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Abstract: Localisation of objects and people in indoor environments has been widely studied due to security issues and
because of the benefits that a localisation system can provide. Indoor positioning systems (IPSs) based on more than one
technology can improve localisation performance by leveraging the advantages of distinct technologies. This study proposes a
multi-sensor IPS able to estimate the three-dimensional (3D) location of stationary objects using off-the-shelf equipment. By
using radio-frequency identification (RFID) technology, machine-learning models based on support vector regression (SVR) and
artificial neural networks (ANNs) are proposed. A k-means technique is also applied to improve accuracy. A computer vision
(CV) subsystem detects visual markers in the scenario to enhance RFID localisation. To combine the RFID and CV subsystems,
a fusion method based on the region of interest is proposed. We have implemented the authors’ system and evaluated it using
real experiments. On bi-dimensional scenarios, localisation error is between 9 and 29 cm in the range of 1 and 2.2 m. In a
machine-learning approach comparison, ANN performed 31% better than SVR approach. Regarding 3D scenarios, localisation
errors in dense environments are 80.7 and 73.7 cm for ANN and SVR models, respectively.

1 Introduction
Indoor positioning systems (IPSs) have been required for different
sorts of commercial applications. Such technology helps to find
specific items in hospitals or distribution centres. There are also
military and public security uses for these systems, as police
officers, firefighters and soldiers use it for a better navigation
during missions inside buildings [1]. Communication networks and
telecommunication applications require several types of
information about the environment, people and devices in order to
offer flexible and adaptive services. In the future of communication
systems, location information can bring many benefits such as the
autonomous organisation of sensors or devices in ad hoc networks
[2].

For smaller objects, on an item level, applications tend to
depend on more specific information. In item retrieval, for
instance, a robot or a person needs to find the exact location of a
product. Accuracy must be high in order to complete the task
properly, without interferences of any kind such as nearby objects.
This application is a natural extension of regular inventory
systems. Another one, called location assurance, is able to verify
which items are in pre-specified locations [3].

Radio-frequency identification (RFID) is a low-cost technology
which allows this identification and location process to happen.
What makes it attractive is that it basically requires items to be
equipped with RFID tags, which are small-sized, low-power-
consumption equipment. Passive tags are even battery free. These
components can also transmit the received signal strength indicator
(RSSI), a measure of power commonly represented in dBm [4].

The motivation of this work is to propose a low-cost and high-
accuracy IPS that can be used in a large number of items (as we
have in logistics/distribution centres). The current IPSs do not meet
these requirements and, nowadays, companies choose to
manufacture again goods that are lost in distribution centres,
increasing their production costs. There is a lack of research on
low-cost IPSs with item-level accuracy applied to stationary
objects. This work proposes a new IPS to meet these requirements.
To achieve a better accuracy, the proposal also aims to define a
new hybrid mechanism based on RFID and computer vision (CV).
This work presents a multi-sensor IPS able to perform localisation

of stationary objects over three-dimensional (3D) space using off-
the-shelf equipment.

Our contribution to the state of IPSs is novel machine-learning
models and a sensor fusion method able to perform localisation of
static items on 3D space. The models and the fusion method
provide a low error distance (item level) with a good success
probability of position estimations, improving the localisation
performance. Besides that, passive RFID tags and a cheap camera
are used, which represent a reduction in the cost of infrastructure.

Scene analysis in mobile scenarios provides fingerprints that
change, which helps to track a given target. Therefore, many IPSs
work only under mobile environments, considering it is an easier
task. Our system, on the other hand, is also able to localise goods
on static environments.

The remainder of this paper is organised as follows: Section 2
presents a summary of related work. An overview of the proposed
system is provided in Section 3. Sections 4 and 5 discuss the
offline and online phases of the proposed system, respectively.
Experiments and results are presented in Section 6, and finally
Section 7 contains the conclusion.

2 Related work
RFID passive systems might be cheaper than IPSs based on other
technologies such as active RFID, ultra-wideband, infrared or
ultrasound. Yet, costs and performance can vary even more.
Wireless fidelity and ZigBee, though not so expensive, have a very
limited accuracy (3 m at most) or may require a large number of
antennas in order to guarantee item-level performance. The state-
of-the-art of these technologies has been already compared in the
literature [5].

To perform the indoor localisation of objects and people, one of
three main techniques can be chosen: triangulation (distance
estimation), proximity and fingerprint analysis. Belhadi and
Fergani [6] present a comparison between distance estimation
(lateration) and the fingerprint techniques k-nearest neighbour
(NN) and artificial neural network (ANN) for RFID indoor
localisation. Simulation results show that the ANN algorithm
outperforms the other techniques, though it requires a large
deployment of reference tags.
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RFID reference tags used in LANDMARC [7] are placed on the
environment and RFID readers sense the RSSIs. Then, tags in
unknown positions are sensed and the NN algorithm uses RSSIs to
find nearby reference tags, thus predicting the position of an
unknown tag. In [8], this technique is compared with an ANN-
based localisation model. For each reader antenna, in the course of
the training phase, RSSI from the reference tags feed the network
input. The orientation angle and the coordinates (x, y) of the tags
are given in the output layer. Results show localisation accuracy is
7 cm better than in the LANDMARC system.

In [9], a backpropagation network (BPN) model is merged with
the LANDMARC approach. LANDMARC first uses RSSI values
and calculates coordinates for target tags. Second, BPN adjusts
such coordinates to a more accurate location. This is possible
because the relationship between distance and RSSI is dynamic. In
experiments where reference tags are 30 cm apart from each other,
results show a 56 cm error rate. Conflicting with our approach,
reference tags must be present during online phase. This can
complicate system's development and maintenance.

An RFID localisation system combined with other technologies
such as optical, inertial and ultrasonic systems is a growing trend in
the field. Building a system that combines these technologies is an
existing challenge. This combination is referred to as a hybrid
system or sensor data fusion. Hybrid systems can improve
localisation performance by leveraging the advantages of the
different technologies [4, 10].

In our previous work [11], a machine-learning model based on
support vector regression (SVR) is proposed for localisation of
stationary objects using off-the-shelf equipments. This model
learns RSSI fingerprints during an offline phase and then predicts
tags locations in an online phase, where no reference tags are
needed. Experiments were performed in four different places inside
a laboratory, where tags were attached on a whiteboard, which is
1.5 m in width and height. This technique presented a location
error between 17 and 31 cm in 2.25 m2 area coverage. In a most
recent work [12], a hybrid approach is presented to locate objects
on bi-dimensional scenarios. The localisation error was between 9
and 29 cm in the range of 1 and 2.2 m scenarios.

In [13], active reference tags are attached to the floor, while an
RFID reader is carried by each person present in the environment.
In the setup phase, an RSSI fingerprint table is created. In the
online phase, the RSSI sensed by the reader from each reference
tag is related to the fingerprint table to obtain the estimated region
of the person. In the visual location system, the background
subtraction method is applied. Finally, the fusion system matches
RFID and visual locations according to their sequence in the
coordinate axis, defining the visual position as a final result.
Average accuracy was between 95 and 100% for 1–2 m range.
Despite a good accuracy, the system was limited only to persons’
localisation.

Nick et al. [14] present a tracking system for trolleys carrying
boxes leaving or coming into a mail distribution centre. Using an
RFID reader and four antennas attached to the ceiling, the relations
between the RSSI and different measured distances are stored and
later estimated. In the CV system, sample images from the target
object are captured, and thresholding and morphological operations
are then applied to recognise the object in the image. Sensor data
fusion is performed by a constrained unscented Kalman filter

technique. Localisation errors were 26 and 36 cm for stationary and
moving scenarios, respectively.

In [3], a new RFID-based hardware called wireless
identification and sensing platform (WISP) is attached to the target
object. The WISP activates a light-emitting diode (LED) each time
a passive RFID tag is written. When the LED illuminates, it is
recognised by an optical system. The optical system collects
images in pairs (one LED on and one off), performs the difference
computation on board, and locates the maximum brightness
change. The system was able to locate objects between 1.5 and 2 m
under 3D scenarios. Results showed high accuracy, locating objects
with errors between 1 and 2 cm.

Deyle et al. [15] present a multi-sensor IPS based on RFID,
optical and laser technologies. The system considers the output of
three approximately coincident sensors with overlapping fields of
view: the RSSI image, a low-resolution camera image from a
rectified camera and a 3D point cloud from a tilting laser range
finder. From the camera image, colour histograms are employed as
the visual feature. The probability that a tag is at a given location
uses a Bayesian inference model. After all sensor images are fused,
the maximum likelihood pixel is selected, and the corresponding
3D location from the laser is chosen. The system correctly located
the target object in 17 out of 18 trials (94.4%).

3 System overview
An IPS has three main elements: (i) there are location sensing
devices which provide metrics regarding the relative position of an
object; (ii) there is a localisation technique, or an algorithm,
responsible for processing those metrics; and (iii) there is a display
system for graphical illustrations of the target object's location [1].
Fig. 1 shows such elements might be associated with a three-tier
architecture [2]. In this work, for the location sensing layer, RFID
and digital camera were used; technologies regarding the location
technique were machine-learning models and CV algorithms; for
the graphical interface, .NET graphical user-interface (GUI)
application was used. 

In this work, every pair of RFID tag and the visual marker is
referred to just as a marker. Markers are attached to objects and
they identify each item. Then, the system is able to estimate
specific locations in the scenario.

The proposed IPS is divided into two subsystems. One uses
machine-learning models and RFID technology to predict location.
The other enhances these estimated predictions by employing CV
algorithms and a camera. The offline phase is performed only once
for the chosen scenario. The online phase is performed as often as
necessary for each object we want to locate. This process is further
described in Fig. 2. 

In the offline phase, the RFID equipment and the camera are
calibrated, reference tags and visual markers are positioned, and
supervised machine-learning models are trained. Two machine-
learning models are proposed and compared. One model is based
on ANNs and the other on SVR. The role of the RFID subsystem is
to collect RSSI fingerprints from the environment to train the
machine to learn models. In this phase, visual subsystem processes
only capture scenario images in order to set reference marker
positions.

In the online phase, the RFID subsystem collects fingerprints to
use as the input of the models created in the offline phase. The k-
means approach is proposed to group preliminary locations in
weighted clusters. Finally, the visual subsystem refines the results
through visual markers detection. Both the subsystems and phases
are detailed in the next sections.

The RFID reader and camera are connected to a computer
running the system. MATLAB libraries [16, 17] have been
integrated into .NET C# to train and run machine-learning models.
A .NET GUI application was developed to automate experiments
and graphically show results.

4 Offline phase
The proposed RFID subsystem is based on the RSSI value of each
tag to estimate its location in the scenario. Data collection from
reference tags is needed in order to provide a statistical model –

Fig. 1  Layered architecture associated with a block diagram containing
fundamental components of the proposed IPS
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therefore, such tags must be evenly distributed. During the
experiment test bed, diagonal mesh design (Fig. 3) performed
better, as opposed to simple grid format, being consequently
chosen for the rest of the project. 

Some initial adjustment is required. After reference tag
positions are stored in the system, spatial coordinates (x, y) are
translated to a virtual grid, which is created and defined over an
image of the scenario, as seen in (Fig. 3a). Thus, the system is able
to show any cell within the borders of the captured picture.

Reader antenna position plays a key role in the accuracy of the
IPS. In initial tests, two antennas were placed in front of the tags,
but the RSSI values of tags in different positions were the same,
making it impossible to have a reasonable RSSI interpolation
during prediction. Thus, for each axis of the virtual grid, it was
decided to place antennas in positions such that RSSI values
decrease as the distance increases. Therefore, in a 2D scenario, at
least two antennas must be present in the system (x-axis and y-
axis). This arrangement can be seen in Fig. 3b. In a 3D scenario,
the infrastructure needs an additional antenna. The third antenna is
placed in front of the target objects, providing signal data to predict
the z-axis distance.

After these configuration steps, the reference tags are read and
the data are collected. The RFID reader is activated for a fixed time
period, and the system collects the following data: the antenna ID
that senses the tag, the frequency in megahertz, the RSSI and the
position (x, y, z) of the reference tags present in the scenario.

4.1 ANN model

ANNs learn the non-linear mapping between inputs and outputs
through non-linear activation functions and hidden neurons. ANNs
are effective for localisation problems because they act as universal
interpolators. One of their main characteristics is that no prior
knowledge about environment geometry (position of rooms, walls
and obstacles) is needed. Interference factors such as multipath
propagation of RF signals and the presence of other electronic
devices are all embedded in the training samples collected onsite.
Knowledge about the propagation channel and reader antenna
positions are also not necessary [18, 19].

Data collected in the offline phase feed the ANN training
process. All collected data are used, and any data removal or
aggregation are performed at this stage. Data are separated by
operation frequency, and a neural network is created for each
frequency. RSSI values for each antenna are presented as network
inputs, and the virtual-grid coordinates (x, y) of each reference tag
are the target output data. In a 3D scenario, the depth distance (z) is
also presented as output.

Reference tag data are divided into three subsets: training,
validation and testing, randomly divided into the ratios of 0.7, 0.15
and 0.15. The training set is used for computing the gradient and
updating the network weights and biases. The validation set
ensures that there is no overfitting in the final result. Testing set
error is useful to indicate a poor division of the dataset.

A feedforward BPN is modelled. It consists of four layers and
has n neurons in the input layer, 24 neurons and 12 neurons in each
hidden layer and 2 neurons in the output layer. Neurons in the input
layer and antennas in the scenario must appear in the same amount.
As for the hidden layers, the numbers are such because
performance does not improve above or below this point – and
computational time would increase substantially, as well. Weight
and bias values were upgraded with the Levenberg–Marquardt
backpropagation algorithm. Performance of the network was
measured by the mean square error (MSE).

4.2 SVR model

Support vector machines (SVMs) have originally been proposed as
a supervised learning algorithm for binary classification. In a
modified formulation they can also be applied to regression tasks,
which are then referred to as SVR [20, 21]. The localisation
problem of this work is a regression problem instead of a
classification problem. As stated in Section 4, the target marker
position is given by spatial coordinates rather than a region or
proximity.

Given a training dataset x1, y1 ⋯ xn, yn ⊂ X × ℝ, where X
denotes the space of the input patterns, xi and corresponding target
values yi are a combined training set. The SVR goal is to find a
function f(x) that has at most ε deviation from the actually obtained
targets yi for all the training data. Thus, the linear approximation
function is described as

f (x) = w, x + b with w ∈ X, b ∈ ℝ (1)

Fig. 2  Block diagram of system design. The inputs are the RFID readings
and the camera picture. The output is the target object position

 

Fig. 3  Virtual grid over a picture captured from the training scenario (a)
and positioning of reference tags and antennas over the diagonal mesh
design (b)
(a) Virtual grid, (b) RFID components position
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where . , .  denotes the dot product in X. However, the problem is
not always feasible, because there are points that violate the
restrictions. To avoid overfitting, one should add a capacity control
term, which in the SVM case is ∥ w ∥2. Formally, we can write this
problem as an optimisation given by

minimise 1
2∥ w ∥2 + C ∑

i = 1

l
ξi + ξi

∗

subject to
yi − w, xi − b ≤ ε + ξ

w, xi + b − yi ≤ ε + ξi
∗

ξi, ξi
∗ ≥ 0

where C is a regularisation parameter that controls the trade-off
between penalising violations of the accepted interval ε (denoted
by ξ and ξ∗) and the complexity of the decision function f(x). A
solution of the convex optimisation problem is usually found by
means of an equivalent dual formulation.

The dual formulation of the SVR problem provides an
alternative to work in a high-dimensional space. Thus, it is possible
to map the data into higher-dimensional spaces in the hope that the
data could become more easily separated or better structured. To
accomplish this, kernel functions approaches are used.

In our proposal, we use a MATLAB implementation [16] of
SVR with a wavelet kernel [22]

K x, z = ∏
i = 1

n
cos 1.75 xi − zi

a exp − xi − zi
2

2a2 (2)

where x, z and a are the wavelet dilation and translation
coefficients. More details and concepts about SVR can be found in
Cristianini and Shawe-Taylor [23] and Smola and Schölkopf [21].

SVR is modelled similar to ANN, where the RSSI values
sensed by each antenna is presented as training datasets and the
virtual-grid coordinates of each reference tag are the output data. In
SVR, only one target value is possible for each calculus, so we
create one SVR model for each target coordinate x, y and z (3D
environment). We cross-validated values for SVR coefficients, and
based on the results, they were set as ε = 0.00025, c = 40,000 and
a = 4 (wavelet).

5 Online phase
In this phase, a sensor fusion approach is proposed. By integrating
several positioning systems, accuracy tends to improve, once
hierarchical and overlapping levels of resolution are formed [24].
In this phase, the RFID subsystem seeks to detect regions of
interest (ROIs). These are limited areas, smaller than the size of the
whole environment. The trained models and the k-means method
are used by the RFID subsystem to estimate target object positions.
Later, the visual subsystem uses ROIs to predict more precise

locations. Other techniques can be applied to this limited area, so
localisation performance is usually higher.

During the online phase, no reference tags are necessary for the
environment, but an unknown RFID tag is read during a fixed
period of time. When the network is well trained, data from an
unknown tag are used to estimate its location. An ANN model is
automatically chosen for each frequency. RSSI data from the
antennas work as input to the network, and virtual-grid coordinates
are estimated and shown as the network output.

In both SVR approach and ANN model, online procedures are
quite similar. The trained SVR model receives RSSI values from an
unknown tag, thus estimating tag location. Output coordinates
have, each, their own SVR model. Every model is evaluated to
predict coordinates x, y and z (3D scenario).

5.1 k-Means

The RFID reader, during the two phases of the system, gathers a
large number of readings for every tag, and it does so in a short
time. For instance, for 3 s sensing a tag, there are 46 readings
available. If obstacles or interferences disturb the training process,
the performance of a given frequency model might be low. Hence,
RSSI values can lead to different estimated positions for the same
tag.

Thus, some technique is required to provide the final location of
the target object. Initial tests show a simple mean to predict the
location of target objects might not provide a precise result.
Therefore, the k-means technique is required to achieve our goals.

In our model, the estimated tag locations, obtained by the
machine-learning technique, are observations of the k-means model
and the squared Euclidean is the measured distance. As estimated
positions from certain frequency models may differ from other
frequencies, k is defined as k = d − 1, where d is the number of
sensed frequencies. Thus, it is more likely that predictions from
noisy frequencies are grouped in their own clusters.

On the basis of member count information, we can also define a
good weighted cluster has more members, and, thus, assembles
more and closest predicted positions than a bad weighted one. In
fact, the best-weighted cluster presents more similar locations. On
the other hand, false positions are common in clusters with few
members, in which machine-learning models show a poor
performance.

Fig. 4 shows clusters extracted from a set of locations predicted
for a given tag. Samples from four operation frequencies between
923 and 924 MHz were used. In this case, cluster A is the best
weighted as it has more similar locations. 

If the system is running in RFID-only mode, the centroid
location of the best-weighted cluster is defined as the target
location. Otherwise, weights and centroids from all clusters are
given as ROIs for localisation improvement using CV, presented in
the next section.

5.2 CV for fine localisation

Our proposed sensor fusion is based on RFID estimates and CV
recognition in order to filter and improve the results the RFID
subsystem obtains. With a multiple ROI approach, images from the
scenario are analysed by CV; as the RFID subsystem estimated
more than one location, CV method explores multiple regions in
order to find a visual marker.

In this work, visual markers do not need to be uniquely
identified. In other words, the visual markers do not need to be
machine-readable and store data. This feature can facilitate the
adoption of new visual markers and CV algorithms. The visual
marker should always be placed as close as possible to RFID tag.
Each side of the visual marker is 4.5 cm long.

Algorithm 1 (see Fig. 5) shows the sequence of operations in
the visual subsystem. For each k-means cluster, a small image of
the scene is cropped, creating a sub-image. The centre of the sub-
image is based on the k-means cluster centroid location and its size
is between 15 and 30% of the original scenario photograph. 

To detect the square shape in the sub-image [Algorithm 1
(Fig. 5), line 4], a canny edge detector is employed. The threshold

Fig. 4  k-Means clustering applied to predicted locations over virtual-grid
coordinates (x, y)
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value is set to 180, and the edge linking value is 120. From the
canny edges image, polyline contours are detected and shapes
whose angles are between 80° and 100° are selected. If square-
shaped area is bigger than a configurable minimum size, it is
recognised as a visual marker. We used EmguCV (.NET wrapper to
OpenCV) [25] to implement this subsystem.

As the visual marker is detected in the sub-image and we want
to know the marker location in the scenario picture [Algorithm 1
(Fig. 5), line 6], the following equation must be used:

x, y = xm + ximg − w
2 , ym + yimg − h

2 (3)

where ximg, yimg  are the centre coordinates of the sub-image in the
original picture, xm, ym  are the visual marker positions in sub-
image and w and h are the sub-image width and height,
respectively.

The best-weighted cluster position provides a visual marker,
and its position gives the final target location [Algorithm 1 (Fig. 5),
lines 15–16]. It might happen this cluster has more than one visual
marker, so the system calculates the simple centroid of all finite
points. If there are no visual markers, location is provided only by
RFID.

6 Experiments and results
In the experiments, the localisation system was run in a laboratory
(10 m × 7 m), where markers (tag and visual) were attached on a
whiteboard, which is 1.5 m in width and height (2.25 m2 area). In
the offline phase, reference tags were positioned in diagonal mesh
over the board and antennas placed on each side, as discussed in
Section 4. Diagonal distance between each reference tag was 28 
cm.

A Speedway Revolution R420 RFID reader and a threshold
RFID antenna, both from Impinj, were used in the experiments.
The threshold is a far-field antenna, which operates in a frequency
range of 902–928 MHz and its coverage range is 3 m. The antenna
maximum power is 30 dBm and it provides a maximum gain of 5 
dBi. The RFID tag used is a RafSec DogBone Wet Inlay, which
operates in the frequency range of 860–960 MHz. Reader operation
frequency was defined to use the following values: 923.25, 923.75,
924.25 and 924.75 MHz. Reader power was set to a maximum
value of 32.5 dBm. For visual localisation, an inexpensive off-the-
shelf camera with 1.3 Mp (1280 × 960) and a 1/4″ sensor was used.
This type of camera was used to demonstrate that the system is
able to operate with low-cost equipment and low-resolution images
that allow fast CV analysis.

6.1 2D scenario

In the 2D experiments, the system was evaluated in four scenarios:
S1, S2, S3 and S4. In each scenario, the distances between camera
and markers were 100, 140, 180 and 220 cm, respectively. RFID
reader antennas were placed under and on the right-hand side of the
whiteboard. During the offline phase, 13 reference tags were used,
and the RFID reader was activated for 10 s. The number of samples
collected to feed the machine-learning models was 500 on average.
The training set MSE of the neural network was 1.14 cm. Fig. 6
shows the test bed environment and all system components. 

During the online phase of the experiment, our aim was to find
six target markers on the scenario. Three positions were already
used in the previous, offline phase, while the other three markers
were placed in unknown locations. RFID reader was activated by
3 s for each tag. ROI size was set to 30, 22, 17 and 15% for
scenarios S1, S2, S3 and S4, respectively, and the visual marker
had a minimum area of 40 px.

The first validation test had no visual markers, named ‘RFID-
only’. In the second, ‘dense’ test, the camera captured an image
which showed, simultaneously, all the 16 markers that were
attached to the whiteboard. For the last one, called the ‘clean’ test,
each run had only one marker present in the scenario.

Fig. 7 presents a screenshot of the system showing RFID
locations (yellow squares) and final target location (green circle).
The GUI helps users to easily identify the marker location. Time
latency to localise each marker is <1 s, excluding RFID reader
time. 

The Euclidean distance between estimated and actual points
gives the location error. Figs. 8a and b, respectively, show the
cumulative distribution functions (CDFs) of the error distance for
the ANN and for the SVR models. 

CDF results show the localisation error is 0 cm for most
experiments. For ANN model, 75% of the clean tests show an
optimal accuracy (0 cm) and both hybrid tests do not exceed 40 cm
error. The hybrid system did not detect the visual marker in 20% of
the clean tests. In this case, RFID-only location is used as output.
In the dense test, the system detected a wrong visual marker in
25% of the experiments, most of them on long distances scenarios.
SVR results are also better in clean tests, while dense and RFID-
only are similar. Contrary to ANN approach, the dense test has the
worst performance, which means the SVR model predicted more
locations close to wrong visual markers.

To summarise the localisation accuracy for each scenario, the
root MSE (RMSE) of the location estimates is calculated as the
difference between the predicted and actual location as

RMSE =
∑t = 1

k x^t − xt
2 + y^t − yt

2

k
(4)

Fig. 5  Algorithm 1: GetVisualMarkerLocation(img, C)
 

Fig. 6  Test bed environment and all system components
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where x^t, y^t describe the estimated locations, xt, yt are the actual
positions and k is the number of predictions. Table 1 shows the
RMSE performance of the system. 

In comparison between ANN and SVR approaches, the ANN
model has better performance than SVR in most scenarios and
tests. Overall results show that the ANN model performs 31%
better than the SVR approach on average.

The results of the ANN approach show a localisation error
between 9 and 29 cm in the range of 1 and 2.2 m scenarios.
Scenario S3 has the worst performance, mainly because RFID
subsystem did not have a good accuracy due to multipath effects
and interferences present in online phase.

Focusing on the ANN model, the hybrid system has better
results than the RFID-only approach. Localisation is improved by
21 and 32% for dense and clean tests, respectively. This
demonstrates the effectiveness of the improvement brought about
by the integration of the visual subsystem, even using simple visual
markers and low-cost equipments.

The overall RMSEs in dense and clean tests are 16.3 and 14.1 
cm, respectively. Scenarios where the distance between camera and
markers are shorter have the best results. These results demonstrate
the system can be applied to item-level localisation. However, the
approach still has some limitations in scenarios where many items
are close to each other.

In comparison to related works, the proposed hybrid system
performs 40 cm better than a neural network RFID-based approach
[9], where the distance between reference tags is similar to our
work. Also, our IPS decreased the localisation error by 45% than
other stationary hybrid system [14].

6.2 3D scenario

In the 3D scenario, an additional antenna was placed in front of the
target objects, along with the digital camera. To feed the training
dataset, reference tags were read at distances (dz) 100, 140, 180 and
220 cm. During the offline phase, 4400 samples were collected to
feed the machine-learning models. The neural network had a 23.6 

Fig. 7  Screenshot of the system running. Scenario: S2; test: dense; machine-learning model: ANN; target marker ID: 15; and localisation error: 0 cm
 

Fig. 8  Cumulative error distance for both machine-learning approaches
(a) CDF for ANN model localisation, (b) CDF for SVR model localisation

 
Table 1 Localisation performance (RMSE in centimetres) for each scenario, validation test and machine-learning approach
Scenario ANN SVR

RFID-only Hybrid RFID-only Hybrid
Dense Clean Dense Clean

S1 12.1 12.2 9.4 17.6 28.4 16.8
S2 17.3 13.6 9.1 18.2 14.1 19.7
S3 33.3 23.7 22.9 30.2 26.8 28.4
S4 12.1 13.0 10.0 30.9 29.3 26.5
RMSE 20.6 16.3 14.1 25.0 25.4 23.3
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cm MSE on the training set. Fig. 9 shows the infrastructure needed
and the arrangement scheme for a 3D experiment execution. 

In the online phase, the goal of the experiment was to provide
3D coordinates (x, y and z) of six target markers. Evaluated depth
distances (dz) were 160 and 220 cm, and validation tests are the
same of 2D scenario experiments, i.e. RFID-only, dense and clean.

Table 2 summarises systems performances in the 3D scenario.
In contrast to 2D results, SVR model is 5, 3% superior to ANN
model. Results from validation tests of the hybrid system and
RFID-only system are very similar. Regarding ANN model, error
in the hybrid system increased 1 cm when compared with RFID-
only tests. 

Regarding to SVR model, the hybrid system (‘clean’ test) has
12 cm higher accuracy than an RFID-only test. In these cases,
among the regions analysed by the visual subsystem, the one with a
visual marker resulted in high-accurate values for x and y
coordinates, but low-accurate predictions for the depth distance (z).

In comparison to two related systems that work with 3D
scenarios [3, 15], the proposed system performance is lower in
both cases, as the error increased about 80 cm. However, both
related works need a new hardware and could not be deployed
under an existing infrastructure. Besides that, Deyle et al. [15]
predict the depth distance by using additional laser sensors.

7 Conclusion
Our multi-sensor system uses affordable equipment to locate
stationary items with great accuracy, due to the combination of
visual markers and RFID tags attached to objects. The proposed
machine-learning models in this work can learn RSSI fingerprints
and, thus, predict markers’ position. Also, localisation is enhanced
by the use of CV algorithms and a k-means technique.

Real-world experiments helped us evaluate accomplishments
and compare models. In bi-dimensional scenarios, our best case
demonstrated a 9.1 cm accuracy, as well as a 32% improvement
over localisation systems based only on RFID. Regarding 3D
scenarios, localisation errors in dense environments are 80.7 and
73.7 cm for ANN and SVR models, respectively.

In future works, experiments in larger scenarios, with multiple
readers and cameras, will help us test scalability.
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