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Abstract. Recognizing activities in videos is an important task in computer vision area. Automatizing such task
can improve the way we monitor activities since it is not necessary to have a human to watch every video. However,
the classification of activities in a video is a challenging task since we need to extract temporal features that represent
each activity. In this work, we propose an approach to obtain temporal features from videos by dividing the sequence
of frames of a video into regions. Frames from these regions are merged in order to identify the temporal aspect that
classify activities in a video. Our approach yields better results when compared to a frame-by-frame classification.

Categories and Subject Descriptors: I.2.10 [Artificial Intelligence]: Vision and Scene Understanding; I.5.4 [Pattern
Recognition]: Applications

Keywords: Neural Networks, Convolutional Neural Networks, Activity Recognition

1. INTRODUCTION

Recognizing activities in videos is an important task for humans, since it helps the identification of
different types of interactions with other agents. An important application of such task refers to the
surveillance and assistance of the sick and disabled: such tasks require human monitors to identify any
unexpected activity. Here, activity recognition refers to the task of dealing with noisy low-level data
directly from sensors [Sukthankar et al. 2014]. The automation of such task is particularly challenging
in the real physical world, since it either involves fusing information from a number of sensors or
inferring enough information using a single sensor. To perform such task, we need an approach that
is able to process the frames of a video and extract enough information in order to determine the
activity.

Due to the evolution of graphics processing unit (GPU) and an increasing in computability power,
deep learning methods started to be the state-of-the-art of different computer vision tasks [Karpathy
et al. 2014; Chen et al. 2017; Redmon et al. 2016]. However, for activity recognition, deep learning
algorithms need to consider the temporal aspect of videos since activities tend to occur through the
frames. Besides that, this kind of algorithms demands a big volume of data in order to generalize
when classifying unseen data.

In this work, we propose an approach to compute the temporal aspect from frames by dividing a
video into regions and merging features from different regions in order to recognize an activity. Using
Convolutional Neural Networks (CNNs) to extract features from each frame, we train a classifier that
receives as input either a concatenation or the mean of features from different regions and outputs
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a prediction to the corresponding activity. Considering videos as a division of regions, we unify
different moments of the video in a single instance, which makes it easier to classify. We perform
experiments using two off-the-shelf CNNs in order to verify whether the regions work independently
of the architecture. Our results indicate that the use of regions may increase the accuracy about 10%
when compared with single networks that classify activities frame-by-frame.

2. METHOD

Recognizing activities from videos often involves an analysis of how objects in frames modify along
the time. An approach to recognize activities in videos involves obtaining the temporal information,
which may contain descriptions about how objects are moving and the main modifications between
frames. Since an activity consists of a sequence of movements, obtaining the temporal information
may help systems to better understand which activity is being performed. In this work, we propose
an approach to obtain temporal information from a video by dividing its frames into regions. Thus,
instead of classifying an activity using only the information from each image frame, we extract and
merge the information from several regions of the video in order to obtain its temporal aspect. Figure 1
illustrates the pipeline of our architecture, which is divided into four phases: pre-processing, CNNs,
regions division, and classification.

Fig. 1. Pipeline of our architecture for activity recognition using multiple regions.

1) Pre-processing: This phase consists of resizing images to a fixed resolution of 256×256. Resizing
is important since it reduces the number of features for each image inside the CNN as well as the
processing time.

2) CNNs: In this phase we train two CNNs using the DogCentric Activity dataset [Iwashita et al.
2014] in order to extract features of the activity in each frame. We first train a GoogLeNet [Szegedy
et al. 2015] due to its reduced number of parameters generated by inception modules. GoogLeNet
is a 22-layer deep network and is based on the inception module that contains convolutional filters
with different sizes, covering different clusters of information. The second CNN is a slightly modified
version of AlexNet [Krizhevsky et al. 2012] called CaffeNet [Jia et al. 2014] due to its small architecture,
which is able to provide a fast training phase. Our version of the AlexNet contains 8 weight layers
including 5 convolutional layers and 3 fully-connected layers, and 3 max-pooling layers following the
first, second and fifth convolutional layers. Both networks receive a sequence of images as input,
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passing them through several convolutional layers, pooling layers and fully-connected layers (FC),
ending in a softmax layer that generates the probability of each image to each class. We use CNNs
as feature extractors for images of the dataset in order to generate a feature representation of each
frame.

3) Regions division: In this phase, we divide each sequence of frames of a video into n regions
of the same size, i.e., containing the same number of frames, discarding the remaining ones in case
they exist. To make a composition of different parts of the video, we take one frame of each region
and either concatenate or take the mean of their features. For example, consider a video divided
into three regions and each frame containing ten features, the resulting vector of a concatenation will
contain thirty features, while the resulting vector of the mean will contain ten features. In order to
avoid repetitions between the regions representation, we merge the features of the frame in the ith

position of the first region with the feature of the frame in the ith + 1 position in the other regions,
e.g., (a1 · b2 · c2) in “concatenation” in Figure 1. In case where the features of the frame are in the last
position of the first region, the features of the frames in the next regions are extracted from the first
position, e.g., (a4 · b1 · c1) in “concatenation” in Figure 1.

4) Classification: In this phase, we apply a Support Vector Machine (SVM) [Crammer and Singer
2001] on the features from the concatenation or mean phase in order to predict the activity.

3. EXPERIMENTS

In this section, we describe the dataset used in our experiments for animal activity recognition and
the implementation details used in the CNN models and SVM algorithm.

3.1 Dataset

The DogCentric Activity dataset1 [Iwashita et al. 2014] consists of 209 videos containing 10 different
activities performed by 4 dogs. The dataset contains first-person videos in 320 × 240 resolution
(recorded at 48 frames per second) taken from an egocentric animal viewpoint, i.e., a wearable camera
mounted on dogs’ back records outdoor and indoor scenes. Not all dogs perform all activities and an
activity can be performed more than once by the same dog. The 10 target activities in the dataset
include: “waiting for a car to pass by” (hereafter named Car), “drinking water” (Drink), “feeding”
(Feed), “turning dog’s head to the left” (Left), “turning dog’s head to the right” (Right), “petting”
(Pet), “playing with a ball” (Play), “shaking dog’s body by himself” (Shake), “sniffing” (Sniff ), and
“walking” (Walk). It is important to mention that these egocentric (first-person) videos are very
challenging due to their strong camera motion. In the left side of Figure 2, we show the dataset
distribution according to its classes. As we can see, classes such as ‘Left’ and ‘Right’ have less than
10% of presence in the dataset, whereas ‘Car’ and ‘Sniff’ classes have 15% indicating that the dataset
is unbalanced. In the right side of Figure 2, we illustrate examples for each class in the dataset.

In order to perform experiments, we divided the dataset into training, validation, and test sets.
We use the validation set to obtain the model configuration that best fits the training data, i.e., the
configuration with the highest accuracy, and the test set to assess the accuracy of the selected model
in unseen data. We use a method to divide the dataset that is similar to the one proposed by Iwashita
et al. [2014], and consists of randomly selecting half of the videos of each activity as test set. In case
where the number of videos (N) is an odd number, we separate (N+1)

2 videos for test set. We divide
the rest of the videos into training and validation sets. Validation set contains 20% of the videos and
the rest is separated to training set. Thus, our division contains 105 videos (17,400 frames) in testing
set, 20 videos (3,205 frames) in validation set and 84 videos (13,040 frames) in training set.

1http://robotics.ait.kyushu-u.ac.jp/~yumi/db/first_dog.html
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Fig. 2. Frames from each class of the dataset and the distribution of frames in classes.

3.2 Model Training

We implemented each part of our architecture using different toolkits: for CNNs, we use the Caffe2
framework [Jia et al. 2014], and for the SVM, we use the Crammer and Singer [2001] implementation
from scikit-learn3 [Pedregosa et al. 2011]. Each CNN is trained by fine-tuning a network pre-trained
in ImageNet [Russakovsky et al. 2015]. In training phase, both networks (GoogLeNet and AlexNet)
use mini-batch stochastic gradient with momentum (0.9). For each image, we apply a random crop,
i.e., a crop in a random part of the image, generating a sub-image of 224 × 224. We subtract all
pixels from each image by the mean pixel of all training images. The activation of each convolution
(including those within the “inception” modules in GoogLeNet) use a Rectified Linear Unit (ReLU).

Each iteration in GoogLeNet uses a mini-batch with 128 images. For the weight initialization, we
employ the Xavier [Glorot and Bengio 2010] algorithm, which automatically determines the value of
initialization based on the number of input neurons. To avoid overfitting, we apply a dropout with a
probability of 80% on the fully-connected layers. The learning rate is set to 3× 10−4 and we drop it
to 2× 10−4 every epoch, stopping the training after 2.04k iterations (20 epochs).

In AlexNet, each iteration contains a mini-batch with 64 images. We initialize the weights using the
Gaussian distribution with a standard deviation of 0.01. Similar to GoogLeNet, we avoid overfitting
by applying a dropout with 90% of probability to prone nodes of fully-connected layers. The learning
rate is set to 10−4 and we drop it 5 × 10−4 every epoch, stopping the training after 4.08k iterations
(20 epochs).

4. RESULTS

In order to evaluate our approach, we calculate the accuracy (A), precision (P), recall (R) and F-
measure (F). Since classification accuracy takes into account only the proportion of correct results
that a classifier achieves, it is not suitable for unbalanced datasets because it may be biased towards
classes with larger number of examples. Although other factors may change results, classes with
a larger number of examples tend to achieve better results since the network has more examples
to learn the variability of the features. By analyzing the DogCentric dataset, we notice that it is
indeed unbalanced, i.e., classes are not equally distributed over frames. Thus, we decided to calculate

2http://caffe.berkeleyvision.org/
3http://scikit-learn.org/
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precision, recall, and f-measure to make a better evaluation over the unbalanced dataset. We calculate
scores considering all classes presented in the test set as explained in Section 3.1. Table I shows the
results achieved by AlexNet and GoogLeNet in our experiments when splitting the dataset into regions.
The best results for concatenation and mean are in bold. It is important to note that Regions=1 is
equivalent to compute single frames individually without splitting the video, i.e., the traditional
approach that do not encode the temporal aspect of an activity.

1) Overall Performance: As presented in Table I, when splitting the video into temporal regions
we increase the accuracy of the network. For AlexNet, we achieve the best accuracy in two situations:
(a) by using 16 regions and the mean of the feature vectors (59% of accuracy); and (b) using 32
regions with the concatenation of the vectors (59% accuracy). In terms of precision, recall, and f-
measure, AlexNet achieves the best results when using 32 regions and the concatenation of vectors.
For GoogLeNet, we obtain the best accuracy for both 8 and 16 regions, achieving 62% of accuracy
using concatenated vectors, while the highest precision is achieved by the concatenation of vectors
using 16 regions (72% of precision). In general, AlexNet achieves the best scores when increasing
the number of regions to 32, while GoogLeNet achieves the highest scores using 8 regions. Overall,
GoogLeNet obtains better results for all metrics. This occurs due to the set of layers in GoogLeNet,
such as inception that allows the extraction of more complex features from data.

2) Mean vs. Concatenation: In general, the concatenation and the mean of the regions achieve close
results for most regions. However, when increasing the number of regions the concatenation surpasses
the mean and achieves the best results. On the other hand, the concatenation has the drawback
that the more the number of regions, the more memory the system needs, while the mean keeps the
memory constant.

3) Single vs. Multiple Regions: When comparing the architectures using single frames or multiple
regions, we can observe that even when using two regions, the performance increase in both AlexNet
and GoogLeNet. Although some activities can be identified in a single frame, it usually takes several
frames to identify an activity. Thus, it seems reasonable that using more than a single frame will lead
to better results. For a better understanding of how networks are classifying each class using a single
frame and a set of regions, we illustrate in Figure 3 the confusion matrices generated for single frames
and for the concatenation of 32 regions (the best results) for AlexNet, and the confusion matrices
generated by single frames and the concatenation of 8 regions for GoogLeNet. As we can see in Figure
3, there is an increase in precision for bot Left and Shake classes when splitting the dataset into regions
to predict the class of the video using AlexNet. Comparing the results from GoogLeNet, there is an
increase in precision for both Right and Shake classes when splitting the dataset into eight regions.
Other classes are also positively affected by the region division as it works as a reinforcement to the
network classification. Regarding the number of regions, we notice that our results start to obtain
significant increase with 8 regions or more. There is a difference between GoogLeNet and AlexNet

Table I. Accuracy (A), Precision (P), Recall (R) and F-measure (F) achieved for AlexNet and GoogLeNet when using
regions in the DogCentric Activity dataset.

Regions Fusion AlexNet GoogLeNet
A P R F A P R F

1 – 0.51 0.57 0.52 0.52 0.56 0.62 0.56 0.56
2 Concat 0.55 0.59 0.55 0.55 0.58 0.64 0.58 0.58

Mean 0.55 0.59 0.55 0.55 0.58 0.64 0.58 0.58
4 Concat 0.56 0.61 0.57 0.56 0.60 0.67 0.60 0.60

Mean 0.57 0.61 0.57 0.57 0.60 0.67 0.60 0.60
8 Concat 0.56 0.61 0.57 0.56 0.62 0.71 0.63 0.63

Mean 0.58 0.62 0.58 0.57 0.59 0.67 0.59 0.59
16 Concat 0.57 0.62 0.57 0.57 0.62 0.72 0.62 0.61

Mean 0.59 0.63 0.59 0.58 0.58 0.67 0.59 0.59
32 Concat 0.59 0.66 0.59 0.59 0.60 0.71 0.61 0.60

Mean 0.58 0.63 0.59 0.58 0.58 0.69 0.58 0.60
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number of regions that yield their best results. While GoogLeNet obtains its best results with 8 and
16 regions, AlexNet obtains with 32 regions. We attribute this to the fact that AlexNet needs more
features (regions) from different parts of the video to obtain good results, while GoogLeNet does not
need that much since it has a more complex structure.
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Fig. 3. Confusion matrix for AlexNet using 1 and 32 regions and GoogLeNet using 1 and 8 regions.

From all the confusion matrices, we can observe that the classes Car and Sniff have the highest
scores in classification. The highest scores indicate that the classes are very different of the other
classes and the features can be well separated from others. In fact, the class Car, for example, is the
only class that contains a car passing by the dog. Besides, both classes have most number of samples
in the dataset, which facilitates the network to learn their features.

4) Unbalanced classes: Analyzing the dataset we observe that it is indeed unbalanced, with the
classes Car and Sniff having the largest number of frames (each containing ≈ 15% of the frames of
the dataset). On the other hand, Left class is only ≈ 4% of the total frames in the dataset and Right
class is ≈ 6% of the total frames. This unbalanced nature of the dataset seems to impact the results,
since the lower the number of frames the class has, the lower the accuracy score it achieves.

5. RELATED WORK

The increasing availability of wearable devices such as cameras, Google Glass4, Microsoft SenseCam5,
etc. facilitates the low-cost acquisition of rich activity data. In recent years, this increase of available
egocentric data have attracted a lot of attention in the computer vision community. The first-person
point-of-view (or egocentric) is very popular in the study of daily activities [Ryoo et al. 2015; Hsieh
et al. 2016], and many work have been proposed. For example, Ma et al. [2016] propose a method that
uses twin-stream networks, one to capture the appearance of the objects such as hand regions and
objects attributes, and the other to capture motion such as local hand movements and global head
motion using stacked optical flow fields as input. A late fusion method joins both networks. Their
experiments use GTEA and Gaze [Fathi et al. 2012] egocentric datasets.

Using first-person images and Inertial Measurement Units (IMU) sensors, Spriggs et al. [2009]
propose an approach to make action segmentation and classification from brownie recipe videos. They
use the Carnegie Mellon University Multimodal Activity dataset and manually annotate 29 actions
in the videos. In order to segment actions, the authors use the data from IMU sensors as input for
unsupervised algorithms that divide the video according to the actions. To classify actions, they test
two supervised algorithms: Hidden Markov Models and K-Nearest Neighbours.

4https://www.google.com/glass/start/
5http://research.microsoft.com/en-us/um/cambridge/projects/sensecam/
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Pirsiavash and Ramanan [2012] propose a two-step approach to identify actions from first-person
videos. First, they identify the objects in the frames and classify those been used by the person
as active. Then, they use the information from the objects to classify the activity been performed.
The authors use a manually annotated dataset containing 1 million frames with activities of daily
living recorded from an “egocentric” point of view. They annotated 18 action classes and 42 identified
objects. To identify activities, they use models considering the presence of objects and when they are
active.

Ryoo and Matthies [2013] introduce an approach to recognize interaction-level human activities
from an egocentric point of view. First, they extract features from first-person videos, such as global
and local motion descriptors. Then, they cluster similar descriptors and create a multi-channel kernels
to compute video similarities. Using such representations, they train an SVM to classify the videos
according to the correct activity.

Iwashita et al. [2014] focus on recognizing activities not only using wearable cameras attached to
a person but also to animals, from DogCentric Activity dataset. They present several approaches to
extract features, such as dense optical flow, binary pattern, cuboid feature detector and STIP detec-
tor. Using these hand-crafted features combined with a SVM they achieve the highest classification
accuracy of 60.5%. Unlike Iwashita et al. , we do not use hand-crafted features to identify the activity,
but instead, we train a end-to-end CNN.

Ryoo et al. [2015] develop a new feature representation named pooled time series (PoT), which
intends to capture motion information in first-person videos by applying time series pooling of feature
descriptors, detecting short-term/long-term changes in each descriptor element. Activity recognition
is performed by training and testing a Support Vector Machine (SVM) classifier using these features,
achieving 74% of accuracy when combined with INRIA’s improved trajectory feature (ITF) [Wang
and Schmid 2013] in the DogCentric Activity dataset.

6. CONCLUSIONS AND FUTURE WORK

In this work, we use features from single frames generated by a CNN to create temporal regions. Using
such regions, we induce the temporal aspect of videos in order to recognize actions. Our model archi-
tecture is composed by a CNN (AlexNet or GoogLeNet), a method to separate and compute regions,
and a classifier (SVM). Using images from the DogCentric Activity dataset, we perform experiments
showing that our approach can improve the activity recognition task. We test our approach using two
networks AlexNet and GoogLeNet, increasing up to 10% of Precision when using regions to classify
activities.

For future work, we plan to test our approach in other datasets to verify its performance in different
domains, as well as use other CNN architectures to ensure that our temporal regions can improve other
models as well. Finally, we intend to compare our approach with other methods that consider the
temporal aspect of the video, such as Long-Short Term Memory (LSTM) [Hochreiter and Schmidhuber
1997] and 3D CNN [Ji et al. 2013].
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