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ABSTRACT
Embedded virtualization has emerged as a valuable way
to increase security, reduce costs, improve software quality
and decrease design time. The late adoption of hardware-
assisted virtualization in embedded processors induced the
development of hypervisors primarily based on para-virtu-
alization. Recently, embedded processor designers devel-
oped virtualization extensions for their processor architec-
tures similar to those adopted in cloud computing years ago.
Now, the hypervisors are migrating to a mixed approach,
where basic operating system functionalities take advantage
of full-virtualization and advanced functionalities such as
inter-domain communication remain para-virtualized. In
this paper, we discuss the key features for embedded vir-
tualization. We show how our embedded hypervisor was
designed to support these features, taking advantage of the
hardware-assisted virtualization available to the MIPS fam-
ily of processors. Different aspects of our hypervisor are
evaluated and compared to other similar approaches. A
hardware platform was used to run benchmarks on virtu-
alized instances of both Linux and a RTOS for performance
analysis. Finally, the results obtained show that our hyper-
visor can be applied as a sound solution for the IoT.

CCS Concepts
•Computer systems organization → Embedded soft-
ware; Real-time operating systems; Real-time system
architecture;

Keywords
Embedded Virtualization, Hardware-assisted Virtualization,
Real-time

1. INTRODUCTION
In recent years, virtualization technology has quickly mo-

ved towards embedded systems (ESs) motivated by the in-
creasing processing power of the embedded processors. Sim-
ilar to what happened to general purpose computers, the
late adoption of hardware-assisted virtualization for embed-
ded processors made the para–virtualization rule the deve-
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lopment of ES hypervisors. However, the main ES manu-
facturers already designed virtualization extensions for their
processor families, e.g., PowerPC, ARM and MIPS. This en-
abled more design choices for hypervisor developers. Hard-
ware–assisted virtualization makes it feasible to virtualize an
operating system (OS) without any modification – an impor-
tant feature to support legacy software. However, advanced
hypervisor features like inter-VM (virtual machine) commu-
nication or shared devices may require para–virtualization.
The resulting hypervisor has a hybrid architecture that com-
bines full-virtualization and para-virtualization. It is im-
portant to highlight that the architectural diversity of ESs’
goals and requirements have driven the appearance of sev-
eral ES hypervisors, e.g., OKL4 [6], MultiPARTS [14] and
AUTOSTAR [12], each one with its specific purposes.

The Hellfire Hypervisor was designed to support the re-
cently released MIPS virtualization module (MIPS-VZ) and
to keep small footprint for IoT applications. In this pa-
per, we analyze the MIPS-VZ module showing how it can
be used to achieve the essential features for embedded vir-
tualization. Our main contribution is to demonstrate how
to provide temporal isolation while reducing the interrupt
delivery time for guest OSs taking advantage of hardware-
assisted virtualization. Additionally, we conducted experi-
ments to quantify four different aspects of our hypervisor:
memory footprint, virtualization overhead, inter-VM com-
munication performance and real-time capabilities.

The paper is organized as follows: Section 2 presents the
related work, showing advantages and disadvantages of other
similar approaches. Section 3 explains the implementation
strategy using the MIPS VZ module of the M5150 processor.
Section 4 depicts the results of our experiments. Finally,
Section 5 presents the conclusion.

2. RELATED WORKS
Type-1 hypervisors are a software layer that interacts di-

rectly with the hardware, creating an abstraction layer be-
tween the virtualized OSs and the hardware platform. Type-
2 hypervisors perform on top of a native OS. Both types are
currently used for embedded virtualization. However, Type-
1 hypervisors are preferable, especially for the IoT field,
since they do not require an underlying OS resulting in a
smaller footprint. Three different embedded virtualization
approaches are discussed below. The memory footprint and
overall performance are compared to our hypervisor in Sec-
tion 4.

KVM (Kernel-based Virtual Machine) is a Type-2 hyper-
visor primarily designed for the x86 architecture with virtu-
alization extensions (INTEL VT and AMD-V). It consists of
a loadable Linux kernel module that provides a virtualiza-
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tion infrastructure [8]. KVM executes multiple unmodified
(full-virtualized) Linux or Windows VMs with virtualized
hardware: network card, disk, graphics adapters among oth-
ers. Dall and Nieh [4] proposed a KVM port to ARM archi-
tecture with virtualization extensions, called KVM/ARM.
This architecture takes the advantage of the wide Linux
hardware support to the ARM family to simplify the hyper-
visor development and maintenance. It became the stan-
dard ARM hypervisor for Linux platforms. Experimental
results showed an average of 10% overhead when compared
to native execution and significantly lower overhead when
compared to KVM x86 virtualization. KVM was designed
for general-purpose computing. Therefore, it does not com-
ply with ES constraints like small footprint and real-time.
Additionally, KVM/ARM relies on the Linux OS scheduler
which means it is difficult to improve real-time response on
virtualized OSs.

Yunfang et al. [13] proposed the KVM-Loongson, a virtu-
alization solution for MIPS based on KVM to the Loongson-
3A [9] processor. Such processors do not implement the re-
cently released MIPS virtualization extensions. Nonetheless,
MIPS without the VZ module does not allow full–virtualiza-
tion because it cannot support complete virtualization of
kernel virtual address space. A possible solution targeting
full-virtualization is to modify the processor core as pre-
sented at [2]. However, the authors modified the KVM
(primarily designed for full-virtualization) to support para-
virtualization. The authors performed an extensive study to
determine all Linux kernel privileged instructions that could
be substituted by hypercalls. As a result, they showed that
about 98.6% of the privileged instructions can be substi-
tuted. Additionally, their memory virtualization overhead
is about 4% on average. The main disadvantage of their
technique is the effort to para-virtualize the Linux kernel
and the impossibility to support proprietary software.

Xvisor [11] is an embedded hypervisor which supports
both full and para-virtualization. Similar to other embed-
ded hypervisors, it aims to provide a lightweight layer with
reduced overhead and small footprint. Full-virtualization
is supported by the use of ARM virtualization extensions
avoiding the need for guest OS modifications. Still, it can
map interrupts directly to guests, allowing guest interrupt
handling without the intervention of the hypervisor. How-
ever, Xvisor only supports para-virtualization on the MIPS
24k processor model under the Qemu emulator.

To the best of our knowledge, the Hellfire Hypervisor is
the first embedded hypervisor to implement support for the
MIPS-VZ module with adequate performance and footprint
targeting IoT class devices.

3. VIRTUALIZATION STRATEGY
The development of the presented hypervisor was guided

by a set of key features required for embedded virtualization,
as described:

• Hardware-assisted virtualization: Hardware-assistance
reduces the hypervisor complexity and contributes to
a lower memory footprint. Specifications of the vir-
tualization extensions for the ARM and MIPS archi-
tectures have already been presented and several man-
ufacturers have released their virtualization platforms;

• Real-Time Support : Real-time is an intrinsic charac-
teristic of embedded systems. The hypervisor should
be predictable and ensure temporal isolation between

general-purpose operating systems (GPOSs) and real-
time applications;

• Coexistence of multiple GPOSs and Real-Time Instan-
ces: GPOSs are required for certain ESs, such as smart-
phones and setup boxes, due to its wide diversity of
software. However, GPOSs have poor real-time res-
ponsiveness. Thus, the hypervisor must guarantee tem-
poral isolation between GPOSs and real-time operat-
ing systems (RTOSs);

• Direct Mapped and Shared Devices: When it is ne-
cessary to share a physical device, e.g. an Ethernet
device, the hypervisor can use the para-virtualization
technique avoiding excessive overhead caused by emu-
lation techniques. However, when device sharing is not
needed, the hypervisor must map the device directly
to the desired guest OS for better performance;

• Security : The hypervisor must provide robust spatial
isolation between VMs, i.e., a misbehavior in the guest
OS should not affect the behavior of the other guest
OSs or even the hypervisor;

• Inter-VM communication: A virtualized system is com-
posed by a set of VMs. Possibly, these VMs will re-
quire some level of interaction among them. Thus, an
efficient inter-VM communication mechanism must be
available in the hypervisor.

The following subsections describe our implementation
strategy for memory virtualization, fast interrupt delivery
and real-time support. Additionally, our experience to sup-
port Linux in the hypervisor is described.

3.1 Virtualization Model
The Hellfire Hypervisor, first presented in [15], is a Type-

1 hypervisor specially designed for embedded virtualization.
Figure 1 shows the architecture for virtualization imple-
mented by our hypervisor. The first software layer is the
hypervisor, which is responsible for the creation and man-
agement of each VM. The current implementation supports
only single-core processors, since the M5150 processor used
for test and validation is a single-core device. The hypervisor
controls the memory space of each VM for memory isolation,
which is better explained in Subsection 3.2. To guarantee
temporal isolation, GPOSs are mapped onto best-effort vir-
tual CPUs (VCPUs) while real-time instances are mapped
onto real-time VCPUs, which is further explained in Subsec-
tion 3.3. The hypervisor keeps spatial isolation between the
guest kernel and guest applications while protecting itself.
This protection is possible because processors implement-
ing the MIPS-VZ module support a third level of execution
(supervisor mode) with higher privilege designed for the hy-
pervisor. Therefore, the hypervisor is protected from the ac-
tions of malicious or misbehaving guest OSs, and the guest
OSs are protected from their applications. Embedded hyper-
visors designed for processors without proper virtualization
assistance cannot distinguish the memory space between the
guest kernel and applications, since the entire guest executes
in the unprivileged processor’s mode [16].

The hypervisor allows the implementation of the para-
virtualization concept to provide extended services to the
guest OSs. Extended services are useful to expand the vir-
tualization functionalities, i.e., to implement functions that
do not exist in a pure fully-virtualized system. For example,
inter-VM communication and real-time support.
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Figure 1: The overall view of our virtualization model.

3.2 Virtual Memory Management
Processors designed to support rich OSs must support a

memory management unit (MMU) to provide virtual mem-
ory mechanisms. Thus, the OS can implement memory iso-
lation between processes increasing software reliability and
security. On MIPS, translation look-aside buffer (TLB) is
a common hardware construction to support MMU. In a
non-virtualized system, the OS translates virtual addresses
(VAs) to physical addresses (PAs) using its page table to
configure the TLB. In a virtualized system, VAs are trans-
lated to intermediate physical addresses (IPAs). Processors
without the proper virtualization support require a tech-
nique that keeps the correct translation from IPA to PA in
an intermediate page table managed by the hypervisor. This
technique is called shadow page table.

Current virtualization extensions for embedded processor
families, like MIPS and ARM, implement a second-stage
TLB translation in hardware. Essentially, the hardware
performs the translation from IPA to PA without software
intervention. The hypervisor still manages its page table
mapping IPA to PA in a second-stage TLB. The guest OS
is allowed to directly configure the first-stage TLB. The re-
sulting PA is generated by the hardware combining both
TLBs. This mechanism decreases the number of hypervi-
sor exceptions drastically and also hypervisor complexity.
The M5150’s TLB supports a second-stage TLB transla-
tion and a range of page sizes from 1Kbyte to 256Mbytes.
Our hypervisor takes advantage of large pages to avoid TLB
misses during IPA to PA translations. VMs are loaded into a
contiguous memory region, and the IPA translation is stat-
ically mapped to reserved TLB entries. For example, in
order to allocate 32Mbytes of physical address space to a
VM, the hypervisor uses a dual-TLB entry (MIPS’ TLB
supports two pages by TLB entry) to map two consecutive
16Mbyte pages in the second-stage TLB. Figure 2 depicts
this scheme. The guest OS manages the first-stage address
translation in the exactly same way on a non-virtualized sys-
tem. In the second-stage translation, the hypervisor maps
a virtual memory address range to a contiguous physical
address range.

A simplified virtual memory management is expected to
bring advantages to ESs. First, it avoids the second-stage
TLB misses by keeping the VM entirely mapped at the TLB
during its execution. Thus, RTOSs that do not implement
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Figure 2: Virtual memory organization view of our hyper-
visor.

virtual memory support will not suffer additional delays due
to hypervisor paging management. Secondly, some ESs have
a limited number of virtual machines that can be executed
and some of them keep a static configuration during their
execution. For those systems, memory fragmentation due to
contiguous guest OS allocation is not a major problem.

3.3 Temporal Isolation
The hypervisor specifies two different kinds of VCPUs:

best-effort VCPUs (BE-VCPUs) and real-time VCPUs (RT-
VCPUs). RT-VCPUs have priority over BE-VCPUs and fol-
low the policy of the Early Deadline First (EDF) [7] schedul-
ing algorithm. BE-VCPUs are scheduled by a best-effort
scheduler algorithm that is invoked when there are not RT-
VCPUs ready to execute.

To improve the temporal isolation between BE-VCPUs
and RT-VCPUS, a special VM called RT-VM was designed.
The RT-VM does not support RTOSs. Instead, it imple-
ments what is called a Real-Time Manager (RTM), which
supports communication facilities and basic user libraries.
The RTM can map its tasks directly to RT-VCPUs in the
hypervisor scheduler, i.e., it does not implement a sched-
uler on its level avoiding the hierarchical scheduling problem
[10] and improving performance. The hierarchical schedul-
ing problem happens when the hypervisor schedules VCPUs
and a guest executing in a VCPU schedules its own processes
or tasks. Thus, the guest’s task will be negatively influenced
by the hypervisor scheduler. In addition, the RT-VM pro-
vides spatial isolation between BE and RT-VCPUs eliminat-
ing the priority inversion problem, i.e., when a BE-VCPU
holds a lock required by a RT-VCPU.

The RTM API implements the hypercall concept to pro-
vide control to other VMs over the real-time services in the
RT-VM. Thus, a GPOS can implement hypercalls to take
advantage of the real-time services. This API consists of
simple calls, such as start or stop a real-time task. Thus,
other OSs, like Linux, can control the real-time services.

3.4 Fast Interrupt Delivery
In some cases, it is desirable to map a hardware device

directly to a guest OS, e.g., a serial port or a USB device.
However, in processors without proper hardware virtualiza-
tion, all interrupts are handled by the hypervisor. This pre-
vents an efficient implementation for directly mapped I/O,
because it would require the processor’s ability to redirect
interrupts to the target guest OS without hypervisor inter-
vention. This mechanism is called interrupt pass-through.
Additionally, the hypervisor must configure an entry in its
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Table 1: Example of a set of rules for a system configured
with three guest OSs.

Rules
Guests DMI Root Int Preemptible
RT-VM Timer None No
RTOS Timer, Serial 1 Serial 1 Yes
Linux Timer, Ethernet Network Yes

page table that maps the physical device address to the in-
termediate physical address (see Subsection 3.2) as expected
by the guest OS. Thus, the guest OS will handle interrupts
and read or write to the device without any hypervisor in-
tervention.

When an interrupt is asserted during the target guest OS’s
execution, it will be handled without any hypervisor inter-
vention. However, if the interrupt is asserted during the
execution of any other guest OS, the hypervisor may de-
lay the interrupt or intercept the interrupt and schedule it
to the target guest. The first option results in long delays.
Our hypervisor implements a fast interrupt delivery policy
to allow general-purpose OSs and RTOSs to coexist. This
policy allows for the description of the system behavior with
different sources of interrupts and guest OSs with different
needs. For each guest OS, the designers define which inter-
rupts are directly mapped for each guest OS. Additionally, a
higher priority guest OS can be marked as non-preemptible.
Table 1 shows a possible configuration for three guest OSs
instances: Linux, RTOS and RT-VM. The RT-VM is marked
as non-preemptable. The RTOS has the Timer and Serial 1
interrupts directly mapped. The column Root Int describes
which interrupts will trigger the hypervisor when the guest
is not executing. In this case, the hypervisor will intercept
the Serial 1 rescheduling the RTOS. The Linux guest has the
Timer and the Network interrupts sources directly mapped.
The hypervisor will intercept network interrupts when the
Linux guest is not executing only if the current guest is
marked as preemptible. In the example, the hypervisor will
preempt the RTOS to deliver network interrupts to Linux,
but the same interrupts will be delayed if the RT-VM is
executing. This configuration is used in Subsection 4.4 to
evaluate the effectiveness of the technique.

3.5 Linux port experience
Linux/MIPS is the port of Linux to the MIPS architec-

ture. We worked with the Linux kernel release 4.0.0 which
already has proper support for the SEAD-3 platform board.

Virtualization provides a subset of the entire hardware re-
sources to a guest OS. In this case, we choose to reserve the
network card, a serial port and a small amount of the main
memory for the Linux guest, while sharing the processor
with one or more RTOSs. Its is important to highlight that
we are not interested in sharing the network or serial port
among guest OSs. To begin with, we are focused on explor-
ing assisted virtualization benefits. However, we support
a para-virtualized driver on our Linux guest for inter-VM
communication purposes. It is important to highlight that
the para-virtualized driver is intended for inter-VM commu-
nication only and is not required for Linux virtualization.
Thus, our full-virtualized hypervisor supports Linux with-
out any kernel modification. Additionally, we focused on
avoiding hypervisor interventions during Linux guest execu-
tion as much as possible. Thus, we take advantage of the
configurable privileges access to the MIPS VZ guest copro-
cessor 0 (GCP0). The M5150 processor allows the designer
to configure privileged access to different instructions and

GCP0 subsets. The designers can choose fewer hypervisor
interventions, consequently less control over the processor
hardware. Or they can decide for more hypervisor interven-
tions which gives them better hardware control. Yet, some
virtualized systems require more accurate hardware control,
e.g., when guest OSs wish to configure different cache ma-
nagement algorithms. In this case, the hypervisor will keep
the cache instructions privileged and control the cache oper-
ation. In our hypervisor, we allowed complete access to the
GCP0 co-processor during Linux execution. However, some
registers or specific bits of registers are always privileged.
For example, the reduced power mode bit in the status reg-
ister will always trap the hypervisor on guest write attempts.
Another example is the processor identification (PID) regis-
ter. When the guest OS is trying to identify the processor,
the hypervisor can return a different processor identification.
For example, in the M5150 processor the hypervisor can re-
turn the 4Kc processor identification limiting the guest to a
compatible processor subset.

We determined the number of guest exceptions generated
during the Linux kernel boot process. However, we noted
that, even with the maximum level of privilege, the ker-
nel was still generating an excessive number of exceptions
due to GCP0 access to privileged registers. In fact, the
Linux/MIPS kernel performs the pooling of the PID register,
which is always a privileged GCP0 register in the MIPS VZ
specification. In the MIPS R4000/R4400 processors before
version 5.0, there is a hardware bug that avoids generating
the timer interrupt if the counter register is read at the exact
moment that it is matching the compare register. Thus, the
Linux/MIPS always checks the PID to avoid reads to the
counter register on R4000/R4400 processors. In the MIPS
architecture, it is easy to obtain the PID performing a mfc0
instruction. However, a virtualized Linux/MIPS instance
will suffer a huge overhead impact. Thus, we modified the
Linux/MIPS source code to avoid the frequent reads from
the PID register. The modifications are restricted to three
punctual routines: can use mips counter(), get cycles() and
random get entropy(). As the kernel already keeps the pro-
cessor identification number obtained in the early boot stages
in a data structure, we just substituted the GCP0 reads to
data access in memory. This punctual modification reduced
the number of guest exceptions from 1,476,000 to just 6.
It is important to highlight that such a modification does
not imply para-virtualization, since, we do not exchange the
privileged GCP0 read by a hypercall. Instead, the proces-
sor identification number is obtained from a privileged read
to the GCP0, but the subsequent reads were substituted
by memory accesses. The remaining 6 guest exceptions are
read/write to GCP0 privileged registers including the PID
register itself.

4. EXPERIMENTAL RESULTS
In order to validate our tests and conduct performance

measurements we based our experiments on the SEAD-3 de-
velopment board. The SEAD-3 supports MIPS processors
allowing the user to evaluate the cores in a FPGA environ-
ment. The board can be used for performance benchmarking
and software development. Our board is configured with a
M5150 processor soft-core running at 50MHz and 432Mbytes
of main memory. Additionally, the board has several periph-
erals including Ethernet network device, two serial ports and
USB, among others. For now, our hypervisor is supporting
direct mapping for both serial and network devices. We
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quantified four different aspects of our hypervisor: memory
footprint (Subsection 4.1) virtualization overhead (Subsec-
tion 4.2), inter-VM communication delay (Subsection 4.3)
and the fast interrupt delivery associated to real-time ser-
vices (Subsection 4.3). The experiments environment consist
of the Linux/MIPS kernel with our proposed modification to
avoid the PID register polling as explained in subsection 3.5.
The same kernel binary was used for both non-virtualized
and virtualized experiments since our hypervisor allows full-
virtualization.

4.1 Hypervisor Memory Footprint
The memory footprint is the amount of main memory that

an application occupies while executing. Similar to OSs,
the hypervisor footprint must be as conservative as possi-
ble. This is especially critical when targeting the IoT class
of applications, where target devices tipically have severe
memory limitations.

The Hellfire Hypervisor requires 35,008 bytes of memory
for the code segment (using default GCC compiler opti-
mizations). The read-only data segment needs 2,300 bytes.
The data segment (global variables) is only 976 bytes. The
amount reserved for the stack is 2,048 bytes. Finally, the
memory segment reserved for dynamic allocation (heap) is
20,480 bytes. Thus, the hypervisor footprint during its exe-
cution is 60,812 bytes. However, the heap size requirement
may vary depending on the application. The VMs and VC-
PUs data allocation happen dynamically during the hyper-
visor initialization. The data structure to represent a VM
requires 56 bytes of the heap. The VCPU data structure
varies depending on the inter-VM communication require-
ments. If inter-VM communication is not required for a
virtualized system, the VCPU data structure will only need
780 bytes. Otherwise, the space occupied by the message
queue will be added to the total amount required by the
data structure. For example, a VCPU compiled to support
a queue for five messages with 128 bytes each will result in
1460 bytes. After the initialization, heap allocation is no
longer required. The maximum number of VMs allowed by
the processor’s hardware is 7. Thus, a virtualized system
executing 7 VMs with a VCPU attached to each one will
require 10,612 bytes of the heap.

KVM requires a kernel module (3 to 4MB) and the Qemu
(20MB). Besides, it requires a Linux host. Xvisor requires
from 4 to 16MB of RAM for execution. The footprint of
both hypervisors is unacceptable for IoT devices which is
typically around a few hundred kilobytes. In addition to
the small footprint, our hypervisor allows more demanding
applications of the IoT class to run on more powerful em-
bedded devices such as the SEAD-3 board.

4.2 Virtualization Overhead
We analyzed the virtualization overhead caused by the

hypervisor for CPU-bound and I/O-bound applications in
a Linux guest. For a better understanding of the influence
of our hypervisor’s context-switching on guest performance,
we conducted experiments for different hypervisor scheduler
time slots or quantums. Thus, the non-virtualized perfor-
mance was compared to scheduler quantums of 30, 20 and
10 milliseconds (ms). For all experiments, we used just one
Linux guest, since, we were focused on obtaining the di-
rect hypervisor influence over the performance. Addition-
ally, 32MB of main memory was reserved for the Linux guest
in all experiments .

CPU-bound benchmarks. UnixBench is a benchmark
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Figure 3: Performance overhead for user-land and syscall
applications relative to non-virtualized performance.

used to evaluate performance on Unix-Like systems provid-
ing indicators for different system aspects. In this work,
we used the byte-unixbench [1] version. We divided the
benchmarks into two different groups: user-land and system
calls (syscalls) applications. The user-land group is com-
posed of synthetic applications that perform CPU-intensive
computation in user-space, i.e., they do not require context-
switching between the user and kernel-space. The syscall
group consists of synthetic applications that make intensive
use of syscalls which require context-switching between the
user and kernel-space. However, these benchmarks do not
require context-switching between the guest and hypervi-
sor. Thus, the only intervention during guest execution is
the hypervisor’s scheduler interrupt timer. We performed
each benchmark 10,000 times to determine the average exe-
cution time. Figure 3 shows the performance results for the
user-land and syscall application groups. The results were
normalized relative to non-virtualized performance. Thus,
higher values mean higher performance, since they are closer
to the native execution speed. Moreover, the percentage
values shown in Figure 3 represent the performance lost.
As expected, the overhead increased slightly with a smaller
quantum due the increasing hypervisor intervention. In the
user-land group, the most affected application was dhry2
with a performance penalty of 5.57% when compared to a
10ms scheduler quantum. Additionally, most of the applica-
tions suffered an overhead lower than 3% with a 30ms sched-
uler quantum. The syscall group suffered a greater perfor-
mance impact since the benchmarks force context-switching
between the user and kernel-space in the Linux guest. In the
worst case, the syscall close resulted in a penalty of 15.25%
in performance with a 10ms scheduler quantum. However,
for the majority of the cases the overhead was lower than
9%.

I/O-bound benchmark. Our hypervisor implementa-
tion supports the SEAD-3’s network device directly mapped
to the Linux guest allowing it to receive network packets
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without any hypervisor intervention. We used the Iperf tool
to measure the network bandwidth between the SEAD-3
board and a Linux host. Thus, we determined how our vir-
tualization layer affects the I/O performance of the network
device when directly mapped. Iperf consists of a client/server
application originally developed by NLANR/DAST as a tool
for measuring maximum TCP and UDP bandwidth perfor-
mance [5]. In our experiment, we executed the Iperf server
on a Linux host and the Iperf client at the SEAD-3 board.
We performed the Iperf TCP bandwidth measurement for
1 minute for each experiment case. Figure 4 shows the re-
sults. The percentage values over the bars are the virtual-
ization penalty relative to native execution. We obtained a
throughput of 8.32 Mbits/second in the native Linux execu-
tion. With a 30 ms scheduler quantum, the overhead was
1.84%. As expected, the overhead increased slightly with
a smaller quantum reaching 4.39% for a 10 ms quantum.
Even with smaller quantums, we consider the overall results
optimistic and this can be attributed to minimal hypervisor
intervention.

4.2.1 Comparative Analysis
A direct performance comparison among different embed-

ded hypervisors is difficult due to the large variety of embed-
ded processors and benchmarks used for performance mea-
surement. Thus, only relative performance between native
and virtualized execution can be considered. Memory virtu-
alization directly affects performance on virtualized systems.
Moreover, virtualization on processors without hardware-
assistance will cause many more TLB miss exceptions in
virtualized instances than in native executions.

The KVM-Loongson [13] uses different strategies to min-
imize this issue such as hypercalls to avoid the trap-and-
emulate technique, and large page sizes to reduce the num-
ber of TLB-misses. Thus, KVM-Loongson has an overhead
between 6 and 22% for virtualized applications, compared
to the non-virtualized execution measured by the SPEC
CINT2000 benchmark. The KVM/ARM [4] approach uses
the ARM virtualization extensions minimizing the virtual-
ization overhead. However, KVM/ARM still implements
a complete memory management mechanism. The authors
claim an overall overhead around 10% using different ap-
plications and benchmarks like MySQL, Apache, and hack-
bench. Xvisor presents overhead up to 12.5% lower than
KVM/ARM on the hackbench benchmark. Our approach
does not implement a complete virtual memory manage-
ment in the hypervisor level (see Subsection 3.2). However,

it uses the second-stage TLB and large pages to map the
guest avoiding any hypervisor intervention for memory man-
agement during guest’s execution. The average overhead of
the 30ms scheduler quantum, measured by the UnixBench
benchmark, was 3.43% relative to the native performance
for CPU-bound applications.

4.3 Inter-VM communication response time
We determined the round-trip time (RTT) of the mes-

sage for our inter-VM communication mechanism between a
Linux and an RTOS guest. In order to do so, an echo server
application in the RTOS was implemented, i.e., an applica-
tion that replayed all messages received. In Linux, we imple-
mented a client application to send 16, 32 and 64 bytes long
messages reading the server’s response. The measurement of
the average RTT for 10,000 messages for each different size
resulted in 59.90, 59.90 and 59.99ms with a standard devia-
tion of 0.71ms, 0.71ms and 0.69ms, respectively. An increase
in the message size from 16 to 64 bytes does not impact sig-
nificantly in the RTT. The imposed overhead is caused by
message copies from the sender’s buffer to the target VCPU
and from the target VCPU to the receiver’s buffer (similar to
Linux pipes). Our message exchange mechanism causes an
additional copy but it allows a better communication con-
trol on the hypervisor. In this experiment, we applied our
fast interrupt delivery policy. Thus, once the Linux guest
sent a message, the hypervisor rescheduled the VMs to the
destination guest resulting in a faster response and reducing
the standard deviation.

4.4 Interrupt Handling Interference on Real-
time Tasks

A sequence of four experiments were performed to show
how the hypervisor can be configured to support real-time
services while minimizing the interrupt delivery delay on
BE-VCPUs. Additionally, these tests determined how RT-
VCPUs are influenced by external system interrupts. For
this, the RT-VM and the fast interrupt delivery capabilities
were combined in the same virtualized system. The sys-
tem configuration for this experiment consisted of a Linux
guest, a RTOS guest and a RT-VM. The Linux guest was re-
sponsible for network communication with external devices
because it was configured with TCP/IP support and the
Ethernet device was directly mapped to it. The RTOS was
responsible for managing the real-time services (start and
stop). The RT-VM implemented a real-time service to per-
form the adaptive differential pulse-code modulation (AD-
PCM) algorithm [3]. ADPCM is a technique to convert ana-
log sound to digital information. It is used for voice commu-
nication and sound storage. When the algorithm is encoding
or decoding for sound reproduction purposes, it must keep a
constant bit rate to avoid sound glitches. Thus, the hypervi-
sor must guarantee that concurrent events will not affect the
ADPCM execution. On the RT-VM, the ADPCM algorithm
was mapped to a RT-VCPU that is scheduled by the EDF
algorithm. The real-time parameters of the RT-VCPU were:
deadline 10, period 10, and capacity 1. Thus, a tenth of the
processor time is reserved for the RT-VCPU. The remaining
time is available to the BE-VCPUs responsible for executing
the Linux and RTOS guests. The final system configuration
consisted of two BE-VCPUs and 1 RT-VCPU.

Experiment 1. This experiment consisted in two dif-
ferent measurements. First, we determined how much time
the ADPCM algorithm takes to encode and decode an array
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Table 2: Median (m), 95th percentile (pth), worst execution
case (WEC) and best execution case (BEC) to ADPCM en-
coding and decoding and the RTT of the messages for dif-
ferent system configurations in milliseconds.

# Exp. Test m pth WEC BEC

1
Enc. 1487 1487 1487 1217
Dec. 1187 1188 1188 917
RTT 1.05 1.24 3.25 0.99

2
Enc. 1487 1488 1488 1216
Dec. 1188 1188 1189 917
RTT 5.78 45.5 66.6 0.78

3
Enc. 2082 2705 2997 1217
Dec. 1211 2390.1 2677 917
RTT 1.45 1.74 63.6 1.07

4
Enc. 1487 1488 1490 1217
Dec. 1188 1188 1188 917
RTT 1.48 20.81 65.8 1.05

of raw data. Second, we determined the network interrupt
response time for a native Linux execution. Thus, the AD-
PCM algorithm was performed during 1,000 encoding and
decoding cycles and the time of each execution was recorded.
Table 2 shows the numeric results for this experiment, see
row (1). Additionally, it was plotted in the histogram shown
in Figure 5(a). During this measurement, the RT-VCPU ran
without interventions. Thus, obtaining the execution time
without the influence of other VCPUs or interrupts. The
worst case execution (WEC) time for encoding was 1,487
ms and 1,217 ms for decoding. To measure the network in-
terrupt response time in the Linux, the ping tool was used to
generate echo request messages from a host computer to the
SEAD-3 board at a rate of 20Hz. Each test case consisted
of 10,000 echo request messages followed by their respective
response messages (echo reply). Thus, the round-trip time
(RTT) of the messages for network communication with the
SEAD-3 board was determined. The histogram is showed in
Figure 5(b).

Experiment 2. The second experiment showed the be-
havior of the ADPCM execution time and the RTT of the
messages when the fast delivery policy was not used. This
is the simplest configuration, where all interrupts are post-
poned to the next execution of the target VCPU. This scheme
guarantees a temporal isolation to the RT-VCPU since inter-
rupts to other VMs do not preempt its execution. Line (2)
of the Table 2 shows the numeric results. It confirms that
the ADPCM’s execution time was not affected by the ex-
ternal interrupts. The corresponding histogram of the AD-
PCM execution was omitted since it is similar to Figure 5(a).
However, this scheme had an undesired effect over the RTT
of the messages: the average response time increased sub-
stantially. Delays in the Linux interrupt handler caused by
the hypervisor impacted directly in the RTT. The numerical
results for the RTT are showed in Table 2 (see line (2)). Fig-
ure 5(c) is a histogram for 10,000 messages recorded during
the experiment.

Experiment 3. The third experiment tried to minimize
the RTT of the ICMP messages applying the fast interrupt
delivery policy. However, the RT-VM was kept as preempt-
able for an evaluation of how system interrupts can interfere
on the RT-VCPU’s execution. Thus, both the RT-VCPU
and the RTOS could be preempted for interrupts targeting
the Linux guest. Similar to the previous experiments, 1,000
ADPCM encoding and decoding cycles and 10,000 messages
RTT were recorded. Figure 5(e) and the numerical results
(see line (3) of Table 2) show that the RTT of the mes-

sages improved significantly. Most of the RTTs were close
to native execution speed, according Figure 5(b). However,
some RTTs suffered a long delay, around 31 ms and 61 ms.
This is the result of the fast interrupt policy with recycled
quantum, i.e., when the target guest is rescheduled due to
an interrupt it performs only during the remainder of the
scheduler quantum. This is to preserve the scheduling time
coherency to the EDF algorithm. Thus, the long delay is
due to the insufficient time remaining in the current quan-
tum. Moreover, the interrupt handling finishes only on the
next Linux guest execution. On the other hand, Figure 5(d)
showed that ADPCM execution time was affected, increas-
ing significantly. This can be confirmed by the numerical
results in the line (3) of Table 2.

Experiment 4. The fourth experiment consisted of com-
bining the fast interrupt delivery policy with a non-preemp-
table RT-VM. This system configuration is similar to that
proposed in Table 1. This configuration provides the best
temporal isolation for RT-VCPUs while improving the re-
sponse for external interrupts. This is possible because the
fast interrupt delivery policy preempts the VCPUs for faster
response time. However, the RT-VM is marked as non-
preemptable and the result is that its RT-VCPUs cannot be
preempted. This guarantees a tenth of the CPU to the RT-
VCPU executing the ADPCM algorithm. Line (4) of Table
2 shows the numerical results for this experiment. The worst
execution case to encoding and decoding the ADPCM algo-
rithm is similar to the execution time presented in line (1)
(non external interference). The corresponding histogram
of the ADPCM execution was omitted since it is similar to
Figure 5(a). This shows the effectiveness of the temporal
isolation provided by the hypervisor. In addition, the RTT
of the messages improved significantly. The histogram in
Figure 5(f) shows that some RTTs are spread between 0.7
and 31ms. This is caused by the RT-VCPU in the RT-VM.
The ICMP messages arrived during its execution are delayed
until the end of the quantum. The peak near 61ms is due
to the recycling quantum scheme, as explained before.

5. CONCLUSION
In this paper, we explored the MIPS-VZ module to im-

plement a lightweight virtualization layer for embedded sys-
tems. A sequence of experiments was performed in the
SEAD-3 development board to evaluate different aspects of
the hypervisor. One important aspect discussed was the
memory footprint. The hypervisor footprint is considered
acceptable for IoT devices. The overhead impact on Linux
was determined using benchmarks for virtualized and non-
virtualized executions showing that the overall overhead is
small and comparable to other hypervisors. Moreover, the
hypervisor presents a low overhead for directly mapped de-
vices. The inter-VM communication mechanism presented
a considerable overhead caused by the data copies between
the VMs and the hypervisor. However, the usage of the
hypervisor as a communication arbiter improves the secu-
rity. The temporal isolation was tested, showing that the
fast interrupt policy with non-preemptable RT-VMs is an
effective method to combine real-time tasks and fast inter-
rupt handling. The overall results are promising and show
that the hypervisor implementation is efficient in in terms
of both performance and responsiveness. Moreover, the ex-
periments showed that the hardware-assisted virtualization
can be used to improve responsiveness while keeping the
simplicity of the implementation.
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(a) Experiment 1. ADPCM execution.
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(b) Experiment 1. RTT of the messages.
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(c) Experiment 2. RTT of the messages.
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(d) Experiment 3. ADPCM execution.
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(e) Experiment 3. RTT of the messages.
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(f) Experimet 4. RTT of the messages.

Figure 5: Histograms of the resulting measurements of the experiments.
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