
	

A Context Saving Fault Tolerant Approach for a
Shared Memory Many-Core Architecture

Eduardo Wächter*†, Nicolas Ventroux†, Fernando G. Moraes*

* FACIN - PUCRS – Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil
†CEA, LIST, Embedded Computing Laboratory – 91191 Gif-sur-Yvette CEDEX – France

nicolas.ventroux@cea.fr, {fernando.moraes, eduardo.wachter}@pucrs.br

Abstract—Mechanisms for runtime fault-tolerance in many-
core architectures are mandatory to cope with transient and
permanent faults. This issue is even more relevant with
aggressive technology nodes due to process variability, aging
effects, and susceptibility to upsets, among other factors. This
work proposes to save periodically the context and to re-schedule
tasks to the last reliable known state and avoid the faulty
processor. This technique is implemented on an embedded
multicore architecture named P2012. The proposed fault-tolerant
approach induces a limited overhead of 9.37% in an industrial
image processing application while guaranteeing a full-error
recovery if any error is detected.

Keywords—NoC-based MPSoC; fault recovery; context saving;
checkpointing; rollback

I. INTRODUCTION AND RELATED WORKS
The probability of transient (e.g. crosstalk, SEUs) or permanent
faults occurrence due to manufacturing errors [1] and wearout
(e.g. electromigration) [2] is increasing with the technology
scaling. In this scenario, a many-core architecture that does not
take into account faulty processors can no longer guarantee the
correctness of its behavior during its lifetime. In addition, if there
is no Fault Tolerance (FT) management of healthy and faulty
processors, the whole system may be blocked or subject to
erroneous computations, leading to a malfunction of the system.
For this reason, it is crucial that the system can self-adapt itself in
order to isolate a faulty processing element (PE) and recover from
a reliable previous context.
The Authors in [3] present ReVive: a checkpoint/rollback
mechanism for architectures with processors, caches and memory
interconnected by an off-chip network. They implemented a
partial separation with logging checkpoint mechanism. This
approach proposes a partial separation, where checkpoint data
and working data are one and the same, except for those elements
that have been modified since the last checkpoint. This kind of
approach requires the memory to be divided into pages, with a
hardware directory controller responsible for the access to the
memory. The results on a 16-processor system indicate that the
average error-free execution time overhead of using ReVive is
only 6.3%.
In [4] the authors propose a Chip-level Redundant Threading
(CRT) to detect transient faults on Chip Multiprocessors (CMPs).
The approach is to execute two copies of a given program on
distinct cores and then compare the stored data. CRTR (CRT with
Recovery) achieves fault recovery by comparing the result of
every instruction before commit. Once detecting different results,
the microprocessor could be recovered by re-executing from the

wrong instruction. The results showed that the performance
overhead of the context saving when compared to the baseline
processor is approximately 30%.
The Reli technique [5] proposes to change the micro-operations
of instructions, which stores registers and data memory. They
adopted two stacks used for storing the registers in the register
file and for storing the data memory values that changed. Results
showed an overhead of 1.45% in the execution time on a faulty-
free scenario and incurs area overhead of 45% on average.
The DeSyRe project [6] presents an MPSoC framework for FT
purposes. As error recovery technique, they propose the
checkpoint and task re-execution for an MPSoC with seven cores.
The Authors do no evaluate the checkpoint technique. For this
reason, there are no results related to the overhead in a fault-free
scenario. However, the evaluation of the application re-execution
for a matrix multiplication application in a scenario with 20% of
tasks being faulty, the execution time doubles.
Gizopoulos et al. [7] classifies error recovery techniques into two
categories: forward error recovery (FER) and backward error
recovery (BER). FER techniques detect and correct the errors
without requiring to rollback to a previous correct state (e. g.
using Triple Module Redundancy - TMR). The BER techniques
periodically save (checkpoint) the system state and rollback to the
latest validated checkpoint when a fault is detected.
Some of the methods shown an overhead without faults smaller
than 20%, considered an acceptable overhead [3][5]. However,
these approaches target distributed systems [3] or require
modification in the ISA and dedicated hardware [5]. Other
methods present a larger overhead in the presence of faults [6] or
require redundant executions, wasting processing resources [4].
The goal of the present work is to propose a lightweight error
recovery technique for multi-core systems, targeting the P2012
multicore platform. In this paper, we propose to add a fault-
tolerant feature to the P2012 architecture by using an automatic
checkpointing and recovering method. If a fault is detected, the
previously saved context is restored, allowing the system to
continue its execution with unaltered data.
Contributions. The contributions of this paper are: (1) a
checkpointing/recovery method implementation in the P2012
architecture and (2) an isolation technique to isolate a faulty
internal core.
Two important assumptions adopted in the current work: (1) fault
detection is out of the scope of this research, implementations
have already been proposed, such as in [6]; (2) there are no
pragmas or code added by the software designer, allowing context
saving at any moment of the application execution.

978-1-4799-8391-9/15/$31.00 ©2015 IEEE 1570

	

II. FAULT-TOLERANT REFERENCE PLATFORM
The P2012 multicore architecture is an area- and power-efficient
many-core architecture for next-generation data-intensive
embedded applications such as multi-modal sensor fusion, image
understanding, or mobile augmented reality [8]. The P2012
contains multiple processor clusters implemented with
independent power and clock domains, enabling fine-grained
power, reliability, and variability management. P2012 can reach
19 GOPS (with full floating point support) in 3.8mm2 of silicon
with 0.5 W power consumption.

A. Architecture
Figure 1 presents an overview of the P2012 architecture. P2012 is
a GALS fabric of tiles, called clusters, connected through an
asynchronous global NoC (GANOC) [9]. Each cluster has access
to an L2-shared memory and to an external L3-shared memory.
Each P2012 cluster aggregates a multi-core computing engine
called ENCore and a cluster controller (CC). The ENCore
contains 16 STxP70-V4 processing elements (PEs). Each PE is a
32-bit load/store architecture with a 7-stage pipeline able to
execute up to two instructions per clock cycle (dual issue), with a
floating-point unit extension. Each core has an L1-16KB-private
instruction cache and can share an L1-256KB tightly coupled data
memory distributed in 32 banks (TCDM) with the other cores of
its cluster through a logarithmic interconnect.

Figure 1 – P2012 architecture.

The CC is the manager processor of its cluster. The CC encloses a
processor named CCP, a DMA subsystem and three interfaces:
one to the ENCore, one to the GANOC and one to the local
peripheral network to plug hardwired accelerators. The CC
processor also adopts the STxP70-V4 processor, 16-KB of
program cache and 32-KB of local data memory. The cluster
controller processor, together with its peripherals, is in charge of
booting and initializing the ENCore. It also performs application
deployment on the ENCore. The DMA sub-system has two
independent DMA channels. It performs the data block transfers
from the external memory to the internal memory and vice-versa
while the various cores are operating. The CC interconnects
supports intra and inter-cluster communication.

B. Software Stack
The software stack is named HARS [10] and it is based on a
hardware-assisted runtime software. It is composed of resource
management features, multiple execution engines to support
different programming models, and synchronization primitives
relying on a hardware module named HardWare Synchronizer
(HWS).
The HWS is dedicated to accelerate synchronization primitives on

massively parallel embedded architectures. It is designed as a
peripheral to be integrated into architectures using load/store
operations, providing their runtime software with efficient
synchronization implementations even for architectures without
atomic operations support. It can also remove polling issues
related to spin-lock operations. A specific set of software
synchronization primitives based on this hardware accelerator can
be used by the different cores to perform synchronizations. Thus,
instead of using a software instruction requiring an atomic
memory read/write access, the synchronization primitives
leverage the HWS atomic counters to implement locking.
Moreover, the runtime software uses sleep locks to put the
processor in a waiting state until it is awakened when the resource
is free.
HARS proposes a small set of execution engines covering a wide
range of parallel programming styles. Two main execution
engines are implemented: conventional multi-threading for coarse
grain parallel expression (suitable for thread-level or task-level
parallelism) and synchronous and asynchronous reactive tasks
management for fine-grain parallelism (suitable for data-level
parallelism).
Finally, an API enables the software designer to have access to all
communication primitives, parallel task execution triggering and
control of the synchronization features presented in other layers.

C. Execution model
In this paper, a conventional multi-threading execution model
based on fork-join mechanisms has been chosen. The PE that
executes the fork is referred as master PE (PEm). Any of the 16
PEs of the ENCore may be select as PEm. As showed in Figure 2,
PEm executes the sequential part of the application and can
delegate tasks to other processors, parallelizing the execution.

Figure 2 – Execution Model in P2012 with HARS. (1) master forks

parallel tasks, (2) other PEs execute the tasks, and (3) the master does the
join.

PEs only executes tasks that were forked by PEm. To execute the
fork, the PEm populates a table with tasks to be executed. The fork
procedure loads the local shared memory within the cluster with
the data and instructions to be executed by the parallel tasks.
After the load procedure is made, each PE executes the tasks.
When there are no more tasks to be scheduled, the PEm waits until
all tasks have finished their execution to join the tasks. Every PE
that is not doing a fork operation executes a scheduling loop. This
loop searches for jobs to be executed by scheduling ready tasks
from this table.
Each PE accesses a dedicated shared memory space, which is
released when the task finishes its execution. At this point, the
local memory in the cluster accessed by the PE has no useful
information about the execution on PEm and can be discarded.
The fork-join process can be repeatedly executed, but the PEm
must wait all tasks to finish their job before the join.

1571

	

III. FAULT TOLERANT EXECUTION MODEL PROPOSAL
As stated in the Introduction, this paper proposes a fault tolerant
approach to tackle faults occurring in the processors.

A. Context Saving and Restoring
According to our execution model, only the context of PEm is
saved, as well as the global shared memory space. Thus, the
context saving/restoring process is performed before the fork and
after the join. This guarantees a coherent state for all PEs and
eases the management of faults.
Thus, the execution context that must be considered is a structure
composed by the 32 PEm’s registers, the .data section that stores
all the shared uninitialized data, the .bss section that stores all the
shared initialized data, and the PEm stack which is locally stored
in the CC L1-data memory.
This structure is stored in the L3 memory, accessible by all the
clusters. All accesses to this memory are made through the
GANoC, inducing network traffic. The access time is higher
when compared to the local shared memory within the cluster.
The structure is allocated at runtime according to the size the
application needs.

B. Task interruption and faulty PE isolation
The HARS software stack in P2012 does not allow the PEs to
send an interruption to the PEm. Then, it is not possible to
interrupt the fork execution at the exact moment the fault is
detected. Our proposal is to use an atomic counter to store the
information if the PE is faulty or not. At the end of the parallel
task execution, PEm verify if there was an error in some PE,
reading its atomic counter. If a given PE is faulty, it is isolated
from the execution processor list and consequently will not
execute any other task. Then, PEm starts the recover context
procedure.

C. Fault-tolerant mechanism
Figure 3 presents the proposal of the Fault Tolerant (FT)
execution model. Before the sequential execution is forked, the
master saves the application context. This means that it stores in
the global shared memory (in this order): (1) all processor
registers; (2) its stack: (3) its .bss section and (4) its .data section.
At the end of the fork/join process, the master checks if any of the
PEs were hit by a fault and if needed, it triggers the recover
context procedure. If there was no fault, the execution continues
normally.

Figure 3 – Fault Tolerant Execution Model: In (1) the master executes a

context saving and in (3) it verify if there was a fault, if positive, the
context is restored and the fork is re-executed avoiding the faulty PE.

IV. EVALUATION AND RESULTS
This section evaluates the overhead induced by the FT proposal.
All scenarios are executed in the SDK of P2012 released by ST
Microelectronics. For the results, only 1 cluster is considered, and
all the communications between tasks are made through the
global shared memory space in the L3 and memory accesses are
made through the GANOC.

A. Applications description
The first application is synthetic, with it task graph presented in
Figure 4. A parameterizable number of NOP instructions (N)
define the task size. It is also possible to parameterize the number
of task (T), and the number of iterations (R).

Figure 4 – Task Graph of the synthetic application. (1) The PEm executes

the context saving, (2) the fork splits the execution in T tasks, each one
executing N number of NOP instructions, and (3) this process is

replicated R times.

The second application is an industrial application named Human
Body Detection and Counting (HBDC). It consists in processing
an image sequence to determine the background image and
subsequently the moving objects of the scene. The first phase
uses the Mixture of Gaussian (MoG) technique [11]. It is forked
in 60 tasks, each one taking around 340,000 clock cycles to
execute. Then, the remaining tasks are sequential. The moving
objects are classified to determine whether they correspond to
human shapes. 64 image frames are processed.

B. Evaluation of the method with Synthetic Application
Figure 5-a measures the impact of the context saving varying N.
The time to save the context is not a function of the task size (N).
Thus, the size of the parallelized tasks should mask the context
saving overhead. As shown in the Figure, the execution overhead
reduces as N increases. A task with 10,000 NOPs has an overhead
close to 20%, which is considered an acceptable overhead. The
next experiments use N=10,000 as reference for the task size.
The next experiment evaluates the impact of the context saving,
varying the size of the sections .data and .bss (Figure 5-b). The
amount of data to save is the main limitation of the approach. A
trade-off has to be defined between the tasks’ execution time and
the context data size. Then the programmer can choose an
acceptable overhead cost of the context saving.
The context saving is disabled to enable the evaluation of the fork
overhead. Figure 5-c shows the execution time overhead varying
R. Figures shows that the fork execution takes approximately 6%
of the execution time. Since this overhead is independent of the
number of repetitions, the fork/join process has a limited small
impact in the performance.

1572

	

Figure 5-d shows the execution time for the synthetic application
without context saving (noFT), with the FT method and no
injected fault (0faults), and with the FT method and a variable
number of injected faults. The context saving implies a 29%
overhead (N=10,000), and for each injected fault there is an
increase of 12% for the context restoring and fork rescheduling.

C. Evaluation of the method with HBDC Application
Figure 5-e shows the execution time overhead when context
saving is executed according to a variable number of frames.
Saving the context at each eight frames increases the execution
time by 5.67%. This means that the background images will be
restored as it was eight frames back if a fault is detected. For this
application, the checkpointing frequency has only a QoS impact
that will depend on the application frame rate. With a high frame
rate, losing some frames will not affect the application, resulting
in a good tradeoff between performance and quality.
Figure 5-f presents five executions of the HBDC application,
assuming context saving at each eight frames. In the first column
(noFT), there is no context saving, being the baseline execution
time. The second column shows the overhead induced by the
context saving with no fault insertion (9.37% compared to
baseline). The last three columns show the overhead for one, two
and three faults in different frames of the application. Note that
the percentage represents the overhead compared to the baseline
and the highlighted part represents only the context saving. As
there are tasks to be re-executed, the task execution time
increases when the number of faults grows.

V. CONCLUSION AND FUTURE WORKS
This work presented a Fault Tolerant Context Saving for a state-
of-the-art shared-memory MPSoC. Results showed that the
proposal was validated and could recover applications from faults
occurring in PEs. Execution with an industrial application shows
a good tradeoff between execution time overhead with no faults
(5.54%) and with faults (17.33% - 28.34%). The proposal does

not imply in hardware overhead or redundant executions, as
works in the state-of-the-art.
Future works focus on two fronts. The first is to enable each
parallel task to execute a context saving. The second is to
implement a mechanism where only the modified segments of the
shared memory would be replicated by the context saving.

ACKNOWLEDGMENTS
The Author Fernando Moraes is supported by CNPq - projects
472126/2013-0 and 302625/2012-7, CAPES - project CAPES-
COFECUB 708/11, and FAPERGS - project 2242-2551/14-8.

REFERENCES
[1] Borkar, S. Thousand Core Chips - A Technology Perspective. In: DAC,

2007, pp.746-749.
[2] Lienig, J. “Electromigration and its impact on physical design in future

technologies”. In: ISPD, 2013, pp. 33–40.
[3] Prvulovic, M.; Zheng Zhang; Torrellas, J. “ReVive: cost-effective

architectural support for rollback recovery in shared-memory
multiprocessors”. In: ISCA, 2002, pp. 111–122.

[4] Gong, R.; Dai, K.; Wang, Z. “Transient Fault Recovery on Chip
Multiprocessor based on Dual Core Redundancy and Context Saving”.
In: ICYCS, 2008, pp. 148–153.

[5] Li, T.; Ragel, R.; Parameswaran, S. “Reli: hardware/software checkpoint
and recovery scheme for embedded processors”. In: DATE, 2012, pp
875–880.

[6] Sourdis, I. et al. “DeSyRe: On-demand system reliability”.
Microprocessors and Microsystems. 37, 8, 2013, pp 981–1001.

[7] Gizopoulos, D. et al. “Architectures for online error detection and
recovery in multicore processors”. In: DATE, 2011, pp.1–6.

[8] Benini, L. et al. “P2012: Building an ecosystem for a scalable, modular
and high-efficiency embedded computing accelerator”. In: DATE, 2012,
pp. 983–987.

[9] Thonnart, Y.; Vivet, P.; Clermidy, F. “A fully-asynchronous low-power
framework for GALS NoC integration”. In: DATE 2010.

[10] Lhuillier Y. et al. “HARS: A hardware-assisted runtime software for
embedded many-core architectures”. ACM Trans. Embedded
Computing Systems v.13(3), 2014, 25 p.

[11] McLachlan, G. J.; Peel, D. “Finite mixture models”. New York: Wiley,
2000.

Figure 5 – (a) Execution time overhead varying the number of NOPs in each task (T=10, R=10). (b) Execution time overhead of context saving changing
the context data size from 10 to 10k words of 32 bits (T=10, R=10, N=10,000). (c) Fork overhead varying the number of repetitions (T=10, N=10,000). (d)

Application execution time overhead for scenarios with no context saving, and the overhead for scenarios where there is overhead increasing the number of
faults (T=10, R=10, N=10,000). (e) Execution time overhead without faults when executing context saving from each frame to each 16 frames. The bars
show the context saving overhead and the execution time. (f) Application execution time with no Context Saving, the overhead induced by the context
saving and the overhead induced by the context saving plus the recovery time for one, two and three faults. The percentages represent the overhead

compared to the baseline. The highlighted part represents the time executed saving the context.

(A) (B) (C)

(D) (E) (F)

1573

