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ABSTRACT

Currently, Embedded Systems (ESs) based on Multipro-
cessed System-on-Chip (MPSoCs) count on resources pre-
viously available only on general purpose machines, leading
to an increased design complexity, especially when dealing
with communication-dependent applications. In this con-
text, we present a communication protocol developed in a
Real Time OS (RTOS) to provide a transparent commu-
nication interface for both bus- and NoC-based MPSoCs’
applications.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.4.7 [Organization and
Design]: Real-time systems and embedded systems
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Embedded systems, RTOS, MPSoC, Bus, NoC

1. INTRODUCTION

ESs have presented, increasingly, a rising number of fea-
tures leading to a significant growth in the design complexity
of applications. Also, systems have had their implementa-
tion based in multiple processing elements integrated on the
same die, running at a lower clock frequency, due to common
energy consumption constraints [2]. The communication in-
frastructure decision can vary according to certain charac-
teristics of the entire platform as it is desirable that the
application remains the same, avoiding code rewriting and
design rework and improving the overall software quality.
Still, since communication-based decisions impact directly
on the final system’s behaviour, it is important to have both
OS and framework support to explore different decisions in
order to enable a wide design space exploration.

This paper presents a communication protocol implemented
in an RTOS that provides a transparent communication
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layer in bus- and NoC-based MPSoCs. We implemented
this protocol using an RTOS in which applications can be
added through a design framework. In this case, the applica-
tion’s software can be used in two different communication
infrastructures in a straightforward fashion. We evaluate our
platform measuring the overhead of the protocol, its perfor-
mance and throughput and show how it can be used with
both communication infrastructures (bus- and NoC-based
systems).

2. DESIGN SPACE EXPLORATION USING
HELLFIRE FRAMEWORK

The Hellfire Framework (HellfireFW), firstly introduced
in [1], allows a complete deployment and test of multipro-
cessed embedded applications, defining the HW/SW archi-
tecture to be employed by the designer. HellfireFW assumes
the HellfireOS (HFOS) [1] as the system’s kernel.
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Figure 1: Hellfire Framework Design Flow

3. COMMUNICATION MODEL FOR BUS-
AND NOC- BASED MPSOCS

Figure 2 presents the steps needed to perform a message
exchange between two processors in bus- and NoC-based
environments. For both cases, the sending primitive encap-
sulates the message into packets, fulfilling the task’s send-
ing queue (1). The packet is then removed from this queue
and it is then copied to the hardware outgoing queue (2).
The network interface in then notified as the packet is sent
through the network (3). After the packet reaches its des-
tination processor by getting into the incoming queue, an



interrupt is sent to the operating system, which removes the
packet from the queue and decodes it, before forwarding it
to the target task’s queue (4). Finally, the message can be
used at the application level (5).
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Figure 2: Communication among application tasks,
hardware and software queues

Our communication primitives were implemented in two
different levels of abstraction. High level primitives are ex-
posed in the OS’s API and are responsible for encapsulat-
ing and dividing messages into data packets, dealing with
details such as padding and sequencing. Internally, sys-
tem’s drivers are responsible for transferring packets be-
tween source and target. They work with fixed-sized packets
and signal the communication network interface while send-
ing data to hardware queues. Likewise, these drivers are
signalled while receiving data, as they take the data off the
hardware receiving queues and copy them to the circular
packet queues of each task.
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Figure 3: Packet’s structure

4. EVALUATION

In order to evaluate the message-passing performance at
the application level a simple yet highly communicating ap-
plication was implemented, varying the message size from
50 bytes to 1000 bytes. Half the processors contain senders,
and the other half, receivers. All tasks were configured to
execute each 104ms (period) during 82ms (capacity) through
the period yielding an 80% processor utilization. Along with
the application task, other operating system tasks execute at
the same time on the same core. The same application was
used in several configurations, where it was only scaled for
the desired number of cores (the same code was recompiled
without modifications).

Figure 4 presents the results observed for several MPSoC
configurations. As it can be seen, bus-based communica-
tions for this application start to decrease its performance
due to network congestions when a higher number of pro-
cessors communicates. The last simulated case was a 256
core, 16x16 mesh MPSoC and the NoC could keep the high
throughput, avoiding congestions. A 256 core bus-based
MPSoC suffers from high penalty for this application, high-
lighting the superior performance of the NoC approach for
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Figure 4: Throughput for bus and NoC-based MP-
SoCs

communication-intensive applications. In cases where per-
formance is closely related to communication efficiency (such
as in streaming applications), the proposed model offer a
scalable and manageable way of describing distributed ap-
plications.

S. DISCUSSION

The proposed design flow and the implementation strate-
gies of HellfireOS can be combined, enabling a very powerful
design space exploration. Designers do not need to change
neither the application nor the OS’s code to test their sys-
tems under various different scenarios.

The scenarios to be explored concern: (i) different appli-
cation strategies in multiprocessed systems (using the same
communication API, only changing the application’s logic
itself); (ii) different OS configuration (heap size, tasks’ mem-
ory use, scheduling options, etc); (iii) different processor op-
tions (architecture, type, frequency); (iv) different memory
sizes, and; (v) different communication strategies (bus or
NoC) and, for each, its own specific parameters.

Each execution on such a rich simulation environment al-
lows the designer to evaluate the best possible scenario for
the multiprocessed system. Besides, if there is an equiva-
lent hardware platform described, for example, in VHDL,
it is possible to use the application and OS binaries in a
straightforward fashion, preventing the occurrence of the
model continuity problem.
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