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Abstract—Systems need to know the physical locations of
objects and people to optimize user experience and solve logistical
and security issues. Also, there is a growing demand for
applications that need to locate individual assets for industrial
automation. This work proposes an indoor positioning system
(IPS) able to estimate the item-level location of stationary objects
using off-the-shelf equipment. By using RFID technology, a
machine learning model based on support vector regression
(SVR) is proposed. A multi-frequency technique is developed
in order to overcome off-the-shelf equipment constraints. A k-
means approach is also applied to improve accuracy. We have
implemented our system and evaluated it using real experiments.
The localization error is between 17 and 31 cm in 2.25m2 area
coverage.

I. INTRODUCTION

Localization of objects and people in indoor environments
has been widely studied due to security issues and because
of the benefits that an indoor positioning system (IPS) can
provide. To determine location in outdoor environments, GPS
technology (global positioning system) has grown increasingly
popular, becoming the de facto standard in the location and
navigation of vehicles, people and other objects. However, this
technology is not suitable for indoor environments because
it requires a direct line-of-sight communication to satellites.
Indoor environments are more complex than outdoor environ-
ments because of the high density of obstacles and interference
phenomena in a reduced space. Considering these problems,
localization systems focused on indoor environments bring
new challenges for the future of communication systems [1],
[2].

In the last years, there is a growing demand for industrial
applications that need IPSs. In most cases an IPS locates
individual assets for industrial automation and find specific
items in distribution centers. In public security and military
use, such systems are needed to aid in the navigation of
police officers, firefighters and soldiers in their missions inside
buildings [3].

Localization of objects in mobile scenarios tends to be
easier than in static scenarios. Scene analysis in a mobile
environment provides fingerprints that change for a given
target, which can help in object tracking.

There is a lack of research on low-cost IPSs with item-level
accuracy applied to stationary objects. This work proposes
a new IPS to meet these requirements. To achieve better
accuracy, machine learning models based on support vector

regression (SVR) and k-means are employed. This work
presents an IPS able to perform localization of stationary
objects using off-the-shelf equipment.

The remainder of this paper is organized as follows: Section
II presents a summary of related work. An overview of the
proposed system is provided in Section III. Sections IV and V
discuss the offline and online phases of the proposed system,
respectively. Experiments and results are presented in Section
VI and finally, Section VII contains the conclusion.

II. RELATED WORK

RFID (Radio-Frequency Identification) technology provides
identification and localization of goods equipped with RFID
tags at low cost. One characteristic that makes it attractive is
the small size of its components and low power consumption,
especially in passive tags, which are battery-free. When a
reader reads a tag, it can also obtain the received signal
strength indicator (RSSI) from the tag. RSSI information is
a measure of power, usually represented in dBm [4].

In LANDMARC [5], RFID reference tags are placed on
the environment, and the RSSIs are sensed by RFID readers.
Tags in unknown positions are sensed, and their RSSIs are
used in the nearest neighbor algorithm to find the closest
reference tags and predict the unknown tag position. In [6], the
LANDMARC technique is compared to a localization model
based on artificial neural network (ANN). During the training
phase, for each reader antenna, RSSI from the reference tags
feed the network input. In the output layer, the coordinates
(x, y) and orientation angle of the tags are given. The results
show that the localization accuracy is 7 cm better than in the
Landmarc system.

In [7], [8], a path-loss shadowing model is used to generate
the RSSI fingerprint of the indoor environment. RSSI values
from each reader antenna and the coordinates of the tags are
provided as ANN inputs and outputs, respectively. Both works
are based only on simulations and isotropic antennas.

Wille et al. [9] presents a support vector regression (SVR)
localization approach for a medical navigation system. RFID
phase difference is used as a nondeterministic indicator to train
and run the SVR model. Experiments were performed inside
a small plastic basin designed to emulate the human body and
head. Phase data were collected by applying grids with 5 and
10 mm step sizes. The results showed an accuracy between
0.6 and 6.6mm.
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Fig. 1: Block diagram of system design. The inputs are the RFID readings and the output is the target object position.

O
ff

li
n

e
 p

h
a

s
e

Read target tag

Predict location by

using machine

learning model

For each frequency

K-Means 

clustering

Best weighted 

cluster location

Set reference 

tags positions

Read

reference

tags

Trained models
Calibrate

equipments

For each frequency

Train machine

learning model

O
n

li
n

e
 p

h
a

s
e

In [10], the LANDMARC approach is fused with a back-
propagation network (BPN) model. First, LANDMARC uses
measured RSSI values to calculate target tag coordinates. Due
to the relationship between RSSI and distance is dynamic, the
BPN adjusts the calculated coordinates to increase location
accuracy. Results shown a 56 cm error rate when reference
tags are 30 cm apart from each other. Contrary to our approach,
reference tags must be present during online phase, which can
difficult deployment and maintenance of the system.

III. SYSTEM OVERVIEW

The main elements of an IPS are (i) location sensing devices
that measure metrics related to the relative position of a
target object; (ii) an algorithm or localization technique that
processes metrics reported by location sensing devices; and
(iii) a display system that graphically illustrates the location
of the target object to users [3]. As shown in Figure 2, these
elements can be associated with a three-tier architecture [1]. In
this work, the following technologies were used and associated
to each layer: (i) location sensing: RFID; (ii) technique:
machine learning models; (iii) graphical interface: .NET GUI
application.

This IPS proposal is applied to a scenario where RFID
tags are attached to objects we need to locate. The RFID
tag uniquely identify each object in the scenario. Thus, using
support vector regression (SVR) and k-means models, the IPS
must be able to estimate the position of each tag present in
the scenario.

Fig. 2: Layered architecture associated with a block diagram
containing fundamental components of proposed IPS.

The RFID reader is connected to a computer running the
system. A Matlab library [11] has been integrated into .NET
C# to train and run the SVR model. A .NET GUI application
was developed to automate tests and graphically show results
to users.

The proposed localization technique works in two phases,
online and offline. The offline phase is performed only once
for the chosen scenario. The online phase is performed as often
as necessary for each object we want to locate. Figure 1 shows
the two phases, processes and the flows between them. The
phases are detailed in the next sections.

IV. OFFLINE PHASE

Initially, the parameters and positions of the RFID equip-
ment are set to values that must remain fixed throughout
system operation. Some calibrations performed at this phase
are of the reader power, region of operation (frequency range)
and antennas positions.

The proposed RFID system is based on the RSSI value of
each tag to estimate its location in the scenario. As a statistical
model is proposed, data collection from reference tags is
required. This step requires that reference tags be uniformly
distributed in the environment. During the experiment test bed,
tag positions in simple grid and diagonal mesh scenarios were
evaluated. Diagonal mesh design (Figure 3) obtained better
performance, and it was chosen for the rest of this work.

After initial adjustment, reference tag positions must be
stored in the system configuration. Spatial coordinates (x, y)
are translated to coordinates of a virtual grid created over an
image. A scenario picture is taken, and the grid is defined
over the image (Figure 3a). Thus, the system may output the
position of any cell within the limits of the captured image.

Reader antenna position plays a key role in the accuracy
of the IPS. In initial tests, two antennas were placed in front
of the tags, but the RSSI values of tags in different positions
were the same, making it impossible to have a reasonable
RSSI interpolation during prediction. Thus, for each axis of the
virtual grid, it was decided to place antennas in positions such
that RSSI values decrease as the distance increases. Therefore,
in a 2D scenario, at least two antennas must be present in the
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Fig. 3: Virtual grid over a picture captured from the training
scenario (a) and positioning of reference tags and antennas
over the diagonal mesh design (b). RFID tags are represented
by black squares.

(a) Virtual grid.
Floor

(b) RFID components posi-
tion.

system (x axis and y axis). This arrangement can be seen in
Figure 3b.

After these configuration steps, the reference tags are read
and the data are collected. The RFID reader is activated for a
fixed time period, and the system collects the following data:
the antenna ID that senses the tag, the frequency in MHz, the
RSSI and the position (x, y) of the reference tags present in
the scenario.

A. Multi-frequency

RSSI values have been widely used in IPSs. However, even
in static environments, this value can vary according to the
operating frequency. This difference could be due to physical
characteristics of the equipment, interference (like other RF
equipment in the same frequency), obstacles, and other factors
[12].

In attendance to federal regulations like FCC (USA) and
ANATEL (Brazil), UHF RFID equipment cannot stay on the
same frequency for more than 0.4 seconds in a 10 second
interval [13], [14]. Addressing this constraint, RFID readers
hop on to each available 250KHz channel, limiting the
possibility of running on a fixed frequency. This feature can
be considered a constraint if we wish to use off-the-shelf
equipment in the IPSs. For example, RSSI values trained at
the frequency 915.25MHz may vary considerably from values
measured in the online phase at the frequency 923.25MHz.

To overcome these limitations, we propose to partition the
data collected in both phases using the operation frequency.
Thus, in the offline phase, machine learning models for each
sensed frequency are created. Consequently, in the online
phase, each model uses data from the respective frequencies to
estimate the location of the target objects. This method aims to
separate the RSSI values of distinct frequencies, avoiding the
mentioned constraints. Thus, it is possible to run statistical
localization systems by using equipment that complies with
federal regulations.

B. SVR model

Support vector machine (SVM) is a supervised learning
algorithm for classification. To apply it in non-linear regression
models, it has been modified and referred to as support
vector regression (SVR) [9], [15]. The localization problem
of this work is a regression problem instead of a classification
problem. As stated in Section IV, the target tag position is
given by spatial coordinates rather than a region or proximity.

Given a training dataset {(x1, y1) · · · (xn, yn)} ⊂ X × R,
where X denotes the space of the input patterns, xi and
corresponding target values yi are a combined training set. The
SVR goal is to find a function f(x) that has at most ε deviation
from the actually obtained targets yi for all the training data.
Thus, the linear approximation function is described as:

f(x) = 〈w, x〉+ b with w ∈ X, b ∈ R (1)

where 〈., .〉 denotes the dot product in X . However, the
problem is not always feasible, because there are points that
violate the restrictions. To avoid overfitting, one should add
a capacity control term, which in the SVM case is ‖w‖2.
Formally, we can write this problem as a optimization given
by

minimize
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(2)

where C is a regularization parameter that controls the trade-
off between penalizing violations of the accepted interval ε
(denoted by ξ and ξ∗) and the complexity of the decision
function f(x). A solution of the convex optimization problem
is usually found by means of an equivalent dual formulation.

The dual formulation of the SVR problem provides an
alternative to working in a high dimensional space. Thus, it
is possible to map the data into higher dimensional spaces in
the hope that the data could become more easily separated
or better structured. To accomplish this, kernel functions
approaches are used.

In our proposal, we use a Matlab implementation [11] of
SVR with a wavelet kernel [16]:

K (x, z) =

n∏
i=1

[
cos
(
1.75xi−zi

a

)
exp

(
− (xi−zi)

2

2a2

)]
(3)

where x, z and a are the wavelet dilation and translation
coefficients. More details and concepts about SVR can be
found in Cristianini [17] and Smola [15].

Data collected in the offline phase feed the SVR training
process. All collected data are used, and any data removal or
aggregation are performed at this stage. As stated in Section
IV-A, the data are separated by operation frequency, and a
SVR model is created for each frequency. RSSI values for

1420



each antenna are presented as inputs, and the virtual grid
coordinates (x, y) of each reference tag are the target output
data.

Most RFID readers collect individual tag readings per
antenna. To submit samples to the model, these records should
be merged. Thus, for each reference tag position, the total
number of samples will be equal to the record count of the
antenna that had fewer readings. Figure 4 shows an example of
samples collected by the RFID reader and the merge operation.

Fig. 4: Collected samples (left) and data merge (right).
Frequency: 923.25MHz.

Antenna RSSI (dBm) Position (x, y)

2 -61.5 (-7, 11)

1 -44.5 (-7, 11)

1 -44.5 (-7, 11)

2 -61 (-7, 11)

2 -60.5 (-7, 11)

1 -44.5 (-7, 11)

1 -44.5 (-7, 11)

1 -44.5 (-7, 11)

1 -44 (-7, 11)

...

1 -49.5 (8, 3)

1 -50 (8, 3)

1 -50 (8, 3)

2 -55.5 (8, 3)

1 -49.5 (8, 3)

2 -56 (8, 3)

2 -55.5 (8, 3)

1 -49.5 (8, 3)

1 -50 (8, 3)

1 -50 (8, 3)

...

Discarded

Input: RSSI (dBm) Output: position

Antenna 1 Antenna 2 x y

-44,5 -61,5 -7 11

-44,5 -61 -7 11

-44,5 -60,5 -7 11

...

-49,5 -55,5 8 3

-50 -56 8 3

-50 -55,5 8 3

...

In SVR, only one target value is possible for each calculus,
so we create one SVR model for each target coordinate x and
y. We cross-validated values for SVR coefficients, and based
on the results, they were set as ε = 0.00025, c = 40000 and
a = 4 (wavelet).

V. ONLINE PHASE

This phase determines the final location of the target object.
The system estimates target object positions using the trained
model and the k-means method. During the online phase,
no reference tags need to be present in the scenario, and an
unknown RFID tag is read during a fixed period of time. The
data collected by the RFID reader are antenna ID, frequency
and RSSI. The data merge procedure (Fig. 4) and multi-
frequency technique (Section IV-A) performed in setup phase
are also applied on this phase.

Once the SVR model has been optimally trained, data from
an unknown tag are presented to predict its location. For each
frequency, RSSI values from an unknown tag are presented
to the trained SVR model, and tag location is predicted.
Each output coordinate has its own SVR model. Thus, each
respective model is evaluated in order to estimate coordinates
x and y.

A. K-means

The RFID reader collects dozens of readings for each tag.
Currently, equipment and protocols allow a large number of

readings in a short period of time. For example, in 3 seconds
sensing a tag, 46 readings are collected. RSSI values for
the same tag suffer significant variations that can affect
estimated positions, i.e., different positions for the same tag are
predicted. This may occur if a given frequency model has low
performance in the training process or due to interferences,
obstacles and multipath effects.

Thus, some technique is required to provide the final
location of the target object. Initial tests show that a simple
mean of the location predictions would not bring about the
desired results. To merge these predictions and provide a
reasonable location, the k-means technique is used.

K-means clustering is a partitioning method that partitions
data into k mutually exclusive clusters. K-means operates on
actual observations and creates a single level of clusters. K-
means treats each observation as an object having a location in
space. It finds a partition in which objects within each cluster
are as close to each other as possible and as far from objects
in other clusters as possible [18].

Given a set of observations (x1, x2, . . . , xn), where each
observation is a d-dimensional real vector, k-means clustering
aims to partition the n observations into k(≤ n) sets J =
{J1, J2, . . . , Jk}.

Each cluster in the partition is defined by its members
(i.e., observations) and by its centroid, or center. The centroid
for each cluster is the point at which the sum of distances
from all members in that cluster is minimized. K-means uses
an iterative algorithm that minimizes the sum of distances
from each object to its cluster centroid, over all clusters. This
algorithm moves objects between clusters until the sum cannot
be decreased further. The algorithm aims at minimizing an
objective function

S =

k∑
j=1

x∑
i=1

∥∥∥x(j)i − cj
∥∥∥2 (4)

where
∥∥∥x(j)−cj

i

∥∥∥2 is a chosen distance measure between a

data point x(j)i and the cluster center cj , and an indicator of
the distance of the n data points from their respective cluster
centers.

In our model, tag locations predicted by machine learning
techniques are the k-means observations, and squared Eu-
clidean is the distance measure. As estimated positions from
certain frequency models may differ from other frequencies,
k is defined as k = d − 1, where d is the number of sensed
frequencies. Thus, it is more likely that predictions from noisy
frequencies are grouped in their own clusters.

We also define a weight for each cluster from member
count information. In a good weighted cluster there are
more members than in a bad weighted cluster. That is,
a good weighted cluster aggregates more closest predicted
locations than a bad cluster. In most cases, a cluster with
few members presents spurious positions or locations where
machine learning models did not perform well. The best
weighted cluster is the cluster that has more similar locations.
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Fig. 5: K-means clustering applied to predicted locations over
virtual-grid coordinates (x, y).
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Finally, the centroid location of the best weighted cluster is
defined as the final target location.

Figure 5 shows clusters extracted from a set of locations
predicted for a given tag. Samples from four operation fre-
quencies between 923 and 924MHz were used. In this case,
cluster A is the best weighted as it has more similar locations.

VI. EXPERIMENTS AND RESULTS

In the experiments, the localization system was run in a
laboratory where tags were attached on a whiteboard, which
is 1.5m in width and height (2.25m2 area). In the offline
phase, reference tags were positioned in diagonal mesh over
the board and antennas placed on each side, as discussed in
Section IV. Diagonal distance between each reference tag was
28 cm.

A Speedway Revolution R420 RFID reader and a Threshold
RFID antenna, both from Impinj, were used in the experi-
ments. Threshold is a far-field antenna, which operates in a
frequency range of 902 − 928MHz. The RFID tag used is a
RafSec DogBone Wet Inlay, which operates in the frequency
range of 860 − 960MHz. Reader operation frequency was
defined to use the follow values: 923.25, 923.75, 924.25 and
924.75MHz. Reader power was set to a maximum value of
32.5 dBm.

The system was evaluated in four different places of the
laboratory (P1-P4). RFID reader antennas were placed under
and on the right side of the whiteboard. During the offline
phase, 13 reference tags were used, and the RFID reader was
activated for 10 s. The number of samples collected to feed
the SVR model was 500 on average. Figure 6 shows the test
bed environment and all system components.

In the online phase, the goal of the experiment was to locate
six target tags distributed in the environment. Three tags were
in positions already used in the offline phase, and three tags
were in unknown positions. For each tag, RFID reader was
activated by 3 s.

Fig. 6: Test bed environment and all system components.

Fig. 7: Screenshot of the system running. Target tag ID: 16;
localization error: 11.1 cm.

Figure 7 presents a screenshot of the system showing SVR
predictions (yellow squares) and the k-means final location
(green circle). The graphical user-interface helps users to
easily identify the tag location. Time latency to localize each
tag is less than one second, excluding RFID reader time.

Typically, localization error is given by the Euclidean dis-
tance between estimated and actual locations. The cumulative
distribution function (CDF) of the error distance for the SVR
model is presented in Figure 8.

CDF results show the localization error is 0 cm for 48%
of the experiments. In worst case, the error reaches 61 cm.
To summarize the localization accuracy for each scenario, the
root mean square error (RMSE) of the location estimates is
calculated as the difference between the predicted and actual
location as

RMSE =

√∑k
t=1 (x̂t − xt)

2
+ (ŷt − yt)2

k
(5)

where x̂t,ŷt describe the estimated locations, xt,yt are the
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Fig. 8: Cumulative error distance for SVR model localization.
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actual positions and k is the number of predictions. Table I
shows the RMSE performance of the system.

The results show a localization error between 17 and 31 cm
in the range of 1.5m. Places P3 and P4 have the worse
performance, mainly due to multipath effects and interferences
present in online phase. The overall RMSE is 25 cm, which
brings some limitation in scenarios where many items are close
to each other.

TABLE I: Localization performance (RMSE in cm) for each
scenario.

Place P1 P2 P3 P4 RMSE
Error (cm) 17.6 18.2 30.2 30.9 25.0

In comparison to related works, the proposed system per-
forms 31 cm better than a neural network RFID-based ap-
proach [10], where the distance between reference tags is
similar to our work.

VII. CONCLUSION

We have presented a system for localization of stationary
objects using off-the-shelf equipments. Given objects with
RFID tags attached, the system localize them. In order to
achieve this, we proposed machine learning model able to
learn RSSI fingerprints and to predict tags locations. A multi-
frequency technique is proposed to overcome constraints from
off-the-shelf RFID readers. A k-means technique were applied
to enhance the localization.

We conducted real world experiments to evaluate the local-
ization performance. Results show a 17.6 cm accuracy in best
case scenario and demonstrate a 55% improvement over other
techniques.

This system can be easily extended to 3D scenarios, which
would provide the depth distance of objects. In future works,
systems scalability will be tested through experiments in large
environments using multiple readers.
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