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ABSTRACT 
Software complexity has increased considerably over recent years, 
needing special target architectures as MPSoCs to fulfill the heavy 
memory, communication and computation requirements. Neverthe-
less, the use of MPSoCs has brought attention to the need for effec-
tive methods and tools for parallel software development. Metho-
dologies aggregating partitioning and mapping are normally em-
ployed to fulfill the heavy requirements of such systems. This paper 
explores task-partitioning and processor-mapping methods on ho-
mogeneous NoC-Based MPSoC. The effect of both on application’s 
energy consumption is explored alone and jointly. Experiments with 
several synthetic and four real applications show that the energy 
consumption is reduced up to 18%, 31.8% or 38.1% when applying 
partitioning, mapping or both, respectively. 

Categories and Subject Descriptors 
B.7 [Integrated Circuits]: Advanced technologies, VLSI 

General Terms 
Performance, Design 

Keywords 
Partitioning, Mapping, MPSoC, NoC 

1. INTRODUCTION 
Recent years have brought a large quantity of application, demand-
ing huge computational power, reduced energy consumption and ef-
ficient communication, which boast the research and development 
of special target architectures, like a NoC-based MPSoC. This one 
implements the complete system functionality into a single chip and 
support the heavy communication requirements of hundreds cores. 

From the processing point of view, homogeneous MPSoCs are those 
composed by processors of the same type and heterogeneous 
MPSoCs are those composed by at least two processors with differ-
ent architectures. Heterogeneous MPSoCs can support a wide varie-
ty of applications, since each processor has specific computation 
and communication features. Otherwise, homogeneous MPSoCs are 
easier to program, increase the mapping and partitioning possibili-
ties, and enable global load balancing through application-task mi-
gration. Besides, the homogeneity may reduce the global energy 
consumption and area occupation for some set of applications [1]. 
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The development of efficient application for homogeneous MPSoCs 
is a current challenge, especially regarding to the workload balanc-
ing among processors. Therefore, this work considers a homogene-
ous NoC-based MPSoC as target architecture, and presents a partial 
design flow containing the application-task partitioning into groups 
of tasks, where each group is associated to a single processor, and 
the processors mapping onto tiles of the NoC architecture. Whereas 
tile is a limited area of the target architecture, comprising a proces-
sor, a router, a local memory and auxiliary circuits. 

Moreover, we demonstrate the effect of partitioning and mapping 
alone and combined on the energy consumption saving. Experimen-
tal results show that an MPSoC may save significant energy when 
applying only partitioning or mapping. Furthermore, when combin-
ing both activities, the energy consumption is reduced up to 38.1%. 

Several works relate to processor mapping onto NoC-based archi-
tectures and some ones describe the tasks partitioning into groups 
associated to processors ([2], [3], [4], [5], [6], [7], [8] and [9]), but 
none compare the joint effect of both. A partial comparison of 
these works is summarized in Table 1. Moreover, a number of 
works uses the same name "mapping" to define both mapping and 
partitioning, while the name "partitioning" is used only to explore 
hardware/software division. 

Table 1 - Related work comparison. 

Work MPSoC type Target 
Architecture Activity / Dynamic Objective 

[2] Heterogeneous NoC Partitioning and mapping 
/ static 

Execution time and area 
reduction 

[3] Heterogeneous NoC Partitioning and mapping 
/ static 

Latency minimization and 
throughput maximization 

[4] Heterogeneous Generic Partitioning and mapping 
/ static Load balancing 

[5] Homogeneous NoC Partitioning and mapping 
/ static 

Execution time and power 
consumption reduction 

[6] Homogeneous NoC Partitioning and mapping 
/ static 

Communication latency 
reduction 

[7] Homogeneous Bus Scheduling and 
Partitioning / static Execution time reduction 

[8] Homogeneous Generic Partitioning and mapping 
/ static and dynamic Execution time reduction 

[9] Heterogeneous Generic Partitioning / static Execution time reduction 

This 
work Homogeneous NoC Partitioning and 

mapping / static 

Partitioning versus 
mapping exploration 
(Energy consumption) 

  

This paper is organized in six sections. Section 2 presents the parti-
tioning and the mapping problem formulation together with the un-
derlying data structures and the energy model. Section 3 describes 
the methodology and the tools used to accomplish the experimental 
results. Section 4 employs an application to exemplify the metho-
dology. Section 5 shows experimental results and Section 6 con-
cludes the paper. 
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2. PROBLEM FORMULATION 
The complete homogeneous MPSoC design implies several activi-
ties with some specificity according to the application description 
nature and the target architecture. Here, we describe two design ac-
tivities, which are the task partitioning and the processor mapping. 

Parallel applications are described as a set of communicating tasks. 
According to some requirements (e.g. energy consumption reduc-
tion) and some constraints (e.g. number of target processors) these 
tasks are grouped. The grouping of all application tasks, which is the 
task partitioning activity, generates a partition. 

Since all processors of homogeneous MPSoC are the same type, the 
binding activity may be easily performed by assigning each group to 
a single processor. 

Once communicating processors represent the application, the next 
step is to perform the selection of the best place to insert each one of 
these processors, which is the processor mapping onto tiles activity. 
According to the target architecture, the mapping may severely af-
fect some design requirements, such as latency minimization and 
energy consumption saving. 

To better understand partitioning and mapping concepts, Figure 1 
exemplifies the partitioning of a hypothetical application composed 
by 22 tasks into 6 groups that are associated to 6 processors and the 
corresponding mapping of these processors onto a 2D-mesh NoC 
architecture. The application is composed by a set of parallel com-
municating tasks T = {t1, t2, …, t22}. The tasks partitioning, which is 
represented by continuous arrows, generates G = {g1, g2, …, g6} that 
is a set of groups of tasks. 

Subsequently, the binding activity, which is represented by dashed 
arrows, associate each element of G to a single processor of the set 
of processors P = {p1, p2, …, p6}. Finally, the processor mapping 
onto the set of NoC tiles Γ = {τ1, τ2, …, τ6} is represented by the 
dotted arrows. 
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Figure 1 – Task partitioning and processor mapping. 

2.1 Partitioning and Mapping Complexities 
The design flow presented here uses an approach that separates the 
steps of partitioning tasks across groups, binding these groups into 
processors and mapping processors into tiles. It is important to high-
light that several works map the application tasks directly onto the 

target architecture tiles, excluding binding and partitioning. Howev-
er, due to the NP-complete nature of these activities [10], the results 
obtained with approaches that map application tasks directly to the 
target architecture tend to be worse when compared to our approach, 
mainly in the cases where the task is done at run time, since the 
mapping has a short time to be accomplished. 
 

Task Group Processor Tile 

1 

3 

2 

 
Figure 2 – The flow containing each step from the partitioning 
of tasks into groups, the binding groups into processors and the 
processors mapping onto tiles of the target architecture. 

The partitioning of tasks into groups (arrow 1 in Figure 2) is an ac-
tivity with complexity proportional to the Bell number O(Bell(n)) 
[11], where n is the number of tasks, since there is no order relation 
between groups and even within a group. 

The mapping processor (composed of tasks groups) in tiles of the 
target architecture (arrow 2 of Figure 2) is O(t!) complex, where t is 
the number of tiles, because it reflects all combinations of positions 
of processors in all tiles. 

The mapping of tasks to tiles of the target architecture (arrow 3 of 
Figure 2) adds the complexities of partitioning tasks across groups, 
binding each to a processor and mapping of the processors in tiles of 
the target architecture. In this case, the complexity is much higher 
O(Bell(n) � t!). 

Figure 3 shows that the number of solutions to be explored with 
mapping tasks onto tiles is much higher than the others. Thus, even 
applying good algorithms, the results obtained with this activity tend 
to be worse, when compared to those obtained with the flow pro-
posed here. 

 
Figure 3 – Number of combinations against the number of ele-
ments (logarithmic scale): (i) Partitioning of tasks into groups 
(i.e. processors), (ii) Mapping of processors in tiles, and (iii) 
Mapping of tasks onto tiles. 

2.2 Structures Definitions 
The partitioning and mapping have three main data structures that 
are set out below. 

Definition 1: A Task Communication Graph (TCG) is a directed 
graph <T, V>. The set of vertices T = {t1, t2, …, tm} represents the 
set of m tasks in one parallel application. Assuming vab is the bits 
amount of all packets sent from a task ta to a task tb, then the set of 
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edges V is {(ta, tb) | ta, tb ∈ T and vab ≠ 0}, and each edge is labeled 
with the value vab. V represents all communications between the ap-
plication tasks. 

Definition 2: A Communication Weighted Graph (CWG) is a di-
rected graph <P, W>, similar to the TCG. However, the set of ver-
tices P = {p1, p2, …, pn} represents the set of processors in one ap-
plication. The number of processors n is equal to the total number of 
tiles. Furthermore, wab is the total number of bits sent from a proces-
sor pa to a processor pb. Then the set of edges W is {(pa, pb) | 
pa, pb ∈ P and wab ≠ 0}, and each edge is labeled with the value wab. 
W represents all communications between the MPSoC processors, 
while CWG reveals information of application’s relative communi-
cation volume. 

The processor mapping is performed regarding to a 2D mesh NoC 
using wormhole and deterministic XY routing algorithm. The com-
munication resource graph stated below captures the NoC topology. 

Definition 3: A Communication Resource Graph (CRG) is a di-
rected graph <Γ, L>, where the vertex set is the set of tiles 
Γ = {τ1, τ2, …, τn} and the edge set L = {(τi, τj), ∀ τi, τj ∈ Γ} gives 
the set of paths from τi to τj. The value n is again the total number of 
tiles and is equal to the product of NoC lines and columns. CRG 
edges and vertices represent physical links and routers of the target 
architecture, respectively. The CRG definition is equivalent to the 
architecture characterization graph in [12] and to the NoC topology 
graph in [13]. 

2.3 Energy Model 
Both, processors (with the whole memory hierarchy) and communi-
cation architecture originate energy consumption. 

The sum of the energy consumed by the execution of all tasks 
grouped on a processor enable estimating its energy consumption. 
This value is used, together with the communication volume be-
tween tasks, to choose good partitions. On the other hand, the 
amount of bits transmitted between tasks grouped and mapped into 
different processors contributes to estimate the energy consumption 
used to choose good mappings. 

The approach used here to model the NoC’s energy consumption is 
similar to those shown in [12] and [14]. Dynamic energy consump-
tion is proportional to switching activity, arising from packets mov-
ing across the NoC, dissipating energy on the links and inside of 
each router. The concept of bit energy EBit [14] is used to estimate 
the dynamic energy consumption of each bit, when this flips its po-
larity from a previous value. EBit is split into three components: (i) 
bit dynamic energy consumed by the router (wires, buffers and logic 
gates) (ERbit); (ii) bit dynamic energy consumed on horizontal 
(ELHbit) and vertical (ELVbit) links between tiles; and (iii) bit dy-
namic energy consumed on the links between the router and the lo-
cal processor (ECbit). Equation (1) expresses the relationship be-
tween these quantities, which computes the dynamic energy con-
sumption of a bit passing through a router, a vertical or horizontal 
link and a local link. 

(1) EBit = ERbit + (ELHbit or ELVbit) + ECbit 
ERbit depends on the buffer structure and technology to estimate 
how many bit-flips occur to write, to read and to preserve the infor-
mation. ELbit is directly proportional to the tile dimension. For reg-
ular 2D-mesh NoCs with square tiles, it is reasonable to consider 
that ELHbit and ELVbit have the same value. Therefore, the next 
equation uses ELbit as a simplified representation of ELHbit and 
ELVbit. Equation (2) computes the dynamic energy consumed by a 
single bit traversing a NoC, from tile τi to tile τj, where η corres-

ponds to the number of routers through where this bit passes. 

(2) EBitij = η × ERbit + (η - 1) × ELbit + 2 × ECbit 
Let τi and τj be the tiles to which pa and pb are respectively mapped. 
Then, the dynamic energy consumed by a pa→pb communication is 
given by EBitab = wab × EBitij. Equation (3) gives the total amount of 
NoC’s dynamic energy consumption (ENoC) that is computed for 
all bits of all communications between processors (|W|). 

(3) ENoC = ∑
=

|W|

1i
Bit (i)E

ab
, ∀ pa, pb ∈ P 

2.4 Energy Parameters Extraction and Model 
Validation 
To acquire ERbit, ELbit and ECbit values, an initial estimation was 
performed according to the characterization of Hermes NoC [15] 
(2D mesh) on a 70nm CMOS technology, which is the target com-
munication architecture used here. Next, a 2 × 3 NoC described in 
electrical level was simulated several times, having synthetic pat-
terns as inputs from the local links, simulating hypothetical applica-
tions. The same input patterns were applied to the high-level tool 
that uses Equation (3) to energy consumption estimation. Then the 
initial values of ERbit, ELbit and ECbit were refined to minimize 
the average difference between high-level estimation and the elec-
trical level, which is the reference used here. This process permits to 
achieve high-level estimation of energy consumption with less than 
7% of average deviation. 

3. METHODOLOGY DESCRIPTION 
Figure 4 illustrates the flow used to evaluate partitioning and map-
ping activities, which is implemented inside CAFES [16], a frame-
work for MPSoC design. 

Task partitioning into processors has as entries: (i) processors list, 
which has the name and number of all processors enabling to com-
pute the number of task groups; (ii) application description, which 
has all tasks and their communications; (iii) CPU occupation that is 
a constraint to limit the number of task grouped into the same pro-
cessor; and (iv) NoC energy parameters that is used to compute the 
energy consumption of a given partition. 

 Application description (TCG) 

Partitioned application 
(CWG) 

NoC description 
(CRG) 

Partitioning 

Mapping 

CPU occupation 

Mapped application 

NoC energy 
parameters 

Processors list 

Processor energy 

 
Figure 4 – Partial design flow (partitioning and mapping). 

Since partitioning is a NP-complete problem, this work applies a 
stochastic approach with simulated annealing algorithm (SA) [17]. 
This one implements a double nested loop. The outer loop tries to 
find very different partitions aiming to look for global minima. On 
the other hand, the inner loop explores small partition changes, aim-
ing to find local minima. The algorithm looks for the minimum par-
titioning cost, which results from the best-searched partition. 

The partitioning cost function takes into account the minimization of 
the overall communication volume. The algorithm tries to achieve a 
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minimum cost, which implies to cluster into the same processor high 
communicating tasks. In addition, the algorithm tries to balance the 
CPU occupation through fair distribution of tasks over the available 
processors. In other words, tasks that communicate most are 
grouped as far as they do not compromise more than 100% of CPU 
use for each processor. The CPU occupation constraint is neglected 
only in cases where there are no other available processors, i.e. the 
task association to every processor always implies more than 100% 
of CPU occupation. The partitioning tool generates a CWG descrip-
tion (Section 2.2.1) that contains all processor-tasks associations. 

The mapping process also applies the simulated annealing algo-
rithm. The mapping cost function takes into account the communi-
cation volume between processors and the NoC energy parameters 
to compute the energy consumed on a given mapping. Considering a 
given pair of communicating processors, together with CRG and 
NoC parameters, the energy consumption is computed through the 
energy model described on Section 2.2.3. The energy consumption 
achieved by task running on processor is used only to compute the 
total energy consumption, but does not affect the mapping choice. 

The mapping generates a file containing all processor-tile associa-
tions that implies a minimum energy consumption of all evaluated 
maps. 

Partitioning and mapping cost functions use the same NoC energy 
parameters stated by Equation (2). However, while mapping speci-
fies the exact processor place into the NoC, the partitioning only ex-
plores the communication needs, but the number of hops there is be-
tween two communicating processors is unknown. In these sense, 
partitioning cost function uses the concept of average of hops that 
enables to compute the average energy consumption of all possible 
paths. Let XXXX and YYYY be the number of tiles in horizontal and vertical 
dimension of a NoC, respectively, than Equation (4) computes the 
total number of hops of all paths that all processors have regarding 
to XY routing algorithm. 

The average of hops is computed dividing the summation of all hops 
of all paths of all processors by the total number of communications, 
which is stated by Equations (5)(6) and (7). 

(4) 
��������	 
 � � � � �
�� � �� � �� � ��

�����

�����
�

�����

�����

�����

�����

�����

�����
 

(5) #Processors =  �×�! 

(6) maxComm = "#$�%&		�$	��×�
"#$�%&		�$	 � �'� 
(7) (��	)*&$�+& 
 � ��������	,��-�,,�� 

The (��	)*&$�+& value is used on Equation (2) in place of η, re-
sulting an average value of EBitij. This one multiplied by the com-
munication volume is the energy consumption estimation of each 
communication, which is used during the partitioning. 

4. METHODOLOGY EXEMPLIFICATION 
This Section exemplifies the methodology used here. Since this 
work uses a set of XML tags to capture the parallel application, Fig-
ure 5 describes a partial XML structure containing the description of 
a synthetic parallel application composed by 6 tasks (T0, T1, T2, T3, 
T4 and T5) that are associated to 4 processors (P0, P1, P2 and P3), all 
of the same type (PowerPC). 

Having as entry the XML description of Figure 5 the partitioning 
tool generates the following tasks-processor association: {(P0, T3), 
(P1, T5), (P2, (T1, T2, T4)), (P3, T0)}. 

Figure 6 shows a graphical description of the CWG, which is the 
output description of the partitioning tool. CWG vertices and edges 
are P = {P0, P1, P2, P3} and W = {(P0, P2), (P2, P0), (P1, P2), (P2, P1), 
(P3, P2)}, respectively. The edge labels wP0_P2 = 2212, wP2_P0 = 683, 
wP1_P2 = 1266, wP2_P1 = 681 and wP3_P2 = 1868 can be easily extracted 
from Figure 5 with the task-processor associations described above. 

<PROCESSOR_TYPE type="PowerPC"> <LIST> P0 P1 P2 P3 </LIST></PROCESSOR_TYPE> 
<PROCESSOR_TASK_TABLE> 
 <TASK id="T0" power="20.68" cpuOccupation="63.82"/> 
 <TASK id="T1" power="21.53" cpuOccupation="33.45"/> 
 <TASK id="T2" power="36.18" cpuOccupation="27.13"/> 
 <TASK id="T3" power="8.75" cpuOccupation="69.18"/> 
 <TASK id="T4" power="22.59" cpuOccupation="25.47"/> 
 <TASK id="T5" power="16.67" cpuOccupation="55.96"/> 
</PROCESSOR_TASK_TABLE> 
<TASK_TABLE> # Here is described the TCG graph 
 <SOURCE_TASK source="T0"> 
  <COMMUNICATION target="T2" volume="1868"/></SOURCE_TASK> 
 <SOURCE_TASK source="T1"> 
  <COMMUNICATION target="T5" volume="681"/> 
  <COMMUNICATION target="T2" volume="2183"/></SOURCE_TASK> 
 <SOURCE_TASK source="T2"> 
  <COMMUNICATION target="T1" volume="1516"/></SOURCE_TASK> 
 <SOURCE_TASK source="T3"> 
  <COMMUNICATION target="T1" volume="2212"/></SOURCE_TASK> 
 <SOURCE_TASK source="T4"> 
  <COMMUNICATION target="T3" volume="683"/> 
  <COMMUNICATION target="T2" volume="1774"/></SOURCE_TASK> 
 <SOURCE_TASK source="T5"> 
  <COMMUNICATION target="T4" volume="1266"/></SOURCE_TASK> 
</TASK_TABLE>  
Figure 5 – Example of a synthetic application description. 

 

Processor Tasks 
P0 T3 
P1 T5 
P2 T1, T2, T4 
P3 T0 

 

(a) (b) 

Figure 6 – (a) Graphical CWG description of a synthetic appli-
cation partitioned into four processors; (b) Processors-tasks as-
sociation. 

The mapping has as input the CWG, the topology (CRG) and the 
energy parameters of the MPSoC. Figure 7 depicts the associations 
((τ1, P3), (τ2, P0), (τ3, P1), (τ4, P2)) generated by mapping. 

 

τ1 τ2 

τ3 τ4 

 
Figure 7 – A processor mapping onto a 2D-mesh NoC architec-
ture with energy consumption annotated inside links and rou-
ters. E.g.: inside the router R[0,0], the dynamic energy con-
sumed by the buffers (Eb) and switches (Es) are 28.58uJ and 
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3.33uJ, respectively; The dynamic energy consumed in link be-
tween router and processor P0 are 1.02uJ and 3.32uJ; The dy-
namic energy consumed by vertical and horizontal links are 
8.41uJ, 3.87uJ and 18.36uJ. 

Each link of the communication architecture is associated to an es-
timated value of the dynamic energy consumption, which depends 
on the energy parameters and on the quantity of flits, which passes 
through the communication links. The energy parameters of local 
links and links between routers are ECbit and ELbit, respectively. 
Furthermore, each router contains the energy consumed in buffers 
(Eb) and switches (Es). The sum of Eb and Es is the ERbit parame-
ter of Section 2.2.3. Besides, Energy provides an overall estimation 
of the MPSoC energy consumption (161.16 µJ). The energy con-
sumption values are achieved by the characterization of Hermes 
NoC [15] on a 70nm CMOS technology. 

5. EXPERIMENTAL RESULTS 
To achieve fair and meaningful results, it is necessary to study a 
wide range of applications, which is a very time consuming task. 
Besides, it is hard to find a set of applications, which covers several 
parallel aspects needed to evaluate MPSoC designs. With this pur-
pose, it was developed a generator of synthetic parallel applications 
that allows characterizing several application classes according to 
the experiments. 

All results evaluate the influence of partitioning and/or mapping on 
the energy consumption saving. The results are evaluated in percen-
tage, illustrating how much the partitioning and/or mapping may ac-
complish the requirements. 

Figure 8 and Figure 9 summarize the first set of evaluations, which 
explores synthetic applications with 50 tasks, fixed power consump-
tion, CPU usage varying randomly from 10% to 80%, 16 processors, 
and a range of number of communications (10%, 20%, 40%, 60%, 
80% and 100%) and of communication volume (1, 10, 100, 1000 
and 10000). The number of communications is expressed in percen-
tages - 100% means that all tasks communicate with all other tasks, 
0% is the absence of communications, and intermediate values are 
linearly computed. The combinations of number of communications 
and communication volume totalize thirty synthetic applications. 

Figure 8 illustrates the effect of communication volume variation on 
energy consumption saving for five communication volumes (1, 10, 
100, 1000 and 10000). Each dot of the curves contains the average 
of all energy consumption values computed with experiments vary-
ing all six number of communications (10%, 20%, 40%, 60%, 80% 
and 100%) for a given communication volume. 

 
Figure 8 – Partitioning and mapping influence on energy con-
sumption saving for a range of communication volumes. 

It is a fact that the increase of communication volume raises the 
energy consumption of the target architecture. However, Figure 8 
shows that the average energy saving is similar for all communica-

tion volumes, independently of design activity. Besides, the mapping 
is around of three times more efficient, when compared to the parti-
tioning, and the joint effect of both activities is not meaningful, if 
compared to only mapping results. 

Figure 9 illustrates the effect of number of communications variation 
on energy consumption saving. In opposition of Figure 8, each dot 
concentrates the values of all five-communication volumes (1, 10, 
100, 1000 and 10000) for a given number of communications. 

 
Figure 9 – Partitioning and mapping influence on energy con-
sumption saving for a range of number of communications. 

The results achieved with number of communications variation are 
similar to the ones achieved with the communication volume varia-
tion. Nevertheless, the design tasks are more efficient for few com-
munications because there are more scenarios that allow approx-
imating communicating tasks and processors. 

Figure 10 and Figure 11 show results of the second set of experi-
ments. This set evaluate synthetic applications with 40% of number 
of communications, each one having 100 phits (communication vo-
lume), fixed power consumption, CPU usage varying randomly 
from 10% to 80%, and a range of six NoC sizes (2x3, 3x3, 3x4, 4x4, 
4x5 and 5x5) and of six number of tasks (10, 20, 30, 40, 50 and 
100). The combinations of NoC sizes and number of tasks totalize 
thirty-six synthetic applications. 

 
Figure 10 – Partitioning and mapping influence on energy con-
sumption saving for a range of NoC sizes. 

Figure 10 illustrates the effect of NoC size variation on energy con-
sumption saving for six NoC sizes: 2x3, 3x3, 3x4, 4x4, 4x5 and 5x5. 
All NoCs are fully populated, which implies six quantities of pro-
cessors: 6, 9, 12, 16, 20 and 25, for each NoC size, respectively. 
Each dot of the curves contains the average of all energy consump-
tion values computed with experiments varying all six numbers of 
tasks (10, 20, 30, 40, 50 and 100) for a given NoC size. 

Figure 10 shows the importance of partitioning when a meaningful 
number of tasks are clustered into a unique processor (e.g. 100 tasks 
grouped into 2x3 processors, implying 16 tasks/processor). On the 
other hand, when the relation number of tasks versus NoC size de-
creases, the partitioning efficiency also reduces and the mapping ef-

55



fectiveness becomes evident. 

Figure 11 illustrates the effect of number of tasks variation on ener-
gy consumption saving. In opposition of Figure 10, each dot con-
centrates the values of all NoC size for a given number of tasks. 

 
Figure 11 – Partitioning and mapping influence on energy con-
sumption saving for a range of number of tasks. 

The number of tasks increasing reduces the efficiency of mapping 
and partitioning, which is justified by the reduction of possible parti-
tions - partition algorithm applies load-balancing technique avoiding 
more than 100% of CPU occupation. On the other hand, a reduced 
number of tasks implies more partitioning and mapping possibilities 
increasing their influence on the average energy saving. 

Last experiment evaluates the partitioning and mapping influence on 
four real applications: (i) a digital PBX (Privative Branch Ex-
change); (ii) an image recognition system (IRS); (iii) a distributed 
algorithm for Romberg integral calculus; and (iv) a multimedia sys-
tem (MMS). Table 2 depicts some relevant features of these applica-
tions. 

Table 2 - Characteristics of four real applications. 

 PBX IRS Romberg MMS 
NoC size (lines x columns) 2 x 3 2 x 3 3 x 4 4 x 4 
Number of processors 5 6 10 16 
Number of tasks 24 12 30 34 
Number of communications 142 53 60 182 
Average communication quantity (bytes) 2,334 30,827 35 22,135 

  

 
Figure 12 – Partitioning and mapping influence on energy con-
sumption saving for four real applications. 

Figure 12 illustrates the partitioning and mapping effect on energy 
saving for the four real applications characterized in Table 2. The 
results achieved when considering synthetic applications are sus-
tained. However, two relevant results are pointed out: (i) MMS and 
Romberg are typically dataflow applications. The dataflow behavior 
is not well captured by partitioning algorithms, since flows are not 
specified, nevertheless the mapping effect on energy saving is evi-
dent; and (ii) the task partitioning applied on IRS application pro-
vides communication-balanced clusters of tasks. This communica-
tion balancing reduces the mapping efficiency, since the communi-

cation volume does not have a meaningful variation with processors 
placement. 

6. CONCLUSIONS AND FUTURE WORK 
This paper explores the effect on energy consumption of the task 
partitioning into processors and of the processor mapping onto tiles 
of a NoC-based MPSoC. For almost all experiments, the mapping 
activity is more energy saving efficient, when compared to partition-
ing activity, albeit the partitioning effect cannot be neglected. Be-
sides, the joint effect of both activities saves in average 37% of 
energy. Experiments with several synthetic and real applications at-
test these results. 

In future, we plan to explore the same partitioning and mapping 
problems for heterogeneous NoC-based MPSoC, regarding to not 
only different processor types, but also different hierarchies of 
memory. 
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