
Partitioning and Mapping on NoC-Based MPSoC:
An Energy Consumption Saving Approach

Eduardo Antunes, Alexandra Aguiar, Sergio Johann F., Marcos Sartori, Fabiano Hessel, César Marcon
PPGCC - Post-Graduation Program in Computer Science
PUCRS - Pontifical University Catholic of Rio Grande do Sul

+55 (51) 3320-3558, Porto Alegre, Brazil
{eduardo.brum, alexandra.aguiar, sergio.filho, marcos.sartori, fabiano.hessel, cesar.marcon}@pucrs.br

ABSTRACT
Software complexity has increased considerably over recent years,
needing special target architectures as MPSoCs to fulfill the heavy
memory, communication and computation requirements. Neverthe-
less, the use of MPSoCs has brought attention to the need for effec-
tive methods and tools for parallel software development. Metho-
dologies aggregating partitioning and mapping are normally em-
ployed to fulfill the heavy requirements of such systems. This paper
explores task-partitioning and processor-mapping methods on ho-
mogeneous NoC-Based MPSoC. The effect of both on application’s
energy consumption is explored alone and jointly. Experiments with
several synthetic and four real applications show that the energy
consumption is reduced up to 18%, 31.8% or 38.1% when applying
partitioning, mapping or both, respectively.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Advanced technologies, VLSI

General Terms
Performance, Design

Keywords
Partitioning, Mapping, MPSoC, NoC

1. INTRODUCTION
Recent years have brought a large quantity of application, demand-
ing huge computational power, reduced energy consumption and ef-
ficient communication, which boast the research and development
of special target architectures, like a NoC-based MPSoC. This one
implements the complete system functionality into a single chip and
support the heavy communication requirements of hundreds cores.

From the processing point of view, homogeneous MPSoCs are those
composed by processors of the same type and heterogeneous
MPSoCs are those composed by at least two processors with differ-
ent architectures. Heterogeneous MPSoCs can support a wide varie-
ty of applications, since each processor has specific computation
and communication features. Otherwise, homogeneous MPSoCs are
easier to program, increase the mapping and partitioning possibili-
ties, and enable global load balancing through application-task mi-
gration. Besides, the homogeneity may reduce the global energy
consumption and area occupation for some set of applications [1].

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NoCArc '11, December 4, 2011, Porto Alegre, Brazil
Copyright © 2011 ACM 978-1-4503-0947-9... $10.00

The development of efficient application for homogeneous MPSoCs
is a current challenge, especially regarding to the workload balanc-
ing among processors. Therefore, this work considers a homogene-
ous NoC-based MPSoC as target architecture, and presents a partial
design flow containing the application-task partitioning into groups
of tasks, where each group is associated to a single processor, and
the processors mapping onto tiles of the NoC architecture. Whereas
tile is a limited area of the target architecture, comprising a proces-
sor, a router, a local memory and auxiliary circuits.

Moreover, we demonstrate the effect of partitioning and mapping
alone and combined on the energy consumption saving. Experimen-
tal results show that an MPSoC may save significant energy when
applying only partitioning or mapping. Furthermore, when combin-
ing both activities, the energy consumption is reduced up to 38.1%.

Several works relate to processor mapping onto NoC-based archi-
tectures and some ones describe the tasks partitioning into groups
associated to processors ([2], [3], [4], [5], [6], [7], [8] and [9]), but
none compare the joint effect of both. A partial comparison of
these works is summarized in Table 1. Moreover, a number of
works uses the same name "mapping" to define both mapping and
partitioning, while the name "partitioning" is used only to explore
hardware/software division.

Table 1 - Related work comparison.

Work MPSoC type Target
Architecture Activity / Dynamic Objective

[2] Heterogeneous NoC Partitioning and mapping
/ static

Execution time and area
reduction

[3] Heterogeneous NoC Partitioning and mapping
/ static

Latency minimization and
throughput maximization

[4] Heterogeneous Generic Partitioning and mapping
/ static Load balancing

[5] Homogeneous NoC Partitioning and mapping
/ static

Execution time and power
consumption reduction

[6] Homogeneous NoC Partitioning and mapping
/ static

Communication latency
reduction

[7] Homogeneous Bus Scheduling and
Partitioning / static Execution time reduction

[8] Homogeneous Generic Partitioning and mapping
/ static and dynamic Execution time reduction

[9] Heterogeneous Generic Partitioning / static Execution time reduction

This
work Homogeneous NoC Partitioning and

mapping / static

Partitioning versus
mapping exploration
(Energy consumption)

This paper is organized in six sections. Section 2 presents the parti-
tioning and the mapping problem formulation together with the un-
derlying data structures and the energy model. Section 3 describes
the methodology and the tools used to accomplish the experimental
results. Section 4 employs an application to exemplify the metho-
dology. Section 5 shows experimental results and Section 6 con-
cludes the paper.

51

2. PROBLEM FORMULATION
The complete homogeneous MPSoC design implies several activi-
ties with some specificity according to the application description
nature and the target architecture. Here, we describe two design ac-
tivities, which are the task partitioning and the processor mapping.

Parallel applications are described as a set of communicating tasks.
According to some requirements (e.g. energy consumption reduc-
tion) and some constraints (e.g. number of target processors) these
tasks are grouped. The grouping of all application tasks, which is the
task partitioning activity, generates a partition.

Since all processors of homogeneous MPSoC are the same type, the
binding activity may be easily performed by assigning each group to
a single processor.

Once communicating processors represent the application, the next
step is to perform the selection of the best place to insert each one of
these processors, which is the processor mapping onto tiles activity.
According to the target architecture, the mapping may severely af-
fect some design requirements, such as latency minimization and
energy consumption saving.

To better understand partitioning and mapping concepts, Figure 1
exemplifies the partitioning of a hypothetical application composed
by 22 tasks into 6 groups that are associated to 6 processors and the
corresponding mapping of these processors onto a 2D-mesh NoC
architecture. The application is composed by a set of parallel com-
municating tasks T = {t1, t2, …, t22}. The tasks partitioning, which is
represented by continuous arrows, generates G = {g1, g2, …, g6} that
is a set of groups of tasks.

Subsequently, the binding activity, which is represented by dashed
arrows, associate each element of G to a single processor of the set
of processors P = {p1, p2, …, p6}. Finally, the processor mapping
onto the set of NoC tiles Γ = {τ1, τ2, …, τ6} is represented by the
dotted arrows.

t1

t4 t2

t6
t5 t7

t9

t11
t12

t22

t16

t20

t21 t18 t17

t19 t15 t14

t13

t12 t2
t14 t11

t10

t16

t22
t7 t19 t9

t1 t15

t13

t3 t20
t17

t21

t4

g1 g2 g3 g4 g5 g6

t5 t18
t6

Partitioning

Mapping

t8

t8

t3
t10

Router

p3
τ1

Router

p2
τ4

Router

p1
τ2

Router

p4
τ5

Router

p5
τ3

Router

p6
τ6

Binding

p1 p2 p3 p4 p5 p6

Figure 1 – Task partitioning and processor mapping.

2.1 Partitioning and Mapping Complexities
The design flow presented here uses an approach that separates the
steps of partitioning tasks across groups, binding these groups into
processors and mapping processors into tiles. It is important to high-
light that several works map the application tasks directly onto the

target architecture tiles, excluding binding and partitioning. Howev-
er, due to the NP-complete nature of these activities [10], the results
obtained with approaches that map application tasks directly to the
target architecture tend to be worse when compared to our approach,
mainly in the cases where the task is done at run time, since the
mapping has a short time to be accomplished.

Task Group Processor Tile

1

3

2

Figure 2 – The flow containing each step from the partitioning
of tasks into groups, the binding groups into processors and the
processors mapping onto tiles of the target architecture.

The partitioning of tasks into groups (arrow 1 in Figure 2) is an ac-
tivity with complexity proportional to the Bell number O(Bell(n))
[11], where n is the number of tasks, since there is no order relation
between groups and even within a group.

The mapping processor (composed of tasks groups) in tiles of the
target architecture (arrow 2 of Figure 2) is O(t!) complex, where t is
the number of tiles, because it reflects all combinations of positions
of processors in all tiles.

The mapping of tasks to tiles of the target architecture (arrow 3 of
Figure 2) adds the complexities of partitioning tasks across groups,
binding each to a processor and mapping of the processors in tiles of
the target architecture. In this case, the complexity is much higher
O(Bell(n) � t!).

Figure 3 shows that the number of solutions to be explored with
mapping tasks onto tiles is much higher than the others. Thus, even
applying good algorithms, the results obtained with this activity tend
to be worse, when compared to those obtained with the flow pro-
posed here.

Figure 3 – Number of combinations against the number of ele-
ments (logarithmic scale): (i) Partitioning of tasks into groups
(i.e. processors), (ii) Mapping of processors in tiles, and (iii)
Mapping of tasks onto tiles.

2.2 Structures Definitions
The partitioning and mapping have three main data structures that
are set out below.

Definition 1: A Task Communication Graph (TCG) is a directed
graph <T, V>. The set of vertices T = {t1, t2, …, tm} represents the
set of m tasks in one parallel application. Assuming vab is the bits
amount of all packets sent from a task ta to a task tb, then the set of

52

edges V is {(ta, tb) | ta, tb ∈ T and vab ≠ 0}, and each edge is labeled
with the value vab. V represents all communications between the ap-
plication tasks.

Definition 2: A Communication Weighted Graph (CWG) is a di-
rected graph <P, W>, similar to the TCG. However, the set of ver-
tices P = {p1, p2, …, pn} represents the set of processors in one ap-
plication. The number of processors n is equal to the total number of
tiles. Furthermore, wab is the total number of bits sent from a proces-
sor pa to a processor pb. Then the set of edges W is {(pa, pb) |
pa, pb ∈ P and wab ≠ 0}, and each edge is labeled with the value wab.
W represents all communications between the MPSoC processors,
while CWG reveals information of application’s relative communi-
cation volume.

The processor mapping is performed regarding to a 2D mesh NoC
using wormhole and deterministic XY routing algorithm. The com-
munication resource graph stated below captures the NoC topology.

Definition 3: A Communication Resource Graph (CRG) is a di-
rected graph <Γ, L>, where the vertex set is the set of tiles
Γ = {τ1, τ2, …, τn} and the edge set L = {(τi, τj), ∀ τi, τj ∈ Γ} gives
the set of paths from τi to τj. The value n is again the total number of
tiles and is equal to the product of NoC lines and columns. CRG
edges and vertices represent physical links and routers of the target
architecture, respectively. The CRG definition is equivalent to the
architecture characterization graph in [12] and to the NoC topology
graph in [13].

2.3 Energy Model
Both, processors (with the whole memory hierarchy) and communi-
cation architecture originate energy consumption.

The sum of the energy consumed by the execution of all tasks
grouped on a processor enable estimating its energy consumption.
This value is used, together with the communication volume be-
tween tasks, to choose good partitions. On the other hand, the
amount of bits transmitted between tasks grouped and mapped into
different processors contributes to estimate the energy consumption
used to choose good mappings.

The approach used here to model the NoC’s energy consumption is
similar to those shown in [12] and [14]. Dynamic energy consump-
tion is proportional to switching activity, arising from packets mov-
ing across the NoC, dissipating energy on the links and inside of
each router. The concept of bit energy EBit [14] is used to estimate
the dynamic energy consumption of each bit, when this flips its po-
larity from a previous value. EBit is split into three components: (i)
bit dynamic energy consumed by the router (wires, buffers and logic
gates) (ERbit); (ii) bit dynamic energy consumed on horizontal
(ELHbit) and vertical (ELVbit) links between tiles; and (iii) bit dy-
namic energy consumed on the links between the router and the lo-
cal processor (ECbit). Equation (1) expresses the relationship be-
tween these quantities, which computes the dynamic energy con-
sumption of a bit passing through a router, a vertical or horizontal
link and a local link.

(1) EBit = ERbit + (ELHbit or ELVbit) + ECbit
ERbit depends on the buffer structure and technology to estimate
how many bit-flips occur to write, to read and to preserve the infor-
mation. ELbit is directly proportional to the tile dimension. For reg-
ular 2D-mesh NoCs with square tiles, it is reasonable to consider
that ELHbit and ELVbit have the same value. Therefore, the next
equation uses ELbit as a simplified representation of ELHbit and
ELVbit. Equation (2) computes the dynamic energy consumed by a
single bit traversing a NoC, from tile τi to tile τj, where η corres-

ponds to the number of routers through where this bit passes.

(2) EBitij = η × ERbit + (η - 1) × ELbit + 2 × ECbit
Let τi and τj be the tiles to which pa and pb are respectively mapped.
Then, the dynamic energy consumed by a pa→pb communication is
given by EBitab = wab × EBitij. Equation (3) gives the total amount of
NoC’s dynamic energy consumption (ENoC) that is computed for
all bits of all communications between processors (|W|).

(3) ENoC = ∑
=

|W|

1i
Bit (i)E

ab
, ∀ pa, pb ∈ P

2.4 Energy Parameters Extraction and Model
Validation
To acquire ERbit, ELbit and ECbit values, an initial estimation was
performed according to the characterization of Hermes NoC [15]
(2D mesh) on a 70nm CMOS technology, which is the target com-
munication architecture used here. Next, a 2 × 3 NoC described in
electrical level was simulated several times, having synthetic pat-
terns as inputs from the local links, simulating hypothetical applica-
tions. The same input patterns were applied to the high-level tool
that uses Equation (3) to energy consumption estimation. Then the
initial values of ERbit, ELbit and ECbit were refined to minimize
the average difference between high-level estimation and the elec-
trical level, which is the reference used here. This process permits to
achieve high-level estimation of energy consumption with less than
7% of average deviation.

3. METHODOLOGY DESCRIPTION
Figure 4 illustrates the flow used to evaluate partitioning and map-
ping activities, which is implemented inside CAFES [16], a frame-
work for MPSoC design.

Task partitioning into processors has as entries: (i) processors list,
which has the name and number of all processors enabling to com-
pute the number of task groups; (ii) application description, which
has all tasks and their communications; (iii) CPU occupation that is
a constraint to limit the number of task grouped into the same pro-
cessor; and (iv) NoC energy parameters that is used to compute the
energy consumption of a given partition.

 Application description (TCG)

Partitioned application
(CWG)

NoC description
(CRG)

Partitioning

Mapping

CPU occupation

Mapped application

NoC energy
parameters

Processors list

Processor energy

Figure 4 – Partial design flow (partitioning and mapping).

Since partitioning is a NP-complete problem, this work applies a
stochastic approach with simulated annealing algorithm (SA) [17].
This one implements a double nested loop. The outer loop tries to
find very different partitions aiming to look for global minima. On
the other hand, the inner loop explores small partition changes, aim-
ing to find local minima. The algorithm looks for the minimum par-
titioning cost, which results from the best-searched partition.

The partitioning cost function takes into account the minimization of
the overall communication volume. The algorithm tries to achieve a

53

minimum cost, which implies to cluster into the same processor high
communicating tasks. In addition, the algorithm tries to balance the
CPU occupation through fair distribution of tasks over the available
processors. In other words, tasks that communicate most are
grouped as far as they do not compromise more than 100% of CPU
use for each processor. The CPU occupation constraint is neglected
only in cases where there are no other available processors, i.e. the
task association to every processor always implies more than 100%
of CPU occupation. The partitioning tool generates a CWG descrip-
tion (Section 2.2.1) that contains all processor-tasks associations.

The mapping process also applies the simulated annealing algo-
rithm. The mapping cost function takes into account the communi-
cation volume between processors and the NoC energy parameters
to compute the energy consumed on a given mapping. Considering a
given pair of communicating processors, together with CRG and
NoC parameters, the energy consumption is computed through the
energy model described on Section 2.2.3. The energy consumption
achieved by task running on processor is used only to compute the
total energy consumption, but does not affect the mapping choice.

The mapping generates a file containing all processor-tile associa-
tions that implies a minimum energy consumption of all evaluated
maps.

Partitioning and mapping cost functions use the same NoC energy
parameters stated by Equation (2). However, while mapping speci-
fies the exact processor place into the NoC, the partitioning only ex-
plores the communication needs, but the number of hops there is be-
tween two communicating processors is unknown. In these sense,
partitioning cost function uses the concept of average of hops that
enables to compute the average energy consumption of all possible
paths. Let XXXX and YYYY be the number of tiles in horizontal and vertical
dimension of a NoC, respectively, than Equation (4) computes the
total number of hops of all paths that all processors have regarding
to XY routing algorithm.

The average of hops is computed dividing the summation of all hops
of all paths of all processors by the total number of communications,
which is stated by Equations (5)(6) and (7).

(4)
��������	
 � � � � �
�� � �� � �� � ��

�����

�����
�

�����

�����

�����

�����

�����

�����

(5) #Processors = �×�!

(6) maxComm = "#$�%&		�$	��×�
"#$�%&		�$	 � �'�
(7) (��)*&$�+&
 � ��������	,��-�,,��

The (��)*&$�+& value is used on Equation (2) in place of η, re-
sulting an average value of EBitij. This one multiplied by the com-
munication volume is the energy consumption estimation of each
communication, which is used during the partitioning.

4. METHODOLOGY EXEMPLIFICATION
This Section exemplifies the methodology used here. Since this
work uses a set of XML tags to capture the parallel application, Fig-
ure 5 describes a partial XML structure containing the description of
a synthetic parallel application composed by 6 tasks (T0, T1, T2, T3,
T4 and T5) that are associated to 4 processors (P0, P1, P2 and P3), all
of the same type (PowerPC).

Having as entry the XML description of Figure 5 the partitioning
tool generates the following tasks-processor association: {(P0, T3),
(P1, T5), (P2, (T1, T2, T4)), (P3, T0)}.

Figure 6 shows a graphical description of the CWG, which is the
output description of the partitioning tool. CWG vertices and edges
are P = {P0, P1, P2, P3} and W = {(P0, P2), (P2, P0), (P1, P2), (P2, P1),
(P3, P2)}, respectively. The edge labels wP0_P2 = 2212, wP2_P0 = 683,
wP1_P2 = 1266, wP2_P1 = 681 and wP3_P2 = 1868 can be easily extracted
from Figure 5 with the task-processor associations described above.

<PROCESSOR_TYPE type="PowerPC"> <LIST> P0 P1 P2 P3 </LIST></PROCESSOR_TYPE>
<PROCESSOR_TASK_TABLE>
 <TASK id="T0" power="20.68" cpuOccupation="63.82"/>
 <TASK id="T1" power="21.53" cpuOccupation="33.45"/>
 <TASK id="T2" power="36.18" cpuOccupation="27.13"/>
 <TASK id="T3" power="8.75" cpuOccupation="69.18"/>
 <TASK id="T4" power="22.59" cpuOccupation="25.47"/>
 <TASK id="T5" power="16.67" cpuOccupation="55.96"/>
</PROCESSOR_TASK_TABLE>
<TASK_TABLE> # Here is described the TCG graph
 <SOURCE_TASK source="T0">
 <COMMUNICATION target="T2" volume="1868"/></SOURCE_TASK>
 <SOURCE_TASK source="T1">
 <COMMUNICATION target="T5" volume="681"/>
 <COMMUNICATION target="T2" volume="2183"/></SOURCE_TASK>
 <SOURCE_TASK source="T2">
 <COMMUNICATION target="T1" volume="1516"/></SOURCE_TASK>
 <SOURCE_TASK source="T3">
 <COMMUNICATION target="T1" volume="2212"/></SOURCE_TASK>
 <SOURCE_TASK source="T4">
 <COMMUNICATION target="T3" volume="683"/>
 <COMMUNICATION target="T2" volume="1774"/></SOURCE_TASK>
 <SOURCE_TASK source="T5">
 <COMMUNICATION target="T4" volume="1266"/></SOURCE_TASK>
</TASK_TABLE>
Figure 5 – Example of a synthetic application description.

Processor Tasks
P0 T3
P1 T5
P2 T1, T2, T4
P3 T0

(a) (b)

Figure 6 – (a) Graphical CWG description of a synthetic appli-
cation partitioned into four processors; (b) Processors-tasks as-
sociation.

The mapping has as input the CWG, the topology (CRG) and the
energy parameters of the MPSoC. Figure 7 depicts the associations
((τ1, P3), (τ2, P0), (τ3, P1), (τ4, P2)) generated by mapping.

τ1 τ2

τ3 τ4

Figure 7 – A processor mapping onto a 2D-mesh NoC architec-
ture with energy consumption annotated inside links and rou-
ters. E.g.: inside the router R[0,0], the dynamic energy con-
sumed by the buffers (Eb) and switches (Es) are 28.58uJ and

54

3.33uJ, respectively; The dynamic energy consumed in link be-
tween router and processor P0 are 1.02uJ and 3.32uJ; The dy-
namic energy consumed by vertical and horizontal links are
8.41uJ, 3.87uJ and 18.36uJ.

Each link of the communication architecture is associated to an es-
timated value of the dynamic energy consumption, which depends
on the energy parameters and on the quantity of flits, which passes
through the communication links. The energy parameters of local
links and links between routers are ECbit and ELbit, respectively.
Furthermore, each router contains the energy consumed in buffers
(Eb) and switches (Es). The sum of Eb and Es is the ERbit parame-
ter of Section 2.2.3. Besides, Energy provides an overall estimation
of the MPSoC energy consumption (161.16 µJ). The energy con-
sumption values are achieved by the characterization of Hermes
NoC [15] on a 70nm CMOS technology.

5. EXPERIMENTAL RESULTS
To achieve fair and meaningful results, it is necessary to study a
wide range of applications, which is a very time consuming task.
Besides, it is hard to find a set of applications, which covers several
parallel aspects needed to evaluate MPSoC designs. With this pur-
pose, it was developed a generator of synthetic parallel applications
that allows characterizing several application classes according to
the experiments.

All results evaluate the influence of partitioning and/or mapping on
the energy consumption saving. The results are evaluated in percen-
tage, illustrating how much the partitioning and/or mapping may ac-
complish the requirements.

Figure 8 and Figure 9 summarize the first set of evaluations, which
explores synthetic applications with 50 tasks, fixed power consump-
tion, CPU usage varying randomly from 10% to 80%, 16 processors,
and a range of number of communications (10%, 20%, 40%, 60%,
80% and 100%) and of communication volume (1, 10, 100, 1000
and 10000). The number of communications is expressed in percen-
tages - 100% means that all tasks communicate with all other tasks,
0% is the absence of communications, and intermediate values are
linearly computed. The combinations of number of communications
and communication volume totalize thirty synthetic applications.

Figure 8 illustrates the effect of communication volume variation on
energy consumption saving for five communication volumes (1, 10,
100, 1000 and 10000). Each dot of the curves contains the average
of all energy consumption values computed with experiments vary-
ing all six number of communications (10%, 20%, 40%, 60%, 80%
and 100%) for a given communication volume.

Figure 8 – Partitioning and mapping influence on energy con-
sumption saving for a range of communication volumes.

It is a fact that the increase of communication volume raises the
energy consumption of the target architecture. However, Figure 8
shows that the average energy saving is similar for all communica-

tion volumes, independently of design activity. Besides, the mapping
is around of three times more efficient, when compared to the parti-
tioning, and the joint effect of both activities is not meaningful, if
compared to only mapping results.

Figure 9 illustrates the effect of number of communications variation
on energy consumption saving. In opposition of Figure 8, each dot
concentrates the values of all five-communication volumes (1, 10,
100, 1000 and 10000) for a given number of communications.

Figure 9 – Partitioning and mapping influence on energy con-
sumption saving for a range of number of communications.

The results achieved with number of communications variation are
similar to the ones achieved with the communication volume varia-
tion. Nevertheless, the design tasks are more efficient for few com-
munications because there are more scenarios that allow approx-
imating communicating tasks and processors.

Figure 10 and Figure 11 show results of the second set of experi-
ments. This set evaluate synthetic applications with 40% of number
of communications, each one having 100 phits (communication vo-
lume), fixed power consumption, CPU usage varying randomly
from 10% to 80%, and a range of six NoC sizes (2x3, 3x3, 3x4, 4x4,
4x5 and 5x5) and of six number of tasks (10, 20, 30, 40, 50 and
100). The combinations of NoC sizes and number of tasks totalize
thirty-six synthetic applications.

Figure 10 – Partitioning and mapping influence on energy con-
sumption saving for a range of NoC sizes.

Figure 10 illustrates the effect of NoC size variation on energy con-
sumption saving for six NoC sizes: 2x3, 3x3, 3x4, 4x4, 4x5 and 5x5.
All NoCs are fully populated, which implies six quantities of pro-
cessors: 6, 9, 12, 16, 20 and 25, for each NoC size, respectively.
Each dot of the curves contains the average of all energy consump-
tion values computed with experiments varying all six numbers of
tasks (10, 20, 30, 40, 50 and 100) for a given NoC size.

Figure 10 shows the importance of partitioning when a meaningful
number of tasks are clustered into a unique processor (e.g. 100 tasks
grouped into 2x3 processors, implying 16 tasks/processor). On the
other hand, when the relation number of tasks versus NoC size de-
creases, the partitioning efficiency also reduces and the mapping ef-

55

fectiveness becomes evident.

Figure 11 illustrates the effect of number of tasks variation on ener-
gy consumption saving. In opposition of Figure 10, each dot con-
centrates the values of all NoC size for a given number of tasks.

Figure 11 – Partitioning and mapping influence on energy con-
sumption saving for a range of number of tasks.

The number of tasks increasing reduces the efficiency of mapping
and partitioning, which is justified by the reduction of possible parti-
tions - partition algorithm applies load-balancing technique avoiding
more than 100% of CPU occupation. On the other hand, a reduced
number of tasks implies more partitioning and mapping possibilities
increasing their influence on the average energy saving.

Last experiment evaluates the partitioning and mapping influence on
four real applications: (i) a digital PBX (Privative Branch Ex-
change); (ii) an image recognition system (IRS); (iii) a distributed
algorithm for Romberg integral calculus; and (iv) a multimedia sys-
tem (MMS). Table 2 depicts some relevant features of these applica-
tions.

Table 2 - Characteristics of four real applications.

 PBX IRS Romberg MMS
NoC size (lines x columns) 2 x 3 2 x 3 3 x 4 4 x 4
Number of processors 5 6 10 16
Number of tasks 24 12 30 34
Number of communications 142 53 60 182
Average communication quantity (bytes) 2,334 30,827 35 22,135

Figure 12 – Partitioning and mapping influence on energy con-
sumption saving for four real applications.

Figure 12 illustrates the partitioning and mapping effect on energy
saving for the four real applications characterized in Table 2. The
results achieved when considering synthetic applications are sus-
tained. However, two relevant results are pointed out: (i) MMS and
Romberg are typically dataflow applications. The dataflow behavior
is not well captured by partitioning algorithms, since flows are not
specified, nevertheless the mapping effect on energy saving is evi-
dent; and (ii) the task partitioning applied on IRS application pro-
vides communication-balanced clusters of tasks. This communica-
tion balancing reduces the mapping efficiency, since the communi-

cation volume does not have a meaningful variation with processors
placement.

6. CONCLUSIONS AND FUTURE WORK
This paper explores the effect on energy consumption of the task
partitioning into processors and of the processor mapping onto tiles
of a NoC-based MPSoC. For almost all experiments, the mapping
activity is more energy saving efficient, when compared to partition-
ing activity, albeit the partitioning effect cannot be neglected. Be-
sides, the joint effect of both activities saves in average 37% of
energy. Experiments with several synthetic and real applications at-
test these results.

In future, we plan to explore the same partitioning and mapping
problems for heterogeneous NoC-based MPSoC, regarding to not
only different processor types, but also different hierarchies of
memory.

REFERENCES
[1] Jalier, C. et al. Heterogeneous vs homogeneous MPSoC approaches

for a Mobile LTE modem. DATE, pp.184-189, Oct. 2010.
[2] Le Beux, S. et al. Combining mapping and partitioning exploration

for NoC-based embedded systems. JSA, v.56(7), pp.223–232, Jul.
2010.

[3] Bononi, L. et al. NoC Topologies Exploration based on Mapping
and Simulation Models. Digital System Design Architectures, Me-
thods and Tools, 10th Euromicro Conference, pp. 543-546, 29-31 Aug.
2007.

[4] Leupers, R. and Castrillon, J.; MPSoC programming using the
MAPS compiler. ASP-DAC, pp.897-902, 18-21 Jan. 2010.

[5] Nedjah, N.; Silva, M., V., C. and Mourelle, L., M. Customized com-
puter-aided application mapping on NoC infrastructure using mul-
ti-objective optimization. JSA v.57(1), pp. 79-94. Jan. 2011.

[6] Tsai, K.; Lai, F.; Pan, C.; Xiao, D.; Tan, H. and Lee, H. Design of low
latency on-chip communication based on hybrid NoC architecture.
NEWCAS Conference, pp.257-260, Jun. 2010.

[7] Youness, H. et al. A high performance algorithm for scheduling and
hardware-software partitioning on MPSoCs, International Confe-
rence on Design & Technology of Integrated Systems in Nanoscale
Era. pp. 71-76, Apr. 2009.

[8] GoYhringer, D.; HuYbner, M.; Benz, M. and Becker, J. A Design Me-
thodology for Application Partitioning and Architecture Develop-
ment of Reconfigurable Multiprocessor Systems-on-Chip. IEEE
Annual International Symposium on Field-Programmable Custom
Computing Machines, pp.259-262, May 2010.

[9] Liu, T.; Zhao, Y.; Li, M. and Xue, C. J.; Task Assignment with Cache
Partitioning and Locking for WCET Minimization on MPSoC. In-
ternational Conference on Parallel Processing, pp. 573-582, 2010.

[10] Sherwani, N. A.; Algorithms for VLSI Physical Design Automation,
2nd. Edition. Kluwer Academic Publisher, USA, 1999.

[11] Zwillinger, D.; Standard Mathematical Tables and Formulae, 30th.

Edition. CRC Press Inc, USA, 1996.
[12] Hu, J. and Marculescu, R. Energy-aware mapping for tile-based

NoC architectures under performance constraints. ASP-DAC,
pp.233-239, Jan. 2003.

[13] Murali, S. and De Micheli, G. Bandwidth-constrained mapping of
cores onto NoC architectures. DATE, pp. 896-901, Feb. 2004.

[14] Ye, T.; Benini, L. and De Micheli, G. Analysis of power consumption
on switch fabrics in network routers. DAC, pp. 524-529, Jun. 2002.

[15] Moraes, F et al. HERMES: an infrastructure for low area overhead
packet-switching networks on chip. Integration, the VLSI Journal,
v.38(1), pp. 69-93, Oct. 2004.

[16] Marcon, C. et al. CAFES: A framework for intrachip application
modeling and communication architecture design. Journal of Paral-
lel and Distributed Computing, v.71(5), pp. 714-728, 2011.

[17] Kirkpatrick, S.; Gelatt, C. D. and Vecchi, M. P. Optimization by si-
mulated annealing, Science, pp. 671-680, 1983.

56

	1. INTRODUCTION
	2. PROBLEM FORMULATION
	2.1 Partitioning and Mapping Complexities
	2.2 Structures Definitions
	2.3 Energy Model
	2.4 Energy Parameters Extraction and Model Validation

	3. METHODOLOGY DESCRIPTION
	4. METHODOLOGY EXEMPLIFICATION
	5. EXPERIMENTAL RESULTS
	6. CONCLUSIONS AND FUTURE WORK

