
Hardware and Software Infrastructure to Implement Many-core

Systems in Modern FPGAs

Felipe T. Bortolon
PUCRS - Porto Alegre, Brazil

felipe.bortolon@acad.pucrs.br

Fernando G. Moraes
PUCRS - Porto Alegre, Brazil

fernando.moraes@pucrs.br

ABSTRACT

Many-core systems are increasingly popular in embedded systems

due to their high-performance and flexibility to execute different

workloads. These many-core systems provide a rich processing fab-

ric but lack the flexibility to accelerate critical operations with ded-

icated hardware cores. Modern Field Programmable Gate-Arrays

(FPGAs) evolved to more than reconfigurable devices, providing

embedded hard-core processors with several IP cores. While FP-

GAs provide a rich reconfigurable hardware fabric, only one or

two embedded hard-core processors are available to execute com-

plex software applications. Therefore, modern FPGAs offer the

possibility to merge the benefits of many-core systems with the

reconfigurability of FPGAs. The goal of this paper is to present an

infrastructure to implement many-core systems in modern FPGAs.

An embedded hard-core processor is used to manage the many-

core area, and to communicate with a host computer. A functional

proof-of-concept system is presented, paving the way to connect

dedicated hardware IPs into the NoC.

CCS CONCEPTS

•Hardware→Programmable logic elements;

KEYWORDS

FPGA, MPSoC, Reconfigurable Systems, System Management

ACM Reference format:

Felipe T. Bortolon and Fernando G. Moraes. 2017. Hardware and Software

Infrastructure to Implement Many-core Systems in Modern FPGAs. In

Proceedings of SBCCI ’17, Fortaleza - Ceará , Brazil, August 28-September 01,

2017, 5 pages.

DOI: 10.1145/3109984.3109997

1 INTRODUCTION

The unending demand for higher performance allied to low energy

consumption points to the adoption of multi/many-core systems,

as the most promising solution to cope with the application re-

quirements. Underlying embedded systems can execute different

applications in parallel in order to improve system performance and

energy-efficiency. Typically, applications designed to run in such

systems are partitioned into different tasks to execute in different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBCCI ’17, Fortaleza - Ceará , Brazil

© 2017 ACM. 978-1-4503-5106-5/17/08. . . $15.00
DOI: 10.1145/3109984.3109997

cores, enabling its parallel execution. While replicating processor el-

ements improve the system performance, designing and managing

such systems still a challenge.

Another worthwhile alternative to meet application require-

ments, while ensuring performance and energy-efficiency, is the

use of FPGAs. In this case, application tasks may be implemented ei-

ther in software or hardware, depending on its performance/power

requirements. Due to the increasing performance requirements of

emerging embedded applications, FPGAs are becoming more than

reconfigurable devices. Modern FPGAs, besides the programmable

logic (PL), provide hard-core processors with several subsystems,

e.g. floating-point unit, cache memories, on-chip memory (OCM),

and dedicated IP blocks. Different markets adopt FPGAs in their

final application products, like medical, avionics, automotive, con-

sumer electronics, data centers, security, and communication. While

FPGAs provide a cost-effective programmability and a rich recon-

figurable hardware fabric, only one or two embedded hard-core

processors are available to execute complex software applications.

Resulting scenario reduces the relevance of such devices to exe-

cute applications with scalable performance and energy-efficiency

requirements.

More recently, in the attempt of combining the performance

scalability of many-core systems with the design flexibility of FP-

GAs, authors have been exploring the characteristics of modern

FPGAs to implement multi/many-core systems. In this regard, the

benefits of both approaches could be tuned in order to meet appli-

cation requirements. For instance, in [7] a homogenous soft-core

(i.e. MB-lite) based multiprocessing system has been designed in

a Spartan-3E device. A similar architecture is presented in [12].

In this work, the author creates a homogeneous multi-core sys-

tem using a binary tree NoC and four OpenRisc1200 processors

in a Virtex4 FPGA. The application executed in the system, how-

ever, is hardcoded in the memory, and thus, a new synthesis is

required to change the test software. Moreover, promoted solution

uses an application processor family that requires a non-negligible

amount of area and power. Different from previous approaches,

a heterogeneous multi-core system was implemented in Virtex-II

Pro [8]. In this work, authors propose an FPGA-based middleware

structure to manage communication and synchronization between

heterogeneous processors.

An important issue in many-core systems is its runtime man-

agement and monitoring capabilities [10]. Different from above

approaches, this paper addresses this issue by using a hard-core

processor to manage a many-core system, implemented in the pro-

grammable logic (PL), in such a way to control the applications

executing in the system at run-time.

The main contribution of this paper is twofold. The first one is

the deployment of an FPGA-based many-core platform, enabling

79

SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil Felipe T. Bortolon and Fernando G. Moraes

to explore the parallelism offered by several processing units to

execute complex applications. The second one is the possibility

to explore complex management techniques, like dynamic task

mapping and QoS control, since the hard-core processor offers a

larger computational power compared to the cores composing the

many-core system.

This paper is organized as follows. Section 2 presents the Zynq-

7000 All Programmable SoC. Section 3 presents the hardware and

software inftrastructure. Section 4 details the MPSoC architecture.

Section 5 details the main contribution, the implementation of the

MPSoC in the Zynq-7000 platform. Section 6 concludes this paper.

2 THE ALL PROGRAMMABLE SOC

The Zynq-7000 All Programmable SoC [5][6] is a family of devices

that combines the software programmability of processors with

the hardware reconfigurability of an FPGA. Those devices contain

two main regions, the Processing System (PS), which contains

one or two ARM processors, and a 7-Series PL fabricated with

28-nm technology. The PS further contains instruction and data

caches, OCM, DMA controller, input-output peripherals, among

other subsystems. Figure 1 details this architecture.

Figure 1: Zynq-7000 device family configuration [7].

While the PL section is appropriate for implementing parallel

logic, the PS is suitable for implementing complex algorithms. To

benefit from those characteristics, the Advanced Extensible Inter-

face (AXI) bus, which is part of ARM AMBA [3] family creates the

necessary connection between the PL and the PS. Therefore, the

overall functionality of an embedded system can be partitioned into

hardware and software parts [9].

3 HARDWARE AND SOFTWARE
INFRASTRUCTURE

This Section presents the main contribution of this work: the infras-

tructure to implement many-core systems in FPGA. The promoted

infrastructure includes a 3-layer software stack and additional hard-

waremodules, which allow implementing andmanagingmany-core

systems in FPGAs. The software stack comprises: (i) the software

interface - API to communicate with the host computer; (ii) theman-

agement software, responsible for the core functions to manage the

system; and (iii) the hardware interface - API to communicate with

the programmable logic, which also comprises additional hardware

to establish the link between the PS and the PL.

Figure 2 depicts the overall architecture targeting the Zynq de-

vice. A host computer communicates with the ARM processor,

which may either require to communicate with the PL (user logic),

or to execute some internal processing (on the ARM processor). The

PL may also trigger requests to the processor (e.g. management pur-

poses) or transmit some information to the host computer. There-

fore, the software layers are used to provide the necessary commu-

nication mechanisms between these three hardware components:

the host computer, the ARM processor, and the programmable logic.

Figure 2: Zynq-7020 emulation setup.

3.1 Software Interface (SWI)

The Software Interface (SWI) provides means to configure the sys-

tem, extract debug information, upload applications and retrieve

results to/from the host computer. The SWI uses three methods

to handle the communication between the ARM processor and

the host: (i) command interface, (ii) file transfer, and (iii) debug

interface.

The command interface method is used to handle the commu-

nication between the host and the system through Telnet (using

an Ethernet connection). Upon reception of a message from the

host, the SWI decodes the message. As the semantics of the mes-

sages are tightly related to the user logic prototyped in the PL, a

generic method is adopted, with a pair command name and com-

mand arguments. Commands may send/receive data to/from the

PL.

The SWI provides functions to the ARM processor to access

an external memory and to the host to download/upload applica-

tions or data to the PL. The Trivial File Transfer Protocol (TFTP) is

adopted due to its low memory footprint implementation, which is

80

Hardware and Software for Many-core Systems in FPGAs SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil

important for embedded systems due to memory constraints. As

mentioned in Section 1, using local storage in the system allows

fast data transfer between PS and PL.

The debug interface uses the UART to send debug messages data

to the host. The debug data may be issued from the PS or PL parts

of the system.

3.2 Hardware Interface (SWI)

The Hardware Interface (HWI) provides the communication link

between the management software and the programmable logic. To

optimize the PS-PL communication performance, the HWI access a

DMA core [4], implemented in the PL, through an API.

The DMA core is configured to operate using the AXI-Stream

protocol because it is a simple and flexible interface, designed to

transport arbitrary unidirectional data streams. This module is

configured with four communication channels, two slaves (for data

reception) and two masters (for data transmission). Figure 3 shows

the protocol operation from the slave channel’s perspective. The

TREADY signal indicates when the slave is ready to receive new

data. If this condition is true, the sender asserts TVALID to indicate

that there is data available in TDATA bus. The TSTRB bits are set

alongside TVALID to indicate whether TDATA bytes are regular

data or transfer control information. This process is repeated until

the end-of-transfer, which is signaled by TLAST. Figure 3 shows a

data transfer with four words.

Figure 3: AXI-Stream protocol waveform.

The API provides functions to access the DMA core following

the same principle of the SWI interface: generality. Nevertheless,

the user logic varies according to the user design and may require

additional hardware to convert its signals to the DMA standard.

Figure 2 shows a module name NIA (Network Interface Adapter),

which adapts the AXI-Stream to a network-on-chip (NoC) protocol.

Different adapters must be designed, according to the user logic

communication protocol.

3.3 Management Software

Contrarily to the SWI and the HWI, the management software

(MGNT) is developed according to the design implemented in the

PL. The MGNT uses both the SWI and the HWI APIs to implement

the system management. Moreover, this software layer is explored

to develop management algorithms, as detailed in Section 5.

4 MANY-CORE ARCHITECTURE MODEL

This section overviews the public-available HeMPS [2] many-core

system, adopted as a case study in this work. HeMPS is a homoge-

nous NoC-based MPSoC, which includes processing elements (PEs),

a NoC, and an application repository. Figure 4 presents an instance

of the HeMPS MPSoC with 16 PEs.

Figure 4: HeMPS instance with 16 processing elements.

PEs may assume two distinct roles (the hardware is the same, the

software differentiates the PEs): manager or slave. A manager PE

(MP) controls the system, receiving applications from the external

memory (application repository), executes task mapping/migration

[1], receives debug messages, among other functions. Slaves PEs

(SPs) execute user tasks. Each SP contains a Plasma processor [11],

and executes a small operating system (μkernel), enabling multi-
tasking and inter-task communication through message passing.

The NoC router communicates with the PEs using a synchronous

credit-based protocol. This protocol has a signal named credit,

indicating that the router may receive new data. If this signal is

asserted, the upstream router asserts the tx signal, and one 32-bit

work (flit) is sent per clock cycle.

4.1 Application Model

An m-task application A = {t1, t2, ..., tm } is modeled by a directed
acyclic task graph G(T ,E), with each vertex ti ∈ T representing a

task and the directed edge (ei , ej), denoted as ei j ∈ E, representing
the communication between tasks ti and tj . Tasks communicate
using a Send and Receive MPI-like primitives.

Tasks are classified as initial or non-initial. Initial tasks are those

that do not have dependencies from other tasks to start executing

and can generate data to other tasks. Non-initial tasks start their

execution when another task sends data to it. The manager proces-

sor first allocates the initial tasks into the available SPs. Then, as

the allocated tasks start to communicate with unallocated tasks, i.e.

non-initial tasks, the slave SP request to the MP to map them.

5 CASE STUDY

This Section presents a proof-of-concept implementation using the

infrastructure detailed in the previous Section. This implementation

integrates the infrastructure presented in Section 3 with the MPSoC

presented in Section 4. The goal is to use the ARM processor as

the manager PE (MP), providing a generic and flexible environment

to communicate with a host processor, and to execute the MPSoC

management functions.

Figure 5 details the proposed system architecture. The PL re-

ceives the MPSoC, replacing the MP by the DMA and NIA cores.

The ARM processor, in the PS, executes the SWI, the HWI and the

management functions originally executed in the MP.

81

SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil Felipe T. Bortolon and Fernando G. Moraes

Figure 5: Architecture of the prototyped system.

5.1 Hardware

Figure 6 presents the floorplanning of the system illustrated in

Figure 5. Note the small area of the PEs (Plasma IPs) compared to

other modules. The small area footprint of the selected processor

enables to implement larger systems.

Figure 6: Programmable logic floorplanning - device Zynq

Z-7020.

The internal memory of each SP contains 64 KB, requiring 16 36-

Kb BRAMs (memory blocks available in the FPGA). The bitstream

embeds the μkernel of each SP (by initializing the BRAMs). The

code of the tasks to execute is transferred from the external memory

(SD card), through the NoC, to the selected SP.

The NIA module converts DMA AXI-Stream to the synchro-

nous credit-based protocol. Two independent finite state machines

achieve this conversion (transmission and reception).

Additionally, the μkernel was extended with a debug service.

When a given task executes a print command, it is generated a

debug packet addressed to the NIA. The debug packet is received

in the HWI and transmitted to the host (by the UART) by the SWI.

5.2 Software

The Software Interface (SWI) initially receives applications from the

host computer, storing them in an external memory (SD card) using

TFTP. Once applications are received, the host sends commands

to the management software through the SWI, using telnet. The

management software treats four command types:

• hemps start: initialization packets and the address of the

NIA to each SP.

• hemps reset: resets the MPSoC.

• hemps load: has an application file as a parameter. The

PS reads the application description (graph G(T, E)), en-

abling the PS to execute the application mapping when the

application is requested to execute. Several applications’

descriptions may be loaded simultaneously.

• hemps run: start to map the initial task into the available

SPs. All applications loaded with hemps load are sequen-

tially allocated the SPs.

Those commands trigger the HWI API to execute the required

operations. After mapping the initial tasks into SPs, the PS waits

for control flow requests, e.g. request to map non-initial tasks, or a

message indicating that a slave finished the execution of a given

task.

Besides these functions, the software also sends debugging mes-

sages (from the PS or PL) to the host computer using the UART.

Those messages are related to the user applications and are explored

for both software debugging, i.e. Plasma SP software, or to verify

the correctness of the application execution.

5.3 Synthesis Results

The hardware design achieved 51 MHz clock frequency using opti-

mized logical and physical synthesis settings, combined with floor-

planning (Figure 6). The Processing System AXI interfaces may

operate at 250 MHz. Hence, it is possible to enhance further the

frequency in the reconfigurable area.

The Zynq-7020 programmable logic utilization report, for the

complete design, is shown in Table 1. Special blocks, e.g. DSP and

XADC, are not used and thus do not integrate this table.

Table 1: Complete design area utilization report.

Resource Utilization Available Usage (%)

Slice LUTs 18,045 53,200 33.92

Slice Registers 10,467 106,400 9.84

N# BRAMs (36Kb) 50 140 35.71

The number of available BRAMs limits the size of the MPSoC.

Moreover, the BRAMs column-wise organization forces the Plasma

SP to extend its floorplan area to enclose the necessary memory

elements and hence increase the design critical path. Using LUTs

to implement the memory was discarded because it would require

too many resources for 64KB. If the Zynq Z-7100 device is adopted,

it may receive up to 47 PEs (755 36-Kb BRAMs / 16).

82

Hardware and Software for Many-core Systems in FPGAs SBCCI ’17, August 28-September 01, 2017, Fortaleza - Ceará , Brazil

5.4 Execution of a Real Application

This section presents the execution of an MPEG decoder, with five

tasks, as shown in Figure 7. The first task sends 8x8 frames to

the ILVC task, and the application processes frames in a pipeline

fashion.

Figure 7: Task graph of the MPEG decoder application.

On startup, the Management Software (MGNT) initializes the

interface with both the host computer and the programmable logic.

In Figure 8 is illustrated the interaction between the host computer

and the MGNT from the device’s perspective.

Figure 8: MPEG execution flow from Zynq system perspec-

tive (messages received from UART).

First, the user transfers an application file to the device through

TFTP (line 1). Next, the user issues the previously described com-

mands in the following order (lines 2-4): hemps start, hemps load

and hemps run. After the run request, the MGNT maps all ini-

tial tasks to the processing elements and waits for requests from

those (lines 5-6). The PEs requests will trigger the mapping of non-

initial tasks. Moreover, the MGNT further controls where tasks are

mapped to inform the location of tasks that need to communicate

(line 9-10). This process is repeated as long as there is still tasks to

execute and PEs to receive tasks (lines 11-23). Lines 24 to 29 are

related to the reception of end of task messages.

For 512 frames, the simulation time (Intel Xeon 8 Core, 24 GB

of RAM) the simulation of the application required 12,000 seconds,

while in the board 2 seconds. A speedup of 3-orders of magnitude

is an expected result but highlights the relevance to prototype

complex systems to enable the evaluation the complex systems.

6 CONCLUSIONS

This paper presented a software and hardware infrastructure to

implement many-core systems in FPGAs, with a hard-core proces-

sor (ARM) to manage the system and to communicate with a host

computer. The proof-of-concept is simple in terms of numbers of

cores but showed the feasibility to use the hard-core processor to

manage the system. A hard-core processor brings flexibility to the

design, easing the communication with the host processor.

This work may evolve in several directions. The first one is to

deploy a large system in devices such as the Zynq Z-7100, enabling

the evaluation of complex applications in systems with more than

40 processors. The second one is to evaluate different management

techniques, as task mapping, QoS control and DVFS for power

savings. A third research direction is to implement heterogeneous

systems, with dedicated hardware accelerators connected to the

NoC.

7 ACKNOWLEDGEMENT

The Author Fernando Gehm Moraes is supported by CNPq funding

agency.

REFERENCES
[1] G. Almeida, S. Varyani, R. Busseuil, G. Sassatelli, P. Benoit, L. Torres, E. Carara,

and F. Moraes. 2010. Evaluating the Impact of Task Migration in Multi-processor
Systems-on-chip. In SBCCI. 73–78.

[2] E. Carara, R. Oliveira, N. Calazans, and F. Moraes. 2008. HeMPS - A Framework
for NoC-Based MPSoC Generation. In ISCAS. pp. 1345–1348.

[3] Xilinx Inc. 2012. AXI Reference Guide. In UG761.
[4] Xilinx Inc. 2015. AXI DMA v7.1 – LogiCORE IP Product Guide. Xilinx Inc., pp

77–81.
[5] Xilinx Inc. 2015. Zynq-7000 All Programmable SoC. 1863p.
[6] Xilinx Inc. 2015. Zynq-7000 All Programmable SoC – Technical ReferenceManual.

116p.
[7] W. M. Jose. 2009. Multiprocessor system in an FPGA. In International Conference

on Reconfigurable Computing and FPGA’s. 273–278.
[8] F.Rousseau; F. Petrot Kouadri M, A.M. 2008. Multi-CPU/FPGA Platform Based

Heterogeneous Multiprocessor Prototyping: New Challenges for Embedded
Software Designers. In RSP.

[9] M. Stewart. L. Crockett, R. Elliot. 2014. The Zynq Book (1 ed.). Strathclyde
Academic Media, 484p.

[10] P. Liljeberg J. Plosila. M. Fattah, M. Daneshtalab. 2011. Exploration of MPSoC
Monitoring and Management Systems. In ReCoSoC.

[11] S. Rhoads. 2015. Plasma CPU. http://plasmacpu.no-ip.org/. (2015). [Online;
accessed Aug-2015].

[12] N. D. Torring. 2007. Multiprocessor in a FPGA. In Informatics and Mathematical
Modelling.

83

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

