
Deep Neural Networks for
Kitchen Activity Recognition

Juarez Monteiro∗, Roger Granada∗, Rodrigo C. Barros†, and Felipe Meneguzzi†
Faculdade de Informática

Pontifı́cia Universidade Católica do Rio Grande do Sul

Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
∗ Email: {juarez.santos, roger.granada}@acad.pucrs.br
† Email: {rodrigo.barros, felipe.meneguzzi}@pucrs.br

Abstract—With the growth of video content produced by
mobile cameras and surveillance systems, an increasing amount
of data is becoming available and can be used for a variety
of applications such as video surveillance, smart homes, smart
cities, and in-home elder monitoring. Such applications focus
in recognizing human activities in order to perform different
tasks allowing the opportunity to support people in their different
scenarios. In this paper we propose a deep neural architecture for
kitchen human action recognition. This architecture contains an
ensemble of convolutional neural networks connected through
different fusion methods to predict the label of each action.
Experiments show that our architecture achieves the novel state-
of-the-art for identifying cooking actions in a well-known kitchen
dataset.

I. INTRODUCTION

Effective assistive applications require accurate identifica-

tion of the activities that are performed by the user being

helped. Here, activity recognition refers to the task of dealing

with noisy low-level data directly from sensors [1]. Such task

is particularly challenging in the real physical world, since it

either involves fusing information from a number of sensors

or inferring enough information using a single sensor. Failure

to correctly identifying the activity the user is performing has

a cascade effect that often leads to users being frustrated and

giving up using the assistive application.

Single-sensor activity recognition often relies on a video

camera feed [2], which has posed a challenging research

problem in computer vision and machine learning. Advances

in hardware and greater availability of data have allowed

deep learning algorithms, and Convolutional Neural Networks

(CNNs) [3] in particular, to consistently improve on the state-

of-the-art. CNNs achieve state-of-the-art results when dealing

with image-based tasks such as object recognition, detection,

and semantic segmentation [4], [5]. Encouraged by those

results, more and more applications are relying on deep neural

architectures to perform video-based tasks [2].

In this paper, we address the problem of recognizing human

activities in an indoor environment with a single static camera.

Our main contribution is on supporting people when they are

in the kitchen, with the final goal of recognizing their actions

when cooking meals. Our approach relies on a deep neural

architecture that comprises multiple convolutional neural net-

works that are fused prior to performing the action classifica-

tion. We perform experiments using the Kitchen Scene Context

based Gesture Recognition dataset (KSCGR) [6], and we show

that our proposed approach outperforms the current state-of-

the-art method [7] for this particular dataset.

This paper is organized as follows. Section II details our

novel deep neural architecture for action recognition, whereas

Section III presents a thorough experimental analysis for as-

sessing the performance of our proposed approach. Section IV

points to related work and we finish this paper with our

conclusions and future work directions in Section V.

II. ARCHITECTURE DESIGN

Machine learning algorithms such as artificial neural net-

works (ANN) have been used to address many challenges of

action and activity recognition. For decades, building machine

learning systems required considerable domain expertise to

create an internal representation (feature construction [8])

from which the learning subsystem could detect or classify

patterns within the input. Deep learning approaches such

as convolutional neural networks mitigate this problem by

automatically learning representations in terms of hierarchical

features, allowing the computer to build complex concepts out

of simpler concepts. In this paper, we develop a deep neural

architecture for action recognition in indoor environments with

a fixed camera using an ensemble of convolutional neural

networks (CNNs). Four different fusion methods including

a support vector machine classifier (SVM) [9] and a long

short-term memory network (LSTM) [10] are used to fuse

the output of the CNNs and provide the final prediction of

the input frame. Our architecture has three main components:

i) data pre-processing, ii) convolutional networks for action

recognition, and iii) fusion strategies for final classification.

Figure 1 illustrates the pipeline of our architecture where

RGB represents the pre-processed dataset with RGB video

frames; OFL represents the pre-processed dataset generated

by dense optical flow; AlexNet, GoogLeNet, and SqueezeNet
are the convolutional neural network architectures we use to

recognize activities; NN is a neural network that weights the

contribution of the probabilities generated by the output of

the previous CNNs; Mean computes the arithmetic mean of

the probabilities provided by the CNNs; SVM is a support

vector machine classifier with linear kernel that classifies the

978-1-5090-6182-2/17/$31.00 ©2017 IEEE 2048

Fig. 1. Pipeline of our architecture for action recognition.

probability vectors from the CNNs; and LSTM is a recurrent

neural network architecture that fuses the output probability

vectors from the CNNs to provide the final classification.

We separate the convolutional neural network architectures

into two groups: the pre-trained CNNs and the fully-trained

CNNs. The pre-trained group contains 3 neural networks that

were pre-trained on the ImageNet data [11]. We use the pre-

trained AlexNet [4], GoogLeNet [12], and SqueezeNet [13]

models freely-available in the Caffe Model Zoo repository1.

The fully-trained group contains a single neural network that

is trained from scratch in the well-known kitchen dataset

KSCGR [6].

The pipeline of our architecture receives images from the

kitchen dataset as input for pre-processing. Pre-processing

extracts dense optical flow representations from the input

images and resizes all images to 256×256, generating two new

input data hereafter called OFL for images with dense optical

flow and RGB for the original RGB data. The system feeds the

pre-trained and fully-trained networks with the RGB and OFL

data, generating output vectors that indicate the probability an

image has of belonging to each class. Each fusion method

(NN, Mean, SVM and LSTM) receives the concatenation of

the probability vectors from the CNNs and predicts the final

class of the input image. In what follows, we further detail

each component of the proposed architecture.

A. Data pre-processing

Pre-processing consists of two steps: image resizing and

optical flow generation. Resizing is important since it reduces

the multidimensional space required by the CNNs to learn

suitable features for image classification, as well as the total

processing time. This step resizes all images of the dataset to

a fixed resolution of 256 × 256. The second step generates

the dense optical flow representation [14] of adjacent frames.

In a nutshell, optical flow represents the 2D displacement of

1https://github.com/BVLC/caffe/wiki/Model-Zoo

pixels between frames generating vectors corresponding to

the movement of points from the first frame to the second.

Dense optical flow generates these displacement vectors, i.e.,
for both horizontal and vertical displacements, regarding all

points within frames. In order to generate the final image

for each sequence of frames, we combine the 2-channel

optical flow vectors and associate color to their magnitude and

direction. Magnitudes are represented by colors and directions

through hue values. The output of the data pre-processing step

consists of two datasets containing the original data with RGB

channels and resized size (RGB), and the optical flow data that

encapsulates motion across frames (OFL).

B. CNN Architectures

In this work, we divided the convolutional neural networks

into two groups: fully-trained and pre-trained networks. The

fully-trained networks have the same architecture and training

hyper-parameters, and they are trained from scratch receiving

the two streams of data (RGB and OFL). The network trained

on RGB is hereafter called GoogLeNet[RGB], whereas the

network trained on OFL is called GoogLeNet[OFL]. Both archi-

tectures are 22-layer deep and their inception modules contain

convolutional filters in different scales/resolutions, covering

clusters of diverse information. Each network receives video

frames as input, which traverse several convolutional lay-

ers, pooling layers, and fully-connected layers (FC). After a

Softmax layer, the network outputs a vector containing the

probability each frame has of belonging to each class.

Even though a number of off-the-shelf CNN architec-

tures are available [15], [2], in this work we make use

of three pre-trained networks. We choose an architecture

based on inception modules [12] due to its reasonable perfor-

mance and reduced number of trainable parameters, hereafter

called GoogLeNet[off-the-shelf] and GoogLeNet[Fine-tuned]. The

other two architectures are based on AlexNet [4] (hereafter

called AlexNet[Fine-tuned]) and SqueezeNet [13] (herafter called

SqueezeNet[Fine-tuned]), due to their reduced number of lay-

ers and parameters. AlexNet[Fine-tuned], GoogLeNet[off-the-shelf],

GoogLeNet[Fine-tuned], and SqueezeNet[Fine-tuned] were pre

trained on the 1.3-million-image ILSVRC 2012 ImageNet

dataset [11]. Despite the fact that the AlexNet model pro-

vided in Caffe Zoo reposity has some small differences from

the original AlexNet by Krizhevsky et al. [4], we do not

believe our results would significantly change due to small

architectural and optimization modifications. Similarly to the

fully-trained networks, after a Softmax layer each network

outputs a vector with the probability of the input image for

each class. The difference between GoogLeNet[off-the-shelf] and

GoogLeNet[Fine-tuned] relies on the fact that in the former we

adjust the last layer to the number of classes of our dataset

and “freeze” the remaining layers during training, i.e., we

do not update weights of any layer but the last. In fine-

tuned networks (AlexNet[Fine-tuned], GoogLeNet[Fine-tuned], and

SqueezeNet[Fine-tuned]), we update all pre-trained layers with

different learning rates, allowing the network to learn features

2049

more specific to the target dataset, while starting from a

consistent set of weights.

The idea behind our architecture is that distinct networks

may capture different data patterns. In addition, different views

from the same data may also help in classifying frames into

actions. Thus, the same network processes data with different

representations (RGB and OFL), and three different networks

(AlexNet, GoogLeNet and SqueezeNet) process the same data

(RGB).

C. Fusion Methods

Since the output of each CNN is a vector containing

the probability scores for each class, our model architec-

ture allows for the application of distinct fusion meth-

ods for providing the ultimate classification. The fusion

methods intend to merge these vectors in order to in-

crease the accuracy for the action recognition task. Be-

fore fusing probabilities, we merge the output of the pre-

trained networks GoogLeNet[RGB] and GoogLeNet[OFL], gen-

erating the GoogLeNet[RGB+OFL] vector. We employ a sim-

ilar strategy to the fully-trained networks AlexNet[Fine-tuned],

GoogLeNet[Fine-tuned], and SqueezeNet[Fine-tuned], by generating

the 3CNNs vector. The new merged vectors are used as input

to the fusion methods in order to generate predictions for each

class. Figure 1 shows our four different approaches: i) a neural

network (NN) that weights the contribution of the probability

vectors, ii) the standard arithmetic mean, i.e., weight 0.5 for

both vectors (Mean), iii) a multi-class linear Support Vector

Machine (SVM) [9], and iv) a special case of recurrent neural

network called long short-term memory (LSTM) [10].

The NN fusion contains a single-layer neural network to

optimize the weights of the probabilities derived from the

output of the CNNs. Figure 2 illustrates the structure of such

network when using RGB and OFL data, where w1 and w2 are

learned weights, [A] is the vector containing the probabilities

from the output of the CNN that processes the OFL images,

[B] is the vector containing the probabilities for each class

generated by the output of the CNN that processes the RGB

images, and [C] is the vector containing the weighted mean

for each class. The idea behind this neural network is that

its weights (w1 and w2) can be learned automatically by

minimizing a loss function and backpropagating the gradients.

During test time, this fusion method employs the learned

parameters to properly weight the contribution of each merged

vector. The Mean fusion receives the output vector from both

RBG and OFL CNNs and calculates the arithmetic mean for

each class (equal weights), assigning to the image the class

with the highest score. The SVM fusion is based on a multi-

class linear Support Vector Machine trained with the output

of the CNNs when using the validation data.At test time, the

SVM predicts the class with the largest score. The LSTM
fusion contains a recurrent neural network in the form of a

chain of repeating modules of weights that intends to learn

long-term dependencies. These long-term dependencies are

represented in the form of previous information connected

to the present image, e.g., the class of the current image is

Fig. 2. Single-layer neural network developed to compute the optimal
weighted average from the outputs of the convolutional neural networks.

represented not only by the information of the current frame,

but also by the information extracted from previous frames.

LSTM units have hidden state augmented with nonlinear

mechanisms to allow states to propagate without modification,

be updated, or be reset using simple learned gating functions

[16].

D. Post processing

Since the process of identifying actions occurs frame by

frame instead of the entire video, sometimes the misclassifi-

cation of a small number of frames of an action may occur.

Since an activity does not occur in a single frame or in a

very small number of frames, we believe that a frame in the

middle of a sequence of 20 frames that contains a different

class probably suggests that the frame was misclassified. For

example, the misclassification of 5 frames of the Baking action

in the middle of ≈ 200 frames of the None action. Following

the work of Bansal et al. [7], we apply a smoothing process

on the output sequence of classes in order to identify and fix

frames that are probably incorrectly-classified. This smoothing

process consists of sliding a window of fixed-size through

the temporally sorted predicted classes assigning to the target

frame (the frame in the center of the window) the majority

voting of all frames within the window.

III. EXPERIMENTAL ANALYSIS

In this section, we describe the dataset used in our experi-

ments for indoor fixed-camera action recognition, the imple-

mentation details regarding the CNNs and fusion methods, and

the results that were achieved by our approach in comparison

with the current state-of-the-art.

A. KSCGR Dataset

The Kitchen Scene Context based Gesture Recognition

dataset2 (KSCGR)[6] is a fine-grained kitchen action dataset

released as a challenge in ICPR 20123. The dataset contains

scenes captured by a kinect sensor fixed on the top of the

kitchen, providing synchronized color and depth image se-

quences. Each video is 5 to 10 minutes long, containing 9,000

2http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
3http://www.icpr2012.org/

2050

Fig. 3. Example of the frame/action sequence for the “ham and egg” menu.

to 18,000 frames. The organizers of the dataset assigned labels

to each frame indicating the type of gesture performed by the

actors. There are 8 cooking gestures in the dataset: breaking,

mixing, baking, turning, cutting, boiling, seasoning, peeling,

and none, where none means that there is no action being

performed in the current frame. These gestures are performed

in five different menus for cooking eggs in Japan: ham and
eggs, omelet, scrambled egg, boiled egg, and kinshi-tamago.

A total of 7 different subjects perform each menu. The ground

truth data contains the frame id and the action being performed

within the frame.

We divided the dataset into training, validation, and test sets.

The training set contains 4 subjects, each of them performing

5 recipes, i.e., 20 videos and 139,196 frames in total. We

use the validation set to obtain the model configuration that

performs best, i.e., the configuration with the highest accuracy.

This set contains 1 subject performing 5 recipes with 32,897

frames in total. We use the test set to assess the accuracy

of the selected model in unseen data. This set contains 2

subjects, each performing 5 recipes, i.e., 10 videos with 55,781

frames in total. Figure 3 shows the sequence of frames and

actions when performing the menu Ham and Egg, where the

colored bar represents the timeline of appearance of frames

and actions, and the images illustrate examples of each action

performed in the video.

B. Implementation

Fully-trained CNNs architecture: in order to perform the

action recognition task we use an inception-based CNN archi-

tecture [12] trained from scratch in RGB and OFL separately.

The training phase uses mini-batch stochastic gradient with

momentum (0.9). For each iteration, the network forwards a

mini-batch of 128 samples. We apply data augmentation with

random crops, i.e., a different crop in a randomly selected part

of the image is selected, as well as a probabilistic horizontal

flip, generating a sub-image of 224 × 224. All images have

their pixels subtracted by the mean pixel values of all training

images. All convolutions, including those within the inception

modules, use rectified linear activation units (ReLU). Regard-

ing weight initialization, we employ the Xavier algorithm that

automatically determines the value of initialization based on

the number of input neurons. To minimize the chances of

overfitting, we apply dropout on the fully-connected layers

with a probability of 70%. The learning rate is set to 10−3

and we drop it by a factor of 50 every epoch, stopping the

training after 43.5k iterations (30 epochs).

Pre-trained CNNs architectures: all networks of this

group were pre-trained over the ILSVRC 2012 ImageNet

dataset [11]. For the training phase, we kept almost the same

configuration for all networks, using a mini-batch of 128 sam-

ples with a random crop of 224× 224 as well as random hor-

izontal flip. Each image has its pixels subtracted by the mean

value of pixels of each channel. During training, we freeze

all but the last layer of GoogLeNet[off-the-shelf], performing the

weights and bias updates only for the last fully-connected layer

for 10 epochs, increasing the learning rate of the layer by 10

(setting learning rate of the weights to 10 and learning rate

of the bias to 20). For fine-tuned models (AlexNet[Fine-tuned],

GoogLeNet[Fine-tuned], and SqueezeNet[Fine-tuned]), we update all

weights but with a different learning rate for the last layer. We

increase the learning rate of the weights in the last layer from

1 to 10 and the bias from 2 to 20, and decrease the global

learning rate by 100. This configuration allows all layers to

learn, though giving the final layer the capability to learn faster

than the remaining layers.

NN: this fusion approach contains a neural network trained

with data from the validation set for 10 epochs with weights

w1 and w2 initialized with 0.5. We use the mean squared

error loss function and optimize it through Adam [17] with

a learning rate set to 10−3.

SVM: we train the multi-class Support Vector Machine

using the off-the-shelf implementation by Crammer and Singer

[9] from scikit-learn4 toolbox. Similarly to the neural network

fusion, we train the SVM using the validation set. We use the

linear kernel and default scikit-learn regularization parameter

C = 1 with the square of the hinge loss as loss function.

LSTM: we implemented the long short-term memory using

the Keras5 neural networks library. Our configuration follows

the implementation proposed by Donahue et al. [16] that

connects a CNN with a LSTM, calling this model Long-

term Recurrent Convolutional Network (LRCN). We explore

various hyper-parameters using both training and validation

sets, selecting the best architecture that contains 1024 hidden

units with a dropout of 0.7 in order to avoid overfitting. We

train and test the LSTM network in a sequence of 32 frames,

and during training the stride is of 16 frames. We also apply

the Adam [17] algorithm using a learning rate of 10−3. We

run the training phase for 30 epochs.

Post processing: the post processing consists of sliding a

window of fixed-size through the predicted classes assigning

to the target frame the majority voting of all frames within the

window. In order to decide the size of the window, we used the

predicted classes from the validation dataset. We performed

several smoothing tests, varying the window-size from 10 to

50 increasing the step in 10 frames each time. Finally, we

4http://scikit-learn.org
5https://keras.io

2051

TABLE I
PER-ACTIVITY ACCURACY IN THE KSCGR DATASET FOR ALL BASELINES AND FUSION METHODS.

Method None Breaking Mixing Baking Turning Cutting Boiling Seasoning Peeling Overall

GoogLeNet[RGB] 0.644 0.275 0.289 0.671 0.346 0.588 0.287 0.363 0.117 0.689
GoogLeNet[OFL] 0.519 0.341 0.314 0.600 0.194 0.545 0.128 0.382 0.449 0.631
GoogLeNet[RGB+OFL] + Mean 0.634 0.327 0.340 0.684 0.174 0.620 0.169 0.403 0.347 0.692
GoogLeNet[RGB+OFL] + SVM 0.679 0.357 0.432 0.689 0.000 0.526 0.444 0.601 0.455 0.721
GoogLeNet[RGB+OFL] + NN 0.690 0.354 0.452 0.693 0.012 0.516 0.505 0.651 0.382 0.726
GoogLeNet[Off-the-shelf] 0.545 0.004 0.198 0.666 0.009 0.182 0.340 0.055 0.007 0.609
AlexNet[Fine-tuned] 0.688 0.555 0.445 0.752 0.211 0.636 0.369 0.661 0.400 0.751
GoogLeNet[Fine-tuned] 0.579 0.224 0.374 0.711 0.136 0.438 0.030 0.174 0.000 0.645
SqueezeNet[Fine-tuned] 0.611 0.325 0.422 0.688 0.117 0.313 0.078 0.300 0.184 0.660
AlexNet[Fine-tuned] + SVM 0.636 0.570 0.395 0.741 0.173 0.447 0.303 0.520 0.335 0.717
GoogLeNet[Fine-tuned] + SVM 0.676 0.323 0.466 0.708 0.100 0.449 0.381 0.351 0.202 0.712
SqueezeNet[Fine-tuned] + SVM 0.538 0.211 0.240 0.593 0.028 0.010 0.078 0.113 0.013 0.587
3CNNs + SVM 0.604 0.363 0.449 0.678 0.105 0.269 0.165 0.236 0.042 0.667
3CNNs + NN 0.687 0.598 0.434 0.757 0.209 0.623 0.348 0.663 0.509 0.752
3CNNs + NN + PP 0.696 0.621 0.452 0.753 0.206 0.575 0.333 0.725 0.509 0.755
3CNNs + LSTM 0.737 0.508 0.536 0.739 0.191 0.571 0.458 0.416 0.738 0.775
3CNNs + LSTM + PP 0.754 0.504 0.564 0.749 0.190 0.560 0.469 0.384 0.773 0.785

chose the window size of 20 frames since it achieved the best

accuracy results on validation data.

C. Results

In order to evaluate our approach, we compare the output

of each fusion method in the test set. We use the classification

generated by each individual CNN as baseline, and hence

we can see whether the fusion method improves over each

individual CNN. Table I shows the accuracy values for each

class individually (None, Breaking, Mixing, Baking, Turning,

Cutting, Boiling, Seasoning, Peeling), as well as the overall

accuracy (Overall) that considers all classes at once.

We generate values of accuracy for the fully-

trained models: GoogLeNet trained with RGB

(GoogLeNet[RGB]) and OFL (GoogLeNet[OFL]) data, a

merging of both networks GoogLeNet[RGB+OFL] with

either the Mean (GoogLeNet[RGB+OFL]+Mean), the SVM

(GoogLeNet[RGB+OFL]+SVM) or the neural network

(GoogLeNet[RGB+OFL]+NN) as the fusion method. For

pre-trained models, we generate values of accuracy for an

off-the-shelf network (GoogLeNet[Off-the-shelf]), and for fine-

tuned networks (AlexNet[Fine-tuned], GoogLeNet[Fine-tuned], and

SqueezeNet[Fine-tuned]). We test the fine-tuned models changing

the output to a support vector machine classifier, generating

AlexNet[Fine-tuned]+SVM, GoogLeNet[Fine-tuned]+SVM and

SqueezeNet[Fine-tuned]+SVM. The merging of the pre-trained

networks (3CNNs) is also used as input to the fusion methods

generating 3CNNs+SVM, 3CNNs+NN, and 3CNNs+LSTM.

Finally the post processing (PP) is applied on the output

of the neural network generating 3CNNs+NN+PP and

3CNNs+LSTM+PP.

1) Overall Performance: As we can observe in Table I,

the fusion of 3 pre-trained convolutional neural networks

with a long short-term memory network and with the post

processing strategy (3CNNs+LSTM+PP) achieves the best

global accuracy (All) of 78.5%. The achieved results confirm

our belief that different networks may identify different aspects

(features) and their combination tends to improve results, as

largely expected due to the ensemble effect. When comparing

the merging of the 3 networks with single networks, 3CNN
achieves the best results for 6 (None, Breaking, Mixing, Bak-
ing, Seasoning, and Peeling) out of 9 actions. For Cutting and

Boiling, our architecture using 3 networks achieves the second-

best result. Our architecture did not perform well for the

Turning action, and a possible reason for the low performance

of the fusion methods for classifying Turning might be a

mixture of the limited number of frames for this activity and

the training phase using vector probabilities generated based

on the validation set. Considering that our fusion methods are

trained with predicted probabilities from validation data, any

misclassification may lead to errors during the test phase.

2) Off-the-shelf vs. fully-trained vs. fine-tuned: In general,

the GoogLeNet[Off-the-shelf] architecture is outperformed by its

fully-trained version on the RGB data GoogLeNet[RGB] and

by its fine-tuned version GoogLeNet[Fine-tuned]. This result

indicates that it is better to train the network from scratch

when a large dataset is available or fine-tune the network

allowing all layers to learn instead of simply learning the last

layer. Comparing the network trained from scratch with the

fine-tuned network, it seems better to train the network from

scratch than to load pre-trained weights in ImageNet. These

results may be explained by the fact that KSCGR’s images are

very different from ImageNet’s.

3) Single vs. Merged vs. Merged/Fused : The merging

of networks using different datasets (GoogLeNet[RGB+OFL])

with a fusion method (Mean, SVM or NN) tends to

improve results, achieving the maximum accuracy of

≈ 73% when combining the network with a neu-

ral network fusion (GoogLeNet[RGB+OFL]+NN). The use of

trainable fusion methods (GoogLeNet[RGB+OFL]+SVM and

GoogLeNet[RGB+OFL]+NN) decrease the accuracy of the Turn-
ing action probably because the validation data contains very

few frames from this action. When comparing the fine-

tuned networks with their versions with the SVM fusion,

we can see that the original fine-tuned network achieves

better results. GoogLeNet[Fine-tuned] + SVM is the only network

2052

that achieves better results (7 out of 9 classes) when using

a fusion algorithm. Virtually every result of the original

fine-tuned versions of AlexNet and SqueezeNet are better

than their versions using SVM. Comparing the three fine-

tuned networks (AlexNet[Fine-tuned], GoogLeNet[Fine-tuned] and

SqueezeNet[Fine-tuned]), AlexNet[Fine-tuned] achieves the best re-

sults for 7 out of 9 classes and the best overall class score.

These results indicate that a small network is capable of good

performance probably because they properly avoid overfitting.

Observing the 3 fusion methods, the SVM fusion achieves

the worst results for most cases. NN and LSTM obtain sim-

ilar results for most categories, and 3CNNs+LSTM achieves

the best overall classification with 77% of accuracy for all

classes. Even though post processing may eliminate classes

that contain a small number of frames, it seems its usage

is quite beneficial since it consistently improves the obtained

results. The post-processed versions achieve the best accuracy

scores for 5 out of 9 classes when compared with all models,

providing the best overall accuracy of 78.5%.

4) Unbalanced classes: Since classification accuracy takes

into account only the proportion of correct results that a

classifier achieves, it is not suitable for unbalanced datasets

because it is biased towards classes with larger number of

examples. Although other factors may change results, classes

with a larger number of examples tend to achieve better results

since the network has more examples to learn the variability

of the features. By analyzing the KSCGR dataset, we note that

it is indeed unbalanced, i.e., classes are not equally distributed

over frames. Figure 4 shows the distribution of accuracy scores

over the classes for the GoogLeNet[RGB] network (left) and

the distribution of these classes within the dataset. We can

see that the dataset is unbalanced since the None action has

the largest number of frames (≈ 30% of the total) followed

by Baking (≈ 25% of the total), whereas Breaking contains

only ≈ 3% of the frames. By checking the accuracy scores,

we see that the GoogLeNet[RGB] achieves 28% of accuracy for

the Breaking class and 67% of accuracy for the Baking class,

meaning that the features that map to Breaking are not as

evident as the features of Baking. The probable reason for this

difference relies on the small number of training examples of

the Breaking class that is passed to the network. Baking, on the

other hand, is much more present within the dataset, improving

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
u
ra
c
y
o
f
th
e
G
o
o
g
L
e
N
e
t[
R
G
B
]
n
e
tw
o
rk

31%3%

11%

25%

5% 9%

7%

3%

6%

Distribution of frames in dataset

None

Breaking

Mixing

Baking

Turning

Cutting

Boiling

Seasoning

Peeling

Fig. 4. Per-class accuracy and class distribution within the KSCGR dataset.

the training experience and making the neural architecture

generalize better for frames that belong to that class. For

dealing with the unbalanced nature of the KSCGR dataset,

we measure the performance of the fusion methods based

on precision (P), recall (R), and F-Measure (F). Table II

shows the values of precision, recall, F-measure, and accuracy

achieved by the baselines (GoogLeNet [RGB] and GoogLeNet
[OFL]), pre-trained, and fully trained networks. In order

to compare with the current state-of-the-art on the KSCGR

dataset, in Table II we present the performance achieved by

Bansal et al. [7], which uses hand-crafted features (HCF) to

identify activities, as well as their results after undergoing

a similar post-processing step (HCF+PP). A large precision

value means that the respective model can adjust very well

to the features for identifying the class, whereas low values

indicate that it cannot extract relevant features to identify the

correct class among the remaining classes.

5) Our approach vs State-of-the-art: As we can observe

in Table II, virtually all networks achieve similar values of

precision, recall, and F-Measure. It is important to note that

the combination of the 3 CNNs using the LSTM as fusion

method and post processing (3CNNs+LSTM+PP) achieves the

best scores for all measures. When compared with the hand-

crafted features proposed by Bansal et al. [7], it is clear that

our architecture provides better results. Only the network that

was pre-trained on ImageNet and had all but the last layer

frozen (GoogLeNet[Off-the-shelf]) is outperformed by the (former)

state-of-the-art.

6) Confusion Matrix: We also analyze the confusion matrix

of the network that achieves the best performance without

post processing since it is also important to see which classes

that are commonly mistaken. The normalized confusion ma-

trix depicted in Figure 5 shows the performance of the

3CNNs+LSTM network, where rows represent the true classes

TABLE II
PRECISION, RECALL, F-MEASURE, AND ACCURACY FOR ALL BASELINES,

FUSION METHODS AND THE (FORMER) STATE-OF-THE-ART APPROACH

FOR THE KSCGR DATASET.

Approach Precision Recall F-measure Accuracy

HCF [7] 0.62 0.63 0.61 0.64
HCF + PP [7] 0.68 0.68 0.68 0.72

GoogLeNet[RGB] 0.69 0.68 0.69 0.69
GoogLeNet[OFL] 0.64 0.63 0.63 0.63
GoogLeNet[Off-the-shelf] 0.61 0.61 0.61 0.61
GoogLeNet[RGB+OFL] + Mean 0.71 0.69 0.70 0.69
GoogLeNet[RGB+OFL] + SVM 0.67 0.72 0.70 0.72
GoogLeNet[RGB+OFL] + NN 0.72 0.73 0.72 0.73
AlexNet[Fine-tuned] 0.77 0.75 0.76 0.75
GoogLeNet[Fine-tuned] 0.73 0.71 0.72 0.71
SqueezeNet[Fine-tuned] 0.70 0.66 0.68 0.66
AlexNet[Fine-tuned] + SVM 0.76 0.72 0.74 0.72
GoogLeNet[Fine-tuned] + SVM 0.72 0.71 0.68 0.71
SqueezeNet[Fine-tuned] + SVM 0.64 0.59 0.61 0.59
3 CNNs + SVM 0.73 0.67 0.70 0.67
3 CNNs + NN 0.77 0.75 0.76 0.75
3 CNNs + NN + PP 0.77 0.76 0.75 0.76
3 CNNs + LSTM 0.78 0.78 0.78 0.78
3 CNNs + LSTM + PP 0.80 0.78 0.79 0.79

2053

N
on
e

B
re
ak
in
g

M
ix
in
g

B
ak
in
g

Tu
rn
in
g

C
ut
tin
g

B
oi
lin
g

Se
as
on
in
g

Pe
el
in
g

Predicted label

None

Breaking

Mixing

Baking

Turning

Cutting

Boiling

Seasoning

Peeling

T
ru
e
la
b
e
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 5. Normalized confusion matrix for the 3CNNs+LSTM network.

and columns the predicted classes. Shades of blue represent

the value in each cell, going chromatically from a darker

blue for higher values to a lighter blue for lower values.

The confusion matrix shows normalized values, i.e., predicted

values are divided by the total number of true values for each

cell. By analyzing the results for the Baking class, we can

see that the system incorrectly predicts it as Turning. Such

misclassification makes sense since both activities occur in the

same region of the frame, using the same objects (e.g., in both

activities the subject is working in the middle of the scene and

whereas in Baking the subject puts the broken egg onto the

pan and lets it bake, in Turning the subject turns the baked egg

on the pan. Even though both None, Mixing, and Baking have

higher values in the main diagonal of the confusion matrix,

their precision scores are reduced by the misclassification of

other classes. Similarly to the misclassification of Baking, the

Mixing and Turning activities occur in the same region of the

scene and with the same objects.

Unlike Baking that does not have many changes through

frames (e.g., the egg baking inside the pan), the None activity

is labeled as anything that happens but the other 8 activities,

encompassing frames in which the subject is preparing the

kitchen utensils, moving pans, and inter-activity frames such as

removing the egg from boiling to peeling. The large accuracy

(73%) for classifying Baking may be explained due to this

standard behavior of low-variability in regions of the scene

and the larger number of available training frames. Despite the

unbalanced nature of the dataset, the values of accuracy follow

the F-Measure scores, where the lowest value is achieved for

Turning and the largest value for Baking.

7) Post processing effect: Since the post processing strategy

seems to be successful, it is interesting to visualize the exact

effect of smoothing predictions. Figure 6 presents the temporal

representation of the class distribution in the frame sequence

for a single video of the test set. Classes are represented by

Fig. 6. Temporal representation of classes for the frame sequence of a single
video in which true labels are compared with labels predicted by our approach
(with and without post processing.

colored vertical lines in a temporal sequence for both the origi-

nal output (true labels), the output provided by 3CNNs+LSTM,

and the output provided by (3CNNs+LSTM+PP). By ana-

lyzing the output of 3CNNs+LSTM, we can see that some

frames are misclassified such as a single Mixing action in

the middle of the Baking class or a small sequence of the

Cutting action in the middle of a Seasoning action. After

performing the post-processing smoothing step, these noisy

predictions disappear. On the other hand, small sequence of

frames that were correctly classified (Mixing in the middle of a

Baking class) also disappear. Despite the increase in accuracy

(from 86% to 90% for the example presented in Figure 6), the

smoothed output completely ignored the existence of some

activities, which can be an important issue according to the

application at hand.

IV. RELATED WORK

Before the rise of CNN and neural networks in general,

the approaches for action recognition were based on complex

hand-crafted features extracted from video sequences [7]. Con-

volutional neural networks on the other hand, learn automati-

cally a hierarchy of features automating the process of feature

construction. Thus, many authors apply CNNs to recognize

actions in videos using methods such as Long-term Recurrent

Convolutional Network (LRCN) [16], 3D convolutions (3D

CNNs) [18], or a mix of hand-crafted features and CNNs (two-

stream CNNs) [15]. Despite the fact that these approaches are

suitable for recognizing activities in general, they were applied

in other datasets and are not directly comparable to our work.

Traditional approaches for activity recognition rely on hand-

crafted features and domain-specific image processing algo-

rithms and often result in limited accuracy [7], [19]. Bansal et
al. [7] perform daily life cooking activity recognition based

on hand-crafted features for hand movements and objects

use in KSCGR dataset [6]. Their method first detects hand

regions through color segmentation and skin identification.

Since some objects can have the same color of the skin,

2054

they perform background subtraction, eliminating still objects

with skin color. Also, considering that objects may give hints

of the activity (e.g., the use of the knife may indicate the

cutting activity), objects are identified as “Not in use” and “In
use”. A dynamic Support Vector Machine (SVM) and Hidden

Markov Model (HMM) hybrid model combines the structural

and temporal information to jointly infer the activity, achieving

64% of overall accuracy. In order to improve the performance

of the system, they perform a post-processing step, removing

noisy frames, i.e., frames that are incorrectly classified among

a cluster of correctly classified frames. Since some activities

are temporally dependent of others, e.g., Peeling only occurs

after Boiling, they create a context grammar to select the the

most likely guess for misclassified frames. Using the post

processing step, Bansal et al. increased accuracy in ≈ 7% for

the activity recognition, achieving a final accuracy of 72%.

Ni et al. [20] propose an adaptive motion feature pooling

scheme that utilizes human poses as side information. They ex-

tract hand-crafted features from the images, such as histogram

of oriented gradient, motion boundary histogram, histogram

of optical flow, and trajectory shape in order to obtain more

relevant features. The principal component analysis (PCA) al-

gorithm reduces the dimension of the large amount of extracted

features. Improved Fisher vectors encode the resulting features

and a second PCA algorithm reduces their dimensionality.

Finally, they train a Linear SVM in order to classify video

segments. They perform experiments using two datasets, the

KSCGR dataset [6] and the MPII kitchen activity dataset [21].

Since their work have focused on object detection and tracking

movements, they do not present results for activity recognition,

not allowing us to make a fair comparison.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel neural architecture for in-

door fixed-camera kitchen activity recognition based on static

and temporal data and different fusion methods. The pipeline

of the architecture includes the training of deep convolutional

neural networks to extract features from images and classify

unseen frames. Using optical flow and RGB frames from the

kitchen scene dataset (KSCGR), we performed experiments

showing that the convolutional networks can indeed learn

high-level relevant features for the activity recognition task at

hand. Experiments show that our approach that employs fusion

methods achieve better results when compared with the current

state-of-the-art work that employs only hand-crafted features

[7] or when compared with deep approaches that make use of

RGB/OFL images alone. As future work, we intend to explore

other approaches such as temporal pooling and employ other

deep learning architectures such as 3D CNNs [18] considering

that they are also capable of encoding temporal features in

order to perform action recognition in videos.

ACKNOWLEDGEMENT

This paper was achieved in cooperation with HP Brasil

Indústria e Comércio de Equipamentos Eletrônicos LTDA.

using incentives of Brazilian Informatics Law (Law no 8.2.48

of 1991). The authors also would like to thank FAPERGS,

CNPq, and CAPES for funding this research.

REFERENCES

[1] G. Sukthankar, , C. Geib, , H. H. Bui, , D. V. Pynadath, , and R. P.
Goldman, Plan, Activity, and Intent Recognition. Boston: Morgan
Kaufmann, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/B9780123985323000221

[2] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in CVPR, 2014.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[6] A. Shimada, K. Kondo, D. Deguchi, G. Morin, and H. Stern, “Kitchen
scene context based gesture recognition: A contest in icpr2012,” in
Advances in depth image analysis and applications. Springer, 2013,
pp. 168–185.

[7] S. Bansal, S. Khandelwal, S. Gupta, and D. Goyal, “Kitchen activity
recognition based on scene context,” in 2013 IEEE International Con-
ference on Image Processing. IEEE, 2013, pp. 3461–3465.

[8] P. Sondhi, “Feature construction methods: a survey,” sifaka. cs. uiuc.
edu, vol. 69, pp. 70–71, 2009.

[9] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” Journal of machine learning
research, vol. 2, no. Dec, pp. 265–292, 2001.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

[13] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” arXiv:1602.07360, 2016.

[14] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Scandinavian conference on Image analysis. Springer,
2003, pp. 363–370.

[15] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in Neural Information
Processing Systems, 2014, pp. 568–576.

[16] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in CVPR, 2015.

[17] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in The International Conference on Learning Representations (ICLR),
San Diego, 2015.

[18] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[19] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as
space-time shapes,” IEEE transactions on pattern analysis and machine
intelligence, vol. 29, no. 12, pp. 2247–2253, 2007.

[20] B. Ni, P. Moulin, and S. Yan, “Pose adaptive motion feature pooling for
human action analysis,” International Journal of Computer Vision, vol.
111, no. 2, pp. 229–248, 2015.

[21] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele, “A database for
fine grained activity detection of cooking activities,” in Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012, pp. 1194–1201.

2055

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

