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Abstract—Multiprocessed System-on-Chip (MPSoCs) have be-
come a recurrent implementation alternative to modern embed-
ded systems and, lately, have counted on resources previously
available only on general purpose machines. In this context, it is
possible to highlight that many techniques formerly adopted in
general-purpose computers have been studied and adapted to the
embedded reality. Thus, embedded communication infrastruc-
tures such as buses and networks-on-Chip (NoCs) are based on
general-purpose solutions and are widely accepted for embedded
systems. Also, embedded systems make use of Operating Systems
(OS), as they provide standard interfaces to access hardware
resources, including the communication facilities. However, al-
though the underlying communication infrastructure can differ
in order to improve a given metric, such as performance, power
or area, it is desirable that the software layer remains the same,
especially in terms of the application’s and OS’s code improving
the overall software quality. Still, certain OS parameters can
directly influence on the overall system performance. This paper
presents a highly configurable Real Time OS (RTOS) that
implements a communication protocol to provide a transparent
communication interface for both bus- and NoC-based MPSoCs’
applications.

I. INTRODUCTION

Embedded systems have presented, increasingly, a rising
number of features leading to a significant growth in the design
complexity of applications. Also, systems have usually had
their implementation based in multiple processing elements
integrated on the same die, running at a lower clock frequency,
due to common energy consumption constraints [1].

Another design challenge of using Multiprocessors System-
on-Chip (MPSoC) concerns the way that communications
among the internal components are performed. Bus-based
systems have been widely used but may suffer from perfor-
mance penalties whenever the system overly grows in terms of
amount of elements [2]. A common way out of this problem
is to use NoC-based systems, where higher communication
throughput can be achieved.

The communication infrastructure decision can vary accord-
ing to certain characteristics of the entire platform (hardware
and software). In this case, it is desirable that the applica-
tion remains the same, avoiding code rewriting and design
rework, improving the overall software quality. Still, since
communication-based decisions impact directly on the final
system’s behaviour, it is important to have both OS and

framework support to explore different decisions in order to
enable a wide design space exploration.

Therefore, this paper presents an RTOS that is highly
configurable, enabling the OS to be tailored to enhance
the overall system performance. Still, we’ve implemented a
communication protocol that provides a transparent commu-
nication layer in bus- and NoC-based MPSoCs. We use a
framework where new applications can be added and the entire
platform can be customized, in terms of OS parameters and
communication model. In this case, the application’s software
can be used in two different communication infrastructures in
a straightforward fashion. We evaluate our platform measuring
the OS performance and its memory footprint results as well
as the overhead of the communication protocol. This paper
is an extension of the poster presented in [?] where only the
communication model was evaluated.

The remainder of this paper is organized as follows. Sec-
tion II shows some other RTOSs with MPSoC support. Sec-
tion III depicts our framework design flow for design space ex-
ploration. In section IV, details regarding the communication
protocol can be found. Following, we have the evaluation and
discussions presented in Section V as Section VI concludes
the paper with final remarks and future work.

II. RELATED WORK

Many studies discuss the support to specific features of
MPSoCs since there is a high dependency on the underlying
hardware in such platforms. HeMPS is a homogeneous NoC-
based MPSoC platform [3] and uses a MIPS-like processor
(Plasma [4]), a local memory (RAM), a DMA controller and
a Network Interface (NI) based in the HERMES NoC. It has
a preemptive microkernel that provides basic communication
primitives used to implement message passing communication.
Similar to the HeMPS platform , there is the Open-Scale [5]
proposal, where instead of a Plasma processor, a Secretblaze
is employed. Still, the Open-Scale platform provides more
services in the software level with its RTOS.

We present Table I where we compare existing features in
the presented studies against our proposal (HellfireOS, in the
table). We also include in this comparison the Plasma RTOS,
which is a tiny preemptive RTOS from which the Open-Scale
RTOS was extended [5].
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TABLE I
OPERATING SYSTEM FEATURES

Feature Plasma RTOS Open-Scale HeMPS HellfireOS
Supported archi-
tectures

MS Windows
hosted / Plasma

Secret-Blaze Plasma Plasma, MIPS R4K,
ARM7, x86

Dynamic Loader No, single ob-
ject

Yes, GOT man-
agement (code)

Yes Yes, GOT management
(code), stack rellocation
(data)

Kernel Preemptive Preemptive Preemptive Preemptive, cooperative
Scheduling Priority round

robin
Round robin
with task
credits

Round robin 2-level scheduling (rate
monotonic and round
robin)

Priority inversion
avoidance

No No No Yes, priority inheritance

Memory
allocation

Dynamic Dynamic Static Dynamic

Semaphores, mu-
texes, queues

Supported Supported Not supported Supported

Task communica-
tion

Synchronization
(intra-core)

Synchonization
(intra-core),
message
passing (extra-
core)

Message pass-
ing (extra-core)

Syncronization,
mailboxes (intra-core)
and transparent message-
passing (intra and
extra-core)

Task migration
support

No Yes, distributed
management

Yes,
centralized
menagement

Yes, distributed manage-
ment

Additional
libraries

Math library Math library None HFLibC (libc and ex-
tended FP math)

III. HELLFIRE FRAMEWORK AND DESIGN SPACE
EXPLORATION

One of the biggest challenges in embedded systems’ design
is, in the early stages of their development, to decide among
the many design possibilities available. Usually, there are
multiple metrics of interest that must be considered, such
as timing, resource usage, energy usage and cost as well
as multiple design parameters, for instance, the number and
type of processing cores, size and organization of memories,
interconnect options, scheduling policies, among others.

Still, it is very difficult to stablish a relationship between
design choices and metrics of interest, since typical systems’
aspects such as concurrency, dynamic application behaviour,
and resource sharing need all to be considered at the same
time. Besides, existing modelling approaches and tools usually
require the system to be described in different models and
languages throughout its design, leading to a model continuity
problem.

We use the Hellfire Framework (HellfireFW), firstly in-
troduced in [6], as an alternative approach to this problem.
HellfireFW allows a complete deployment and test of mul-
tiprocessed critical and non-critical embedded applications,
defining the HW/SW architecture to be employed by the
designer. The design flow implemented by the HellfireFW
is presented in Figure 1. HellfireFW assumes the HellfireOS
(HFOS) [6] as the system’s kernel and is detailed throughout
this section.

We assume the entry point of the design to be an application,
initially manually divided into a set of tasks, described in C
language. Each task, besides the code implementation itself
and its data, must be represented, at least, by the following
n-uple τi =< idi, uidi, pi, ei, di, lci >where, idi concerns
its local identity, uidi its unique identity, pi its period; ei
its execution time (since we assume a real-time system, this
usually concerns the task’s Worst-Case Execution Time -
WCET); di its deadline; lci is the data volume generated by
message traffic.

The pi, ei and di parameters are controlled by a given

Fig. 1. Hellfire Framework Design Flow

real-time scheduling algorithm and must be described in an
abstract time unit, known in HellfireOS as ticks1. Some of
these scheduling policies are described in [7], [8], [9], [10],
[11], [12].

After designing the application, the HellfireFW project must
be created. This is the step where the initial HW/SW platform
configuration is defined. The C application is executed on the
top of the HellfireOS stack. HellfireOS is a micro-kernel based
Real-time Operating System - RTOS, highly configurable and
easily portable. To ease the OS port to other architectures,
HellfireOS uses a modular structure as depicted in Figure 2.

All hardware specific functions and definitions are imple-
mented on the Hardware Abstraction Layer (HAL), which is
unique for a specific hardware platform solution, simplifying
the port of the kernel onto different platforms. The micro-
kernel itself is implemented on top of this layer. Features like
standard C functions and the kernel Application Programming
Interface (API) are implemented on top of the micro-kernel.
Communication and migration drivers, memory management
and mutual exclusion facilities are implemented on top of the
kernel API and the user application is the highest level in the
HellfireOS development stack.

After following these steps, an MPSoC platform config-
uration is performed, with a given number of processors, a
personalized instance of HellfireOS on each processor and a
static task mapping2. The user must then trigger the simulation
of the system, which runs for a given time window and
generates several graphical results for the designer to analyse.

1Tick is the minimum scheduling unit. All real-time parameters are repre-
sented in ticks and the tick itself can be associated to a given and known time
measure, such as 10ms, for instance.

2Initial mapping defined at design time. At runtime tasks may be reallocated
to different processors.
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Fig. 2. HellfireOS Structure Stack

If the results are satisfactory, the SW part of the platform
can be transported to a prototype, such as an FPGA, in a
straightforward fashion. Otherwise, the designer can change
the HW/SW settings and rerun the simulation as long as
refinements are needed.

IV. COMMUNICATION MODEL FOR BUS- AND NOC- BASED
MPSOCS

This section presents the communication model we adopted
and its implementation targeting communicating tasks in bus-
and NoC-based MPSoCs based on the HellfireFW.

A. Hardware Aspects

We assume an MPSoC implemented with either bus or NoC
communication. Following, there are some details regarding
how they were implemented.

Bus-based MPSoC. We implemented a bus where a bus
arbiter with a rotative algorithm was used. In this case, we
have IP units that are connected to the bus through wrappers.
The central bus control is performed by the bus-arbiter, which
receives access requirements from the wrappers. We adopted
a centralized arbiter as it simplifies the choice of which
processor has the right of using the bus, thus, decreasing
implicit overheads. Wrappers are used to interconnect the IP
to the communication channel and to control data access into
the bus.

Network-on-Chip - NoC. For our NoC implementation
we use the HERMES NoC project [13], which uses a mesh
topology and it is composed by routers, buffers and controllers
(switch control). Still, the internal queue scheduling uses the
Priority Round Robin algorithm. The packet routing algorithm
used is XY routing [14].

B. Software Aspects

Communication related issues. We use OS primitives
to perform the message exchange, such as HF Send(),
HF Receive() and HF UniqueIDSend(). It is a developer’s
responsibility to allocate proper buffers at the application level
and to specify the unique task identification correctly. Figure 3
shows an example of a task code that uses send and receive
primitives. This code does not need any kind of change for
both bus- and NoC-based MPSoCs as the API is completely
transparent.

Fig. 3. Communication system calls in task implementation

These primitives are implemented following the producer/
consumer reference model and each task has a circular recep-
tion queue, with configurable size to hold incoming packets.
During the receiving process, whenever the receiving queue
is empty, the task is either blocked (in case of a blocking
primitive) or kept in the primitive until a timeout occurs.
Likewise, during the sending process, the task can be blocked
whenever network contentions become a reality. Still, if the
receiving task has no extra room in its receiving queue, packets
are then simply discarded. We had to adopt the discard strategy
since there is only a single hardware queue per processor and,
usually, more than one task per processor. Therefore, if a given
task is not treating its received packets, only its packets are
discarded aiming not to compromise other tasks’ reception
process.

Additionally, specific tasks, such as to put packets into
reception queues, to block or to release tasks in a given
moment, are all managed by the drivers of the operating
system. Figure 4 presents the steps needed to perform a
message exchange between two processors in bus- and NoC-
based environments.

For both cases, the sending primitive encapsulates the mes-
sage into packets, fulfilling the task’s sending queue (1). The
packet is then removed from this queue and it is then copied
to the hardware outgoing queue (2). The network interface in
then notified as the packet is sent through the network (3).
After the packet reaches its destination processor by getting
into the incoming queue, an interrupt is sent to the operating
system, which removes the packet from the queue and decodes
it, before forwarding it to the target task’s queue (4). Finally,
the message can be used at the application level (5).

Our communication primitives were implemented in two
different levels of abstraction. High level primitives are ex-
posed in the OS’s API and are responsible for encapsulating
and dividing messages into data packets, dealing with details
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Fig. 4. Communication among application tasks, hardware and software
queues

such as padding and sequencing. Internally, system’s drivers
are responsible for transferring packets between source and
target. They work with fixed-sized packets and signal the com-
munication network interface while sending data to hardware
queues. Likewise, these drivers are signalled while receiving
data, as they take the data off the hardware receiving queues
and copy them to the circular packet queues of each task.

Fig. 5. Packet’s structure

We present the packet’s structure in Figure 5. Packets start
with a header where the target’s address is put and size of the
payload3 is placed. After the header, there is an identification
of the source node, another identification concerning the
source task and a last one about the destiny or target task. Still,
information as the message size (which can be larger than the
packet size4), a sequence number and payload data that will
be put in the task’s software queue, compose the remainder
of the packet. Thus, packet data which are placed after the
payload are managed by the OS’s communication driver as its
content is not relevant to the communication mean anyway.

This packet’s structure causes a communication overhead of
about 9.37% (in a 64-flit5 packet, with 16 bits each) due to
header’s information. The packet’s size can be altered but the
hardware queues size and OS’s configuration must follow that
change (it is not transparent nor automatic). We adopted this
packet size after performing several tests analysing the trade-
off among queues size, packet’s processing time and padding
overhead. Figure 6 presents the peak performance of a data

3Useful load of the data packet.
4Packets have a fixed size.
5We adopt a flit as the minimum transfer unit for the protocol in both bus-

and NoC-based networks

transfer at the application level for different hardware queues’
sizes. From these tests we’ve assumed an ideal situation, where
a unique message of each size is sent and real-time tasks,
for sending and receiving, use all processing capacity of two
neighbour processors to perform the communication.

Fig. 6. Hardware queue’s size, peak performance for two nodes message
exchange

V. EVALUATION AND DISCUSSIONS

A. Implementation and Validation Methodology

We used an architecture simulator based on [15] to perform
our experiments. This simulator allows the use of several
processing nodes 6, formed by MIPS-like processors. The
simulator implements the MPSoCs presented in Section IV-A,
and it has a very close precision to the hardware prototype.

On all experiments, the task stack size is 2KB, the schedul-
ing policy is Rate Monotonic, the operating core frequency
for all nodes is 25MHz (unless otherwise specified) and the
time between interrupts (tick time) is 10.48ms. MPSoC size is
variable and each core has a 512KB shared data and instruction
memory. Packet size is 64 flits on all tests and the receiving
software queue has 16 slots for each core. Operating system
and application code were size optimized and compiled with
GCC 4.6.0 port to the MIPS architecture.

B. Experimental Results

1) Operating System Performance: Table II presents
the latency of some system calls and HellfireOS events.
The latency of task management syscalls (HF AddTask(),
HF AddPeriodicTask(), HF BlockTask(), HF ResumeTask()
and HF KillTask()) is constant, independent of the number
of tasks and task set parameters. Other system calls such
as HF Calloc(), HF Malloc(), HF Realloc() and HF Fork()
depend on the amount of memory specified and task stack
size. Message passing primitives have a performance closely
related to task parameters and message size, being this fact
detailed on Section V-B3.

6The number of nodes is parametrizable. Currently, up to 256 nodes in a
mesh-based NoC can be simulated.
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TABLE II
OVERHEAD FOR COMMON SYSTEM CALLS AND EVENTS

Syscall / Event Cycles Time
Context switch (10 tasks) 1563 62us
Network ISR (64 flit packet) 1079 43us
HF Send() (512 byte message) 29440 1177us
HF Receive() (512 byte mes-
sage)

23078 923us

HF AddPeriodicTask() 2842 114us
HF BlockTask() 88 <4us
HF ResumeTask() 84 <4us
HF Fork() 49107 1964us
HF KillTask() 3087 123us
HF ChangeTaskParameters() 122 5us
HF CurrentTaskId() 9 <1us
HF Malloc() (4kB) 754 30us
HF Free() (4kB) 727 29us
HF Calloc() (4kB) 21302 852us
HF Realloc() (4kB to 8kB) 10760 430us

The architecture used in this work uses a shared code and
data memory, so system calls such as HF Calloc() are costly.
Also, no MMU was used so the copy-on-write technique can
not be used on the HF Fork() system call. As an alternative,
all the task’s data must be replicated, as the parent task can
not neither have its data modified nor be blocked until its child
finishes.

Table III presents two benchmarks of the ParMiBench Suite
[16]. These benchmarks were ported to HellfireOS, and as the
overhead is being measured here, tasks were configured as best
effort. For the SHA benchmark, the hash of four messages
of 2KB each is calculated, using a single core (threaded
benchmark) and 5 cores (one master and four slaves) in a
3x2 mesh MPSoC. In the multicore version, one processor
distributes the messages to slave processors that calculate the
message hash and send it back to the master. The Bitcount
benchmark is arranged in a similar way, but 512 byte message
is divided into four pieces and only 128 bytes are sent for each
slave. The process is repeated for four different bit counting
algorithms from the benchmark.

TABLE III
BENCHMARKS PERFORMANCE

Multithreaded,
single core

Multithreaded,
5 cores

SHA 1310978 542817
Bitcount 1421037 1037653

Although message passing impacts on system overhead, the
SHA algorithm executed 2.41 times faster on the distributed
version. The execution time drops from 52.44ms to 21.71ms,
and 8 messages are exchanged between the master processor
and slaves. On the single core version messages are directly
exchanged between threads using shared memory. The second
benchmark has a greater communication overhead (due to
very small messages) and doesn’t scale well. The distributed
version executed 1.37 times faster than the single processor

version, and 32 messages are exchanged between the master
processor and slaves. The execution time drops from 56.84ms
to 41.51ms. It is possible to observe that when large messages
are sent among cores, the message passing overhead can be
amortized.

2) Memory Footprint: Different configuration parameters
impact on both functionality and kernel memory footprint, as
shown in Table IV7. The kernel can be configured for several
parameters, including hardware-related aspects, such as the
presence of a multiply/divide unit.

TABLE IV
HELLFIREOS KERNEL SIZE

Kernel Size
(with HW
mul/div)

Kernel Size
(w/o HW
mul/div)

Kernel A (no task reports,
no FP math, no migration,
no management)

21.06KB 22.52KB

Kernel B (no FP math, no
migration, no management)

21.31KB 23.74KB

Kernel C (no migration, no
management)

33.77KB 35.39KB

Kernel D (no task migra-
tion management)

40.15KB 42.16KB

Kernel E (full kernel) 44.44KB 46.61KB

Kernel data is not taken into account, as it is allocated
dynamically from the memory pool at runtime. Also, the
application code size is not taken into account either.

3) Communication: In order to evaluate the message-
passing performance at the application level a simple yet
highly communicating application was implemented, varying
the message size from 50 bytes to 1000 bytes. Half the
processors contain senders, and the other half, receivers. All
tasks were configured to execute each 104ms (period) during
82ms (capacity) through the period yielding an 80% processor
utilization. Along with the application task, other operating
system tasks execute at the same time on the same core. The
same application was used in several configurations, where it
was only scaled for the desired number of cores (the same
code was recompiled without modifications).

Figure 7 presents the results observed for several MPSoC
configurations. As it can be seen, bus-based communications
for this application start to decrease its performance due to
network congestions when a higher number of processors
communicates. The last simulated case was a 256 core, 16x16
mesh MPSoC and the NoC could keep the high throughput,
avoiding congestions. A 256 core bus-based MPSoC suffers
from high penalty for this application, highlighting the supe-
rior performance of the NoC approach for communication-
intensive applications. In cases where performance is closely
related to communication efficiency (such as in streaming
applications), the proposed model offer a scalable and man-
ageable way of describing distributed applications.

7On all experiments, code was optimized for size on the compiler.
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Fig. 7. Throughput for bus and NoC-based MPSoCs

4) Discussion: The proposed design flow in Section III
and the implementation strategies of HellfireOS, presented
in Section IV-B can be combined, enabling a very powerful
design space exploration tool. Designers do not need to change
neither the application nor the OS’s code to test their systems
under various different scenarios.

The scenarios to be explored concern: (i) different appli-
cation strategies in multiprocessed systems (using the same
communication API, only changing the application’s logic it-
self); (ii) different OS configuration (heap size, tasks’ memory
use, scheduling options, etc); (iii) different processor options
(architecture, type, frequency); (iv) different memory sizes,
and; (v) different communication strategies (bus or NoC) and,
for each, its own specific parameters.

Each execution on such a rich simulation environment al-
lows the designer to evaluate the best possible scenario for the
multiprocessed system. Besides, if there is an equivalent hard-
ware platform described, for example, in VHDL, it is possible
to use the application and OS binaries in a straightforward
fashion, preventing the occurrence of the model continuity
problem.

VI. CONCLUSION

Current multiprocessed embedded systems can be difficult
to manage as the number of processing nodes and appli-
cation complexity increase. Still, many applications demand
predictable response to real-time events, so new approaches
must be used on the software level to improve performance
and programmability. This paper presents an efficient and con-
figurable RTOS with support to bus- and Noc-based MPSoCs,
following the Hellfire Framework design flow for better design
space exploration. We showed a comparison between our ap-
proach and other related works and evaluated the OS efficient
communication support. Future work include the extension of
the proposed task model to heterogeneous architectures and
the use of automatic partitioning and mapping tools.
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