
Simplify: a Framework for Enabling Fast Functional/Behavioral Validation of
Multiprocessor Architectures in the Cloud

Gabriel Marchesan Almeida∗, Oliver Bellaver Longhi‡, Thomas Bruckschloegl∗
Michael Hübner†, Fabiano Hessel‡ and Jürgen Becker∗

∗Institute of Information Processing Technology
Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

{gabriel.almeida, thomas.bruckschloegl, becker}@kit.edu
‡Embedded Systems Group (GSE)

Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
oliver.longhi@acad.pucrs.br, fabiano.hessel@pucrs.br
†Embedded Systems in Information Technology (ESIT)

Ruhr-University Bochum (RUB), 44801 Bochum, Germany
michael.huebner@rub.de

Abstract—The design of high-performance Multiprocessor
Systems-on-Chip (MPSoCs) has proven to be an attractive
challenge in embedded systems design automation. However,
the complexity of such designs associated with short time-
to-market constraints impose serious limitations on the ex-
ploration of different configurations and scenarios on the
design space exploration. The use of virtual platforms may
decrease the time-to-market of these architectures while pro-
viding the means to exploit, debug and verify architectures
with different features. In this paper, we present the web-
based Simplify framework, an interactive approach for MP-
SoC exploration using an instruction-accurate Open Virtual
Platform (OVP). The framework provides an environment to
define both software and hardware properties in an intuitive
way, and allows designers to validate the functionality as
well as the behavior of the modeled architectures at high-
abstraction levels. Based on the simulation reports generated
from the framework, designers can perform further design
modifications and optimizations, and re-validate the whole
system in an efficient way, allowing increased design space
exploration. For the evaluation of the proposed approach, a set
of benchmark applications extracted from MiBench has been
used. They run on five different processors (MIPS32, ARM7,
OpenRISC (OR1K), PowerPC32 and MicroBlaze) on both
mono and multiprocessor architectures and the experiments
show considerable simulation speed-ups to obtain application
profiling at instruction-level compared to existing approaches
based on tracing.

Keywords-virtual platforms, multiprocessor systems-on-chip,
application profiling, cloud simulation

I. INTRODUCTION

Multiprocessor Systems-on-Chip (MPSoCs) are platforms
that contain multiple processing elements, each one respon-
sible for executing a set of specific functionalities. They are
attractive candidate architectures for multimedia processing
as these schemes generally can be partitioned in data-
dominated functions, which can be processed in parallel
on different processors. Those applications however tend
to increase in complexity and often exhibit time-changing
workloads which makes mapping decisions sub-optimal in
a number of scenarios [1]. These factors push designers

towards the development of solutions that enable debugging
and verification of the whole system in an acceptable time
frame. Several models have been proposed in this direction,
specially those that allow the simulation and validation of
complex and large architectures at different abstraction lev-
els. SystemC Transaction Level Modeling (TLM) provides
a standard to enable fast simulation and easy model interop-
erability for hardware/software co-design. TLM represents
a promising alternative for the description and functional
validation of large and complex architectures due to its
simplicity and faster execution compared to simulators at
cycle-accurate level.

Virtual platforms have recently appeared as a promising
alternative that enables earlier development and testing of
software, reducing SoC schedules and reducing significantly
initial development and maintenance costs of embedded
software [2]. In [3] authors have proposed a framework that
enables multi-layered simulation, where each component of
the architecture can operate at different accuracy levels.
As case study, the authors model multiprocessor systems-
on-chip architectures at different abstraction levels: TLM,
CABA (Cycle-Accurate Bit-Accurate) and RTL (Register-
Transfer Level). The simulation time of complex platforms
may vary according to the abstraction level used for model-
ing the different components in the architecture. Simulation
is very time-consuming due to the number of details that
are considered in the component’s description. Thus, a
single scenario with e.g. 16 processors connected through a
network-on-chip may easily take several days of simulation
and it can even become unfeasible for larger scenarios.

This paper introduces Simplify, a web-based framework
which is intended to be used for modeling large MPSoCs in
a fast way through an user-friendly web interface. Section
II describes the existing approach for design and validation
of embedded systems architectures while positioning the
proposed approach in relation to them. Section III intro-
duces the available features in the framework and describes
the MPSoC architecture modeling, application description,

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.108

2200

compilation and model execution. Section IV presents the
validation scenarios using different platform configurations
and benchmark applications, and also illustrates the simula-
tion speed-ups for application profiling using the proposed
extended model compared to existing approaches based on
tracing information. Finally, Section V draws conclusions
about the benefits on using Simplify framework for fast
functional/behavioral validation of heterogeneous MPSoCs
and brings new perspectives for future works.

II. RELATED WORKS

The design of efficient multiprocessor systems-on-chip
architectures is currently a hot topic in research and develop-
ment. Tool vendors like Cadence and Synopsys offer high-
end development platforms for this purpose. The Cadence
Virtual System [4] platform enables the development of mul-
tiprocessor systems with a SystemC TLM based approach
where additional libraries with various models for processors
as well as peripherals can be used to build up a system.
Synopsys Virtualizer [5] addresses the acceleration of both
the development and deployment of architectures by using
virtual platforms. The development is based on SystemC and
the usage of processor modules from ARM is possible.

SimpleScalar [6] is a well-known tool that can perform
both cycle and instruction accurate analyzes to extract
performance information from processors. In spite of its
value, it was not developed to support multiprocessor ar-
chitectures and a significant software stack is necessary to
enable it. Gem5 [7] is a modular platform that provides
the integration of different architectures through an object
oriented approach. Similar to SimpleScalar, gem5 is mainly
used to analyze the processor and its internal components
performance like the pipeline and the hierarchy of caches,
enabling the execution of different architecture domains and
the performance evaluation of such. Therefore, such micro
architecture simulation imposes some limits in time with
regard to the simulation of massively parallel multiprocessor
architectures, representing a prohibitive overall performance
when considering the scalability of such architectures.

OVPTM [8], acronym for Open Virtual Platforms, is an
active and open-source project which can perform high-
speed simulations through instruction accurate prototypes.
There are specific APIs to implement processors, periphe-
rals and memory models. The interoperability of models
implemented to the platform is done with another API
that links components pins in an easy manner. It supports
different processor vendors like ARC, ARM, Xilinx, MIPS,
OpenRISC, PowerPC and Renesas and they are all provided
with optional toolchains and debuggers. The majority of
these models are implemented in C but SystemC wrappers
are available to be integrated into third-party TLM 2.0
models. The disadvantage of it concerns the limitation of
available features in the free license such as application
profiling at function level.

All these tools have the goal to reduce time-to-market
through the development of complex systems from a high-
level of abstraction without the necessity of creating a real

prototype for evaluation of the systems capabilities like per-
formance and computation efficiency. Another very relevant
topic is certainly the simulation time which is dramatically
reduced with virtual platforms.

Instruction or function profiling of embedded applications
is very difficult due to limited access to the systems. Most of
the existing profiling tools like Intel c© VTuneTM [9], AMD
CodeAnalystTM [10] or the inbuilt profiler of Microsoft
Visual Studio c© are used in personal computers. They allow
the use of source code instruction or processor sampling in
unix or windows based operation systems but are not suitable
in embedded systems where operating system support and
source code access is very limited. There are some works
[11] [12] that implement hardware accelerators to profile
embedded software. Another approach is to use software
profiling techniques in virtual platforms, but none of the
techniques mentioned are supported in virtual platform envi-
ronments. Only gprof [13], a very old and basic application
profiler is implemented in the commercial Imperas tools.
Authors in [14] use a low level instrumentation of the
embedded application to get the needed information, but this
technique requires further modifications in the embedded
application itself.

In this paper an application profiler is described that uses
the processor model and the virtual platform to provide an
instruction profiling that is neither altering the application
nor requiring hardware support. The framework is based on
OVP, which has been chosen due to its open-source nature
that supplies a favorable field for research and development.
Another fact that led us to this decision is the fact that the
majority of the components available are implemented with
high-level ISSs and not with SystemC or pipelined models,
improving the scalability of MPSoCs.

III. THE SIMPLIFY FRAMEWORK

The idea for developing the Simplify relies on providing
a tool where users can easily model and explore MPSoCs
with different characteristics. It allows users to describe and
execute embedded benchmark applications, validate their
functionality while observing their behaviors, and to have
access to reports that can be considered for performing
further optimizations in the modeled architecture. The tool is
available in the project website at http://simplify.itiv.kit.edu
and it is a branch of the framework proposed in [15] [16].

A. General Overview

The framework design is essentially divided into two
parts: (i) in the front-end part users can model either
homogeneous or heterogeneous MPSoC platforms by simply
dragging and dropping components through a web-based
interface. Different settings for processors, memory and
interconnection can also be chosen. Moreover, application
modeling and allocation for different processors is also
possible at this stage. (ii) in the back-end part, the frame-
work generates a TLM-based platform accordingly to the
specifications defined in the previous stage. At this point
users have the possibility to check whether the generated

2201

architecture meets the platform specification or not. Once
the verification is done, the process moves towards the
compilation and execution of the described applications.

B. Tool Flow
There are five models of processor available in the frame-

work (MIPS32, ARM7, OpenRISC (OR1K), PowerPC32
and MicroBlaze) comprising a complete tool-flow including
compilation and debugging support. More processor models
will be added into future releases of the framework.

1) Architecture Modeling: the user specifies the number
of processors to be included in the architecture to-
gether with the interconnection means (currently only
bus connection is available and the network-on-chip is
under development).

2) Processing Element Configuration: for each process-
ing element users can specify the memory size and
processor type.

3) Application Description: Simplify supports the execu-
tion of applications written in standard C and users can
easily integrate their applications into the framework
by simply coping/pasting existing source codes.

4) Application Compilation and Model Execution: the
framework allows the compilation of applications for
different target processors. Applications are compiled
by cross-compilers installed on the host server running
the web-based Simplify framework. Thus, users have
the possibility to download a package (tar.gz) contain-
ing application source codes, makefiles and the source
codes of the generated architecture in order to execute
it locally on their host computers.

5) Execution Reports: in the end of simulation users have
access to execution reports which contain: i) number
of simulated instructions (overall architecture and in-
dividually per processor), ii) simulation model speed
in MIPS and iii) a report containing applications trace
and simulation statistics such as MIPS per processor,
total MIPS, number of simulated instructions and
simulation time.

The proposed extended model also allows users to have
access to application profiling information at instruction-
level. The profiling is attached to the virtual platform by
implementing a profiling function that can be called by the
platform after instruction execution. The profiling function
increments a counter per instruction that are stored sepa-
rately from the platform. To achieve model compatibility the
instruction list used to implement the instruction counters
are extracted from the processor model sources. In addition
to the platform functions the OVP processor models are
modified to perform the application profiling as follows. The
disassembly function of the processor model is used to get
access to the instruction lists available within the processor.
The function is modified to return the instruction index of the
internal instruction arrays. This index is used by the platform
to reference and increment the instruction-specific counter.
The platform instruction execution has to be changed to
enable a single instruction simulation. After each instruction

���������	

����	��

��������

������

��������	

��������
�

��������	

����

����

�

���

���

���

���

����

����

����

����

����

����
������ �	�
 �	� ����	���� ���	������

������������

�
��
�
�

��
��
�
��
�
��
�
�
�
	
�
�
�
��
�
�
��
�
	
��
�
�
�
�
�
�

Figure 1. Simulation Performance Evaluation Using Different Types of
Processors and Applications

execution the profiling function is called, the index of the
instruction retrieved and the instruction counters are updated.
If multiple processors are simulated the processor scheduling
is modified to simulate one instruction on each processor
before starting again with the first processor. After the
completeness of the execution, the platform generates an
XML file which contains the number of occurrences each
instruction of the processor is executed. It is important
to observe that most of the state-of-the-art tools allows
application profiling at function level and not at instruction-
level. Additionally, such profiling tools are intended to run
on traditional processors and are not targeted to embedded
systems. To the best of our knowledge, our work is the
first one to propose a solution for profiling applications
with very small granularity of information (instruction-level)
using cloud simulation. None of the existing tools previously
referred enables model of complex architectures and its
validation through cloud simulation.

IV. CASE STUDY

This section introduces a set of scenarios created for
evaluating the efficiency of the simulator taking into account
different standard benchmark applications, most of them
extracted from MiBench [17]. To measure the efficiency of
the framework and evaluate the simulation performance, a
set containing nine benchmark applications with different
processing requirements is used. Figure 1 illustrates the
simulation performance in number of MIPS for different
benchmark applications running on different processors. It
is possible to observe that the simulation performance may
vary from processor to processor even running the same
application. This is explained by the fact that OVP simulator
implements several optimizations based on macro blocks for
speeding-up the simulation and its performance may vary
according to the model of the used processor as well as
the set of executed instructions, which may also vary from
application to application.

Table I illustrates the relative performance of the simu-
lator for different benchmark applications and models of

2202

Table I
RELATIVE PERFORMANCE (MIPS) OF THE SIMULATOR USING

DIFFERENT TYPES OF PROCESSORS

MIPS32 ARM7 OR1K PPC32 MBLAZE

BUBBLESORT
628.4 507.3 784.7 554.2 596.6

80.08% 64.65% 100.00% 70.63% 76.03%

DHRYSTONE
847.7 669.9 1, 062.8 663.2 862.6

79.76% 63.03% 100.00% 62.40% 81.16%

FIBONACCI
628.9 400.0 610.7 789.3 649.0

79.68% 50.68% 77.37% 100.00% 82.22%

LINPACK
1, 313.4 862.3 918.1 724.0 974.5

100.00% 65.65% 69.90% 55.12% 74.20%

MERGESORT
110.3 100.0 352.4 139.3 424.0

26.01% 23.58% 83.11% 32.85% 100.00%

PEAKSPEED1
1, 946.0 1, 464.5 1, 982.3 1, 416.5 1, 693.9

98.17% 73.88% 100.00% 71.46% 85.45%

QUICKSORT
475.4 341.8 882.0 444.9 828.8

53.90% 38.75% 100.00% 50.44% 93.97%

SHA1
804.0 851.6 1, 029.2 907.2 1, 672.3

48.08% 50.92% 61.54% 54.25% 100.00%

SUSAN
954.4 732.5 988.6 726.6 627.9

96.54% 74.09% 100.00% 73.50% 63.51%

processors. The most significative difference is observed
when using Mergesort application. The simulation perfor-
mance obtained when running the application on MicroBlaze
processor is of 424 MIPS while achieving only 100 MIPS
on ARM7 processors, representing approximately 25% of
obtained performance on MicroBlaze. OpenRISC (OR1K)
presented to achieve better simulation performance over the
others, having obtained the best performance in 5 of 9
analyzed benchmark applications, followed by MicroBlaze
(2/9), MIPS32 and PowerPC32 (both with 1/9), and ARM,
which has presented low simulation speed performance for
all benchmark applications.

In order to better understand the obtained results, we
measure the number of executed instructions per processor
and per benchmark application. If we consider the Bubble-
sort application, the processor which executes the largest
number of instructions is the MicroBlaze processor, execut-
ing more than 600M instructions. However, it presents the
best simulation performance compared to other processors
running this benchmark (Table I). Now, considering the
PeakSpeed1 application, the largest amount of instructions
is executed by OpenRISC processor (more than 17, 000M
instructions). Thus, this was the same processor that reached
the best simulation performance for this benchmark (Table
I). However, we cannot say that the larger the amount of
instructions executed by a processor, the better its simulation
performance will be. When observing Susan benchmark,
the largest amount of executed instructions is given by

MicroBlaze processor (more than 350, 000M instructions),
however when considering the simulation performance, it
reaches only 63% of the performance obtained by OpenRISC
processor for the same benchmark application. One possible
reason for that amount of instructions executed by the
standard MicroBlaze processor is due the fact that there
is no hardware divider unit for this model of processor,
and therefore Susan benchmark uses several instructions that
emulate the divider in software.

To verify the scalability of Simplify framework, the ap-
plication Dhrystone was executed on each processor that
belongs to a homogeneous MPSoC with different size. It is
possible to observe from Table II that the proposed solution
scales well as the number of cores increases. In this example,
for running Dhrystone application in a 64 cores architecture,
the simulation takes only 1m12s to finish its execution,
simulating more than 62G instructions.

Table II
SCALABILITY OF OVPSIM INSIDE SIMPLIFY

N

CORES

MIPS PER

CORE

SIM.

TIME (s)
SIM. INSTRUCTIONS

4 210.60 4.62 3, 892, 315, 516 (3.9G)

8 107.40 9.07 7, 792, 631, 032 (7.8G)

16 53.60 18.14 15, 585, 262, 071 (15.6G)

32 27.00 36.04 31, 170, 524, 129 (31.2G)

64 13.50 72.08 62, 341, 048, 257 (62.4G)

In order to support profiling of applications, the original
platform has been extended with the application profiler
attached to the OVP MicroBlaze processor model. The plat-
form uses a single instruction simulation mode to capture the
currently executed instruction and to build up an application
profiling. Each benchmark of the previous simulations has
been executed on a platform instantiating one MicroBlaze
processor. To this platform a special function providing
the instruction information has been attached to count the
executions for each instruction available in the processor
model. Table III presents the run-time of the simulations
using the profiling strategy based on the extended model pro-
posed in this paper. The profiling mechanism is implemented
as an extension to the standard model of the MicroBlaze
processor provided by Imperas and available on OVPsim.
The simulation time considers both user and system time
(represented by the elapsed time column) and it is measured
for different benchmark applications running during different
time period (simulated time).

It is clear to observe that profiled applications takes more
time to be simulated compared to standard ones. How-
ever, the profiling mechanism using the proposed extended
model makes it possible to profile complex application in
an acceptable time frame. In comparison to these results,
a tracing simulation run of the Bubblesort benchmark in
OVP takes more than 26 hours, whereas profiling using the

2203

Table III
PROFILING OF MICROBLAZE PROCESSOR

ELAPSED TIME (s) SIMULATED TIME (s)

BUBBLESORT 763.54 6.76

DHRYSTONE 827.27 7.54

FIBONACCI 606.23 5.56

LINPACK 13, 324.86 120.10

MERGESORT 691.74 6.05

PEAKSPEED1 12, 847.09 120.00

QUICKSORT 5, 305.07 47.95

SHA1 2, 149.46 19.42

extended model takes only 12m44s, reaching a speed-up of
around 120×. Table III shows that even bigger benchmarks,
e.g. Linpack or PeakSpeed1, can be profiled in acceptable
time, which would not be feasible using the traditional
approach based on tracing information. This is due to two
main reasons: (1) when tracing is enabled, all executed
instructions must be stored in a file that will be later used as
an input for a post-processing application, which will finally
count the number of occurrences for each instruction on the
target processor.

Considering that the output trace of each executed instruc-
tion has approximately 100 bytes of data and considering a
run with 1, 000M instructions, the output file for a single
application would be around 1GB of size. In the case of
Susan benchmark, which executes more than 350, 000M
instructions, in order to be capable of executing the profiling
based on post-processing information, it would be necessary
to have approximately 350GB free space in disk only to store
the tracing information. (2) Additionally, it would be ne-
cessary to consider the time the post-processing application
would take to profile such a big file added to the simulation
time for executing an application and writing the profiled
instructions into a file. These two main reasons summarize
the main motivation for developing an efficient approach
which allows application profiling at instruction-level in an
acceptable time frame.

The extended platform is capable of simulating and
profiling multiprocessor systems. Within the platform eight
MicroBlaze processors have been instantiated to show the
scalability of the proposed profiling approach to multipro-
cessor platform simulations. Table IV illustrates the results
of simulation run-time and simulation performance with
different profiling configurations. These configurations differ
in the amount of profiled processors from zero to eight.
In most cases it is sufficient to profile only one desired
processor in a multiprocessor architecture. Therefore non-
profiled processors run an increased interval of simulated
instructions to speed up the simulation. The results in Table
IV show that it is feasible to profile a single core or up to
four cores in a multiprocessor platform. Even profiling up
to all eight cores is acceptable depending on the application.

�����
�����
�����
�����
�����
	����

����
�����
�����
����
������
������
������
������
������
�	����
�
����
������
������
�����
������

�� �� ��

��
��

��
��
	

�
��
�
�
�
��

��

��������������
���������������

�����������
����������
����������
��������
 ��!������
����������
"���������
�����

Figure 2. Profiling Run-time of the Extended Model Approach

The most critical benchmark (LinPack) is capable to be
profiled in less than 20 hours in all eight cores. It is
really important to notice that the approach based on tracing
information would not be feasible at all, taking several weeks
of simulation and being limited according to the disk space
needed for storing the whole application tracing to be used
for post-processing. The results of the simulations presented
in Figure 2 show that the simulation time follows a linear
approximation of the elapsed simulation time proportional
to the number of profiled processors per benchmark. This
makes simulation time easily predictable for a different
number of cores to be profiled.

V. CONCLUSION

Virtual platforms are an important approach to reduce
time-to-market and design complexity. To design real MP-
SoCs is mandatory to have application profilers, intuitive
architecture builders and simulators in order to make a
faster design space exploration. These characteristics can be
accomplished adopting OVP as base of development due
to its non-monolithical nature and its possibility to scale
the number of processors without overcharging simulation
performance.

We highlight the two main contributions of this work as
the application profiler and the intuitive framework to build
MPSoCs. The first one is a web-based environment to build,
compile and simulate different platforms running several ap-
plications, allowing users to better explore the design space.
The framework uses a graphical interface with drag and
drop components which simplifies the usability of virtual
platforms for end-users and allows cloud simulations without
the need of having to configure the virtual environment.
The second contribution uses a specific approach attached
to the platform to get more accurate execution details. The
proposed approach allows designers to profile applications
at instruction-level and achieves a speed-up of more than
120× compared to the existing approach using simulation
tracing. The results show that this approach can also be used
for profiling multiprocessor architectures within acceptable
time slots. To the best of our knowledge, this is the first

2204

Table IV
PROFILING EFFICIENCY OF THE EXTENDED MODEL APPROACH USING MULTIPROCESSOR ARCHITECTURES

N PROFILED

PROCESSORS
0/8 1/8 4/8 8/8

MIPS PER

CORE

ELAPSED

TIME (s)

MIPS PER

CORE

ELAPSED

TIME (s)

MIPS PER

CORE

ELAPSED

TIME (s)

MIPS PER

CORE

ELAPSED

TIME (s)

BUBBLESORT 103.2 6.55 1.3 537.73 0.3 1, 949.43 0.2 3, 676.84

DHRYSTONE 144.7 5.21 1.1 673.76 0.3 2, 302.94 0.2 4, 345.39

FIBONACCI 128.2 4.34 1.3 435.64 0.3 1, 631.70 0.2 3, 074.54

LINPACK 164.1 73.17 1.2 9, 776.50 0.3 42, 869.31 0.2 71, 526.23

MERGESORT 44.8 13.51 1.2 491.92 0.3 1, 770.59 0.2 3, 263.35

PEAKSPEED1 312 38.46 1.3 9, 160.84 0.3 36, 025.82 0.2 66, 930.06

QUICKSORT 111.9 42.86 1.2 3, 885.49 0.3 14, 443.82 0.2 28, 045.93

SHA1 46.6 41.70 1 2, 041.06 0.2 7, 875.74 0.1 15, 970.25

approach to enable application profiling at instruction-level
on virtual platforms achieving good simulation speed.

Future works include: a) NoC support that will allow
more flexibility to the designer in terms of interconnection
possibilities; b) operating system support for enabling multi-
threading execution allowing the assignments of distributed
tasks and evaluation of real-time constraints at run-time; and
c) advanced profiler support combining instruction and func-
tion profiling to allow application optimizations at higher
abstraction levels.

ACKNOWLEDGEMENTS

This research was sponsored by the European Commis-
sion under the 7th Framework program within the FlexTiles
project (FPT ICT-288248).

REFERENCES

[1] G. M. Almeida, G. Sassatelli, and et al, “An adaptive message
passing mpsoc framework,” International Journal of Recon-
figurable Computing, vol. October, 2009.

[2] Imperas-Ltd, “Open virtual platforms (ovp),” http://www.
ovpworld.org, 2012.

[3] C. Roth, G. M. Almeida, and et al, “Modular framework
for multi-level multi-device mpsoc simulation,” The 18th

Reconfigurable Architectures Workshop (RAW’2011), May
2011.

[4] Cadence, “Virtual system platform,” http://www.cadence.
com/products/sd/virtual system/pages/default.aspx, 2012.

[5] Synopsis, “Tools to build, distribute and use virtual
prototypes and vdks,” http://www.synopsys.com/Systems/
VirtualPrototyping/Pages/Virtualizer.aspx, 2012.

[6] S. LLC, “SimpleScalar Tool Suite,” http://simplescalar.com.

[7] T. gem5 Simulator System, “The gem5 Simulator System - A
modular platform for computer system architecture research,”
http://gem5.org.

[8] OVP, “Open Virtual Platform,” http://ovpworld.org, 2012.

[9] Intel, “Intel vtune amplifier xe 2013,” http://software.intel.
com/en-us/intel-vtune-amplifier-xe, 2013.

[10] AMD, “Amd codeanalyst performance analyzer,”
http://developer.amd.com/tools/heterogeneous-computing/
amd-codeanalyst-performance-analyzer/, 2013.

[11] L. Shannon and P. Chow, “Using reconfigurability to achieve
real-time profiling for hardware/software codesign,” in in
FPGA 04: Proceedings of the 2004 ACM/SIGDA 12th in-
ternational symposium on Field programmable gate arrays.
ACM Press, 2004, pp. 190–199.

[12] R. V. Peri, S. Jinturkar, and L. Fajardo, “A novel technique
for profiling programs in embedded systems,” in In ACM
Workshop on Feedback-Directed and Dynamic Optimization
(FDDO-2). ACM Press, 1999.

[13] S. L. Graham, P. B. Kessler, and M. K.Mckusick, “Gprof:
A call graph execution profiler,” in Proceedings of the
1982 SIGPLAN symposium on Compiler construction, ser.
SIGPLAN ’82. New York, NY, USA: ACM, 1982, pp. 120–
126. [Online]. Available: http://doi.acm.org/10.1145/800230.
806987

[14] T. Carmel-Veilleux, J.-F. Boland, and G. Bois, “A novel
low-overhead flexible instrumentation framework for virtual
platforms,” in Rapid System Prototyping (RSP), 2011 22nd
IEEE International Symposium on, may 2011, pp. 92 –98.

[15] A. Aguiar, S. Filho, and et al, “Hellfire: A design framework
for critical embedded systems’ applications,” The Interna-
tional Symposium on Quality Electronic Design (IESQD), pp.
730 –737, march 2010.

[16] F. G. Magalhaes, O. Longhi, and et al, “Noc-based platform
for embedded software design: An extension of the hellfire
framework,” The International Symposium on Quality Elec-
tronic Design (IESQD), march 2012.

[17] M. R. Guthaus, J. S. Ringenberg, and et al, “Mibench: A free,
commercially representative embedded benchmark suite,” in
Proceedings of the Workload Characterization, 2001. WWC-
4. 2001 IEEE International Workshop, ser. WWC ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp.
3–14. [Online]. Available: http://dx.doi.org/10.1109/WWC.
2001.15

2205

