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Abstract
This study aimed to model the habitat suitability for an invasive clam Corbicula fluminea in a coastal shallow lagoon 
in the southern Neotropical region (–30.22, –50.55). The lagoon (19km2, maximum deep 2.5m) was sampled with an 
Ekman dredge in an orthogonal matrix comprising 84 points. At each sampling point, were obtained environmental 
descriptors as depth, organic matter content (OMC), average granulometry (Avgran), and the percentage of sand 
(Pcsand). Prediction performance of Generalized Linear Models (GLM), Generalized Additive Models (GAM) and 
Boosted Regression Tree (BRT) were compared. Also, niche overlapping with other native clam species (Castalia 
martensi, Neocorbicula limosa and Anodontites trapesialis) was examined. A BRT model with 1400 trees was selected 
as the best model, with cross-validated correlation of 0.82. The relative contributions of predictors were Pcsand-42.6%, 
OMC-35.8%, Avgran-10.9% and Depth-10.8%. Were identified that C. fluminea occur mainly in sandy sediments with 
few organic matter, in shallow areas nor by the shore. The PCA showed a wide niche overlap with the native clam 
species C. martensi, N. limosa and A. trapesialis.

Keywords: habitat suitability, spatial distribution models, model selection, invasive species.

Modelagem da adequabilidade de habitat do bivalve invasor  
Corbicula fluminea em uma lagoa rasa Neotropical

Resumo
O objetivo de deste estudo foi modelar a adequabilidade de habitat do bivalve invasor Corbicula fluminea em uma 
lagoa costeira na região Neotropical (–30.22, –50.55). A lagoa (19km2, 2,5 m de profundidade máxima) foi amostrada 
com uma draga Ekman em uma matriz ortogonal compreendendo 84 pontos. Em cada ponto de amostragem foram 
obtidos descritores ambientais como a profundidade, teor de matéria orgânica (OMC), granulometria média (Avgran), 
e a percentagem de areia (Pcsand). O poder preditivo dos métodos Modelos Lineares Generalizados (GLM), Modelos 
Aditivos Generalizados (GAM) e Boosted Regression Trees (BRT) foram comparados. Além disso, a sobreposição 
de nicho com espécies de moluscos nativos (Castalia martensi, Neocorbicula limosa e Anodontites trapesialis) foi 
examinada. Um modelo BRT com 1.400 árvores foi selecionado como o melhor modelo, com correlação da validação 
cruzada de 0,82. As contribuições relativas dos preditores foram Pcsand-42,6%, OMC-35,8%, Avgran-10,9% e 
profundidade-10,8%. Foi demonstrado que C. fluminea está associada a sedimentos arenosos com pouca matéria 
orgânica, em áreas rasas próximo às margens. A PCA mostrou uma ampla sobreposição de nicho com as espécies de 
moluscos nativos C. martensi, N. limosa e A. trapesialis.

Palavras-chave: adequabilidade de habitat, modelos de distribuição espacial, seleção de modelo, espécie invasora.

1. Introduction

Habitat suitability models (HSMs) use environmental 
variables to predict presence or abundance of a given 
species in any area of interest, acting as a mathematical 

tool to depict the multidimensional niche of a species sensu 
Hutchinson (1957). HSMs are useful in conservation, wildlife 
management, and environmental impacts evaluation or to 
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predict scenarios of exotic species invasions (Guisan and 
Thuiller, 2005; Frankling and Miller, 2009).

Introduction of exotic species in freshwater ecosystems 
threatens biodiversity, change ecosystem natural cycles and 
cause the extinction on native biota (Lodge et al., 1998). 
In the past 30 years the Neotropical region suffered the 
introduction of at least two mussel species, causing negative 
environmental and economic impacts (Darrigran, 2002). 
One of these species is Corbicula fluminea (Müller, 1774).

Corbicula fluminea is an Asiatic edible clam species 
well known for the invasive success (Cohen et al., 1984; 
Cataldo and Boltovskoy, 1998). The introduction of 
C. fluminea in Brazil is reported since 1970 (Veitenheimer-
Mendes, 1981), and the species is now widespread in 
several Brazilian freshwaters basins (Rodrigues et al., 
2007). The species has an aggressive invasive behavior, 
presenting physiological, environmental and behavioral 
adaptations to live both in lotic (Britton and Morton, 
1982; Way et al., 1990) and lentic environments (Cenzano 
and Würdig, 2006), competing with native clam species 
(Gardner Junior et al., 1976; Phelps, 1994).

Large colonies of C. fluminea could increase the water 
transparency by filtration, changing algae and macrophyte 
production and influencing all the ecosystem dynamics 
(Phelps, 1994; Sousa et al., 2008). Also, the invasive 
feature of C. fluminea is enhanced by flotation strategies 
to disperse, a behavior triggered by the water flowing 
stimuli (Prezant and Chalermwat, 1984).

According to McMahon (1981), in environments 
with lentic dynamics, C. fluminea is restricted to shallow 
and oxygenated margins. Nevertheless, although several 
environmental drivers for C. fluminea presence or abundance 
have been described in the literature, studies in order to 
fit HSMs for the species are still scarce. In this study, we 
aimed to select a spatial modeling approach capable to 
identify the ecological relationships of C. fluminea with 
environmental predictors and to produce a map of habitat 
suitability. In addition, the niche overlapping with native 
clam species was also investigated.

2. Material and Methods

2.1. Study area
The study was carried out in Araçá Lagoon (southern 

Brazil; –30.22, –50.55). The lagoon has a surface area of 
19 km2, maximum deeps of 2.5m, and receives the drainages 
of the Capivari River in the northern boundary. In the 
southern limit, the lagoon is drained to the Patos Lagoon, a 
large coastal system 250km long and 60km wide (Figure 1). 
When south-southeast winds are blowing the water flow 
can be inverted, and strong currents flow from the Patos 
Lagoon. These winds, that modulate current systems, leads 
to a deltaic formation in both lagoon extremes: the northern 
delta build from sediments (mud) from the Capivari River, 
and the southern delta build from sand deposition carried 
out with strong currents from the Patos Lagoon.

The region has a hot summer with mean temperatures of 
29.3 °C in January and winter with temperatures reaching 

an average of 10.9 °C in June/July. Precipitation is well 
distributed during the year, ranging from a maximum of 
156mm in September to a minimum of 86mm in November. 
The predominant wind regime is northeast with an average 
speed of 5m/s, followed by Southwest, with average speeds 
of 8m/s during the passage of cold fronts (Schwarzbold 
and Schäfer, 1984).

2.2. Sampling methods
The sampling design comprised a set of 84 points 

distributed all over the Araçá Lagoon in a 500m × 500m 
Cartesian matrix (Figure 1). Typical position error 
was around 30m (GPS error plus boat displacement). 
Samplings were performed from February 2002 to April 
2003. Each sampling site was sampled five times with an 
Ekman dredge (sampling area: 225 cm2), four subsamples 
for invertebrates and one for sediment analysis. Sampled 
individuals were washed in sieve with mesh size 0.80 mm, 
then transferred to labeled plastic bags, kept chilled and 
transported to the laboratory where they remained frozen 
(–18 °C) until processing. Other clam species were also 
sorted and counted. Species’ abundance comprised the 
sum of four subsamples (900 cm2) at each point.

Depth (m) was measured with a manual probe corrected 
by the annual mean (2001-2003) of the nearby Palmares 
River scale. Sediment sample was transported to the 
laboratory chilled on ice and stored at –18 °C until analysis. 
Sediment subsamples were dried and classified through 
sieves with mesh size of 2000 μm; 1000 μm; 500 μm; 
250 μm; 125 μm and 63 μm. The average granulometry 
(Avgran; μm) was calculated as a weighted average 
concerning the amount of sediment retained on each sieve. 
Percentage of sand (Pcsand; %) at each sampling point 
was estimated by dividing the sediment retained above 
the 63μm sieve by the total dry sample weight (×100). 
To determine organic matter content (OMC; %) 50 gr of 
dried sediment was burned through 6 hours in oven furnace 
at 550 °C, and the OMC determined by weight difference 
after the carbon oxidation.

Figure 1. Araçá Lagoon, southern Brazil. The black dots 
indicate the sampling sites.
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2.3. Statistical analysis
In order to select the best modeling method we evaluated 

the abundance pattern of C. fluminea with three modeling 
approaches: Generalized Linear Models (GLM), Generalized 
Additive Models (GAM) and Boosted Regression Trees 
(BRT). Outliers were not excluded in order to compare 
the techniques.

We fitted the GLM in R software (R Development 
Core Team, 2014) with the package “stats” assuming the 
Poisson distribution. The procedure fitted the GLM models 
through optimization of maximum likelihood estimated 
by an iteratively reweighted least-squares mechanism. 
The GAM fitting was carried out with the functions “mgcv” 
library (Wood, 2001). As the first trials to fit the GAM 
model, we explored the predictors’ behavior by running 
the model with a plate regression splines smoothing to 
check residuals. After analysis, we identified two distinct 
responses of C. fluminea abundance in relation to Depth. 
To handle with these responses, we choose the cubic 
regression splines smoother. For the remaining predictors 
(OMC, Avgran and Pcsand) the thin plate regression splines 
smoothing were applied (Wood, 2003).

The BRT method consists of a combination of the two 
algorithms: regression trees (or decision trees) and boosting. 
Regression trees were first described by Breiman et al. 
(1984), followed by De’ath and Fabricius (2000) and 
Hastie et al. (2005). The regression tree is created by 
several data splitting, aiming the partition of response 
into homogeneous groups (De’ath and Fabricius, 2000).

The Boosting process consists in merging results from 
multiple models or regression trees based on the general 
principle that finding many rough rules of thumb can be 
easier than finding a single highly accurate prediction rule 
(Schapire, 2003). Boosting is a numerical optimization 
method that aims to minimize the loss function by adding 
at each step a new tree that best reduces the loss criteria 
(Elith et al., 2008). The loss function in BRT modeling is a 
measure that represents the loss in predictive performance 
due to a suboptimal model. In this way, thousands of tree 
models are created and the BRT model works as a linear 
combination of many trees that can be thought as a regression 
model where each term is a tree (Elith et al., 2008).

The BRT models were evaluated by using a ten-fold 
cross-validation to detect the optimal number of trees to 
use in the model and to subsequently assess the predictive 
performance (Hastie et al., 2005) and choose the model 
with the best cross-validation result. We compared BRT 
models by setting a fixed learning rate of 0.01 and exploring 
two different tree complexities, 1 (BRT1) and 2 (BRT2). 
After running all models, we used the lower Root Mean 
Squared Error (RMSE) as criteria to select the best modeling 
technique among GLM, GAM and BRT. The selected model 
was used to predict the habitat suitability to the whole 
lake area. To generate a prediction map we interpolated 
the predictors obtained at each sampling point: Depth, 
OMC, Avgran and Pcsand by ordinary Kriging (Figure 2). 
Since the interpolation introduce new bias in the prediction 
map, a correcting empirical model (GAM) was fitted with 

C. fluminea observed densities as the response variable 
and the estimated densities as predictors.

Aiming to visualize the potential niche overlap among 
clam species we ran a Principal Components Analysis 
(PCA) using the abundance of the invasive C. fluminea 
and the native clam species Castalia martensi Thewing, 
1891, Neocorbicula limosa (Maton, 1981) and Anodontites 
trapesialis (Lamarck, 1819) in relation to the environmental 
predictors Depth, OMC, Avgran and Pcsand.

We carried out GLM, GAM, BRT and PCA under 
the RStudio 0.98.501 software (RStudio, 2012), an 
integrated development environment for R software 3.0.3 
(R Development Core Team, 2014). We ran the GLM with 
the basic package included in R software. We ran the GAM 
models with the ‘mgcv’ library (Wood, 2001). To fit the BRT 
models we used the ‘gbm’ library from Ridgeway (2012) 
and functions proposed by Elith et al. (2008). We  ran the 
PCA using the package “ade4” (Dray and Dufour, 2007). 
The interpolations were performed with the package 
GSTAT (Pebesma, 2004) included in the GIS software 
IDRISI Andes 15.0 (Clark Labs). The prediction map and 
the map processing were performed in RStudio with the 
functions of package “raster” (Hijmans and Etten, 2012).

3. Results

The abundance of C. fluminea averaged 2.96 individuals 
by sampling site (33 ind.m–2), ranging from a minimum 
of 0 to a maximum of 63 (700 ind.m–2) and was absent 
roughly half (38) of the sampling points (84). The calculated 
RMSE for each method was 6.87 for GLM, 2.99 for GAM, 
BRT1 for 2.17, and BRT2 for 1.73. Figure 3 shows the 
dissimilarities between models concerning the residual 
variances. The GLM model had residual dispersion and 
was discarded as possible candidate model. GAM achieved 
better results concerning residual variances when compared 
with GLM; however, the BRT models with tree complexities 
of 1 and 2 steps presented the best overall performance. 
Among them, we choose the boosted regression tree model 
with tree complexity of 2 (BRT2), which achieved 0.82 
in the cross-validation correlation, being chosen to model 
C. fluminea distribution.

Figure 4 shows the fitted functions to C. fluminea in relation 
to each environmental predictor of the BRT model with a 
tree size of 2. Pcsand had an average relative contribution 
of 42.6%, followed by OMC (35.8%), Avgran (10.9%) and 
Depth (10.8%). As a general pattern, C. fluminea occurs 
in sites where the sediment has high values of Pcsand and 
with low OMC, with increased prevalence in deeps in the 
range from 1.0 m to ~1.5m. Figure 5 shows the predicted 
abundance map to the whole lagoon area. According to 
our results, C. fluminea presented low abundance in the 
northeast-southwest lagoon axis. Increased abundance 
match with sandy shores by the eastern and northwestern 
lake limits (Figures 2, 5).

Figure 6A shows scatterplots of observed abundances 
of C. fluminea against the fitted values adjusted by the 
BRT models (R2=0.957). Figure 6B shows the observed 
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abundance of C. fluminea against the data values of the 
prediction map after the correction of a GAM empirical 
filter (R2=0.940) suggesting good model performance 
even after the bias induced from predictors interpolation 
to the whole lagoon area.

Three other mussel species were captured during the 
sampling program: C. martensi (n=2), N. limosa (n=11) 
and A. trapesialis (n=24). In order to discriminate potential 
niche overlap in relation to the environmental variables, 
a PCA was performed (Figure 7). The first axis explained 
76% of the total variance and was positively related to 
OMC (0.52) and Deep (0.38) and negatively with Pcsand 
(–0.54) and Avgran (–0.54). The second axis explained 
additional 18% of the total variance and was positively 
related to all parameters (Depth, 0.90; Avgran, 0.37; 
Pcsand, 0.30; OMC, 0.06).

4. Discussion

Modeling habitat suitability and distributional patterns 
are increasing goals in the ecological literature (Frankling 
and Miller, 2009). Despite the intense effort to map and 
organize the occurrences of aquatic biota in databases, 
the challenge is related to the unavailability of detailed 
environmental layers, especially for aquatic environments 
in small scales. However, successful examples of inference 
concerning distributional patterns with relative few 
predictors are already described for freshwater fish (Alves 

and Fontoura, 2009; Barradas et al., 2012) by using LOGIT 
functions, showing that satisfactory predictions could be 
achieved with relatively few key environmental predictors.

In the present work, the BRT method proved to be 
efficient to predict the habitat suitability of C. fluminea 
in the Araçá Lagoon with few environmental variables. 

Figure 2. Environmental descriptors of the Araçá Lagoon, southern Brazil: depth, organic matter content (OMC), percentage 
of sand (Pcsand) and average granulometry (Avgran). Interpolated values by ordinary Kriging from an orthogonal matrix 
comprising 84 points 500m apart.

Figure 3. Comparative performance of the GLM, GAM, BRT1 
and BRT2 methods to model Corbicula fluminea abundance in 
Araçá Lagoon, southern Brazil. Box Plot of residuals to each 
modeling technique (Median; 25-75 percentiles and min-max 
accepted values). Dots indicate the outliers.
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The efficiency came from the ability to handle with different 
types of predictor and extreme outliers. According Elith et al. 
(2008), the advantage mainly comes from fitting multiple 
trees that overcome the drawback of one single solution 
that could have a relatively poor predictive performance. 
The BRT produces hundreds or thousands of decision trees, 
and the final solution is not a consensus, but the sum of 
solutions from each partial tree developed from a subset 

of data. The BRT method is also flexible because it could 
use different types of predictors and work with missing 
values, can handle with outliers and non-linear responses, 
and do not need data transformation (Moisen and Frescino, 
2002; Friedman and Meulman, 2003; Leathwick et al., 
2006; De’ath, 2007; Elith et al., 2008; Frankling and Miller, 
2009). These attributes make the methodology very robust 
for prediction based in a specific data set, as for weather 

Figure 4. Fitted functions to each predictor in the BRT2 model to estimate Corbicula fluminea abundance in Araçá Lagoon, 
southern Brazil in relation to depth, organic matter content (OMC), percentage of sand (Pcsand) and average granulometry 
(Avgran). The number in parentheses shows the relative contribution of the predictor.

Figure 5. Araçá Lagoon, southern Brazil. Corbicula fluminea predicted abundance in relation to depth, average granulometry 
(Avgran), percentage of sand (Pcsand) and organic matter content (OMC) as predicted from Boosted Regression Trees (BRT).



Braz. J. Biol., 2016,  vol. 76, no. 3, pp. 718-725 723723

Modeling habitat suitability of Corbicula fluminea

forecast, but imply additional obstacles for comparison 
purpose as no one can handle, or print, the enormous set 
of decision trees that comprise the final solution. Also, 
the BRT models are Machine Learning methods and lack 
p values, coefficients and degrees of freedom, becoming 
hard to compare with traditional modeling approaches 
derived from regression. In our case, we overcame this 
using a general measure of accuracy, RMSE, to compare 
the models.

We found differences between the predicted values 
from the BRT model and the predicted values from the 
interpolated predictors. The majority of HSM studies use 
predictors’ layers ready to use, extracting the information 
to fit models from those layers. Here we fitted models with 
real observations, generating interpolated layers data in order 
to feed the prediction model. As we detected differences 
between observed data and the interpolated predictors, 
resulting in bias concerning the descriptor maps, this was 
corrected trough a GAM empirical function. In this case, 
two nested methodologies gave rise to more accurate 
predictions, resulting in sharp distributional patterns as 
shown in Figure 6.

Considering the selected environmental predictors 
in the present study, the percentage of sand (Pcsand) 
was the predictor with greater influence on C. fluminea 
distribution (Figure 4) followed by the sedimentary organic 
matter content (OMC). The OMC had a negative effect 
on the habitat suitability for C. fluminea, a pattern already 
described by Britton and Morton (1982), Cohen et al. 
(1984), Mansur et al. (1994) and Cataldo et al. (2001). 
Areas with low organic matter content, considering lentic 
conditions, could be the product of increased hydrological 
dynamics, with low deposition of fine particles, limnological 
features that emulate lotic environments. The occurrences 
of C. fluminea at those locations can be understood as a 
consequence of their primary life history, associated with 
lotic environments in Asia.

According to our findings, C. fluminea prefers habitats 
where sand is predominant and average grain size range 
between 80-140 μ, in agreement with Cataldo et al. 
(2001). Shirmer (1996) detected high mortality in muddy 
habitats, and this information could explain the preference 
of C. fluminea for sandy environments with low amounts 
of organic matter. The preference of C. fluminea for 
sandy habitats was described by Cenzano and Würdig 
(2006) and Duarte and Diefenbach (1994). The sediment 
characteristics describe the amount of energy transferred 
to the bottom: larger sand grains indicate habitats with 
increased water dynamics, and smaller grains indicate 
depositional habitats. As described for Anodonta anatina 
(Englund and Heino, 1996), the species could be favored 
by flowing water currents due to energy savings related 
to filtering movements.

The wind is a key factor that determines the shape 
and the hydrodynamics in coastal laggons (Schwarzbold 
and Schäfer, 1984), by disturbing the benthic habitats, this 
influence loses its power as increases the depth. In the central 
area of the lagoon, with larger deeps and deposition of fine 

Figure 6. Comparative relationship between observed 
abundance of Corbicula fluminea in Araçá Lagoon, southern 
Brazil, and predicted values estimated by (A) BRT model 
adjusted from measured environmental descriptors and (B) 
interpolated predictors from ordinary Kriging after empirical 
GAM correction.

Figure 7. Principal components analysis (PCA) considering 
the most abundant clam species occurrences in relation to 
environmental predictors at each sampling point. The convex 
polygons show the range of clam occurrences in relation to 
predictors used to fit the Boosted Regression Trees (BRT) model.
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sediments, the species showed low densities. According 
to our model, C. fluminea occurrences tend to be higher 
in depths ranging from 1.0m to ~1.5m, avoiding deeper 
areas with depositional patterns, where wave energy is 
not strong enough to suspend clay, silt and organic matter.

We observed a niche overlapping of C. fluminea 
with native clam species: C. martensi, N. limosa and 
A. trapesialis. The PCA (Figure 7) showed occurrences in 
the same parameters range, once C. fluminea occurs in all 
environmental range conditions occupied by native species, a 
pattern already described by Lercari and Bergamino (2011). 
As known as an aggressive invasive species, occurring in 
high abundances and with efficient dispersion capabilities 
(Cataldo and Boltovskoy, 1998), this species has dispersion 
advantages over N. limosa, with no free larval stage and 
juveniles immediately adopting the benthic phase, what 
limits dispersion and determines an aggregate spatial 
distribution (Parodiz and Hennings, 1965).

According to our results, we selected an adequate 
model to describe the habitat suitability of C. fluminea 
in a shallow coastal lagoon in southern Brazil. The clam 
C. fluminea preferred sandy habitats, showing coarser 
granulometry, and reduced amounts of organic matter in 
the sediment. Also we described that C. fluminea has a wide 
range of habitat suitability when compared to the native 
clam species. In a broad sense, the invasive C. fluminea 
represents a threat to native clam species in a dimension still 
not measured in southern coastal lagoons. Unfortunately, 
historical demographic data of native clams in coastal 
lagoons of southern Brazil are not widely available, and a 
feasible abundance reduction of native clams, in the same 
way that C. fluminea became the dominant clam species, 
is not documented.
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