
Towards Practical Argumentation
in Multi-Agent Systems

Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini
Pontifical Catholic University of Rio Grande do Sul (PUCRS) – School of Informatics (FACIN) – Porto Alegre, RS – Brazil

Email: alison.panisson@acad.pucrs.br, {felipe.meneguzzi, renata.vieira, rafael.bordini}@pucrs.br

Abstract—Argumentation is a key technique for reaching
agreements in multi-agent systems. However, there are few
practical approaches to develop multi-agent systems where agents
engage in argumentation-based dialogues. In this paper, we
give formal semantics to speech acts for argumentation-based
dialogues in the context of an agent-oriented programming
language. Our approach uses operational semantics and builds
upon existing work that provides computationally grounded
semantics for agent mental attitudes such as beliefs and goals.
The paper also shows how our formal semantics can be used to
prove properties of argumentation in multi-agent systems with
direct reference to mental attitudes. We do so with an example
of a proof sketch of termination of multi-agent dialogues under
certain assumptions.

I. INTRODUCTION

Communication is one of the key issues in building multi-
agent systems, where the agents need to communicate in order
to resolve differences of opinion or conflicts of interest [1],
to work coordinately [2], to resolve dilemmas, and to reach
agreements [3]. Many of these communication requirements
cannot be fulfilled by exchange of single messages. They
require the exchange of sequences of messages upon related
statements. Therefore, agents need the ability to engage in
multi-agent dialogues [4].

In this paper, we extend the performatives normally avail-
able in implementations of the AgentSpeak agent-oriented
programming language, such as Jason [5], as well as other
agent programming languages, to enable argumentation-based
dialogues between agents. We use a selection of performatives
widely used in the argumentation-based dialogue literature,
and we give operational semantics for them. In particular,
we also define the semantics of a multi-agent system, i.e., at
the social level, extending the work presented in [6], where
operational semantics was given to basic speech acts, for which
it sufficed to show how the mental attitudes of an individual
agent were altered when a message with a particular speech
act was received, whereas in this work both sending and
receiving dialogue statements alters the social state of the
argumentative system. Also, because we need to address the
social perspective of a dialogue based on argumentation, we
have adapted the operational semantics to include two separate
transition systems, at the individual and social levels, and how
one affects the other. Initial ideas towards this approach were
published in [7].

The contribution of the paper is twofold. First, we define
the formal semantics of speech acts for argumentation-based
dialogues building on a computationally grounded semantics
for agent mental attitudes [8]. Those mental attitudes are
directly involved in the semantics of the argumentation speech

acts. This means that if a performative refers to agent beliefs
or intentions, this can be concretely realised in a computational
system (providing a more principled way to implement real-
world agent systems). As a consequence, we also make the
semantics more detailed, covering the relation to individual and
social changes in the system states, although perhaps slightly
more complex to specify. Second, we demonstrate that our
semantics can be used to prove properties of dialogue protocols
or argumentation systems where the specific mental states of
the participating agents play a part. This is possible because the
proofs makes direct use of the inference rules that define the
transition relation of the operational semantics, which make
fully formal both the social aspects as well as the mental
attitudes of individual agents.

In this paper, we assume the reader is familiar with
the theory of speech acts [9], argumentation system [10],
argumentation-based dialogue [11], [12], [4], and most impor-
tantly with the AgentSpeak language (the language that we use
as example, and arguably the best know agent language in the
relevant literature) and its semantics. A textbook explanation
of AgentSpeak can be found in [5].

The remainder of this paper is organised as follows. In
the next section, we discuss briefly some related work. Then
we introduce the operational semantics of a selection of
performatives for argumentation-based dialogues, the main
aim of this paper. Next, we provide an example of a proof
using the semantics showing that, under certain assumptions,
an argumentation-based dialogue between agents complying
with the provided semantics for the performatives always
terminates. In the final section of this paper, we make some
final remarks and discuss possible directions for future work.

II. RELATED WORK

Much work on operational semantics for agent-oriented
programming languages can be found in the literature, among
which is [6], defining operational semantics for speech-act
based communication, which serves as the basis for our work.
In that paper, semantics is given for basic performatives
that allow the communication between agents through simple
message exchanges. We follow and extend that work with new
performatives to allow argumentation-based dialogues, which
also requires the exchange of sequences of interactions.

The performatives used in this paper can be found in
the literature of argumentation-based dialogues. Work such
as [11], [12], [4] use some combination of these performatives
to support argumentation through dialogues, as well as the
work in [13] that extends such performative set to support
argumentation-based negotiation.

2015 Brazilian Conference on Intelligent Systems

978-1-5090-0016-6/15 $31.00 © 2015 IEEE

DOI 10.1109/BRACIS.2015.30

98

These performatives can also be found in the work by
McBurney and Parsons [14], which proposes some performa-
tives, that they consider necessary for argumentation, to be
added to FIPA ACL. In that work, they also give axiomatic and
operational semantics to a protocol called Fatio. Our work has
a similar objective, but we give semantics for the performatives
in the context of an agent-oriented programming language and
not for a particular protocol.

More recently, the work reported in [15] proposed the use
of some performatives for argumentation in AgentSpeak and
attempted to give semantics to those performatives. Unlike
what we present here, the work in [15], as well as [13], is
focused on negotiation and uses an electronic trading scenario.
Also, the work [15] is similar to [6] in treating the communi-
cation of a single message exchange and not as a sequence of
interactions (i.e., a dialogue) as in our work.

III. FORMAL SEMANTICS

A. New Performatives for AgentSpeak

The performatives selected to enable argumentation-based
dialogues in AgentSpeak are presented below, along with the
intended (informal) meaning:
• assert: an agent that sends an assert message declares,

to all participants of the dialogue, that it is committed to
defending this claim. The receivers of the message become
aware of this commitment.

• accept: the sender declares, to all participants of the dia-
logue, that it accepts a previous claim of another agent. The
receivers of the message become aware of this acceptance.

• retract: the agent declares, to all participants of the
dialogue, that it is no longer committed to defending its
previous claim. The receivers of the message become aware
of this fact.

• question: the sender desires to know the reasons for a
previous claim from another agent. The receiver of the
message is committed to defending its claim, so presumably
it will provide the support set for its claim.

• challenge: the challenge performative is similar to
question, except that the sender of the message is com-
mitted to defending a claim contrary to the previous claim
of another agent.

Further, performatives opendialogue and
closedialogue are used for creating and concluding
dialogues, respectively; justify is used to respond to
a question or challenge message; and two other
performatives, acceptdialogue and refusedialogue, are
used by the participants to accept or refuse taking part in a
dialogue, respectively.

B. The Basis for the Operational Semantics

We define the semantics of speech acts for argumentation-
based dialogues in AgentSpeak using operational semantics,
a widely used method for giving semantics to programming
languages [16]. The operational semantics is given by a set
of inference rules that define a transition relation between
configurations 〈AG,D〉 of the multi-agent system1 where:

1We use only components that are needed to demonstrate the semantics, but
we emphasise the existence of other components such as roles, norms, etc.

• The AG component is a set of tuples 〈id ,Conf 〉 represent-
ing each agent in the society, where each agent is identified
by a unique identifier id and the agent current internal state
is represented by Conf . The agent state is in fact given by
a configuration of the operational semantics of AgentSpeak
as formalised in the existing literature (e.g., [6]); we assume
some familiarity with the semantics of AgentSpeak.
• The set of all dialogues in that society, D, is a set of tuples
〈did,Ags, Status〉 where:

– did is a dialogue identifier (which is unique for each
dialogue within that multi-agent system);

– Ags is a set of tuples 〈id , CS〉, where id identifies a
particular agent that is participating in the dialogue and
CS is its commitment store;

– Status represents the status of the dialogue and for the
time being we assume it is one of only two values: OPEN
if the dialogue is ongoing and CLOSED otherwise.

The agent configuration (Conf) is given by a tuple
〈ag , C,M, T, s〉, originally defined in [6], where:
• ag is a set of beliefs bs and a set of plans ps.
• An agent’s circumstance C is a tuple 〈I, E,A〉 where:

– I is a set of intentions {i, i′, . . .}. Each intention i is a
stack of partially instantiated plans.

– E is a set of events {(te, i), (te ′, i′), . . .}. Each event
is a pair (te, i), where te is a triggering event and i is
an intention — a stack of plans in case of an internal
event, or the empty intention T in case of an external
event. For example, when the belief revision function
(which is not part of the AgentSpeak interpreter but rather
of the agent’s overall architecture), updates the belief
base, the associated events — i.e., additions and deletions
of beliefs — are included in this set. These are called
external events; internal events are generated by additions
or deletions of goals from plans currently executing.

– A is a set of actions to be performed in the environment.

• M is a tuple 〈In,Out, SI〉 whose components characterise
the following aspects of communicating agents (note that
communication is typically asynchronous):

– In is the mail inbox: the multi-agent system runtime
infrastructure includes all messages addressed to this
agent in this set. Elements of this set have the form
〈mid , id , ilf , cnt〉, where mid is a message identifier, id
identifies the sender of the message, ilf is the illocution-
ary force of the message, and cnt its content: a (possibly
singleton) set of AgentSpeak predicates or plans, depend-
ing on the illocutionary force of the message.

– Out is where the agent posts messages it wishes to
send; it is assumed that some underlying communication
infrastructure handles the delivery of such messages.
Messages in this set have exactly the same format as
above, except that here id refers to the agent to which
the message is to be sent.

– SI is used to keep track of intentions that were suspended
due to the processing of communication messages; the
intuition is as follows: intentions associated with illocu-
tionary forces that require a reply from the interlocutor
are suspended, and they are only resumed when such
reply has been received.

• When giving semantics to an AgentSpeak agent’s reasoning
cycle, it is useful to have a structure which keeps track of
temporary information that may be subsequently required

99

within a reasoning cycle. T is a tuple 〈R,Ap, ι, ε, ρ〉 with
such temporary information; these components are as fol-
lows:

– R is the set of relevant plans (for the event being
handled).

– Ap is the set of applicable plans (the relevant plans
whose contexts are true).

– ι, ε, and ρ record a particular intention, event, and
applicable plan (respectively) being considered along the
execution of one reasoning cycle.

• The current step within an agent’s reasoning cycle is
symbolically annotated by s ∈ {ProcMsg, SelEv,RelPl,
ApplPl, SelAppl,AddIM, SelInt,ExecInt,ClrInt}. These la-
bels stand for, respectively: processing a message from
the agent’s mail inbox, selecting an event from the set of
events, retrieving all relevant plans, checking which of those
are applicable, selecting one particular applicable plan (the
intended means), adding the new intended means to the set
of intentions, selecting an intention, executing the selected
intention, and clearing an intention or intended means that
may have finished in the previous step.
• The semantics of AgentSpeak makes use of “selection
functions” which allow for user-defined components of the
agent architecture. We use here only the SM functions, as
originally defined in [6]; the select message function is used
to select one message from an agent’s mail inbox.

In the interests of readability, we adopt the following
notational conventions in our semantics rules:
• If C is an AgentSpeak agent circumstance, we write CE

to make reference to the E component of C, and similarly
for other components of the multi-agent system and of the
configuration of each agent.
• We write AGid to identify the agent represented by that
id in the set of agents AG. We use this whenever the
component corresponds to a set of tuples 〈id , . . .〉. Also,
if AG is a set of tuples 〈id ,Conf 〉, then we refer to a
configuration (Conf) of one agent (identified by id) in AG
by AGid

Conf .
• We write b[d(did), s(id)] to identify the origin of a belief
related to a dialogue, where did is a dialogue identifier, and
id an agent identifier (d refers to dialogue and s refers
to source). Whenever an agent makes a statement related
to a dialogue, the dialogue identifier did is added as an
annotation.
• We use two transitions to represent the state change of the
multi-agent system, where the transition −→AS (transition
of the configuration of an individual agent) is part of the
transition −→DS (the transition of the multi-agent system).
So each transition in the agent configuration also causes a
transition in the multi-agent system configuration exactly in
the component AGaid

Conf , where aid refers to the identifier
of the agent which went through the transition.

Also, we use aid to refer to the agent that is executing an
internal action of interest or receiving a message. Finally, we
make use of a function called CTJ (where CTJ stands for “care
to justify”) that returns TRUE if the agent wishes to justify its
previous assertion (this depends on the agent’s reasoning and
makes reference to agents’ autonomy).

Due to space restrictions, we left out of the semantics
presented in this paper two internal actions used by agents

to create a dialogue and to close a dialogue respectively and,
further, four semantic rules for receiving messages related
to creating and closing the dialogue. The internal action for
creating a dialogue adds a new dialogue in the multi-agent
system, sends messages to all agents with the performative
opendialogue, inviting them to the new dialogue, and waits
for all agents to reply. The internal action close dialogue
simply sends, to all agents in the dialogue to be closed, a
message warning them that the dialogue is being closed (using
the performative closedialogue). The four semantic rules
lefts out were for receiving the following messages:

• opendialogue: adds a belief about the dialogue to be
started with the source of the agent that proposed the
opening of the dialogue (i.e., the sender of the message);
The agents that receive the message should react to the event
generated, deciding whether to accept or not to participate
in the dialogue, and presumably responding with the appro-
priate message (acceptdialogue or refusedialogue).

• closedialogue: removes the belief about the ongoing
dialogue. The dialogue can be closed only by the same agent
(identified by id) which previously opened the dialogue.

• acceptdialogue: the sender of the message is removed
from the set of agents that are expected to respond. If all
agents respond, the intention can be resumed, otherwise the
intention remains suspended.

• refusedialogue: the sender of the message is removed
from the set of agents that are expected to respond, as well
as from the set of agents participating in the dialogue. If all
agents have replied, the intention can be resumed.

C. Semantic Rules for Sending the New Performatives

In this section, we give semantics for sending the new
performatives which allow argumentation-based dialogues,
showing how it affects the state of the agent and the state
of the dialogue.

(EXECACTSNDASSERT)
Tι = i[head← .send(did, assert, p);h]

p /∈ CS 〈aid, CS〉 ∈ Ddid
Ags

(a) 〈AG,D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C,M, T, ExecInt〉 −→AS 〈ag, C′,M ′, T,ProcMsg〉

where:
(a) D′did

Ags = (Ddid
Ags \ {〈aid, CS〉}) ∪ {〈aid, CS′〉}

with CS′ = CS ∪ {p}
AG′aid

Conf = the transition given by (b)

(b) M ′
Out = MOut ∪ {〈mid, id, assert, p[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

C′
I = (CI \ {Tι}) ∪ {i[head← h]}

Internal Action .send with assert: The action .send
with performative assert updates the CS of the agent that
performs the action and sends, to all agents in the dialogue, a
message stating that the sender is willing to defend this claim.

The agent can use assertion attitudes as defined in [12],
[4], but in any case the agent can only assert a formula it
did not previously assert; that is, an agent cannot assert again
formalæ that are already in its CS.

Another important point to be noticed is that an assertion
is always made to a particular dialogue (identified by did) and
not to a specific agent; this is because the agents will introduce
new claims to be defended to all agents participating in the
dialogue and not to an individual agent.

100

(EXECACTSNDACCEPT)

Tι = i[head← .send(tid, accept, p[d(did)]);h]

(a) 〈AG,D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C,M, T, ExecInt〉 −→AS 〈ag, C′,M ′, T,ProcMsg〉

where:
(a) D′did

Ags = (Ddid
Ags \ {〈aid, CS〉}) ∪ {〈aid, CS′〉}

with CS′ = CS ∪ {p}
AG′aid

Conf = the transition given by (b)

(b) M ′
Out = MOut ∪ {〈mid, id, accept, p[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

C′
I = (CI \ {Tι}) ∪ {i[head← h]}

Internal Action .send with accept: The action .send
with performative accept updates the CS of the agent that
performs the action and sends, to all agents in the dialogue,
a message stating that the agent accepts the claim made by
another agent identified by tid. Note that p (the formula that
was accepted) has the annotation [d(did)], this means that p
has been previously asserted in that dialogue (identified by
did). In other words, an agent can only accept a claim made
by another agent in that same dialogue.

(EXECACTSNDRETRACT)

Tι = i[head← .send(did, retract, p[d(did)]);h]

(a) 〈AG,D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C,M, T, ExecInt〉 −→AS 〈ag, C′,M ′, T,ProcMsg〉

where:
(a) D′did

Ags = (Ddid
Ags \ {〈aid, CS〉}) ∪ {〈aid, CS′〉}

with CS′ = CS \ {p}
AG′aid

Conf = the transition given by (b)

(b) M ′
Out = MOut ∪ {〈mid, id, retract, p[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

C′
I = (CI \ {Tι}) ∪ {i[head← h]}

Internal Action .send with retract: The agent performs
this internal action to retract a previous claim that the agent
itself asserted in that dialogue. The agent’s CS is updated with
the removal of the given formula. A message is sent to each
agent in the dialogue informing the decision of that agent to
retract its previous claim.

(EXECACTSNDQUESTION)

Tι = i[head← .send(id, question, p[d(did)]);h]

(a) 〈AG,D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C,M, T, ExecInt〉 −→AS 〈ag, C′,M ′, T,ProcMsg〉

where:
(a) AG′aid

Conf = the transition given by (b)

(b) M ′
Out = MOut ∪ {〈mid, id, question, p[d(did)]〉}

C′
I = (CI \ {Tι}) ∪ {i[head← h]}

Internal Action .send with question: The action .send
with performative question is used when an agent wants to
question another agent about an assertion it has previously
made. This message is sent only to the agent that previously
made the assertion.

(EXECACTSNDCHALLENGE)
Tι = i[head← .send(tid, challenge, p[d(did)]);h]

(a) 〈AG,D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C,M, T, ExecInt〉 −→AS 〈ag, C′,M ′, T,ProcMsg〉

where:
(a) D′did

Ags = (Ddid
Ags \ {〈aid, CS〉}) ∪ {〈aid, CS′〉}

with CS′ = CS ∪ {¬p}
AG′aid

Conf = the transition given by (b)

(b) M ′
Out = (MOut ∪ {〈mid, tid, challenge, p[d(did)]〉})

∪ {〈mid, id, assert,¬p[d(did)]〉}
for each Agsid ∈ (Ddid

Ags \ {Agsaid ∪ Agstid})
C′

I = (CI \ {Tι}) ∪ {i[head← h]}

Internal Action .send with challenge: The action .send
with the performative challenge is performed when an agent
wants to challenge another agent about an assertion it previ-
ously made. Differently from the question performative, when
an agent makes a challenge move it is willing to defend a
claim contrary to the claim of the other agent.

The message with a performative challenge is sent only
to the agent that made the previous claim. As the agent is
willing to defend its claim, messages are sent to all other agents
in the dialogue with the respective assert messages.

D. Semantic Rules for Receiving the New Performatives

In this section we give semantics for receiving the new per-
formatives that allow argumentation-based dialogues, showing
how they affect the state of the agent and the state of the
dialogue.

(ASSERT)
SM (MIn) = 〈mid, sid, assert, p[d(did)]〉

(a) 〈AG,D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C,M, T,ProcMsg〉 −→AS 〈ag′, C′,M ′, T, ExecInt〉
where:

(a) AG′aid
Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid, sid, assert, p[d(did)]〉}

ag′
bs = agbs + p[d(did), s(sid)]

C′
E = CE ∪ {〈+p[d(did), s(sid)],T〉}

Receiving an assert Message: The claim asserted in the
dialogue is added to the belief base of the receiver with an
annotation of the dialogue identifier d(did) and the identifier
of the agent that asserted the claim as the source of that
information s(sid). The agent that received the message can
react to this claim because of the event generated by the belief
addition, as usual in AgentSpeak. Whether an agent accepts or
not the claim made by another agent depends on its acceptance
attitude as described in [12], [4], which depends on if the agent
has or not an acceptable argument to or against the claim.

(ACCEPT)
SM (MIn) = 〈mid, sid, accept, p[d(did)]〉

(a) 〈AG,D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C,M, T,ProcMsg〉 −→AS 〈ag′, C′,M ′, T, ExecInt〉
where:

(a) AG′aid
Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid, sid, accept, p[d(did)]〉}

ag′
bs = agbs + p[d(did), s(sid)]

C′
E = CE ∪ {〈+p[d(did), s(sid)],T〉}

Receiving an accept Message: This message means an
agent (identified by sid) accepts a claim previously made, as
part of this dialogue, by another agent. The receiver of the
message become aware of this acceptance.

(RETRACT)
SM (MIn) = 〈mid, sid, retract, p[d(did)]〉

(a) 〈AG,D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C,M, T,ProcMsg〉 −→AS 〈ag′, C′,M ′, T, ExecInt〉

where:
(a) AG′aid

Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid, sid, retract, p[d(did)]〉}

ag′
bs = agbs − p[d(did), s(sid)]

C′
E = CE ∪ {〈−p[d(did), s(sid)],T〉}

Receiving a retract Message: This message means an
agent, identified by sid, is withdrawing its earlier assertion.
The formula is removed from belief base of the receiver of the
message, with the appropriate source and dialogue annotation.

101

(QUESTION)
SM (MIn) = 〈mid, sid, question, p[d(did)]〉

CTJ(p) = TRUE

(a) 〈AG,D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C,M, T,ProcMsg〉 −→AS 〈ag, C,M ′, T, ExecInt〉

where:
(a) D′did

Ags = (Ddid
Ags \ {〈aid, CS〉}) ∪ {〈aid, CS′〉}

with CS′ = CS ∪ {Sp}
AG′aid

Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid, sid, question, p[d(did)]〉}

M ′
Out = MOut ∪ {〈mid, id, justify, Sp[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

where Sp |= p and Sp ∈ agbs

Receiving a question Message: If the agent can or wants
to reply, in keeping with agent autonomy (this is represented
in the semantics through a CTJ function which is meant to be
agent specific), then the agent’s CS will be updated with the
support of the previous claim p, and the support will be also
sent to all other agents in the dialogue.

(JUSTIFY)
SM (MIn) = 〈mid, sid, justify, Sp[d(did)]〉

(a) 〈AG,D〉 −→DS 〈AG′, D, 〉
(b) 〈ag, C,M, T,ProcMsg〉 −→AS 〈ag′, C′,M ′, T, ExecInt〉

where:
(a) AG′aid

Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid, sid, justify, Sp[d(did)]〉}

and for each p ∈ Sp :
ag′

bs = agbs + p[d(did), s(sid)]
C′

E = CE ∪ {〈+p[d(did), s(sid)],T〉}

Receiving a justify Message: This is similar to the assert
performative, except for the fact that the content of the message
is a set of formulæ that justify the previous claim of the sender
of the message (identified by sid).

(CHALLENGE)
SM (MIn) = 〈mid, sid, challenge, p[d(did)]〉

CTJ(p) = TRUE

(a) 〈AG,D〉 −→DS 〈AG′, D′〉
(b) 〈ag, C,M, T,ProcMsg〉 −→AS 〈ag′, C,M ′, T, ExecInt〉

where:
(a) D′did

Ags = (Ddid
Ags \ {〈aid, CS〉}) ∪ {〈aid, CS′〉}

with CS′ = CS ∪ {Sp};
AG′aid

Conf = the transition given by (b)

(b) M ′
In = MIn \ {〈mid, sid, challenge, p[d(did)]〉}

M ′
Out = MOut ∪ {〈mid, id, justify, Sp[d(did)]〉}

for each Agsid ∈ (Ddid
Ags \ {Agsaid})

where Sp |= p and Sp ∈ agbs

ag′
bs = agbs + ¬p[d(did), s(sid)]

Receiving a challenge Message: If the agent can or
wants to reply (we assume the CTJ function determines
whether that is the case or not), the agent’s CS is updated
with the support of the previous claim p and the support is
also sent to all other agents in the dialogue. In addition to the
question performative, this rule adds that the agent identified
by sid (i.e., the sender of the message) is willing to defend the
claim contrary to the previous claim that is being challenged.

IV. A SAMPLE PROOF

We now show that, using our semantics and under cer-
tain assumptions described below, dialogues among agents
endowed with defeasible reasoning (as in [17] and [18]) fol-
lowing a basic protocol (also defined below) always terminate,
either in agreement or disagreement. The main purpose of this
proof is to exemplify the use of the operational semantics in
proving properties of multi-agent systems that make use of the

argumentation-based dialogues, which we have developed, in
Jason, or indeed any other implementation of the semantics
introduced in this paper.

Assumptions: (a) the individual knowledge bases of the
agents do not change due to external sources in the course
of the dialogue (perception from environment, etc.); (b) the
agents only assert formulæ that they believe to be true and that
can be derived from their knowledge bases (veracity); and (c)
agents always retract related assertions when newly accepted
assertions change a conclusion they previously asserted (i.e.,
the former conclusion is no longer true for that agent).

Definition 1 (Basic Dialogue Protocol): A dialogue starts
with an agent asserting a particular formula. Agents always
position themselves with respect to assertions made by other
agents, either accepting it or asserting its negation (depend-
ing on whether they consistently derive the formula or its
negation from their knowledge bases together with the CS of
all participants of the dialogue), always provide justification
when questioned (i.e., asserting the support for their previous
assertions), always accept formulæ asserted by other agents in
the dialogue that they could not previously derive (i.e., agents
trust each other and learn from them) provided it does not
make their knowledge bases inconsistent, and always provide
the support of their previous assertions if a justification given
by another agent cannot be challenged (the agent cannot derive
the negation of any formulæ in the justification) and the
newly accepted formulæ from the received justification still
do not change its previous conclusion (i.e., allow the agent to
derive the complement of its previous assertion). The dialogue
terminates if all participating agents choose not to send any
further messages as part of that dialogue.

Proposition 1 (Termination): Given the assumptions
above, consider a set of n agents participating in a dialogue,
each capable of defeasible reasoning, and each participant
following the basic dialogue protocol defined above. Let
Δ = {Π1 ∪ . . . ∪ Πn} with each Πi, 1 ≤ i ≤ n, be the
knowledge base of agent i participating in the given dialogue.
If Δ |=d,s ψ (ψ is strictly or defeasibly derived from Δ),
then eventually each Πn will also individually derive ψ —
Πn |=d,s ψ — and the dialogue terminates in agreement on
the initial assertion ψ. If Δ |=d,s⊥ (i.e., a contradiction) then
the dialogue also eventually terminates, but it will terminate
in disagreement.

Proof Sketch: There exists three possible derivations
given Δ (the union of all individual knowledge bases) and
an initial assertion ψ: Δ |=d,s⊥, Δ |=d,s ψ, and Δ |=d,s ¬ψ.

If an agent asserts (EXECACTSNDASSERT) ψ and Δ de-
rives its complement, at least one other participating agent will
not accept (the agent(s) that contributed to Δ the formulæ that
allowed the derivation or the complement of ψ) and therefore
assert the complement of ψ, by reacting to a belief addition
through rule ASSERT, and sending an assert message with
¬ψ through rule EXECACTSNDASSERT. When questioned (at
least the dialogue initiator will react through ASSERT and
execute EXECACTSNDQUESTION) the agent will provide the
justification (QUESTION) as required by the assumed protocol.
The agent receiving this new information (JUSTIFY) either ac-
cepts or makes an assertion against the justification or against
some formula in the justification (in this case the agent must be

102

able to derive this assertion from its knowledge base, following
the defined protocol). If the agent does not accept, the dialogue
continues in the same way as in the previous steps, where new
information will be exchanged (the missing information for the
agent to accept the derivation from Δ). If the agent accepts this
new information (EXECACTSNDACCEPT), thereby retracting
its previous assertion — given that the union of all CSs
does not derive a contradiction — that agent can now also
derive ¬ψ. As the beliefs do not change due to external
sources (assumed) and the belief bases are finite, the dialogue
eventually terminates in agreement.

If an agent asserts (EXECACTSNDASSERT) ψ when
Δ |=d,s ψ, either all agents in the dialogue accept the assertion
(reacting the ASSERT with EXECACTSNDACCEPT) and the
dialogue ends, or at least one agent sends an assert message
against the previous assertion (reacting to the ASSERT with
EXECACTSNDASSERT). In the latter case, the agent will
eventually provide the justification for its previous assertion
and the dialogue procedes as in the case above. The dialogue
ends with all agents agreeing on the initial assertion.

If Δ |=d,s⊥, at least one agent will derive a contradiction,
even with the new information received through rule JUSTIFY,
but as the belief bases are finite (and assumed to be unchanging
during the dialogue), the dialogue will eventually terminate in
disagreement.

V. CONCLUSION

In this paper, we gave formal semantics for a set of
performatives that enable argumentation-based dialogues in
agent-oriented programming language. We built our semantics
on top of the operational semantics of AgentSpeak and we
implemented it extending the Jason platform, but the semantics
can be used for other agent languages, which is facilitated
by the fact that most agent languages are formalised using
operational semantics as well. The semantics formalises the
combination of state changes at the individual and social levels
and is given for both receiving and sending messages.

As future work, we intend to develop applications using
the Jason implementation of the semantics presented in this
paper and show that the framework for argumentation-based
dialogues among rational agents proposed here is effective.
As a matter of fact, the framework has already been suc-
cessfully used in an healthcare prototype application briefly
reported in [19]. Other directions for our work are: (i) to
use planning techniques in multi-agent dialogues, where the
semantics presented here could serve as the basis to support
the creation of planning domain models. We took initial steps
towards this direction in [20], where we created a centralised
model for planning argumentation-based agent interactions;
and (ii) we intend to define more complex protocols using
the formalisation presented here, extending our work in [21].

ACKNOWLEDGMENT

Part of the results presented in this paper were obtained
through research on a project titled “Semantic and Multi-Agent
Technologies for Group Interaction”, sponsored by Samsung
Eletrônica da Amazônia Ltda. under the terms of Brazilian
federal law No. 8.248/91.

REFERENCES

[1] X. Fan, F. Toni, and A. Hussain, “Two-agent conflict resolution with
assumption-based argumentation.” in COMMA, 2010, pp. 231–242.

[2] P. Pardo, S. Pajares, E. Onaindia, L. Godo, and P. Dellunde, “Multiagent
argumentation for cooperative planning in delp-pop,” in 10th Int. Conf.
on Autonomous Agents and Multiagent Systems, 2011, pp. 971–978.

[3] N. R. Jennings, S. Parsons, P. Noriega, and C. Sierra, “On
argumentation-based negotiation,” in Int. Workshop on Multi-Agent
Systems, 1998.

[4] S. Parsons, M. Wooldridge, and L. Amgoud, “An analysis of formal
inter-agent dialogues,” in first int. conf. on Autonomous agents and
multiagent systems: part 1, ser. AAMAS ’02. New York, NY, USA:
ACM, 2002, pp. 394–401.

[5] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[6] R. Vieira, Á. Moreira, M. Wooldridge, and R. H. Bordini, “On the
formal semantics of speech-act based communication in an agent-
oriented programming language,” J. Artif. Int. Res., vol. 29, no. 1, pp.
221–267, Jun. 2007.

[7] A. R. Panisson, F. Meneguzzi, M. Fagundes, R. Vieira, and R. H.
Bordini, “Formal semantics of speech acts for argumentative dialogues,”
in Thirteenth Int. Conf. on Autonomous Agents and Multiagent Systems,
2014, pp. 1437–1438.

[8] R. H. Bordini and Á. F. Moreira, “Proving BDI properties of agent-
oriented programming languages: The asymmetry thesis principles in
AgentSpeak(L),” Annals of Mathematics and Artificial Intelligence,
vol. 42, no. 1-3, pp. 197–226, 2004.

[9] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press, 1969.

[10] D. Walton, C. Reed, and F. Macagno, Argumentation Schemes. Cam-
bridge University Press, 2008.

[11] L. Amgoud, N. Maudet, and S. Parsons, “Modeling dialogues using
argumentation.” in ICMAS. IEEE Computer Society, 2000, pp. 31–38.

[12] S. Parsons and P. McBurney, “Argumentation-based dialogues for agent
coordination. group decision and negotiation,” Group Decision and
Negotiation, 2004.

[13] L. Amgoud, S. Parsons, and N. Maudet, “Arguments, dialogue, and
negotiation,” Journal of Artificial Intelligence Research, vol. 23, p.
2005, 2000.

[14] P. McBurney and S. Parsons, “Locutions for argumentation in agent
interaction protocols.” in AC, ser. Lecture Notes in Computer Science,
R. M. van Eijk, M.-P. Huget, and F. Dignum, Eds., vol. 3396. Springer,
2004, pp. 209–225.

[15] P. Bedi and P. Vashisth, “Extending speech-act based communication to
enable argumentation in cognitive agents.” in Advances in computing,
communication and control, ICAC3 2011, Mumbai, India. Berlin:
Springer, 2011, pp. 25–40.

[16] G. D. Plotkin, “A structural approach to operational semantics,” 1981.

[17] T. Berariu, “An argumentation framework for bdi agents,” in Intelligent
Distributed Computing VII, ser. Studies in Computational Intelligence,
F. Zavoral, J. J. Jung, and C. Badica, Eds. Springer International
Publishing, 2014, vol. 511, pp. 343–354.

[18] A. R. Panisson, F. Meneguzzi, R. Vieira, and R. H. Bordini, “An Ap-
proach for Argumentation-based Reasoning Using Defeasible Logic in
Multi-Agent Programming Languages,” in 11th International Workshop
on Argumentation in Multiagent Systems, 2014.

[19] A. R. Panisson, A. Freitas, D. Schmidt, L. Hilgert, F. Meneguzzi,
R. Vieira, and R. H. Bordini, “Arguing About Task Reallocation Using
Ontological Information in Multi-Agent Systems,” in 12th International
Workshop on Argumentation in Multiagent Systems, 2015.

[20] A. R. Panisson, G. Farias, A. Freitas, F. Meneguzzi, R. Vieira, and
R. H. Bordini, “Planning Interactions for Agents in Argumentation-
Based Negotiation,” in 11th International Workshop on Argumentation
in Multiagent Systems, 2014.

[21] A. R. Panisson, F. Meneguzzi, R. Vieira, and R. H. Bordini, “Towards
practical argumentation-based dialogues in multi-agent systems,” in
IEEE/WIC/ACM International Conference on Intelligent Agent Tech-
nology, 2015.

103

