
Hardware-assisted virtualization targeting
MIPS-based SoCs

Alexandra Aguiar
alexandra.aguiar@pucrs.br

Carlos Moratelli
carlos.moratelli@acad.pucrs.br

Marcos L.L. Sartori
marcos.sartori@acad.pucrs.br

Fabiano Hessel
fabiano.hessel@pucrs.br

Faculty of Informatics - PUCRS - Av. Ipiranga 6681, Porto Alegre, Brazil

Abstract—Virtualization has become a hot topic in embedded
systems for both academia and industry development. Among its
main advantages, we can highlight (i) software design quality;
(ii) security levels of the system; (iii) software reuse, and; (iv)
hardware utilization. However, it still presents constraints that
have lessened the excitement towards itself, since the greater
concerns are its implicit overhead and whether it is worthy
or not. Thus, we detail how to adapt an existing MIPS-based
architecture aiming to support the virtualization principles. In
this paper we present detailed information about the architecture
implementation and results demonstrating its correctness and
efficiency.

I. INTRODUCTION

Multi-functioned Embedded Systems (ES) are now consid-
ered as a solid reality in everyday’s lives since each more
new and exciting features and devices are available. However,
such a wide range of applications impacts directly on their
design, constraints and goals. Also, embedded systems are
increasingly counting on typical general-purpose computers’
characteristics, such as the possibility of the final user to
develop and download new applications onto the device
throughout its lifetime [1]. Within this context, embedded
software itself has become a subjacent layer in the design
flow unlike older approaches, where hardware itself used to
be more prominent.

In spite of that thought transformation, some traditional dif-
ferences between general-purpose and embedded systems still
remain [2]. Usually timing constraints are present along with
limited energy consumption budgets and limitations regarding
the total memory size. Still, the wide variety of predominant
architectures present in ESs also contributes to increase the
difficulty in their current design.

Ergo, virtualization, rather a successful technique exclu-
sively applied on general-purpose computers, arises as a possi-
ble solution to many of these problems, as it can increase ESs’
performance, software design quality and security levels while
reducing their manufacturing costs [3]. However, due to the
typical embedded constraints, much effort has been spent in
order to demonstrate that virtualization can indeed improve the
overall system quality at a reasonable cost [4], [5], [6], [7], [8].

Among all these efforts to apply virtualization on embedded
systems, the main implementation obstacles concern some of
these systems’ characteristics and their needs, which can be
often conflicting with non-virtualized embedded systems. For
example, Heiser [9] highlights the need to run unmodified

guest OS and applications besides providing strong spatial iso-
lation to improve security. In [10], the need for low overhead
components are said to be fundamental. The main problem,
however, is that it is very difficult to target all such constraints
at once.

Another challenge is that these conflicting needs have
a strong relationship with the hypervisor’s implementation
that totally depends on the underlying hardware. Thus, the
architecture itself (and the characteristics of its Instruction-
Set Architecture - ISA) can make the use of embedded vir-
tualization either easier or harder [11]. In embedded systems,
different architecture options are available and we chose to
implement our solution on a MIPS-based platform, since this
architecture is widely adopted, being present in video-games,
e-readers, routers, DVD recorders, set-top boxes, etc.

In this paper, we present how to add virtualization support
to a MIPS-based architecture, in this case, specifically into
the MIPS4K processor [12]. We target systems where mem-
ory protection among virtual machines is mandatory and no
changes in the guest OSs are desired. Therefore, our solution
contemplates implementation strategies to soften the implicit
overhead of non-paravirtualized solutions as will be shown
throughout this paper. As pointed in [13] and in [3], the use
of architectural support to enable full virtualization is already
a reality also for embedded systems1 as one of the most
used architectures, ARM, has already had its own architectural
support announced [14].

The remainder of the paper is organized as it follows.
Section II shows the virtualization model we are considering.
Then, Section III presents detailed information about the
changes in the MIPS4K processor implementation to add virtu-
alization support. Section IV presents the simulation methodol-
ogy followed by Section V where the main preliminary results
are presented. Finally, Section VI concludes the paper.

II. VIRTUALIZATION MODEL

This section discusses the model we adopted to achieve and
support virtualization for mono and multiprocessed embedded
systems. The overall model is depicted in Figure 1 and detailed
in the remainder of this section. Some key concepts of our
model are described hereafter.

1In general-purpose systems, manufacturers such as Intel and AMD released
processors with hardware support for virtualization, increasing its usage
performance. Namely, Intel-VT (Virtualization Technology) and AMD SVM
(Secure Virtual Machine).

978-1-4673-2789-3/12/$31.00 c©2012 IEEE

2

Fig. 1. Virtualization model for embedded systems

• Application Domain Unit - ADU2. Each Application
Domain Unit corresponds to a virtual machine and is
intended to be used to divide the system into specialized
pieces.

• Virtual Processing Unit - VCPU. Each application do-
main can be composed by one or several Virtual Process-
ing Units, which are individually scheduled onto physical
processing units. Thus, different mapping strategies can
be used. For example, VCPUs from the same virtual
domain could be placed onto different physical processors
to increase their performance. Still, a VCPU contains a
copy of the physical processor’s registers.

• Guest OS and Tasks. Guest OSs must be able to execute
their own task-set and no modifications in their source
code are needed. This occurs because we base our plat-
form in the use of highly optimized implementation to
the hypervisor and perform emulation at low overhead
cost.

• Hypervisor. The core of our virtualization proposal is
carefully implemented aiming to reduce the overheads
of a virtualized platform. It manages the creation and
execution of VCPUs and Application Domains. Besides,
the hypervisor is responsible for an efficient scheduling
scheme where the physical processing units are always
aware of the next VCPU that needs to be executed,
decreasing their idle time.

• Physical Processing Unit - PPU. We propose the virtual-
ization of a MIPS-based platform. We expect this model
to be extended to multiprocessed embedded systems
connected through a bus. Although we are aware of the
limitations of bus-based architectures, we intend to pro-
vide nodes for future use in cluster-based multiprocessed
embedded systems [15]. The quantity of physical nodes
can be limited by the bus implementation’s constraints.

The overall model presented in Figure 1 has a large de-
pendence on the real implementation to be worthy and we
present our strategies regarding the processor in Section III.
We adopted the concept of VCPUs and PPUs as it allows more
flexible mapping strategies.

Initially, each virtual domain has a given task-set, associated
with its VCPUs. However, from the VCPUs point of view,
a single subset of the entire domain’s task-set is available

2Also referred during this paper as virtual domain and application domain

and is managed by the domain’s GuestOS. This subset can
be considered as the VCPU’s task array.

From the entire system point of view, we have the possibility
of many VCPUs per domain, as if in a matrix arrangement.
Each matrix element is independently mapped onto the PPUs.
Since we are providing a bus-based virtualization node, the
PPUs can be represented as an array of physical processors
available in the system.

Thus, the separation provided by the virtualization model
we propose can ease the dynamic mapping of tasks among
VCPUs (if supported by the GuestOS), VCPUs among PPUs
and even tasks among PPUs. Figure 2 depicts this flexible
mapping model for virtualized architectures.

Fig. 2. Flexible Mapping model for multiprocessed embedded systems

A. Related Work Concerns

We are using a mixed approach that combines full virtu-
alization and native execution, as this appears to be a valid
and ideal approach for embedded systems [13]. We are aware
of the challenges since the emulation’s overhead can become
prohibitive, but we believe that appropriate hardware support
must fill that gap. Still, in spite of the fact that most related
work deal with paravirtualization solutions, we believe that
some are worth to be mentioned.

EmbeddedXEN Project is an academic project of the
XEN.org research group where the main target regards embed-
ded real-time applications executed in ARM cores. It creates
a page table for each Guest OS when the guest domain is
created, in order to support virtual memory systems. Though
some RTOSs do not use any virtual memory technique, using
the physical memory itself, the hypervisor can map the phys-
ical memory allocated by a guest RTOS into the same virtual
memory, statically. At run time, the guest OS is executed as
if it was using a physical memory, being isolated one from
another by the page table provided by the hypervisor. This is
a very simple approach which enables the use of unmodified
OSs [16]. We use a similar concept to hide the hypervisor
from the virtual machines with the advantage that our approach
requires no changes in the guest OS.

OKL4. Implemented by OK Labs (Open Kernel Labs), it
is based in an L4 family microkernel [17]. It has a high
performance IPC (Inter-process communication) mechanism,
which helps the low overhead virtualization. A system call
activates the microkernel exception manager, converting this
event into an IPC message to the guest OS. The client deals

3

with this process as a normal system call and the answer is
returned through another IPC message [17]. In comparison
to our approach, OKL4 claims to need less than 12KLoC
(lines of code) whereas our solution counts on around 2KLoC.
Although OKL4 offers some features we are still working on,
the fact that we did not base our hypervisor on a microkernel
contributes to this significant difference.

SPUMONE. A virtualization layer that works with par-
avirtualized systems but claims to have small engineering
cost in terms of needed modifications in the guest OS[18].
The solution provides the VCPU and the idea that multiple
virtual processors can be associated with a single application
domain. However, SPUMONE provides a virtualization layer
that executes in privileged space as does the guest OS. That
is an important difference to our approach. We designed a
hypervisor that is totally invisible to the guest OS and does not
require any engineering cost, once the guest OS can execute
partially directly on the physical processor.

III. MIPS4K MODIFICATION AND VIRTUALIZATION
SUPPORT

In this section we present our implementation of a MIPS-
based processor to include the virtualization proper support.
The MIPS4K family is formed by three members: the 4Kc

TM
,

4Km
TM

, and 4Kp
TM

cores. The cores incorporates aspects of
both MIPS Technologies’ R3000 R© and R4000 R© processors
although they differ mainly in the type of Multiply-Divide
Unit (MDU) and the Memory Management Unit (MMU).

In this case:
• the 4Kc core contains a fully-associative Translation

Lookaside Buffer (TLB)-based MMU and a pipelined
MDU;

• the 4Km core contains a fixed mapping (FM) mechanism
in the MMU, which is smaller and simpler than the
TLB-based implementation used in the 4Kc core, and a
pipelined MDU (as in the 4Kc core) is also used, and;

• the 4Kp core contains a fixed mapping (FM) mechanism
in the MMU (like the 4Km core), and a smaller non-
pipelined iterative MDU.

Figure 3 depicts the most relevant blocks on the MIPS 4Kc
core: (i) Execution Core; (ii) Multiply-Divide Unit (MDU);
(iii) System Control Coprocessor (CP0); (iv) Memory Man-
agement Unit (MMU) and TLB; (v) Cache Controller; (vi)
Bus Interface Unit (BIU); (vii) Instruction Cache (I-Cache),
and; (viii) Data Cache (D-Cache).

Among these blocks, there are a few points we need to
highlight. First, the CP0 in the responsible for controlling the
TLB, the cache protocols, the processor modes of operations
and interruptions. Still, this CP0 contains 32 registers that
differ from the 32 general-purpose registers contained in the
MIPS architecture. Finally, these specific CP0 registers can
only be accessed through the use of the privileged instructions
mtc0 and mtf0. Whenever these instructions are executed in
User mode, a trap is generated.

In our work, we adopted the 4Kc core due to necessity of
memory management within our virtualization model. In the

Fig. 3. MIPS 4K core

following sections we describe the architecture we used and
the modifications that were needed to support virtualization.

A. Memory Management

The MMU in a 4K processor core is conceived to translate
any virtual address to a physical address before sending
requests either to the cache controllers for tag comparison or
to the bus interface unit for an external memory reference.
This translation is a very useful feature for operating systems
when leading the physical memory to accommodate multiple
active tasks in the same memory. Other features handled by
the MMU are memory areas’ protection and the definition of
the cache protocol.

In the 4Kc processor core, the MMU is based in a TLB that
consists of three address translation buffers: (i) a 16 dual-entry
fully associative Joint TLB (JTLB); (ii) a 3-entry instruction
micro TLB (ITLB), and; (iii) a 3-entry data micro TLB
(DTLB). Thus, when an address is translated, the appropriate
micro TLB (ITLB or DTLB) is accessed first. If the translation
is not found in the micro TLB, the JTLB is then accessed. If
there is a miss in the JTLB, an exception is taken.

Still, all the 4K processor cores support three modes of op-
eration: (i) User mode, mostly used for application programs;
(ii) Kernel mode, typically used for handling exceptions and
privileged operating system functions, including CP0 manage-
ment and I/O device accesses, and; (iii) Debug mode, used
for software debugging usually within a software development
tool. For sake of simplicity, we are not considering such mode
in this study.

Finally, it is important to highlight that the address transla-
tion performed by the MMU depends on the mode in which
the processor is operating. For example, Part A of Figure 4
depicts the differences between the memory segments that can
be seen according to the active processor mode. It is possible
to observe that whilst, in kernel mode, several segments are
available (from kseg0 to kseg3, including the kuseg), in user
mode of operation, only the useg (with virtual addresses
equivalent to the kuseg segment) is available.

Virtual Memory Segments. Originally, the MIPS 4K pro-
cessor contains virtual memory segments, which are differ-
ently used depending on the mode of operation, as briefly dis-
cussed. Figure 4 shows the segmentation for the 4 GB virtual
memory space addressed by a 32-bit virtual address for both
user and kernel modes of operation. Initially, the core enters
into the kernel mode during reset and whenever an exception

4

Fig. 4. MIPS 4K memory management for User and Kernel modes of
operation

is recognized. While in Kernel mode, the software has access
to the entire address space, as well as to all CP0 registers. On
the other hand, User mode accesses are limited to a subset of
the virtual address space (0x0000 0000 to 0x7FFF FFFF) and
can be inhibited from accessing CP0 functions. Still, while in
User mode, virtual addresses 0x8000 0000 to 0xFFFF FFFF
are invalid and cause an exception whenever they are accessed.

This virtual memory segments scheme, which is adopted by
MIPS 4k core, is very useful for a non-virtualized operating
system. In this case, the OS can keep the user application
and the kernel isolated by running them in different segments.
Typically, the user applications run in User mode in a segment
named useg, which allows the isolation of the OS software
components from user applications with possible malicious
behaviour. Besides, in the 4Kc core the OS can isolate the
user applications from each other through the limited memory
visibility for each application provided by the TLB. This is
adopted so a user application with unpredictable behaviour
does not influence other system applications.

Still, an important motivation to use virtual memory seg-
ments consists in allowing the OS to have privileged access
in certain memory areas. For example, the Exception Vector
(memory address where the beginning of handler routines for
exceptions are placed) located at 0x8000 0000 coincides with
the start of the kseg0 segment, showed in Figure 4. Also,
another interesting example is the kseg1 where the cache is
disabled to allow direct access to the registers of memory-
mapped I/O devices. In this case, both segments’ addresses
are not eligible to be mapped by TLB, thus, they have a fixed-
mapping where both segments kseg0 and kseg1 are mapped to
the physical address 0x0000 0000.

Although the virtual memory segments scheme is strongly
recommended to non-virtualized systems, since it increases
software reliability, it brings undesirable restrictions to a
scenario where virtualization is desired indeed. MIPS 4K core
does not count on a special execution mode for hypervisors
and, due to the ring de-privilege situation, the only piece
of software that can be executed in privileged mode is the
hypervisor itself while the Guest OSs will execute in a simple

User mode.
Specifically, analysing the 4K core, it means that only the

first 2GB of the virtual memory will be available to the virtual
machines. A Guest OS running in the User mode will not
be able to address virtual memory above 2GB. The second
- and very critical - limitation can represent a major barrier
to achieve virtualization in MIPS 4K core: the fixed-mapping
of kuseg0 and kuseg1 segments. In this case, the hypervisor
needs to register its exception routine under the Exception
Vector address (at 0x8000 0000) in order to take the control
of the execution of privileged instructions by the Guest OS, as
well as hardware interruptions, TLB misses and other system
conditions.

On the other hand, a Guest OS will try to register its own
exception handler routine, what conflicts with the hypervisor
implementation and possibly with other Guest OSs. Since the
Exception Vector is located at a fixed-mapped address, the hy-
pervisor is not able to move the virtual address 0x8000 0000
to a different physical address attending the Guest OSs’ needs.
The same scenario description can be applied to the kseg1
segment, when the hypervisor tries to virtualize a given device.

In this case, providing virtualization in a system under such
circumstances implies in complex modifications in the Guest
OS, in a technique named as paravirtualization. However we
aim to build a full-virtualization system where no software
efforts on the Guest OS are required whatsoever.

Therefore, aiming to support full-virtualization on a MIPS
4Kc core, we propose two main modifications on the proces-
sor’s core:

• removing the all virtual memory segments, specially the
fixed-address segments (kseg0 e kseg1), and;

• disabling the TLB-Translation when the Kernel mode is
active.

The removal of all virtual memory segments implies that
no virtual memory address is mapped to the physical memory
when the TLB does not have a valid entry. However, once the
TLB translations have been turned on and a TLB flush routine
has been executed, there is no way to turn the TLB off again.
This imposes that a valid entry needs to be kept in the TLB
in order to map the hypervisor area to the physical memory.

Such scheme is not transparent for a Guest OS that tries to
configure its own TLB entries. Then, to avoid such conflicts
we have modified the MIPS 4Kc core so the TLB is turned
off whenever the Kernel mode is active. In this condition the
modified core translates each single virtual address directly to
the matching physical address, thus giving full visibility of the
memory only to the hypervisor.

Finally, we extended the visibility of the virtual memory
in User mode to 4GB allowing the Guest OS to require
addresses above 0x7FFF FFFF. This is necessary when the
Guest OS tries to access either the Exception Vector or a
memory mapped device3. The new memory map for both User
and Kernel modes are depicted in Part B of Figure 4.

3It is important to highlight that the Guest OS executes in User mode.

5

B. Logical Memory Organization

We implemented the hypervisor also to be responsible for
controlling the memory visibility to each virtual machine using
the TLB correctly. In terms of logical memory organization,
Figure 5 depicts how we divided the implementation of our
hypervisor into four different logical areas: (i) hypervisor
private area; (ii) hypervisor scratchpad, which holds the hy-
pervisor’s stack; (iii) exception vector that contains the MIPS
4K exception vector, and; (iv) available memory that is where
virtual machines can be allocated.

Fig. 5. Hypervisor memory logical organization

C. Exception Vector

MIPS 4K contains a fixed address designated for the Ex-
ception Vector starting at 0x8000 0000 (when the processor
is operating in any mode except for the debug mode). This
causes an address conflict between the hypervisor and the
Guest OSs because both of them try to register their exception
routine at the same address. Thus, to solve this problem it is
needed to create a virtual mapping to the Guest OSs, where the
physical address 0x8000 0000 is mapped to a virtual address.
So, the hypervisor can register its exception routine at the
physical address 0x8000 0000 while the Guest OSs use a
virtual address, as described in Figure 6.

Fig. 6. Exception Vector modification

D. Exception Return

The Guest OSs run in User mode, as the MIPS 4K core
generates an exception whenever a privileged instruction is
executed outside of its intended privilege level, enabling the

hypervisor to intercept such instruction and emulate it. Then,
after the software emulation of the privileged instruction
occurs, the hypervisor must return the control to the Guest
OS. In this context, the ERET instruction (MIPS R4000) is
used to return from an exception and the return address used
by it is programmed at the EPC (Exception Program Counter).
The EPC register at CP0 ($14) has the virtual address of
the instruction that was the direct cause of the exception.
The hypervisor accesses the address contained in the EPC
register to find which instruction should be emulated. After
this, the EPC register is incremented to the address of the
next instruction and ERET instruction is performed. Figure 7
depicts which software and hardware actions are performed
when a privileged instruction needs to be executed by the
Guest OS.

Fig. 7. Guest OS privileged instruction execution

E. Timer

For timing purposes we use the internal MIPS 4K core timer.
It is programmed to generate a hardware interruption which
causes the control to be assumed by the hypervisor that is
responsible for scheduling a new Guest OS.

F. Memory-mapped peripherals

Currently, our hypervisor deals with memory mapped pe-
ripherals using either directed mapped or shared approaches.
In the first case, the directed mapped peripheral technique is
desirable when there is a need for high performance and/or
when there are real-time constraints. The hypervisor maps the
peripheral directly to a Guest OS and any requests from other
Guests are simply denied. In such way, no overhead is added
when the Guest OS accesses its directly mapped peripherals.
Thus, the implementation of this technique consists in map-
ping the memory region where the peripheral is located to
its Guest OS owner, by using the TLB. This guarantees that
accesses to a peripheral by its Guest OS owner do not trap
to the hypervisor, whereas not allowed Guest OS accesses
trap to the hypervisor, generating an exception that is treated
accordingly.

The shared peripheral approach is desirable for peripherals
that are needed by more than one Guest OS. For instance,
serial ports or ethernet controllers can be considered as shared
peripherals because they allow connectivity to the external
world and can be used by several Guest OSs. This approach
requires a more complex treatment from the hypervisor point

6

of view. A shared peripheral does not have its memory area
mapped for any Guest OS specifically, that is, the peripheral
memory area is unmapped in User mode. An access to such
area by a Guest OS causes a trap to the hypervisor that
can identify where is the request coming from and then
emulates the peripheral. This means that the hypervisor needs
to implement a device driver specifically for each shared
peripheral.

A memory mapped peripheral can be a GPIO pin, a se-
rial port, an Ethernet controller, or even a high-speed PCI-
e peripheral. The decision concerning the placement of a
certain peripheral, if either shared or directly mapped, occurs
at design-time. For instance, if Ethernet capabilities are desired
for more than one Guest OS, it might be interesting to share
this device. Otherwise, if a single Guest OS is the responsible
for all the Ethernet communication, probably the best decision
is to map it directly. Still, high-speed or real-time constrained
peripherals should be directly mapped to a specific Guest OS
due to the achievement of lower overhead and better response
time rates.

G. Issues and future improvements

Currently our implementation is concerned in a main point:
to offer virtualization support in a MIPS architecture that
requires no modification in the Guest OS. We are aware that
these modifications cause the break of compatibility between
the MIPS 4Kc core and the MIPS 4Kc with virtualization
support. This means that, in order to be executed in our
platform, the Guest OS does not need to be changed or par-
avirtualized to use specific hypercalls (system calls provided
by the hypervisor): it simply needs to be ported to MIPS 4Kc
core.

However, at this time, unfortunately, it is not possible for
a Guest OS to be executed directly on the MIPS 4Kc with
virtualization support without the hypervisor, since we need
it to manage the TLB fulfilment correctly. However, after
this first version has been implemented and deployed we are
working on the development of an extension for the MIPS 4Kc
core where the compatibility before the virtualization support
is still kept.

IV. SIMULATION METHODOLOGY

To simulate our platform we used OVP [19], which is a
hardware simulator written in C language, instruction-accurate,
open-source and able to simulate an entire platform. OVP
offers a large open-source model database, supporting several
processor families (like MIPS, ARM and PowerPC) besides
many peripherals. Still, it performs fast simulation aiming to
deliver a virtual platform for embedded software development
without the need of the real hardware platform.

In our case, the implementation of our virtualization tech-
nique requires several modifications in the processor core. Cur-
rently, we have no HDL implementation available of a MIPS
4K core. Besides, there is no MIPS core with virtualization
extensions that could allow full virtualization technique at the
present time. So, we are proposing a MIPS 4K core modified

that allows full virtualization to be achieved. In this scenario,
the OVP simulator and its open-source models allow us to
implement the new processor’s core behaviour and simulate
our software stack.

V. RESULTS

Given the lack of a hardware implementation of the architec-
ture and even a cycle-accurate simulator, no real performance
evaluation is possible. Thus, tests were only performed using
the OVP simulator, which does not model neither memory
access nor cache timing correctly. However, the resulting
instruction counts can still be used to get an approximate
idea of the performance score we got besides assuring that
the implementation works as expected.

Therefore, we have determined the overhead of our im-
plementation based in instruction counts for three different
situations: (i) privileged instructions emulation; (ii) context
switching (among virtual machines), and; (iii) device emu-
lation (for shared devices). For cases (i) and (ii) the Guest OS
execution causes a trap to the hypervisor. For the case (iii) the
Guest OS is preempted by the hypervisor and, if convenient,
a new Guest OS is scheduled.

The instruction counts were obtained by configuring the
OVP simulator to output the exact sequence of instructions
executed by the core in an understandable assembly code
format. Such feature increases the simulation time but is useful
for a detailed analysis of the execution sequence or for debug
purposes. Following, we show a sample of the privileged
instruction sequence emulation:
1 - 0x00000070 : mtc0 t0,c0_status
2 - 0x80000180 : sw k0,-2048(zero)
3 - 0x80000184 : lui k0,0x0
4 - 0x80000188 : addiu k0,k0,228
5 - 0x8000018c : jr k0
6 - 0x80000190 : lw k0,-2048(zero)
7 - 0x000000e4 : sw k0,-2024(zero)
9 - ...
10 - 0x00000228 : lw sp,116(k0)
11 - 0x0000022c : lw k0,104(k0)
12 - 0x00000230 : eret
13 - 0x00000074 : mtc0 zero,c0_cause
14 - 0x80000180 : sw k0,-2048(zero)

Code line 1 contains a privileged instruction which is being
executed by a Guest OS4. The processor core switches to
Kernel mode and jumps to the exception vector at the physical
address 0x80000180 (exposed in code line 2). The exception
vector routine jumps to the hypervisor specific handler routine
(line 5) at the physical address 0x000000e4 (line 7). The
specific handler routine code was resumed among lines 7 and
11 for sake of simplicity. Then, line 12 shows the hypervisor
returning the control to the Guest OS using the ERET MIPS
R4000 instruction explained previously. This instruction jumps
to the address configured in the EPC register at CP0 and
switches the core to User mode. The next instruction in the
Guest OS is another privileged instruction (line 13) at virtual
address 0x00000074. This causes a new exception trapped by
the hypervisor and a repetition of this sequence.

4the Guest OS is being executed in User mode, since the address
0x000000070 is a virtual address

7

Thus, analyzing the instruction count for all different in-
structions we emulated, we achieved an average of 220 in-
structions for the emulation of a privileged instruction.
We used the same technique to determine the overhead of
a context switch among virtual machines. Context switches
between applications on the same Guest OS will not trap to the
hypervisor and there is no overhead. For the sake of simplicity,
at the present time, our scheduling algorithm running in the
hypervisor is a round-robin algorithm. We are planning to
implement an EDF scheduling algorithm to handle real-time
constraints in the future. For now, we detected an average of
420 instructions to preempt and schedule a new VM.

Finally, the overhead of the emulation of a shared device
was determined. Our emulated device is a UART port dedi-
cated to communication to the external world. It represents a
very simple device, where reading or writing a byte from/to
the external word consists in an access to the 0xFFFFe000
address. As discussed previously, a shared memory-mapped
device is not mapped to a specific Guest OS, thus, a reading
or writing performed in this specific address causes a trap to
the hypervisor, which then emulates the device. The average
overhead detected is 260 instructions. Although this can
be considered as a very optimistic result, it is important to
highlight that the more complex the device is, the higher
overhead it contains.

Finally, we estimated the number of Lines of Code (LoC)
needed by the entire hypervisor: around 2KLoC written in
both C and Assembly languages. In this case, around 500
lines are described in Assembly language and represent the
Hardware Abstraction Layer (HAL). The rest, entirely written
in C Language, is mainly divided in around 150 LoC dedicated
to the round-robin schedule algorithm, about 600 lines to
implement the VCPU concept, Timer and IRQ emulation as
the rest is responsible for other routines.

ACKNOWLEDGMENT

The authors acknowledge the support granted by CNPq and
FAPESP to the INCT-SEC (National Institute of Science and
Technology Embedded Critical Systems Brazil), processes
573963/2008-8 and 08/57870-9.

VI. CONCLUSION

In this paper we presented a virtualization-aware architec-
ture intended for embedded systems. We present the virtual-
ization model we used, which is based in key concepts, such
as the Application Virtual Domain and the Virtual Processing
Unit. We also presented detailed implementation information
regarding the modifications needed in a MIPS 4Kc core to
provide support to full virtualization where no change in
the Guest OS is required. The hypervisor we developed is
responsible for some memory management aiming to keep
itself hidden from the Guest OSs. Our approach combines the
concepts of full virtualization and native execution. Therefore,
the Guest OS must be ported to the MIPS-based processor
with virtualization support we used, since the execution of

non-privileged instruction executions are ran, directly, onto the
physical processor. However, whenever privileged instructions
are intended, the hypervisor assumes the control and emulates
it. The main advantages of our approach are: (i) the small
hypervisor size (around 2KLoC); (ii) the absence of required
Guest OS’s changes, and; (iii) the strong secure domain offered
when hiding the hypervisor’s memory from virtual machines
and the virtual domains’ memories among themselves. Results
were taken aiming to measure some critical hypervisor’s over-
head when (i) executing the emulation of privileged instruc-
tions; (ii) performing context switch among virtual machines,
and; (iii) when used shared peripherals. Limitations and future
work were covered back in Section III-G.

REFERENCES

[1] Y. Zorian and E. Marinissen, “System chip test - how will it impact your
design,” in DAC’2000 - Design Automation Conference. Las Vegas,
EUA: ACM Press, Jun 2000.

[2] L. Lavagno and C. Passerone, “Design of embedded systems,” in
Embedded Systems Handbook, R. Zurawski, Ed. CRC press, 2005,
ch. 3.

[3] G. Heiser, “Virtualizing embedded systems - why bother?” Design
Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, 2011.

[4] “Mesovirtualization: lightweight virtualization technique for embedded
systems,” Software Technologies for Embedded and Ubiquitous . . . ,
2007.

[5] J. Brakensiek, A. Dröge, M. Botteck, H. Härtig, and A. Lackorzynski,
“Virtualization as an enabler for security in mobile devices,” IIES
’08: Proceedings of the 1st workshop on Isolation and integration in
embedded systems, 2008.

[6] D. Su, W. Chen, W. Huang, H. Shan, and Y. Jiang, “SmartVisor:
towards an efficient and compatible virtualization platform for embedded
system,” IIES ’09: Proceedings of the Second Workshop on Isolation and
Integration in Embedded Systems, 2009.

[7] A. Cohen and E. Rohou, “Processor virtualization and split compilation
for heterogeneous multicore embedded systems,” Design Automation
Conference (DAC), 2010 47th ACM/IEEE, 2010.

[8] M. Asberg, N. Forsberg, T. Nolte, and S. Kato, “Towards real-time
scheduling of virtual machines without kernel modifications,” Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th Confer-
ence on, 2011.

[9] G. Heiser, “The role of virtualization in embedded systems,” . . . on
Isolation and integration in embedded systems, 2008.

[10] F. Armand and M. Gien, “A Practical Look at Micro-Kernels and Virtual
Machine Monitors,” in Consumer Communications and Networking
Conference, 2009. CCNC 2009. 6th IEEE, 2009.

[11] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–
421, 1974.

[12] M. Technologies, “Processor core family software user’s man-
ual,” http://www.usrmodem.ru/files/adsl/mips.pdf, Accessed, June 2012,
2012.

[13] C. Bertin, C. Guillon, and K. De Bosschere, “Compilation and virtual-
ization in the HiPEAC vision,” Design Automation Conference (DAC),
2010 47th ACM/IEEE, 2010.

[14] A. A. Group, “Virtualization Extensions Architecture Specification,”
Web, 2011.

[15] “Embedded virtualization for the next generation of cluster-based MP-
SoCs,” Rapid System Prototyping (RSP), 2011 22nd IEEE International
Symposium on, 2011.

[16] Y. Park and S. Yoo, “Real-time operating sys-
tem virtualization for xen-arm.” Web, Available at
http://os.korea.ac.kr/publication papers/inter confer/ParkMiri ISET 2009.pdf.
Accessed at 10 ago., 2010.

[17] G. Heiser, “Hypervisors for consumer electronics,” jan. 2009, pp. 1 –5.
[18] W. Kanda, Y. Yumura, and e. al, “Spumone: Lightweight cpu virtual-

ization layer for embedded systems,” Embedded and . . . , 2008.
[19] O. OVP, “Open virtual platforms,” http://www.ovpworld.org/, Accessed,

June 2012, 2012.

8

