations, not only the required time to find the plan
is reduced, but more details could be explored as the granularity limitation could be reduced or even
removed. More importantly, more bifurcations can be defined in the plan without the worry of taking
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Figure 4.8 – Errors in percentage as resulted from the comparison between the estimation and
simulation of a practical example.

too much time to process, allowing for more diverse searches. This replacement would generate a
lot of benefits, having only an acceptable estimation error of 30%.
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5. FINAL REMARKS

In this document our main contribution is a proposed methodology for estimating evacu-
ation data in simple or complex environments, which is meant to be used for obtaining evacuation
data instead of simulating a crowd in the environment. The reasons to this approach is to optimize
resources and time since model 3D environment, configure simulations and finally simulate cases
scenarios require much more time than the estimation process, as recently discussed in last section.
However, the proposed optimization just makes sense if the achieved error is acceptable. For this,
we compared the estimated results with simulated ones and measured the accuracy of the different
steps of the estimation. Additionally, we investigated potential cases which could be problematic
and analyzed results.

In this work, we used ANNs to train and estimate data for separated rooms individually,
considering their geometry and population. Then we defined an heuristic to estimate the full envi-
ronment based on these individual estimations. This approach seems promising as we achieve less
than 5% average error when comparing the total evacuation time from the estimation and simulation
results for 2000 individual rooms and less than 25% average error in 50 full environments, where
complexity was reasonable.

An alternative approach to solve the problem of this dissertation was to train the ANNs
considering the full environments instead of splitting them in a set of rooms and estimating them
individually. The problem would be how to modularize it in a way to be able to estimate different
environments without needing to design and train new neural networks for each new case needed.

About the performed investigations, we have detected a limitation imposed by our ap-
proach which happens specifically for rooms which have dependence rooms and also have an initial
population on it. Since the ANNs estimation of these rooms could only be executed when the rooms
it depends have already been estimated, it generates a conceptual issue where it can be interpreted
as if people in a specific room only start to move when people from dependence rooms arrive. We
measured this issue in the tests presented in Figure 4.3 in Section 4.1 and, as it could be seen, this
impacts clearly the average time the agents took to evacuate the environments. However, on the
positive side, this did not impact significantly the total evacuation time of the environments. We
intend to improve how the estimation and heuristic occur in our method in order to eliminate this
issue.

Other investigation analyzed the suspicion that the errors of the individual estimation of
rooms can be carried from a room into another through the heuristics, accumulating and increasing
as the environments grow in complexity. We measured the errors produced in Figure 4.5 in Section
4.2 and we concluded that this accumulation does not occur. In fact, the results obtained indicate
that this propagation may even help mitigate the error proportioned from a possible bad estimation
of a room along the environment, as the error decreases as the complexity increases in the worst
case scenarios.
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In addition to these investigation results there is still room for improvements in our model.
The neural network estimations can be further explored using deeper network models and by increas-
ing the database (currently we have 18000 rooms in training database). These improvements can
reduce the error size of the results obtained, specially for the Average speed and Average density
since they are the ones with lower accuracy in the individual room estimation.

Also, the training database was created solely with abstracted rooms, containing only one
entrance and one exit, always directly opposed to the entrance. By loosening this abstraction we
could add rooms with two or more entrances or exits, placing them in the far right or left in the
rectangular room.

Still in the abstracted issue, the room did not consider the most common of obstacles
like tables, chairs, pillars, couches and other common mobiles in general. One way to improve the
versatility of the model and to approach its usability for real cases is to add these informations
into the rooms, however as this data is complex, with size and positioning for each obstacle, we
suggest to simplify it into an "obstruction level" variable which would indicate how much of the
room available to the agents to walk.

Finally, the test performed in a practical example (using one environment which exists in
real life) was very promising. The estimation error of total evacuation time was less than 30%, which
nicely compensates the facts that the user do not need to model the 3D environment, learn how
to use and prepare the simulation in a complex crowd simulator, test simulations and finally wait
minutes or hours for results. As described in Section 4.3, this task can save weeks (maybe months)
of work. We believe our tool is a further step in the direction to have all environments from real life
simulated and tested, since this tool can clearly facilitate this work.

Additionally, if we want to use our method to search for an optimized evacuation plan,
similar to what Cassol et al. proposed [7], as mentioned earlier, we believe that the accuracy error
obtained would little affect the final result. The obtained error rate is consistent enough so that
it could still compare the efficiency of each plan correctly even if the correct value is not exactly
achieved. If precision is a necessity, once the best plan is found using our estimation, we can
simulate just this best plan and then to obtain the accurate values of the evacuation, saving the
time of several in-between simulations that would be necessary otherwise.
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