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ABSTRACT 
Large-scale MPSoCs requires a scalable and dynamic real-time 
(RT) task scheduler, able to handle non-deterministic 
computational behaviors. Current proposals for MPSoCs have 
limitations, as lack of scalability, complex static steps, validation 
with abstract models, or are not flexible to enable changes at 
runtime of the RT constraints. This work proposes a hierarchical 
task scheduler with monitoring features. The scheduler is 
dynamic, supporting changes in RT constraints at runtime. An 
API enables these features allowing to the application developer 
to reconfigure the tasks' period, deadline, and execution time by 
annotating the task code. At runtime, according to the task 
execution, the scheduler handles the API calls and adjust itself to 
ensure RT guarantees according to the new constraints. Scalability 
is ensured by dividing the scheduler into two hierarchical levels:  
LS (Local Schedulers), and CS (Cluster Schedulers). The LS runs 
at the processor level, using the LST (Least Slack-Time) 
algorithm. The CS runs at the cluster level, i.e., a group of 
processors controlled by a manager processor.  The CS receives 
messages from the LSs, informing the processor slack-time, 
deadline violations, and RT changes. The CS implements an RT 
adaptation heuristic, triggering task migrations according to RT 
reconfiguration or deadline misses. Results show a negligible 
overhead in the applications' execution time and the fulfillment of 
the applications’ RT constraints even with a high degree of 
resources sharing, in both processors and NoC. 

Keywords 
MPSoC; Real-time; Scheduler; Runtime; Slack-time. 

1. INTRODUCTION 
The increasing number of processing elements (PEs) in modern 
large-scale multiprocessor systems on chip (MPSoCs) increases 
the resource sharing among system components [1]. For this 
reason, scheduling algorithms are essential for managing the 
processors usage while satisfying the constraints of real-time 
applications.  
A key feature of a complex system, such as an MPSoCs, is the 
ability to support dynamic workloads. Applications may have 
moments of heavy computational load and also can have moments 
of a state close to the idle, waiting, for example, an external input, 
as a user interaction or a message from another task. For this 
reason, it is necessary to allow applications to tune the 
computational workload, avoiding unnecessary resources 
allocation. Aware of this challenge, this work focuses on a self-
adaption technique for MPSoCs, proposing a dynamic RT task 

scheduler that can support runtime reconfiguration of the tasks’ 
RT constraints. This reconfiguration starts with an API that 
enables the application developer to characterize the RT workload 
of each task at different execution points. At runtime, according to 
the task execution, the API triggers changes in the task RT 
constraints. The proposed task scheduler handles these changes at 
runtime to fulfill the new tasks’ RT constraints.  
Scalability is ensured by dividing the scheduler into two 
hierarchical levels:  LS (Local Schedulers), and CS (Cluster 
Schedulers).  The LS runs at the processor level, using the LST 
(Least Slack-Time) algorithm. The CS runs at the cluster level, 
i.e., a group of processors controlled by a manager processor. The 
CS receives messages from the LSs, informing the processors' 
slack-time, deadline violations, and RT changes. The CS 
implements an RT adaptation heuristic, triggering task migrations 
according to RT reconfiguration or deadline misses. 
The scheduler works as closed-loop control system -  Figure 1. 
The monitoring and notification messages (processor slack-time, 
deadline miss, RT changes), produced by the LSs, are the inputs 
for an RT manager executed in the CS, which can trigger an 
adaptation by generating a task migration action. This process is 
repeated along the execution of the applications. 
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Figure 1. Scheduler support for self-adaptation at runtime. 

The focus of this work is related to the scheduler ability to support 
dynamic RT reconfigurations while it satisfies the task RT 
constraints. Task mapping or schedulability analysis in out of this 
work scope. Such techniques are broadly explored in the literature 
[2][3][4] and can be easily combined with the proposed scheduler. 
Aware of the current state-of-the-art works, this work is the first 
to support a runtime reconfiguration of the RT task constraints. 
Besides, the evaluation of the proposed scheduler is executed in a 
clock cycle accurate description of the MPSoC. 

2. RELATED WORK 
The literature related to task scheduling contains a large number 
of proposals focusing on multiprocessor systems [1]. However, 
most of the works are not suitable for MPSoCs. Most MPSoC 
schedulers consider design-time steps integrated into frameworks 
[5][6][7][8]. Such works often employ a MoC (Model of 
Computation) such as PPN, DAG, and SDGA to model the 
applications at design-time, making its behavior predictable, and 
also enabling hard RT scheduling. Static or partial static 
scheduling is a conservative approach to guarantee hard RT 
behavior. Those proposals are only effective when the set of 
applications to execute in the system is fixed at design-time. 
Pfair is a state-of-the-art hard RT scheduler for multiprocessor 
systems [4]. Park et al. [4] propose HPGP, a hybrid scheduler for 
MPSoCs based on Pfair. A partitioned version runs the Pfair 
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algorithm together with a global scheduler that makes task 
mapping and task migrations. The manager selects the ready tasks 
to be scheduled into a PE. Each PE executes a schedulability 
analysis. If the task is not schedulable, the core invokes the global 
scheduler to perform task migration. The task mapping approach 
is not addressed. The proposal considers only periodic tasks with 
deadlines equal to their respective periods and constant execution 
time. Besides, the evaluation is carried out only with four cores, 
which does not enable validating the algorithm in large MPSoCs. 
This work also uses a hybrid scheduling organization. Differently 
from Pfair, in this work the scheduler supports variable tasks 
periods, deadlines and execution times, providing higher 
flexibility for RT workloads. 
The LST (Least Slack Time) scheduler was proved to be non-
optimal to multiprocessor systems [9]. Hwang et al. [10] propose 
LSTR, a scheduling algorithm based on LST, with additional 
features to be optimal for multiprocessor systems. LSTR was 
designed to support only periodic tasks. Besides a large number of 
task migrations, the Authors do not consider such overhead. 
The design of an RT scheduler for MPSoCs should consider, 
among other factors, how to inform the RT task constraints to the 
system, and how to handle interruptions. As the scheduler 
proposed in this work is a dynamic scheduler, RT task constraints 
are transferred to the operating system (OS) using task code 
annotation, a common approach found in the literature. 
Theodoropoulos et al. [11] use task code annotation (called 
pragmas) that are used by a runtime manager to perform task 
mapping. Canella et al. [12] employ task annotation to implement 
a task migration mechanism based on task replication. The task 
annotation is used to guarantee inter-task communication 
synchronization. 
The treatment of interruptions may interfere in the execution of 
RT tasks. Interruptions can be handled immediately using specific 
system routines, or can be pooled at fixed and predetermined 
times [13]. Another alternative is to redirect interruptions handling 
to free cores [4]. However, this option can only be useful when 
interruptions come from external devices and are not related to 
inter-task communications. 
Concluding, there is a lack of works in the literature addressing 
dynamic RT schedulers for MPSoCs. To the best of the Authors 
knowledge, this paper is the first proposal that addresses a 
scheduling algorithm for MPSoC combining the originalities 
detailed in the Introduction, combined with an evaluation 
employing a clock cycle accurate platform model. 

3. SYSTEM MODEL 
This section describes the system model, detailing important 
assumption related to this work. 

3.1 MPSoC Model 
This work adopts the cluster-based architecture, with manager and 
slave PEs depicted in Figure 2(a). The MPSoC contains a set of 
PEs, interconnected by a NoC. It is partitioned into n clusters 
C={c1, c2, …, cn}. Each cluster ci ∈ C has a set P(ci)={M, sp1, sp2, 
…, spk}, where M denotes a CM, k the number of slave processors 
in the cluster. Only one CM has an interface to input/output 
devices. Note that the cluster size is not static. At runtime, it can 
change it size by using a reclustering protocol [14]. 
The platform uses a distributed memory organization. Inside each 
PE - Figure 2(b), there is one processor, one dual-port local 
memory, one NI (Network Interface), NoC router, and one DMA 
module (Direct Memory Access). The adoption of a DMA module 
improves the processor performance avoiding stalls to send and 
receive packets to/from the NoC. 
All PEs execute a small operating system (µkernel: ~20KB). The 

CMs execute a management µkernel, not executing user tasks. 
One specific CM has access to an application repository. This 
repository contains the applications’ tasks object code, and 
simulates the insertion of new applications into the MPSoC at 
runtime. SPs execute a µkernel to control the execution of the user 
tasks. This µkernel also implements a paging mechanism to 
support multitasking and an inter-task communication protocol 
based on MPI. 
The PEs handle two external interruptions: NI interruption, 
signaling a received packet from the NoC; scheduler 
interruptions, signaling the end of the scheduler timer (only in 
SPs). In the occurrence of an interruption, the executing task is 
preempted. 

 
Figure 2. Cluster-based MPSoC example - a 6x6 MPSoC with 
four 3x3 clusters. CM: cluster manager. SP: slave processor. 

3.2 Application and Task Model 
An m-task application A={t1, t2, …,tm} is modeled by a task graph 
G(T, E), with each vertex ti ∈ T representing a task and the 
directed edge (ei, ej), denoted as eij ∈ E, representing the 
communication between tasks ti and tj. Tasks communicate using 
a non-blocking Send and blocking Receive MPI-like primitives. A 
given task ti can assume four states: waiting, ready, running, and 
sleeping. The waiting state implies that the task is blocked, 
waiting for a producer task to send it a message. The ready state 
means that the task already achieved its release time, and is ready 
to be scheduled. The running state implies that the task is 
executing on the processor. The sleeping state (RT tasks only) 
means that the task already finished its execution time and its 
period does not end yet, so the task must be suspended.  
The system supports best-effort tasks - Bt, and real-time tasks - Rt. 
Bts do not have time bounds and explore the slack-time of Rts. Rts 
have soft temporal requirements. Figure 3 details the Rt 
constraints model. 

 
Figure 3. RT constraints model. 

Rt definition: Rt is a 6-tuple {p, d, e, u, r, s} with a period (p), 
relative deadline [9] (d), execution time (e), utilization (u), 
remaining execution time (r), and slack-time (s). Utilization 
corresponds to u = e * 100 / p.  The remaining execution time is 
the amount of time Rt has to finish it execution time. 
To make the system aware of the constraints of a given Rt, the task 
must execute a system call (syscall) named RealTime. This 
RealTime syscall is the API provided to the application developer 
to reconfigure the RT constraints. Figure 4 presents an example of 
an Rt code that configures the RT constraints dynamically. At line 
3, TASK A calls RealTime, notifying the µkernel of its RT 
constraints. Lines 4-8 execute some code. Due to the RT 
constraints configuration, the scheduler can execute TASK A 
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according to the RT requirements.  Next, at line 10 the task calls 
RealTime again to notify the scheduler about its new constraints. 
The code between lines 11-15 executes according to these new 
constraints. As can be observed, this system call enables the task 
to change its RT constraints dynamically. 

 
Figure 4. Example of a task code with runtime RT 

configuration. It calls the RealTime syscall twice to configure 
the constraints (in lines 3 and 10). 

Note that the RT reconfiguration can be called in any task code 
point allowing the task can change its period (characterizing an 
aperiodic behavior), deadline, and/or execution time. Such 
behavior, where an RT task can change its RT constraints at 
runtime, is typical in real scenarios. For example, consider a voice 
recognition application. The application can assume two 
workloads: the first one is a listening state, where the application 
is waiting for the user to pronounce some sound, this state 
requires a moderate RT workload. The second one is the 
recognition state, where the task uses voice recognition 
algorithms. In this case, the application tasks can configure two 
workloads, with different RT requirements. 
To handle inter-task dependencies, this work assumes that an 
iteration of a given application defines a hyper period, i.e., an RT 
application has all its tasks configured with the same p. This hyper 
period can handle with inter-task dependencies because it is 
composed of the WCET (worst-case execution time) of all tasks 
and the worst-case of communication between the application’s 
tasks.  
This task dependency model does not restrain the application 
model, accepting sequential, parallel and pipelined applications. 
The designer can obtain the WCET and communication latencies 
running the application alone in the system, representing a 
profiling phase. 

4. THE PROPOSED SCHEDULER 
Table 1 presents the classification [9][15] of the proposed 
scheduler. 

Table 1 – Proposed scheduler classification. 
Criterion Classification 
Organization (Global, Partitioned) Hybrid (Mixes Global and Partitioned) and 

clustered  
Scheduling decision (Static, Dynamic) Dynamic 
Allocation (Clock, Table, Priority) Dynamic Priority-driven 
Migration (Job level, Task level) Task-level Migration 
Processor Number (Uni.,Multi.) Multiprocessor (on chip) 
Preemption (Yes, No) Yes 
Supported task Periodic, aperiodic 
Real-time (Hard, Firm, Soft) Soft real-time 

Figure 5 presents an overview of the scheduler. It has a 
hierarchical organization that is divided into two levels: 
• Cluster scheduler (CS) - runs the high-level part of the 

scheduler in the CMs. Its job is to perform RT adaptations if 
a given RT task is missing deadlines or it has changed its RT 
constraints and its current processor is not able to execute the 
task; 

• Local scheduler (LS) - runs the low-level part of the 
scheduler in the SPs, executing the LST scheduling 
algorithm. 

The LSs send messages to CS. The messages are (i) slack-time 
monitoring; (ii) deadline miss; (iii) RT change. Messages (ii) and 
(iii) are reactive messages, sent when a task misses a deadline, or 
when a task calls the RealTime syscall, respectively. The slack-
time messages are generated periodically (slack-time monitoring –  
STM). 

 
Figure 5. Hierarchical scheduler organization. 

The STM provides to the CS the actual slack-time of each SP. The 
STM has a hardware/software implementation at each SP. The 
hardware part corresponds to a timer, which generates an 
interruption to the µkernel according to a monitoring window. 
This monitoring window is configurable at design time and can be 
adjusted to provide a tradeoff between NoC communication load 
and the STM update frequency. The software part corresponds to 
a slack-time counter and a monitoring interruption handler 
function, both implemented in the µkernel.  
When the STM timer interrupts the µkernel, a message with the 
current slack-time is sent to the CS and the slack-time counter is 
reinitialized.  

4.1 Cluster Scheduler (CS) 
The CS executes into the CMs. The CS have the goal of handling 
the messages sent by the SPs and execute the RT adaptation if 
necessary. For the slack-time messages, the CS only updates the 
percentage of the idle state of each processor of its cluster. For 
deadline miss messages the CS executes a heuristic called 
RT_adaptation, which can select a new processor to migrate the 
penalized task. Finally, for RT change messages, the CS verify if 
the current processor of the task has enough utilization to execute 
the task, if not, as well as occurs for deadline miss message, the 
CS executes the RT_adaptation heuristic. 
The RT_adaptation heuristic works as a set of decision layers 
applied to the SPs of the cluster - Figure 6(a). Figure 6(b) presents 
the heuristic pseudo-code. As input it receives the set CSP = {P(ci) 
- M} (corresponding to set of SPs in the cluster), and the task t to 
be migrated into a given element of CSP. As output the algorithm 
returns the selected processor s, corresponding to the new 
processor to receive the task t. If all the processors are not 
available to receive the task, the adaptation process is suspended, 
the affected task will start to miss deadlines triggering the 
adaptation process until an available processor can be found.  
The decision functions only select the SP(s) which fulfill the 
function’s requirement. The following decision functions are 
used: 
• utilization: selects the SP(s) that have a remaining utilization 

enough to receive the task t; 
• max_avg_ST: selects the SP(s) with the largest average slack-

time, information obtained from STM;
• min_RT_task: selects the SP(s) with the minimum number of 

RT tasks allocated to it; 
• min_abs_ST: selects the SP(s) with the largest absolute 

slack-time measured at the last slack-time monitoring 
window; 

• min_alloc_tasks: selects the SP(s) with the minimum number 
of allocated tasks. 
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Finally, in line 6, the first SP in CSP is selected to receive task t. 
Using this heuristic, the CS takes advantage of the monitored 
slack-time of its slave processors (lines 2 and 4), together with 
traditional RT metrics (line 1 and 3). The information provides a 
trade-off between the processor RT utilization and load balancing. 
After the execution of the heuristic, a task migration order in sent 
to the current SP of task t and the task is migrated to the selected 
processor s. The task migration protocol is out of this work scope. 

task t

RT_Adaptation (Csp, t, s)
Input: Csp, t
Output: s
begin

1. Csp= Csp ∩ utilization(Csp, t)
2. Csp= Csp ∩ max_avg_ST(Csp)
3. Csp= Csp ∩ min_RT_task(Csp)
4. Csp= Csp ∩ min_abs_ST(Csp)
5. Csp= Csp ∩ min_alloc_tasks(Csp)
6. s = first(Csp)

end  
Figure 6. (a) layered decision flow. (b) RT_adaptation pseudo-

code.  

4.2 Local Scheduler (LS) 
Assuming the task model in 3.2, the LS executes at each SP as a 
traditional LST scheduler [9]. The LST algorithm was chosen 
because it has been proved optimal for single cores, and due its 
support to deadlines different from the period [9], which is not 
supported in EDF (Earliest Deadline First). Note that in this work 
the multiprocessor scheduling problem can be reduced to the 
single core problem, due the presence of the CS, which can 
migrate a task Rt into an SP with resources to fulfill the task RT 
constraints. 
The RT tasks have scheduling priority over BE tasks. RT tasks are 
scheduled according to its least slack-time priority. If there are 
two or more RT tasks with the same slack-time, a round-robin 
algorithm is used to select the next scheduled task. BE tasks are 
scheduled only by the round-robin algorithm. 
As the system uses an MPI-like communication API, some tasks 
can be in a waiting state. In this state, BE tasks are simply 
blocked. However, when an Rt goes to the waiting state, the 
scheduler handles the Rt as a sleeping task, i.e., the scheduler 
verifies the end of task period, but do not update its remaining 
execution time neither schedules the task. When the task receives 
the requested message, the µkernel changes the state of the task to 
ready and calls the LS. The scheduler then updates the slack-time 
and the remaining execution time for all its RT ready tasks, 
scheduling the task using the LST priority. 
Most schedulers use a fixed scheduler timer (ST), or quantum, to 
schedule the tasks [9][4] (for example, EDF uses fixed time 
slices). This quantum is the interval between the scheduler calls. 
The proposed LS uses a variable quantum. Setting the appropriate 
ST is challenging, because it may induce deadline misses caused 
by excessive scheduler executions. The method to compute ST is 
executed after selecting a given task ts ∈ T to run. The goal is to 
let ts run, minimizing scheduler interruptions, without 
compromising other RT tasks. Let ψ be the set of Rt allocated into 

a given SP, minus ts.  
The ST value is computed applying the following steps:  
1. Selection of the first end of period for all sleeping and 

waiting tasks s ∈ ψ, using Equation 1: 

  (1) 

where is the current system time, and n is the number of 
tasks s ∈ ψ. The value Stc1 ensures that the scheduler will be 
called at the first end of period of a task si ∈ ψ. The Stc1 
value ensures a scheduler call to awake a sleeping task or to 
verify if a waiting task missed a deadline. The default value, 
if n=0, is remaining execution time of ts: ts(r). 

2. Selection of the minimum slack-time: minST() for all ready 
tasks r ∈ ψ, using Equation 2: 

  (2) 

where n is the number of tasks r ∈ ψ. The Stc2 value ensures the 
execution of ts up to the expiration of the smallest slack-time of a 
task ri ∈ ψ. 
3. Selection of the scheduler timer ST, using the Equation 3:  

                                 (3) 
If ts(r) is smaller than the previously computed values, it is adopted 
as the quantum value. After selecting ST, tasks ts start their 
execution using the ST value as quantum. 

5. RESULTS 
Results were obtained using a clock-cycle accurate RTL SystemC 
model of the MPSoC. The µkernel, application code, and the 
scheduler was implemented in C. Results use two latency metrics: 

• Task iteration latency, time to execute a task iteration, 
which can e.g. be a loop (Figure 4).  

• Application iteration latency, time for an application to 
execute its hyper period.  

5.1 Slack-time Monitoring 
The evaluation of the STM includes: accuracy and performance 
overhead. The accuracy evaluation employs an 8x8 MPSoC 
divided into four 4x4 clusters. To estimate the SPs’ slack-time, the 
SPs received only RT tasks. Figure 7(a) presents the annotated 
utilization for each SP (%). Figure 7(b) presents the monitored 
slack-time (%). It is possible to note that the monitored slack-time 
is in practice the remaining utilization of Figure 7(a), with the sum 
of SPs utilization with the monitored slack-time reaching 99%. In 
fact, the remaining 1% is related to OS overheads. Such results 
demonstrate the accuracy of the monitored slack-time. 

9 11 34 7 81 77 82 10  90 88 65 92 18 22 17 89 
6   29 15 10 57 5 62 14  93 70 84 89 42 94 37 85 

21 55 15 44 12 25 80 24  78 44 84 55 87 74 19 75 
CM 58 86 6 CM 6 12 14  CM 41 13 93 CM 93 87 85 
16 47 12 67 69 13 66 9  83 52 87 32 30 86 33 90 
50 5 10 14 29 15 14 46  49 94 89 85 70 84 85 53 
9 19 9 74 81 11 12 54  90 80 90 25 18 88 87 45 

CM 40 79 59 CM 27 15 46  CM 59 20 40 CM 72 84 53 
          (a) SPs utilization (%)                  (b) Monitored SPs slack-time (%) 
Figure 7. (a) SPs utilization using RT tasks. (b) Monitored SPs 

slack-time. Each square represents a PE.  

To evaluate the performance overhead due to STM, a 12x12 
MPSoC divided into nine 4x4 clusters is used, running a mix of 
RT and BE applications. The monitoring window is set to 10 ms. 
Figure 8 presents the STM overhead for each SP. This overhead is 
related to the time required to handle the STM interruption and to 
send the slack-time message to the CS. As can be observed, the 
overhead in most SPs falls between 100 and 150 clock cycles (cc), 
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with an average of 132 cc. There are a few large values, which can 
be explained by NoC congestion, forcing the packet to wait for the 
router to be released. The overhead in the CM to handle the STM 
packets was 1620 cc (only software execution). Such result shows 
the small penalty to monitor the slack time.  

 
Figure 8. STM overhead for SPs in a 12x12 MPSoC.

Different STM windows were evaluated: 1, 2, 5 and 10 ms. The 
cost of handling a monitoring message does not change with the 
STM window. Reducing the monitoring window may reduce the 
time to adapt the system, at the cost of increased processing in 
CMs, due to the larger number of packets to deal with. The 
monitoring window is a design choice, enabling to establish a 
trade-off between reaction time and performance overhead in the 
manager processors. 

5.2 RT Adaptation Support 
This Section evaluates the RT adaptation support, observing the 
scheduler behavior when a RealTime syscall occurs. Figure 9 
presents the CPU utilization for a given SP running two RT tasks: 
t1 and t2. At the beginning of the execution, both tasks configure 
its RT constraints: t1(u)=20%, t2(u)=30%. Near 52 ms, t2 changes 
its RT constraints, configuring t2(u)=65%. It is possible to note 
that after the second RealTime, t2 executes for a longer period, 
corresponding to the utilization configured in the second 
RealTime call. 

Figure 9. Change in the CPU time utilization during an RT 
adaptation (rectangles represent the CPU utilization). 

Figure 10 presents the task iteration latency for t1 and t2, 
considering the scenario presented in Figure 9. It is possible to 
note that the t1 latency is not affected when the t2 workload 
increases, demonstrating the capability of the LS to preserve the 
RT constraints. The small peak near 52 ms observed in the graph 
occurs due the RT adaptation process. Figure 10(b) shows that 
after t2 request more CPU resources, the latency decreases in the 
same proportion. 

 
Figure 10. Task iteration latency change during an RT 

adaptation. (a) t1 latency. (b) t2 latency. 

5.3 RT Adaptation with Task Migration 
This Section presents an RT adaptation, Figure 11,  that includes 
task migration. The same scenario of the previous Section is used. 
However, the second RT configuration of t2 exceeds the SP 
utilization: t2(u)=85%. This utilization, with t1(u), would result in 
an SP utilization equal to 105%. When CS receives the RT request 
message related to the second t2 RT change, it executes the 
RT_adaptation (Figure 6(b)) to select an SP with enough
remaining utilization.  

 
Figure 11. Change of the CPU time occupation during an RT 

adaptation with task migration. Task t2 start to execute in SP2 
when the RT constraint changes. 

Observing the chart of Figure 11(a), it is possible to note that near 
52 ms t2 call the second RealTime, inducing a task migration from 
SP 1 to SP 2 (Figure 11(b)). The total time between the start of RT 
adaptation until the end of task migration was 8906 cc, with 2651 
cc (29.7%) required to the RT adaptation process, and 6255 cc 
(70.3%) required to the task migration protocol. 
Figure 12(a) and Figure 12(b) present the task iteration latency for 
t1 and t2, considering the scenario presented in Figure 11. It is 
possible to observe the negligible impact of RT adaptation even 
with task migrations taking place. 

 
Figure 12 . t1(a) and t2(b) task iteration latency during an RT 

adaptation with task migration. 
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5.4 Impact of Disturbing Applications  
This Section evaluates two RT applications: DTW (computation 
intensive, six tasks) and MPEG (communication intensive, five 
tasks). These applications – named target applications, were 
evaluated in the presence of disturbing applications (RT or BE). 
The goal is to observe the scheduler behavior with multiple tasks 
allocated in the same SP, and the impact of the disturbing 
applications over the target applications. 
Initially, target applications execute alone in the system aiming to 
collect the reference RT constraints for its tasks (profiling step). In 
sequence, new simulations were performed aiming to insert RT 
interference over the target applications. According to Figure 3, 
the available time to execute disturbing tasks, tdisturb, corresponds 
to Rt(p)- Rt(e). The experiments vary tdisturb from 10% (0.1* tdisturb) 
to 90% (0.9 * tdisturb).  
Figure 13(a) presents the DTW average application iteration 
latency. The first column presents the minimal latency, next 
columns present the interference of a RT disturbing application 
varying tdisturb from 10% (10% RT) to 90% (90% RT), the column 
“BE” corresponds to a BE application interference with tdisturb 
equal to 100%. The last column presents the latency when a 
round-robin scheduler (i.e. without RT support) is used. Is 
possible to observe that for all RT disturbing scenarios the DTW 
latency close to the minimal latency (36220.03 cc.), with an 
average latency increase of 2%, and a standard deviation of 316.4 
cc. Such results demonstrate the scheduling ability to preserve the 
RT application constraints even with high resource sharing. BE 
disturbing applications do not influence the latency values. 
Disabling the RT support the latency increase 97.13% compared 
with the minimal latency, demonstrating that a RT scheduler is 
required to meet deadline constraints. The deadline miss rate for 
DTW with RT disturbing was 0.66%, and for the disturbing 
application was in average 2.7%. Figure 13(b) presents the DTW 
execution time. The results are similar to the latency results. The 
additional column “minimal–no STM”, corresponds to the 
scenario to obtain the minimal latency, but disabling the STM. 
Note the negligible impact of STM monitoring, increasing the 
application execution time by 0.4% (using a 5 ms STM window). 

 
Figure 13. (a) DTW application latency over disturbing. (b) 

DTW execution time over disturbing. 

The application iteration latency observed in the MPEG 
application is similar to the DTW application. All latencies with 
RT disturbing remain close to the latency of the minimal scenario 
(55358.5 cc.), with an average latency increase of 0.5% and 
standard deviation equal to 181.1 cc. The frame rate achieved in 
the minimal scenario was 178 frames per 100ms. With RT 
disturbing applications, the frame rate has presented a maximum 
of 2 frames decrease compared to the minimal scenario. Disabling 
the RT support, the frame rate drops to 81 frames per 100ms. The 
impact of STM monitoring in the MPEG application was 0.07% 
(STM windows of 5 ms). The deadline miss rate for MPEG, with 
RT disturbing application, was 0.18%, and for the disturbing 
application was equal to 2.1%. 
The deadline miss difference between the disturbing application 
and the RT application occurs because the disturbing application 

is computationally intensive, which makes such application more 
sensitive during RT scheduling. This same observation can be 
used to explain the difference of deadline misses between DTW 
and MPEG. 

6. CONCLUSIONS 
This work presented a hierarchical scheduler for large-scale 
MPSoCs. The scheduler is completely adaptive, supporting 
dynamic task RT constraints and slack-time monitoring. The 
evaluation demonstrated a reliable ability to fulfill RT 
applications with soft deadlines even for communication or 
computation intensive applications with the interference of other 
RT applications. The observed worst-case application latency 
increase was 2% (DTW), with 90% of RT disturbing over the 
minimal latency. The STM presented a negligible impact on the 
execution time of application, with a worst execution time 
increase of 0.4%. 
Large-scale MPSoCs have other issues to achieve QoS. One of 
these issues is the increasingly NoC unpredictability as the system 
grows in the number of cores. To cope with this, runtime QoS 
techniques applied to the NoC can be employed together with the 
proposed scheduler, to provide a full QoS support. Other future 
works include to integrate the scheduler with a task mapping and 
schedulability analysis algorithm and add energy awareness to the 
heuristic.  
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