

Dynamic Real-Time Scheduler
for Large-Scale MPSoCs
Marcelo Ruaro, Fernando G. Moraes

PUCRS University, Computer Science Department, Porto Alegre, Brazil
marcelo.ruaro@acad.pucrs.br, fernando.moraes@pucrs.br

ABSTRACT
Large-scale MPSoCs requires a scalable and dynamic real-time
(RT) task scheduler, able to handle non-deterministic
computational behaviors. Current proposals for MPSoCs have
limitations, as lack of scalability, complex static steps, validation
with abstract models, or are not flexible to enable changes at
runtime of the RT constraints. This work proposes a hierarchical
task scheduler with monitoring features. The scheduler is
dynamic, supporting changes in RT constraints at runtime. An
API enables these features allowing to the application developer
to reconfigure the tasks' period, deadline, and execution time by
annotating the task code. At runtime, according to the task
execution, the scheduler handles the API calls and adjust itself to
ensure RT guarantees according to the new constraints. Scalability
is ensured by dividing the scheduler into two hierarchical levels:
LS (Local Schedulers), and CS (Cluster Schedulers). The LS runs
at the processor level, using the LST (Least Slack-Time)
algorithm. The CS runs at the cluster level, i.e., a group of
processors controlled by a manager processor. The CS receives
messages from the LSs, informing the processor slack-time,
deadline violations, and RT changes. The CS implements an RT
adaptation heuristic, triggering task migrations according to RT
reconfiguration or deadline misses. Results show a negligible
overhead in the applications' execution time and the fulfillment of
the applications’ RT constraints even with a high degree of
resources sharing, in both processors and NoC.

Keywords
MPSoC; Real-time; Scheduler; Runtime; Slack-time.

1. INTRODUCTION
The increasing number of processing elements (PEs) in modern
large-scale multiprocessor systems on chip (MPSoCs) increases
the resource sharing among system components [1]. For this
reason, scheduling algorithms are essential for managing the
processors usage while satisfying the constraints of real-time
applications.
A key feature of a complex system, such as an MPSoCs, is the
ability to support dynamic workloads. Applications may have
moments of heavy computational load and also can have moments
of a state close to the idle, waiting, for example, an external input,
as a user interaction or a message from another task. For this
reason, it is necessary to allow applications to tune the
computational workload, avoiding unnecessary resources
allocation. Aware of this challenge, this work focuses on a self-
adaption technique for MPSoCs, proposing a dynamic RT task

scheduler that can support runtime reconfiguration of the tasks’
RT constraints. This reconfiguration starts with an API that
enables the application developer to characterize the RT workload
of each task at different execution points. At runtime, according to
the task execution, the API triggers changes in the task RT
constraints. The proposed task scheduler handles these changes at
runtime to fulfill the new tasks’ RT constraints.
Scalability is ensured by dividing the scheduler into two
hierarchical levels: LS (Local Schedulers), and CS (Cluster
Schedulers). The LS runs at the processor level, using the LST
(Least Slack-Time) algorithm. The CS runs at the cluster level,
i.e., a group of processors controlled by a manager processor. The
CS receives messages from the LSs, informing the processors'
slack-time, deadline violations, and RT changes. The CS
implements an RT adaptation heuristic, triggering task migrations
according to RT reconfiguration or deadline misses.
The scheduler works as closed-loop control system - Figure 1.
The monitoring and notification messages (processor slack-time,
deadline miss, RT changes), produced by the LSs, are the inputs
for an RT manager executed in the CS, which can trigger an
adaptation by generating a task migration action. This process is
repeated along the execution of the applications.

Monitoring/
Notifications

Heuristic/
Action

Task
Migration

Figure 1. Scheduler support for self-adaptation at runtime.

The focus of this work is related to the scheduler ability to support
dynamic RT reconfigurations while it satisfies the task RT
constraints. Task mapping or schedulability analysis in out of this
work scope. Such techniques are broadly explored in the literature
[2][3][4] and can be easily combined with the proposed scheduler.
Aware of the current state-of-the-art works, this work is the first
to support a runtime reconfiguration of the RT task constraints.
Besides, the evaluation of the proposed scheduler is executed in a
clock cycle accurate description of the MPSoC.

2. RELATED WORK
The literature related to task scheduling contains a large number
of proposals focusing on multiprocessor systems [1]. However,
most of the works are not suitable for MPSoCs. Most MPSoC
schedulers consider design-time steps integrated into frameworks
[5][6][7][8]. Such works often employ a MoC (Model of
Computation) such as PPN, DAG, and SDGA to model the
applications at design-time, making its behavior predictable, and
also enabling hard RT scheduling. Static or partial static
scheduling is a conservative approach to guarantee hard RT
behavior. Those proposals are only effective when the set of
applications to execute in the system is fixed at design-time.
Pfair is a state-of-the-art hard RT scheduler for multiprocessor
systems [4]. Park et al. [4] propose HPGP, a hybrid scheduler for
MPSoCs based on Pfair. A partitioned version runs the Pfair

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

GLSVLSI '16, May 18-20, 2016, Boston, MA, USA
© 2016 ACM. ISBN 978-1-4503-4274-2/16/05...$15.00
DOI: http://dx.doi.org/10.1145/2902961.2903027

341

algorithm together with a global scheduler that makes task
mapping and task migrations. The manager selects the ready tasks
to be scheduled into a PE. Each PE executes a schedulability
analysis. If the task is not schedulable, the core invokes the global
scheduler to perform task migration. The task mapping approach
is not addressed. The proposal considers only periodic tasks with
deadlines equal to their respective periods and constant execution
time. Besides, the evaluation is carried out only with four cores,
which does not enable validating the algorithm in large MPSoCs.
This work also uses a hybrid scheduling organization. Differently
from Pfair, in this work the scheduler supports variable tasks
periods, deadlines and execution times, providing higher
flexibility for RT workloads.
The LST (Least Slack Time) scheduler was proved to be non-
optimal to multiprocessor systems [9]. Hwang et al. [10] propose
LSTR, a scheduling algorithm based on LST, with additional
features to be optimal for multiprocessor systems. LSTR was
designed to support only periodic tasks. Besides a large number of
task migrations, the Authors do not consider such overhead.
The design of an RT scheduler for MPSoCs should consider,
among other factors, how to inform the RT task constraints to the
system, and how to handle interruptions. As the scheduler
proposed in this work is a dynamic scheduler, RT task constraints
are transferred to the operating system (OS) using task code
annotation, a common approach found in the literature.
Theodoropoulos et al. [11] use task code annotation (called
pragmas) that are used by a runtime manager to perform task
mapping. Canella et al. [12] employ task annotation to implement
a task migration mechanism based on task replication. The task
annotation is used to guarantee inter-task communication
synchronization.
The treatment of interruptions may interfere in the execution of
RT tasks. Interruptions can be handled immediately using specific
system routines, or can be pooled at fixed and predetermined
times [13]. Another alternative is to redirect interruptions handling
to free cores [4]. However, this option can only be useful when
interruptions come from external devices and are not related to
inter-task communications.
Concluding, there is a lack of works in the literature addressing
dynamic RT schedulers for MPSoCs. To the best of the Authors
knowledge, this paper is the first proposal that addresses a
scheduling algorithm for MPSoC combining the originalities
detailed in the Introduction, combined with an evaluation
employing a clock cycle accurate platform model.

3. SYSTEM MODEL
This section describes the system model, detailing important
assumption related to this work.

3.1 MPSoC Model
This work adopts the cluster-based architecture, with manager and
slave PEs depicted in Figure 2(a). The MPSoC contains a set of
PEs, interconnected by a NoC. It is partitioned into n clusters
C={c1, c2, …, cn}. Each cluster ci ∈ C has a set P(ci)={M, sp1, sp2,
…, spk}, where M denotes a CM, k the number of slave processors
in the cluster. Only one CM has an interface to input/output
devices. Note that the cluster size is not static. At runtime, it can
change it size by using a reclustering protocol [14].
The platform uses a distributed memory organization. Inside each
PE - Figure 2(b), there is one processor, one dual-port local
memory, one NI (Network Interface), NoC router, and one DMA
module (Direct Memory Access). The adoption of a DMA module
improves the processor performance avoiding stalls to send and
receive packets to/from the NoC.
All PEs execute a small operating system (µkernel: ~20KB). The

CMs execute a management µkernel, not executing user tasks.
One specific CM has access to an application repository. This
repository contains the applications’ tasks object code, and
simulates the insertion of new applications into the MPSoC at
runtime. SPs execute a µkernel to control the execution of the user
tasks. This µkernel also implements a paging mechanism to
support multitasking and an inter-task communication protocol
based on MPI.
The PEs handle two external interruptions: NI interruption,
signaling a received packet from the NoC; scheduler
interruptions, signaling the end of the scheduler timer (only in
SPs). In the occurrence of an interruption, the executing task is
preempted.

Figure 2. Cluster-based MPSoC example - a 6x6 MPSoC with
four 3x3 clusters. CM: cluster manager. SP: slave processor.

3.2 Application and Task Model
An m-task application A={t1, t2, …,tm} is modeled by a task graph
G(T, E), with each vertex ti ∈ T representing a task and the
directed edge (ei, ej), denoted as eij ∈ E, representing the
communication between tasks ti and tj. Tasks communicate using
a non-blocking Send and blocking Receive MPI-like primitives. A
given task ti can assume four states: waiting, ready, running, and
sleeping. The waiting state implies that the task is blocked,
waiting for a producer task to send it a message. The ready state
means that the task already achieved its release time, and is ready
to be scheduled. The running state implies that the task is
executing on the processor. The sleeping state (RT tasks only)
means that the task already finished its execution time and its
period does not end yet, so the task must be suspended.
The system supports best-effort tasks - Bt, and real-time tasks - Rt.
Bts do not have time bounds and explore the slack-time of Rts. Rts
have soft temporal requirements. Figure 3 details the Rt
constraints model.

Figure 3. RT constraints model.

Rt definition: Rt is a 6-tuple {p, d, e, u, r, s} with a period (p),
relative deadline [9] (d), execution time (e), utilization (u),
remaining execution time (r), and slack-time (s). Utilization
corresponds to u = e * 100 / p. The remaining execution time is
the amount of time Rt has to finish it execution time.
To make the system aware of the constraints of a given Rt, the task
must execute a system call (syscall) named RealTime. This
RealTime syscall is the API provided to the application developer
to reconfigure the RT constraints. Figure 4 presents an example of
an Rt code that configures the RT constraints dynamically. At line
3, TASK A calls RealTime, notifying the µkernel of its RT
constraints. Lines 4-8 execute some code. Due to the RT
constraints configuration, the scheduler can execute TASK A

342

according to the RT requirements. Next, at line 10 the task calls
RealTime again to notify the scheduler about its new constraints.
The code between lines 11-15 executes according to these new
constraints. As can be observed, this system call enables the task
to change its RT constraints dynamically.

Figure 4. Example of a task code with runtime RT

configuration. It calls the RealTime syscall twice to configure
the constraints (in lines 3 and 10).

Note that the RT reconfiguration can be called in any task code
point allowing the task can change its period (characterizing an
aperiodic behavior), deadline, and/or execution time. Such
behavior, where an RT task can change its RT constraints at
runtime, is typical in real scenarios. For example, consider a voice
recognition application. The application can assume two
workloads: the first one is a listening state, where the application
is waiting for the user to pronounce some sound, this state
requires a moderate RT workload. The second one is the
recognition state, where the task uses voice recognition
algorithms. In this case, the application tasks can configure two
workloads, with different RT requirements.
To handle inter-task dependencies, this work assumes that an
iteration of a given application defines a hyper period, i.e., an RT
application has all its tasks configured with the same p. This hyper
period can handle with inter-task dependencies because it is
composed of the WCET (worst-case execution time) of all tasks
and the worst-case of communication between the application’s
tasks.
This task dependency model does not restrain the application
model, accepting sequential, parallel and pipelined applications.
The designer can obtain the WCET and communication latencies
running the application alone in the system, representing a
profiling phase.

4. THE PROPOSED SCHEDULER
Table 1 presents the classification [9][15] of the proposed
scheduler.

Table 1 – Proposed scheduler classification.
Criterion Classification
Organization (Global, Partitioned) Hybrid (Mixes Global and Partitioned) and

clustered
Scheduling decision (Static, Dynamic) Dynamic
Allocation (Clock, Table, Priority) Dynamic Priority-driven
Migration (Job level, Task level) Task-level Migration
Processor Number (Uni.,Multi.) Multiprocessor (on chip)
Preemption (Yes, No) Yes
Supported task Periodic, aperiodic
Real-time (Hard, Firm, Soft) Soft real-time

Figure 5 presents an overview of the scheduler. It has a
hierarchical organization that is divided into two levels:
• Cluster scheduler (CS) - runs the high-level part of the

scheduler in the CMs. Its job is to perform RT adaptations if
a given RT task is missing deadlines or it has changed its RT
constraints and its current processor is not able to execute the
task;

• Local scheduler (LS) - runs the low-level part of the
scheduler in the SPs, executing the LST scheduling
algorithm.

The LSs send messages to CS. The messages are (i) slack-time
monitoring; (ii) deadline miss; (iii) RT change. Messages (ii) and
(iii) are reactive messages, sent when a task misses a deadline, or
when a task calls the RealTime syscall, respectively. The slack-
time messages are generated periodically (slack-time monitoring –
STM).

Figure 5. Hierarchical scheduler organization.

The STM provides to the CS the actual slack-time of each SP. The
STM has a hardware/software implementation at each SP. The
hardware part corresponds to a timer, which generates an
interruption to the µkernel according to a monitoring window.
This monitoring window is configurable at design time and can be
adjusted to provide a tradeoff between NoC communication load
and the STM update frequency. The software part corresponds to
a slack-time counter and a monitoring interruption handler
function, both implemented in the µkernel.
When the STM timer interrupts the µkernel, a message with the
current slack-time is sent to the CS and the slack-time counter is
reinitialized.

4.1 Cluster Scheduler (CS)
The CS executes into the CMs. The CS have the goal of handling
the messages sent by the SPs and execute the RT adaptation if
necessary. For the slack-time messages, the CS only updates the
percentage of the idle state of each processor of its cluster. For
deadline miss messages the CS executes a heuristic called
RT_adaptation, which can select a new processor to migrate the
penalized task. Finally, for RT change messages, the CS verify if
the current processor of the task has enough utilization to execute
the task, if not, as well as occurs for deadline miss message, the
CS executes the RT_adaptation heuristic.
The RT_adaptation heuristic works as a set of decision layers
applied to the SPs of the cluster - Figure 6(a). Figure 6(b) presents
the heuristic pseudo-code. As input it receives the set CSP = {P(ci)
- M} (corresponding to set of SPs in the cluster), and the task t to
be migrated into a given element of CSP. As output the algorithm
returns the selected processor s, corresponding to the new
processor to receive the task t. If all the processors are not
available to receive the task, the adaptation process is suspended,
the affected task will start to miss deadlines triggering the
adaptation process until an available processor can be found.
The decision functions only select the SP(s) which fulfill the
function’s requirement. The following decision functions are
used:
• utilization: selects the SP(s) that have a remaining utilization

enough to receive the task t;
• max_avg_ST: selects the SP(s) with the largest average slack-

time, information obtained from STM;
• min_RT_task: selects the SP(s) with the minimum number of

RT tasks allocated to it;
• min_abs_ST: selects the SP(s) with the largest absolute

slack-time measured at the last slack-time monitoring
window;

• min_alloc_tasks: selects the SP(s) with the minimum number
of allocated tasks.

343

Finally, in line 6, the first SP in CSP is selected to receive task t.
Using this heuristic, the CS takes advantage of the monitored
slack-time of its slave processors (lines 2 and 4), together with
traditional RT metrics (line 1 and 3). The information provides a
trade-off between the processor RT utilization and load balancing.
After the execution of the heuristic, a task migration order in sent
to the current SP of task t and the task is migrated to the selected
processor s. The task migration protocol is out of this work scope.

task t

RT_Adaptation (Csp, t, s)
Input: Csp, t
Output: s
begin

1. Csp= Csp ∩ utilization(Csp, t)
2. Csp= Csp ∩ max_avg_ST(Csp)
3. Csp= Csp ∩ min_RT_task(Csp)
4. Csp= Csp ∩ min_abs_ST(Csp)
5. Csp= Csp ∩ min_alloc_tasks(Csp)
6. s = first(Csp)

end
Figure 6. (a) layered decision flow. (b) RT_adaptation pseudo-

code.

4.2 Local Scheduler (LS)
Assuming the task model in 3.2, the LS executes at each SP as a
traditional LST scheduler [9]. The LST algorithm was chosen
because it has been proved optimal for single cores, and due its
support to deadlines different from the period [9], which is not
supported in EDF (Earliest Deadline First). Note that in this work
the multiprocessor scheduling problem can be reduced to the
single core problem, due the presence of the CS, which can
migrate a task Rt into an SP with resources to fulfill the task RT
constraints.
The RT tasks have scheduling priority over BE tasks. RT tasks are
scheduled according to its least slack-time priority. If there are
two or more RT tasks with the same slack-time, a round-robin
algorithm is used to select the next scheduled task. BE tasks are
scheduled only by the round-robin algorithm.
As the system uses an MPI-like communication API, some tasks
can be in a waiting state. In this state, BE tasks are simply
blocked. However, when an Rt goes to the waiting state, the
scheduler handles the Rt as a sleeping task, i.e., the scheduler
verifies the end of task period, but do not update its remaining
execution time neither schedules the task. When the task receives
the requested message, the µkernel changes the state of the task to
ready and calls the LS. The scheduler then updates the slack-time
and the remaining execution time for all its RT ready tasks,
scheduling the task using the LST priority.
Most schedulers use a fixed scheduler timer (ST), or quantum, to
schedule the tasks [9][4] (for example, EDF uses fixed time
slices). This quantum is the interval between the scheduler calls.
The proposed LS uses a variable quantum. Setting the appropriate
ST is challenging, because it may induce deadline misses caused
by excessive scheduler executions. The method to compute ST is
executed after selecting a given task ts ∈ T to run. The goal is to
let ts run, minimizing scheduler interruptions, without
compromising other RT tasks. Let ψ be the set of Rt allocated into

a given SP, minus ts.
The ST value is computed applying the following steps:
1. Selection of the first end of period for all sleeping and

waiting tasks s ∈ ψ, using Equation 1:

 (1)

where is the current system time, and n is the number of
tasks s ∈ ψ. The value Stc1 ensures that the scheduler will be
called at the first end of period of a task si ∈ ψ. The Stc1
value ensures a scheduler call to awake a sleeping task or to
verify if a waiting task missed a deadline. The default value,
if n=0, is remaining execution time of ts: ts(r).

2. Selection of the minimum slack-time: minST() for all ready
tasks r ∈ ψ, using Equation 2:

 (2)

where n is the number of tasks r ∈ ψ. The Stc2 value ensures the
execution of ts up to the expiration of the smallest slack-time of a
task ri ∈ ψ.
3. Selection of the scheduler timer ST, using the Equation 3:

 (3)
If ts(r) is smaller than the previously computed values, it is adopted
as the quantum value. After selecting ST, tasks ts start their
execution using the ST value as quantum.

5. RESULTS
Results were obtained using a clock-cycle accurate RTL SystemC
model of the MPSoC. The µkernel, application code, and the
scheduler was implemented in C. Results use two latency metrics:

• Task iteration latency, time to execute a task iteration,
which can e.g. be a loop (Figure 4).

• Application iteration latency, time for an application to
execute its hyper period.

5.1 Slack-time Monitoring
The evaluation of the STM includes: accuracy and performance
overhead. The accuracy evaluation employs an 8x8 MPSoC
divided into four 4x4 clusters. To estimate the SPs’ slack-time, the
SPs received only RT tasks. Figure 7(a) presents the annotated
utilization for each SP (%). Figure 7(b) presents the monitored
slack-time (%). It is possible to note that the monitored slack-time
is in practice the remaining utilization of Figure 7(a), with the sum
of SPs utilization with the monitored slack-time reaching 99%. In
fact, the remaining 1% is related to OS overheads. Such results
demonstrate the accuracy of the monitored slack-time.

9 11 34 7 81 77 82 10 90 88 65 92 18 22 17 89
6 29 15 10 57 5 62 14 93 70 84 89 42 94 37 85

21 55 15 44 12 25 80 24 78 44 84 55 87 74 19 75
CM 58 86 6 CM 6 12 14 CM 41 13 93 CM 93 87 85
16 47 12 67 69 13 66 9 83 52 87 32 30 86 33 90
50 5 10 14 29 15 14 46 49 94 89 85 70 84 85 53
9 19 9 74 81 11 12 54 90 80 90 25 18 88 87 45

CM 40 79 59 CM 27 15 46 CM 59 20 40 CM 72 84 53
 (a) SPs utilization (%) (b) Monitored SPs slack-time (%)
Figure 7. (a) SPs utilization using RT tasks. (b) Monitored SPs

slack-time. Each square represents a PE.

To evaluate the performance overhead due to STM, a 12x12
MPSoC divided into nine 4x4 clusters is used, running a mix of
RT and BE applications. The monitoring window is set to 10 ms.
Figure 8 presents the STM overhead for each SP. This overhead is
related to the time required to handle the STM interruption and to
send the slack-time message to the CS. As can be observed, the
overhead in most SPs falls between 100 and 150 clock cycles (cc),

344

with an average of 132 cc. There are a few large values, which can
be explained by NoC congestion, forcing the packet to wait for the
router to be released. The overhead in the CM to handle the STM
packets was 1620 cc (only software execution). Such result shows
the small penalty to monitor the slack time.

Figure 8. STM overhead for SPs in a 12x12 MPSoC.

Different STM windows were evaluated: 1, 2, 5 and 10 ms. The
cost of handling a monitoring message does not change with the
STM window. Reducing the monitoring window may reduce the
time to adapt the system, at the cost of increased processing in
CMs, due to the larger number of packets to deal with. The
monitoring window is a design choice, enabling to establish a
trade-off between reaction time and performance overhead in the
manager processors.

5.2 RT Adaptation Support
This Section evaluates the RT adaptation support, observing the
scheduler behavior when a RealTime syscall occurs. Figure 9
presents the CPU utilization for a given SP running two RT tasks:
t1 and t2. At the beginning of the execution, both tasks configure
its RT constraints: t1(u)=20%, t2(u)=30%. Near 52 ms, t2 changes
its RT constraints, configuring t2(u)=65%. It is possible to note
that after the second RealTime, t2 executes for a longer period,
corresponding to the utilization configured in the second
RealTime call.

Figure 9. Change in the CPU time utilization during an RT
adaptation (rectangles represent the CPU utilization).

Figure 10 presents the task iteration latency for t1 and t2,
considering the scenario presented in Figure 9. It is possible to
note that the t1 latency is not affected when the t2 workload
increases, demonstrating the capability of the LS to preserve the
RT constraints. The small peak near 52 ms observed in the graph
occurs due the RT adaptation process. Figure 10(b) shows that
after t2 request more CPU resources, the latency decreases in the
same proportion.

Figure 10. Task iteration latency change during an RT

adaptation. (a) t1 latency. (b) t2 latency.

5.3 RT Adaptation with Task Migration
This Section presents an RT adaptation, Figure 11, that includes
task migration. The same scenario of the previous Section is used.
However, the second RT configuration of t2 exceeds the SP
utilization: t2(u)=85%. This utilization, with t1(u), would result in
an SP utilization equal to 105%. When CS receives the RT request
message related to the second t2 RT change, it executes the
RT_adaptation (Figure 6(b)) to select an SP with enough
remaining utilization.

Figure 11. Change of the CPU time occupation during an RT

adaptation with task migration. Task t2 start to execute in SP2
when the RT constraint changes.

Observing the chart of Figure 11(a), it is possible to note that near
52 ms t2 call the second RealTime, inducing a task migration from
SP 1 to SP 2 (Figure 11(b)). The total time between the start of RT
adaptation until the end of task migration was 8906 cc, with 2651
cc (29.7%) required to the RT adaptation process, and 6255 cc
(70.3%) required to the task migration protocol.
Figure 12(a) and Figure 12(b) present the task iteration latency for
t1 and t2, considering the scenario presented in Figure 11. It is
possible to observe the negligible impact of RT adaptation even
with task migrations taking place.

Figure 12 . t1(a) and t2(b) task iteration latency during an RT

adaptation with task migration.

345

5.4 Impact of Disturbing Applications
This Section evaluates two RT applications: DTW (computation
intensive, six tasks) and MPEG (communication intensive, five
tasks). These applications – named target applications, were
evaluated in the presence of disturbing applications (RT or BE).
The goal is to observe the scheduler behavior with multiple tasks
allocated in the same SP, and the impact of the disturbing
applications over the target applications.
Initially, target applications execute alone in the system aiming to
collect the reference RT constraints for its tasks (profiling step). In
sequence, new simulations were performed aiming to insert RT
interference over the target applications. According to Figure 3,
the available time to execute disturbing tasks, tdisturb, corresponds
to Rt(p)- Rt(e). The experiments vary tdisturb from 10% (0.1* tdisturb)
to 90% (0.9 * tdisturb).
Figure 13(a) presents the DTW average application iteration
latency. The first column presents the minimal latency, next
columns present the interference of a RT disturbing application
varying tdisturb from 10% (10% RT) to 90% (90% RT), the column
“BE” corresponds to a BE application interference with tdisturb
equal to 100%. The last column presents the latency when a
round-robin scheduler (i.e. without RT support) is used. Is
possible to observe that for all RT disturbing scenarios the DTW
latency close to the minimal latency (36220.03 cc.), with an
average latency increase of 2%, and a standard deviation of 316.4
cc. Such results demonstrate the scheduling ability to preserve the
RT application constraints even with high resource sharing. BE
disturbing applications do not influence the latency values.
Disabling the RT support the latency increase 97.13% compared
with the minimal latency, demonstrating that a RT scheduler is
required to meet deadline constraints. The deadline miss rate for
DTW with RT disturbing was 0.66%, and for the disturbing
application was in average 2.7%. Figure 13(b) presents the DTW
execution time. The results are similar to the latency results. The
additional column “minimal–no STM”, corresponds to the
scenario to obtain the minimal latency, but disabling the STM.
Note the negligible impact of STM monitoring, increasing the
application execution time by 0.4% (using a 5 ms STM window).

Figure 13. (a) DTW application latency over disturbing. (b)

DTW execution time over disturbing.

The application iteration latency observed in the MPEG
application is similar to the DTW application. All latencies with
RT disturbing remain close to the latency of the minimal scenario
(55358.5 cc.), with an average latency increase of 0.5% and
standard deviation equal to 181.1 cc. The frame rate achieved in
the minimal scenario was 178 frames per 100ms. With RT
disturbing applications, the frame rate has presented a maximum
of 2 frames decrease compared to the minimal scenario. Disabling
the RT support, the frame rate drops to 81 frames per 100ms. The
impact of STM monitoring in the MPEG application was 0.07%
(STM windows of 5 ms). The deadline miss rate for MPEG, with
RT disturbing application, was 0.18%, and for the disturbing
application was equal to 2.1%.
The deadline miss difference between the disturbing application
and the RT application occurs because the disturbing application

is computationally intensive, which makes such application more
sensitive during RT scheduling. This same observation can be
used to explain the difference of deadline misses between DTW
and MPEG.

6. CONCLUSIONS
This work presented a hierarchical scheduler for large-scale
MPSoCs. The scheduler is completely adaptive, supporting
dynamic task RT constraints and slack-time monitoring. The
evaluation demonstrated a reliable ability to fulfill RT
applications with soft deadlines even for communication or
computation intensive applications with the interference of other
RT applications. The observed worst-case application latency
increase was 2% (DTW), with 90% of RT disturbing over the
minimal latency. The STM presented a negligible impact on the
execution time of application, with a worst execution time
increase of 0.4%.
Large-scale MPSoCs have other issues to achieve QoS. One of
these issues is the increasingly NoC unpredictability as the system
grows in the number of cores. To cope with this, runtime QoS
techniques applied to the NoC can be employed together with the
proposed scheduler, to provide a full QoS support. Other future
works include to integrate the scheduler with a task mapping and
schedulability analysis algorithm and add energy awareness to the
heuristic.

ACKNOWLEDGMENTS
The Author Fernando Moraes is supported by CNPq - projects
472126/2013-0 and 302625/2012-7, and FAPERGS - project
2242-2551/14-8.

REFERENCES
[1] Shafique, M.; Garg, S.; Henkel, J.; Marculescu, D. “The EDA

challenges in the dark silicon era”. In: DAC, 2014, pp.1-6.
[2] Singh, A.K.; Shafique, M.; Kumar, A.; Henkel, J. “Mapping on

multi/many-core systems: Survey of current and emerging trends”.
In: DAC, 2013, pp.1-10.

[3] Jung, H.; et al. “Dynamic Behavior Specification and Dynamic
Mapping for Real-Time Embedded Systems: HOPES Approach”
ACM Trans. Embed. Comput. Syst., vol 13(4), 2014, 26 p.

[4] Park, S. “Task-I/O Co-scheduling for Pfair Real-Time Scheduler in
Embedded Multi-core Systems”. In: EUC, 2014, pp.46-51.

[5] Gangadharan, Deepak; Chakraborty, Samarjit; Zimmermann, Roger,
"Quality-aware media scheduling on MPSoC platforms". In: DATE,
2013, pp. 976-981.

[6] Rosvall, K.; Sander, I. “A constraint-based design space exploration
framework for real-time applications on MPSoCs”. In: DATE, 2014,
pp.1-6.

[7] Bamakhrama, M.; Stefanov, T. “Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications”. In: EMSOFT,
2011, pp.195-204.

[8] Tafesse, B.; Raina, A.; Suseela, J.; Muthukumar, V., “Efficient
Scheduling Algorithms for MpSoC Systems”. In: ITNG, 2011, pp.
683-688.

[9] Liu, J.W.S. “Real-Time System”. Printice Hall, New Jersey, 2000.
[10] Hwang, M.; Choi, D.; Kim, P. “Least Slack-time Rate First: New

Scheduling Algorithm for Multi-Processor Environment”. In: CISIS,
2010, pp.806-811.

[11] Theodoropoulos,D.; Pratikakis,P.; Pnevmatikatos,D. “Efficient
runtime support for embedded MPSoCs”. In: SAMOS, 2013 pp.164-
171.

[12] Cannella, E.; Derin, O.; Meloni, P.; Tuveri, G.; Stefanov, T.
“Adaptivity support for MPSoCs based on process migration in
polyhedral process networks”. VLSI Design, 2012, Article 2.

[13] Hansson, A.; et al. “Design and implementation of an operating
system for composable processor sharing”. Microprocessors and
Microsystems, v. 35 (2), pp. 246-260, March 2011.

[14] Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F. “Distributed
Resource Management in NoC-Based MPSoCs with Dynamic
Cluster Sizes”. In: ISVLSI, 2013, pp. 153-158.

[15] Davis, R.I.; Burns, A. “A survey of hard real-time scheduling for
multiprocessor systems”. ACM Comput. Surv. Article 35, 2011, 44p.

346

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

